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Abstract Anti-discrimination learning is an increasingly
important task in data mining. Discrimination discovery is the
problem of unveiling discriminatory practices by analyzing
a dataset of historical decision records, and discrimination
prevention aims to remove discrimination by modifying the
biased data and/or the predictive algorithms. Discrimination
is causal, which means that to prove discrimination one needs
to derive a causal relationship rather than an association rela-
tionship. Although it is well known that association does
not mean causation, the gap between association and causa-
tion is not paid enough attention by many researchers. In
this paper, we introduce a causal modeling-based frame-
work for anti-discrimination learning. Discrimination is
categorized according to two dimensions: direct/indirect and
system/group/individual level. Within the causal framework,
we introduce a work for discovering and preventing both
direct and indirect system-level discrimination in the train-
ing data, and a work for extending the non-discrimination
result from the training data to prediction. We then intro-
duce two works for group-level direct discrimination and
individual-level direct discrimination respectively. The aim
of this paper is to deepen the understanding of discrimina-
tion in data mining from the causal modeling perspective,
and suggest several potential future research directions.
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1 Introduction

Discrimination refers to unjustified distinctions in decisions
against individuals based on their membership, or perceived
membership, in a certain group. In the last fifty years, the
problem of detecting the presence of discrimination and pre-
venting discrimination in decision making has been studied
from legal, social, economic perspectives [29]. Recently, dis-
crimination discovery and prevention have been an active
research area in the data science field, due to increasing wor-
ries of discrimination as data analytic technologies could
be used to digitally unfairly treat unwanted groups, either
as customers, employees, tenants, or recipients of credit. In
2014, US President Obama called for a 90-day review of data
collecting and analyzing practices. An important conclusion
from the resulting report [6] is that “Big data technolo-
gies can cause societal harms beyond damages to privacy,
such as discrimination against individuals and groups”. In
May 2016, the Executive Office of the President made the
recommendation to “support research into mitigating algo-
rithmic discrimination, building systems that support fairness
and accountability, and developing strong data ethics frame-
works” [22]. Big data can be used for great social good, it can
also be used in ways that perpetrate social harms or render
outcomes that have inequitable impacts, even when discrim-
ination is not intended.

Laws and regulations have been established to prohibit
discrimination in many countries. For example, In the Euro-
pean Union, Council Directive 76/207/EEC implements the
principle of equal treatment for men and women as regards
access to employment, vocational training and promotion,
and working conditions. In the USA, the Civil Rights Act
of 1964 prohibits employment discrimination based on race,
color, religion, sex, or national origin. Although a remarkable
amount of legal regulations have been established, however,
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current anti-discrimination laws are not yet well equipped
to deal with various issues of discrimination in data analy-
sis [3]. In addition, laws in different countries are different
and there does not exist a legal consensus. Therefore, we do
not restrict our attention to specific anti-discrimination laws,
but focus on situations where discrimination can in principle
take place. In the following, we first give a set of definitions
used in anti-discrimination learning.

— Protected attribute is an attribute that can be used

to discriminate people and whose usage is prohibited.

Examples of protected attributes include: gender, age,

marital status, sexual orientation, race, religion or belief,

membership in a national minority, disability or illness.

Protected group is a group of people who are subject

to discrimination analysis. A protected group is speci-

fied by a protected attribute or a combination of multiple
protected attributes, for example, all females, or all black
females, in a dataset.

— Direct discrimination is one type of discrimination,

which occurs when individuals receive less favorable

treatment explicitly based on the protected attributes. An

example of direct discrimination would be rejecting a

qualified female in applying for a university just because

her gender.

Indirect discrimination refers to the situation where the

treatment is based on apparently neutral non-protected

attributes but still results in unjustified distinctions
against individuals from the protected group. A well-
known example of indirect discrimination is redlining,
where the residential Zip Code of an individual is used for
making decisions such as granting a loan. Although Zip

Code is apparently a neutral attribute, it correlates with

race due to the racial composition of residential areas.

Thus, the use of Zip Code may indirectly lead to racial

discrimination.

— Redlining attribute is a non-protected attribute that can
cause indirect discrimination, e.g., the Zip Code in the
above example.

— Discrimination-free dataset is a dataset that does not
contain discrimination based on certain discrimination
measurement.

— Discrimination-free classifier is a classifier that will not
make discriminatory predictions. A common assump-
tion is that a classifier learned from a discrimination-free
dataset is a discrimination-free classifier. The validity of
this assumption is examined in Sect. 5.

In anti-discrimination learning, discrimination discov-
ery is the problem of unveiling discriminatory practices by
analyzing a dataset of historical decision records; and dis-
crimination prevention aims to remove discrimination by
modifying the biased data and/or the predictive algorithms
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built on the data. Various business models have been built
around the collection and use of individual data to make
important decisions like employment, credit, and insurance.
It is imperative to develop predictive algorithms such that
the decisions made with their assistance are not subject
to discrimination as those predictive algorithms have been
increasingly used in real-world applications. For important
decisions like employment, credit, and insurance, consumers
have a right to learn why a decision was made against them
and what information was used to make it, and whether they
were fairly treated during the decision making process. On
the other hand, the decision makers want to ensure that the
business models they built are discrimination-free even if the
historical data contains bias. Therefore, the historic data and
the predictive algorithms must be carefully examined and
monitored.

Our society has endeavored to discover and prevent dis-
crimination; however, we face several challenges. First,
discrimination claims often require plaintiffs to demonstrate
a causal connection between the challenged decision and a
protected characteristics. In order to prove discrimination,
we need to derive a causal relationship between the pro-
tected attribute and the decision rather than an association
relationship. However, randomized experiments, which are
gold-standard for causal relationship inferring in statistics,
are not possible or not cost-effective in the context of discrim-
ination analysis. In most cases, the causal relationship needs
to be derived from the observational data rather than con-
trolled experiments. Second, algorithmic decisions, which
may not be directly based on protected attribute values, could
still incur discrimination against the protected group. In such
situations, indirect discriminatory effects present even if we
remove the protected attributes from the training data.

The state of the art of discrimination discovery has devel-
oped different approaches for discovering discrimination
[20,21,26,27,29,30,43]. These approaches classify discrim-
ination into different types such as group discrimination,
individual discrimination, direct and indirect discrimina-
tion. Based on that, methods for discrimination preven-
tion have been proposed [1,7,9,12-15,17-19,21,35,37,43]
which either use data preprocessing or algorithm tweaking.
However, these works are mainly based on correlation or
association-based measures which cannot be used to estimate
the causal effect of the protected attributes on the decision. In
addition, each of them targets one or two types of discrimina-
tion only. In real situations, several types of discrimination
may present at the same time in a dataset. Thus, a single
framework that is able to deal with all types of discrimina-
tion is a necessity.

This paper introduces a causal modeling-based framework
for anti-discrimination learning. A causal model [24] is a
structural equation-based mathematical object that describes
the causal mechanisms of a system. It is evolved from the
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nonparametric structural equation model, and enriched with
ideas from logic and graph theory. With well-established con-
ceptual and algorithmic tools, the causal model provides a
general, formal, yet friendly calculus of causal and counter-
factual effects. In the introduced framework, causal models
are adopted for modeling the mechanisms in data generation
and discrimination. Discrimination is categorized based on
whether discrimination is across the whole system, occurs
in one subgroup, or happens to one individual, and whether
discrimination is a direct effect or an indirect effect. In the fol-
lowing we first briefly review the anti-discrimination learning
literature and revisit the background of causal modeling.
Then we organize the discussion based on the categoriza-
tion of discrimination, and introduce several works based on
the causal modeling framework to deal with various types of
discrimination. In Sect. 7, we suggest several potential future
research directions.

2 Reviewing association-based anti-discrimination
methods

2.1 Discrimination discovery

Statistical tools and methods have been widely adopted in
measuring and discovering discrimination. A set of classic
metrics for statistical analysis consider the proportions of
receiving positive decisions for the protected group (p1), the
non-protected group (p2), and the overall sample (p). These
metrics include the risk difference (p1 — p2), risk ratio (%),

relative chance (%), odds ratio (%), extended dif-

ference (p1 — p), extended ratio (%), and extended chance
(II_T’;}) [29]. Another similar conception is called statisti-
cal parity, which means that the demographics of the set
of individuals receiving positive (or negative) decisions are
identical to the demographics of the population as a whole.
Equivalent formulations of this conception have been used
in many works (e.g., [9,37]). In [28], the authors attempted
to obtain an unbiased discrimination measurement by using
the statistical tool—propensity score.

A number of data mining techniques have also been pro-
posed. Pedreschi et al. proposed to extract from the dataset
classification rules which represent certain discrimination
patterns [26,27,30]. If the presence of the protective attribute
increases the confidence of a classification rule, it indicates
possible discrimination in the data set. Based on that, the
authors in [21] further proposed to use the Bayesian net-
work to compute the confidence of the classification rules
for detecting discrimination. The authors in [20] exploited the
idea of situation testing to discover individual discrimination.
For each member of the protected group with a negative deci-
sion outcome, testers with similar characteristics are searched

from a historical dataset. When there are significantly differ-
ent decision outcomes between the testers of the protected
group and the testers of the non-protected group, the negative
decision can be considered as discrimination. Conditional
discrimination, i.e., part of discrimination may be explained
by other legally grounded attributes, was studied in [43]. The
task was to evaluate to which extent the discrimination appar-
ent for a group is explainable on a legal ground.

2.2 Discrimination prevention

Proposed methods for discrimination prevention are either
based on data preprocessing or algorithm tweaking. Data
preprocessing methods [1,12,13,17,21,37,43] modify the
historic data to remove discriminatory effect according to
some discrimination measure before learning a predictive
model. For example, in [17] several methods for modify-
ing data were proposed. These methods include Massaging,
which changes the labels of some individuals in the dataset to
remove discrimination, Reweighting, which assigns weights
to individuals to balance the dataset, and Sampling, which
changes the sample sizes of different subgroups to make the
dataset discrimination-free. In [12], the distribution of the
non-protected attributes in the dataset is modified such that
the protected attribute cannot be estimated from the non-
protected attributes. Proposed methods for discrimination
prevention using algorithm tweaking require some tweak
of predictive models [7,9,14,15,18,19,35]. For example, in
[18], the authors developed a strategy for relabeling the leaf
nodes of a decision tree to make it discrimination-free. In
[35], the authors proposed the use of loglinear modeling to
capture and measure discrimination and developed a method
for discrimination prevention by modifying significant coef-
ficients from the fitted loglinear model. In [9], the authors
addressed the problem of constructing a predictive model
that achieves both statistical parity and individual fairness,
i.e., similar individuals should be treated similarly. In [15],
the authors proposed a framework for optimally adjusting
any predictive model so as to remove discrimination. Pre-
venting discrimination when training a classifier consists of
balancing two contrasting objective: maximizing accuracy of
the extracted predictive model and minimizing the number
of predictions that are discriminatory.

2.3 Gap between association and causation

Although it is well known that association does not mean
causation, the gap between association and causation is not
paid enough attention by many researchers. As a result, a
large amount of existing works are based on statistical tools
and association only, without knowing whether the obtained
results truly capture the causal effect of discrimination. An
empirical example that using the risk difference can lead to
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an opposite judgment of discrimination is the Berkeley’s gen-
der bias in graduate admission [5]. The data showed a higher
admission rate for male applicants than female applicants,
and the difference was so large that it was unlikely to be due
to chance. According to the risk difference, this is a clear
evidence of discrimination. However, when examining the
individual departments, the data in fact showed a slight bias
toward female applications. The explanation was that female
applications tended to apply to the more competitive depart-
ments with low rates of admission, whereas male applicants
tended to apply to the less-competitive departments with high
rates of admission. As a result, contrary to what indicates by
the risk difference, Berkeley was exonerated from charges of
discrimination.

As another example, propensity score is a statistical tool
widely used for causal analysis in observational studies to
obtain an unbiased measurement of the causal effect. For
example, in [28], the authors proposed a discrimination dis-
covery method based on propensity score analysis. However,
as thoroughly discussed in the causal inference literature, the
use of the propensity score method sometimes may actually
increase, not decrease, the bias in the measurement. Assum-
ing a binary treatment X, and an arbitrary set S of measured
covariates, the propensity score L(s) is the conditional prob-
ability of X = 1 given S = s, i.e., L(s) = P(X = 1|S = s).
The effectiveness of propensity score rests with whether the
set S renders X “strongly ignorable”. However, the condi-
tion of “strongly ignorable” is not automatically satisfied,
nor likely to be satisfied if one includes in the analysis as
many covariates as possible. In addition, it is even impos-
sible to judge whether the condition of “strongly ignorable”
holds or not without further knowledge about the causal struc-
ture of data. Therefore, the propensity score merely offers
an efficient way of estimating a statistical quantity, whose
correctness needs to be further verified using causal-related
knowledge. To better understand the role of propensity score
in causal analysis, we encourage the intrigued reader to refer
to discussions in Section 11.3.5 of [24].

The golden rule of causal analysis is: no causal claim can
be established by a purely statistical method [24]. There-
fore, in principle no statistical tool or association-based
anti-discrimination methods can ensure correct result since
discrimination is substantially causal, and it is imperative
to adopt the causal-aware methods in discovering and pre-
venting discrimination. Although the conceptual framework
and algorithmic tools for causal analysis are well estab-
lished, they are not known to or adopted by many researchers
in anti-discrimination learning. Only most recently, several
studies have been devoted to analyzing discrimination from
the causal perspective. Studies in [38—42] are built on causal
modeling and the associated causal inference techniques, and
the study in [4] is based on the Suppes—Bayes causal network
and random-walk-based methods. The construction of the
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Suppes—Bayes causal network is impractical with the large
number of attribute-value pairs. In addition, it is unclear how
the number of random walks is related to meaningful discrim-
ination metrics, e.g., the difference in acceptance rates. This
paper presents an overview of the causal modeling-based
framework and the related studies. The aim of this paper is to
introduce the background of causal modeling that is needed in
conducting causal-aware anti-discrimination study, deepen
the understanding of existing works’ advantages and chal-
lenges, and propose potential future research directions in
this field.

3 Causal modeling-based anti-discrimination
framework

From Sects. 3.1 to 3.4, we revisit background of causal mod-
eling. In Sect. 3.5, we give a discrimination categorization
and provide an overview of the causal modeling-based anti-
discrimination learning framework.

Throughout the paper, we denote an attribute by an upper-
case alphabet, e.g., X; denote a subset of attributes by a bold
uppercase alphabet, e.g., X. We denote a domain value of
attribute X by a lowercase alphabet, e.g., x; denote a value
assignment of attributes X by a bold lowercase alphabet, e.g.,
X.

3.1 Structural equation model

Causal models are generalizations of the structural equations,
which are widely used in social science, engineering, biol-
ogy and economics. The laws of the world are represented as
a collection of stable and autonomous mechanisms, each of
which is represented as an equation. As a result, a causal
model is a mathematical object that describes the causal
mechanisms of a system as a set of structural equations. A
causal model is formally defined as follows [24].

Definition 1 (Causal Model) A causal model is atriple M =
(U, V, F) where

1. U is a set of arbitrarily distributed random variables
(called exogenous) that are determined by factors out-
side the model.

2. A joint probability distribution P (u) is defined over the
variables in U.

3. Vs aset of variables (called endogenous) {X1, ..., Xi,
...} thatare determined by variables in the model, namely
variablesin UU V.

4. F is a set of deterministic functions {f1,..., fi,...}
where each f; is a mapping from U x (V\X;) to X;.
Symbolically, the set of equations F can be represented
by writing
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xi = fi(pai, u;)

where pa; is any realization of the unique minimal set of
variables PA; in V\X; that renders f; nontrivial. Here
variables in P A; are referred to as the parents of X;.
Similarly, U; C U stands for the unique minimal set of
variables in U that renders f; nontrivial.

A causal model describes the physical mechanisms that
govern a system. Thus, we can conduct causal analysis
on the causal model by manipulating it, as if we are
manipulating the physical mechanisms by some physical
interventions or hypothetical eventualities. In causal model-
ing, the manipulation is represented by standard operations
called interventions. Each intervention is treated as a local
modification to the equations. Specifically, an intervention
that forces a set of variables X € V to take certain constants
x is achieved by replacing each variable X; € X appeared in
all equations with a constant x;, while keeping the rest of the
model unchanged. This operation is mathematically formal-
izedasdo(X = x) or simply do(x). Then, for any two disjoint
sets of nodes X, Y, the effect of intervention do(X = Xx) on
Y, represented by the post-intervention distribution of Y, is
denoted by P(Y = y|do(X = x)) or simply P(y|do(x)).
From this distribution, we can assess the causal effect of X
on Y by comparing aspects of this distribution under differ-
ent interventions of X, e.g., do(x1) and do(Xp). A common
measure of the causal effect is the average difference

E(Y|do(x1)) — E(Y|do(x0)), (H
where E(-) denotes the expectation.

3.2 Estimating causal effect

Although the post-intervention distribution P (y|do(x)) is
hypothetical, under certain assumptions it can be estimated
from the observational data governed by the pre-intervention
distribution. A common assumption is called Markovian. A
causal model is said to be Markovian if: (1) each variable
in V is not directly or indirectly determined by itself; and
(2) all variables in U are mutually independent. Under the
assumption of Markovian, the joint probability distribution
over all variables in V, i.e., P(v), can be formulated as an
expression of the conditional probabilities of each variable
X; € V given all its parents, i.e., P(x;|pa;), known as the
factorization formula

Pv) = [] Pilpan.

X;eV

P(Z]X)

Model M

r = fx(ux) Z

y:fY(xvzauY) X/ \
z= fz(z,uz) P(X)

(@) (b)

Fig. 1 An example of a causal model; b causal graph

Y
P(Y|X, Z)

For example, given a causal model shown in Fig. 1a, the joint
probability of x, y, z is given by

P(x,y,2) = P(x)P(y|x,2) P(z]x).

More importantly, the joint post-intervention distribution,
i.e., P(y|do(x)) for any set of variables X € V and its com-
plement Y = V\X, can also be formulated as an expression
of the pre-intervention conditional probabilities P (x;|pa;),
known as the truncated factorization

P(yldox)) = [] P(xilpai)sx=x.
X;eY

where §x—x means assigning attributes in X involved in the
term ahead with the corresponding values in x. For example,
the post-intervention distribution P (x, y|do(zp)) associated
with the model shown in Fig. 1a is given by

P(x, yldo(zo)) = P(x) P(ylx, z0).

Note that this distribution is different from the conditional
distribution P (x, y|zp), which is given by

P(x, ylzo) = P(x|z0) P(y|x, zo)-

3.3 Causal graph

Each causal model M is associated with a direct graph G,
called the causal graph associated with M. Each node in G
corresponds to a variable X; in V. Each direct edge, denoted
by an arrow —, points from each member of PA; toward
X; representing the direct causal relationship. Each node is
associated with a conditional probability table (CPT), i.e.,
P (xi|pa;). For example, Fig. 1b shows the causal graph of
the causal model in Fig. la. Standard terminology is used
in the causal graph. The parents of node X; are the nodes
in V with directed edges oriented into X;, i.e., the nodes
from P A;. Similarly, the children of X; are the nodes V with
directed edges pointing from X; to them. A path between
nodes X and Y is a sequence of edges connecting a sequence
of nodes which are all distinct from one another and the first
node starts with X and the last node ends with Y. A direct
path from X to Y is a path where all edges are pointing in
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the same direction from X to Y. If there exists a direct path
from X to Y, then X is said to be an ancestor of Y and Y is
said to be a descendent of X.

It is important to note that, a causal graph partially speci-
fies the causal model. The connection between a causal model
and its associated causal graph is as follows: the parents of
each variable in the causal model are specified by the parents
in the graph, and the distribution of U is partially specified
by the CPTs P (x;|pa;) due to the relationship
Pailpay = Y. P,

{ui: fi(pa;j ui)=x;}

but the exact forms of functions f; and the joint distribution
P (u) are unknown.

When Markovian is assumed, the associated casual graph
is a direct acyclic graph (DAG). As shown above, under the
Markovian assumption, each post-intervention distribution
can be calculated using the truncated factorization given the
conditional probability P (x;|pa;) of each variable. Then,
all post-intervention distributions are identifiable given the
causal graph. Many algorithms have been proposed to learn
the causal graph from data without completely specifying
the causal model. For a detailed survey on the causal graph
learning algorithms please refer to [10].

An equivalent graphical expression of the Markovian
assumption is called the local Markov condition. A causal
graph satisfies the local Markov condition if: (1) the graph
is acyclic; and (2) each node in V is independent of all its
non-descendants conditional on its parents. The Markov con-
dition is further equivalent to a more useful graphical relation
called the d-separation, using which we can read off from the
graph all the conditional independence relationships encoded
in the causal model. Specifically, d-separation is a relation
between three disjoint sets of nodes X, Y, Z. Nodes X and
Y are said to be d-separated by Z in causal graph G, denoted
by (X LY | Z)g, if the following requirement is met:

Definition 2 (d-Separation) Nodes X and Y are d-separated
by Z if and only if Z blocks every path from a node in X to
anode in Y. A path p is said to be blocked by a set of nodes
Z if and only if

1. p contains achaini - m — joraforki < m — j
such that the middle node m is in Z, or

2. p contains an collider i — m <« j such that the middle
node m is not in Z and no descendant of m is in Z.

Variables X and Y are said to be conditionally independent
given a set of variables Z, denoted as (X 1LY | Z)y, if
P(x]y,z) = P(x|z) holds for all values x, y, z. Under the
Markov condition, if we have (X LY | Z)g, then we must
have (X 1LY | Z) p4. Therefore, the graphical meaning of d-
separation can be interpreted as to block the paths between
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X and Y such that no influence can be transmitted from any
node in X to any node in Y.

3.4 Path-specific effect

Let us come back to the causal effect estimation. When we
perform an intervention on X, all the descendents of X will
be influenced by the intervention. For example, in the causal
model in Fig. 1a, if we perform an intervention do(xop), then
the value of Z will become z,, = f7(xo, uz), and the value
of Y will become yy, = fy (X0, Zx,, ty). From the graphical
perspective, the influence of an intervention do(x) is trans-
mitted along the direct paths starting from X. Therefore the
direct paths in a causal graph are also called the causal paths.
For example in Fig. 1b, the influence of intervention do(xg)
on Y is transmitted along two causal paths, one is X — Y,
and the otheris X — Z — Y.

In Eq. (1), we allow the intervention to be transmitted
along all the causal paths. However, in some situations, we
may be interested in the causal effect where the influence
of the intervention is transmitted only along certain paths.
Later we will see that this is important when studying the
causal effect of direct and indirect discrimination. For exam-
ple in Fig. 1b, if we allow the influence of do(xg) to be
transmitted only along path X — Y, then the value of Z will
remain the same had the intervention not taken place, i.e.,
Zxg = 2 = fz(x, uz), and the value of Y will become y,, =
fr(x0, Z, uy). On the other hand, if we allow the influence
of do(xp) to be transmitted only along path X — Z — 7Y,
then the value of Z will become z,, = fz(xo, uz), but the
value of ¥ will become y,, = fy(x, 2y, uy), as if ¥ does
not know that the intervention happens. The causal effect that
is transmitted along a set of paths is called the path-specific
effect [2], which is specified to -specific effect if the set of
paths is given by set . Correspondingly, the causal effect
measured in Eq. (1) is called the frotal effect.

Different from the total effect, even under the Markovian
assumption or Markov condition, it is not guaranteed that the
path-specific effect can be computed from the data. A graphi-
cal condition for judging whether the path-specific effect can
be computed is called the recanting witness criterion [2]. In
general, the recanting witness criterion describes a specific
sub-network pattern, and is satisfied if the set of paths match
this pattern. The pattern can be illustrated graphically as the
‘kite pattern’ in Fig. 2. Suppose that X, Y are two nodes and
we want to analyze the m-specific effect of X on Y given a

— pathinz
- - path not in m
X——~7 Y

Fig. 2 The kite pattern
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set of paths . Let Z be a node such that: (1) there exists a
path in = from X to Z; (2) there exists a path in 7 from Z
to Y; and (3) there exists another path not in 7 from Zto Y.
Then, the recanting witness criterion for the r-specific effect
is satisfied with Z as a witness.

The path-specific effect cannot be computed from data
in theory if the recanting witness criterion is satisfied. This
situation is referred to as the unidentifiable situation [2].
Otherwise, the path-specific effect can be computed from
data following a set of steps. The explicit statement of these
steps is omitted here. We recommend the reader to refer to
the original papers [2,31]. As an example, in Fig. 1b, both
paths X — Y and X — Z — Y do not satisfy the recant-
ing witness criterion, and hence the path-specific effects can
be calculated. The post-intervention distribution of ¥ under
intervention do(x1) (assuming the value of X prior to the
intervention is x9) when the influence is transmitted only
along X — Y is given by

> P(lxo)P(ylxi, 2),

and the distribution when the influence is transmitted only
along X — Z — Y is given by

> PGl P(ylxo, 2).

For comparison, the post-intervention distribution of Y
when the influence is transmitted along both paths, i.e.,
P(y|do(x1)), is given by

> PGl P(yIx, 2).
Z

3.5 Discrimination categorization and framework
overview

Discrimination has been studied from different perspec-
tives in the literature. Several types of discrimination have
been proposed, which can be categorized based on two
dimensions. Firstly, from the perspective of in what way
discrimination occurs, discrimination is legally divided into
direct discrimination and indirect discrimination. Secondly,
from the perspective of different level of granularity in study-
ing, discrimination can be divided into system level, group
level, and individual level. System-level discrimination deals
with the average discrimination across the whole system,
e.g., all applicants to a university. Group-level discrimina-
tion deals with discrimination that occurs in one particular
subgroup, e.g., the applicants applying for a particular major,
or the applicants with a particular score. Individual-level
discrimination deals with the discrimination that happens
to one particular individual, e.g., one particular applicant.

We can describe a type of discrimination by combining the
two dimensions mentioned above. For example, there can be
a direct discrimination at the system level, thus forming a
system-level direct discrimination.

As reviewed in Sect. 2, existing anti-discrimination meth-
ods are mainly based on correlation or association. In
discrimination discovery, it is critical to derive causal rela-
tionship, and not merely association relationship. We need
to determine what factors truly cause discrimination and not
just which factors might predict discrimination. Besides, we
need a unifying framework and a systematic approach for
determining all types of discrimination rather than using
different types of techniques for some specific types of
discrimination. This motivated the causal modeling-based
anti-discrimination framework.

Consider a decision making system where discrimination
may happen. Each individual in the system is specified by
a set of attributes V, which contains the protected attributes
(e.g., gender), the label/decision (e.g., admission), and
a set of non-protected attributes X = {Xy,..., X} (e.g.,
major). For ease of presentation, we assume that there is
only one protected attribute/label with binary values. We
denote the protected attribute by C associated with two
domain values ¢~ (e.g., female) and c* (e.g., male); denote
the label by L associated with two domain values [~ (i.e.,
negative label) and [T (i.e., positive label). For computa-
tional convenience, we also define that /[~ = Q0 and [T = 1.
The proposed framework can be extended to handling mul-
tiple domain values of C/L and multiple Cs/Ls. We assume
that there exists a fixed causal model M representing the
mechanisms that determine the values of all the attributes in
the system. Two reasonable assumptions can be further made
under the context: (1) the protected attribute C has no parent
in V; and (2) the label L has no child in V. Then, the causal
model can be written as follows.

¢ = fcluc)
xi = fi(pai,uj) i=1,....,m
l= fr(par,ur)

Model M

We partially specify the causal model by a causal graph that
correctly represents the causal structure of the system. In
practical, the causal graph can be learned from the data using
the structure learning algorithms [8,16,23,33]. Throughout
this paper, we make the Markovian assumption to facilitate
the causal inference in the model. In Sect. 7.2, we discuss
how this assumption can be relaxed.

In general, discrimination is a causal effect of C on L.
Using the causal model, we study different types of discrim-
ination by considering the causal effect transmitted along
different paths. In the following, we first show how to dis-
cover and remove the system-level discrimination, including
both direct and indirect, from the training data. Then, we
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ZipCode (Z)

Race (C) Loan (L)

Income (I)

Fig. 3 The toy model

show how the non-discrimination result is extended from
training data to prediction. After that, we show how the prob-
lem becomes different when discrimination is confined to a
particular subgroup or an individual as well as the strategies
to tackle them.

4 System-level discrimination discovery and
removal

System-level discrimination refers to the average effect of
discrimination in a whole system. This section introduces
the work in [42] that studies the discovery and removal of
both direct and indirect discrimination at the system level. We
start from the formal modeling of direct and indirect discrim-
ination using the causal model, then discuss the quantitative
discrimination criterion, and finally present the algorithm for
removing discrimination from a given dataset.

4.1 Modeling of direct and indirect discrimination

To define discrimination in a system, we always ask this
question: if the protected attribute C changed (e.g., changing
from protected group ¢~ to non-protected group ¢™), how
would the label change on average? A straightforward strat-
egy is to measure the average causal effect of C on L using
Eq. (1),i.e., E(L|do(c")) — E(L|do(c™)), which represents
the expected change of L when C changes from ¢~ to ¢™.
Since we define It = 1 and [~ = 0, this equation equals to
P(I"|do(cT))—P(*|do(c™)), which can be proven to equal
to P(IT|ct)— P(I"|c™) by using the truncated factorization.
As can be seen, we obtain a discrimination measurement that
is the same as the risk difference which is widely used as the
discrimination metric in existing association-based discrim-
ination discovery literature.

The problem with the above measurement is that it mea-
sures all causal effect of C on L, i.e., the total effect. This
means that the total effect takes the causal effect transmit-
ted along all the causal paths from C to L as discriminatory.
However, it is usually not the case when measuring discrim-
ination. Consider a toy model of a loan application system
shown in Fig. 3. We treat Race as the protected attribute,
Loan as the label. Assume that the use of Income in deter-
mining the loan can be objectively justified as it is reasonable
to deny a loan if the applicant has low income. In this case,
the causal effect transmitted along path Race — Income
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— Loan is explainable, which means that part of the dif-
ference in loan issuance across different race groups can be
explained by the fact that some race groups in the dataset
tend to be under-paid. Thus, using the total effect for mea-
suring discrimination may produce incorrect result because
ignoring that part of the causal effect is in fact explainable.
In addition, the total effect does not distinguish direct and
indirect discrimination.

To exactly measure the causal effect of direct and indi-
rect discrimination, different constraints need to be placed
on the causal model when we derive the post-intervention
distribution. For direct discrimination, we want to measure
the causal effect that is only due to the change of C and not
due to the change of other attributes. Thus, when the inter-
vention is performed on C, we can make L respond to the
intervention and every other attribute be fixed to what it was
prior to the intervention. To be specific, to examine the direct
discrimination caused by the advantage of the non-protected
group over the protected group, we first perform an interven-
tion do(C = ¢~ ) with no constraint, i.e., for each child of
C, the value of C in its function is fixed to ¢~. Under this
setting, we obtain the expected label of all individuals who
are assumed to be from the protected group. Then, we per-
form another intervention do(C = ¢™). In this process, only
L responds to the intervention. That is to say, if C is a parent
of L, then its value is changed to ¢ in function fr. How-
ever, the values of C in the functions of all other children still
remain to be ¢~ . Under this setting, we obtain the expected
label of all individuals assuming that each of them is from the
non-protected group but everything else remains the same.
As a result, the difference in the two labels represents the
average advantage that can be obtained directly from chang-
ing the protected group to the non-protected group. Hence,
it represents the average effect of the direct discrimination.

Similarly, for indirect discrimination, we want to measure
the causal effect that is not directly due to the change of C
(e.g., assume that C is invisible to the decision maker) but due
to the change of some non-protected but unjustified attributes,
i.e., the redlining attributes. Thus, when the intervention is
performed on C, we can make L not respond to the inter-
vention, but respond to the change of the redlining attributes
which instead directly or indirectly respond to the interven-
tion. Specifically, we first similarly perform the intervention
do(C = c¢™) with no constraint and obtain the expected label.
Then we perform the intervention do(C = ¢*), during which
the value of C in function f; remains to be ¢~ . However, for
the children variables of C that can transmit the influence of
the intervention to any redlining attribute, i.e., they are the
ancestors of any redlining attribute, the values of C in their
functions are changed to ¢ ™. Under this setting we obtain the
expected label of all individuals assuming that each of them
is still from the protected group but the values of the redlining
attributes are changed as if they were from the non-protected
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group. As a result, the difference in the two labels represents
the average advantage that can be obtained indirectly from
changing the protected group to the non-protected group and
hence represents the average effect of the indirect discrimi-
nation.

If we look at the causal graph, we can see that for direct
discrimination we are actually measuring the causal effect
that is transmitted along the direct path from C to L, and for
indirect discrimination we are in fact measuring the causal
effect that is transmitted along the causal paths from C to L
that contain the redlining attributes. For example, in the toy
model shown in Fig. 3, direct discrimination means the causal
effect transmitted along path Race — Loan, and indirect
discrimination means the causal effect transmitted along path
Race — ZipCode — Loan. Therefore, the average effect
of direct/indirect discrimination can be quantitatively mea-
sured by employing the path-specific effect technique.

An important result we obtain is that, the risk difference
may not correctly measure direct and indirect discrimination.
As been shown, the risk difference is equivalent to the total
effect. Thus, the risk difference correctly measures direct dis-
crimination if there is only one causal path from C to L—the
direct path, and correctly measures indirect discrimination
if every causal path from C to L passes through redlining
attributes. In other cases, it cannot correctly measure either
direct discrimination or indirect discrimination.

4.2 Quantitative discrimination criterion

To apply the path-specific effect technique, we define two sets
of paths. One is 7y which contains the direct path C — L.
The direct discrimination can be measured by the r4-specific
effect. The other is 7; which contains all causal paths from
C to L that pass through at least one redlining attribute. The
indirect discrimination can be measured by the 7;-specific
effect.

As stated in Sect. 3.4, a path-specific effect cannot always
be computed and the recanting witness criterion should be
used to examine the path set. It is proved in [42] that the
mg-specific effect can always be computed from data as the
recanting witness criterion for the w4-specific effect is guar-
anteed to be not satisfied. However, the recanting witness
criterion for the 7r; -specific effect might be satisfied, in which
case the ;-specific effect is unidentifiable.

As an example, in Fig. 3 both the 4 and 7;-specific effects
are identifiable. Following the general formulation derived in
[42], the average effect of direct discrimination is given by

D (PUFIEt 2 i) = PATIT, 2,D)) P(leT) PileT),
z,1

and the average effect of indirect discrimination is given by

D O PUTIeT 2,0 (Ple™) = P(zleT)) Pile),

z,1

where C, Z, I, L are four variables (please read their mean-
ings off Fig. 3).

An observation got from the formulation of path-specific
effect is that, if we divide all the causal paths from C to L
into several non-intersect subsets of paths, then the sum of the
path-specific effect measured on each subset of paths does
not necessarily equal to the total causal effect. Therefore, the
average effect of indirect discrimination cannot be obtained
by subtracting the average effect of indirect discrimination
from the total effect.

Based on the measurement of the discriminatory effect, the
quantitative discrimination criterion is readily to be defined.
As shown in [42], direct discrimination is claimed to be exist
if the average effect of direct discrimination is larger than a
user-defined threshold 7. The value of t should depend on the
law. For instance, we can set T = 0.05 for sex discrimination
as the 1975 British legislation for sex discrimination requires
no more than a 5% difference. Similar criterion is defined for
indirect discrimination.

4.3 Discrimination removal algorithm

After direct or indirect discrimination is discovered, the
next step is to remove these discriminatory effects from the
dataset. An intuitive method would be simply deleting the
protected attribute from the dataset. It is not difficult to see
that, although this method can eliminate direct discrimina-
tion, it cannot remove indirect discrimination. What is more,
indirect discrimination may not be removed even if we delete
all the redlining attributes.

In [42], the authors proposed a causal graph-based dis-
crimination removal algorithm to remove both direct and
indirect discrimination without deleting any attribute. The
general idea is to modify causal graph G so that the model
associated with the modified network does not contain dis-
crimination, and then generate a new dataset using the
modified causal graph. To be specific, the algorithm mod-
ifies the CPT of L, i.e., P(l|Pa(L)), to obtain a new CPT
P’(I|Pa(L)), so that the average effect of direct/indirect dis-
crimination measured is below the threshold t. To maximize
the utility of the new dataset, the algorithm minimizes the
Euclidean distance between the joint distributions of the
original causal graph and the modified causal graph. The
joint distributions are computed using the factorization for-
mula. As aresult, it forms a quadratic programming problem
with P’(I|Pa(L)) as variables, and the optimal solution is
obtained by solving the problem. Finally, the new dataset
is generated based on the joint distribution of the modified
network.
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As stated, sometimes the average effect of indirect dis-
crimination is unidentifiable due to that the recanting witness
criterion is satisfied. However, the structure of the recanting
witness criterion itself in these situations implies that there
may exist potential indirect discrimination. This is because
there exist causal paths from C to L passing through redlining
attributes, meaning that the effect of indirect discrimination
can be transmitted through these paths. From a practical per-
spective, it is meaningful to remove discrimination while
preserving reasonable data utility even though the discrimi-
natory effect cannot be accurately measured. To deal with this
situation, the authors in [42] proposed a causal graph prepro-
cessing method, which cuts off several paths in 7; to remove
the “kite pattern” so that the recanting witness criterion is no
longer satisfied.

S Ensuring non-discrimination in prediction

The work introduced in Sect. 4 targets detecting and remov-
ing discrimination from the training data. An implicit
assumption is that, if the classifier is learned from a non-
discriminatory training dataset, then it is likely that the
classifier will also be discrimination-free, i.e., the future
predictions will not incur discrimination. Although this
assumption is plausible, there is no theoretical guarantee to
show “how much likely”” and “how” discrimination-free the
predictions would be given a training data and a classifier.
The lack of the theoretical guarantee places uncertainty on the
performance of the developed discrimination removal algo-
rithms.

To fill this gap, the work in [41] attempted to mathe-
matically bound the probability that the discrimination in
predictions is within a given interval in terms of the given
training data and classifier. The challenge lies in modeling
discrimination in predictions over a fixed but unknown pop-
ulation, while the classifier is learned from a sample dataset
drawn from the population. Although this work is somewhat
preliminary as the discriminatory effect is measured by the
risk difference metric which we have shown can only mea-
sure the total effect, the conclusion obtained is important and
enlightening: even when discrimination in the training data
is completely removed, the prediction can still contain non-
negligible amount of discrimination, caused by the bias in
the classifier. This section briefly introduces the work in [41]
and proposes some possible extensions on this issue.

Let us maintain the assumption that there exists a fixed
causal model M representing the data generation mecha-
nism of the system or population. The discrimination in M
is measured by the risk difference P(IT|ct) — P(IT|c7),
which is denoted by DE 4. In practice, M is unknown and
we can only observe a dataset D generated by M. Straightfor-
wardly, discrimination in D can be defined as the maximum
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likelihood estimation of DE »4, denoted by DEp. Then, a
bound for the difference between DE 5 and DEp is derived
based on the Hoeffding’s inequality, which shows that with
high probability this difference will be small if the sample
size of D is large enough.

A classifier 4 is a function mapping from C x X to L, i.e.,
h: C xX — L. A classifier learning algorithm analyzes the
training dataset D to find a function that minimizes the differ-
ence between the predicted labels and the true labels. Once
training completes, the classifier is deployed to make predic-
tions on the unlabeled new data, i.e., the classifier computes
the predicted label for any unlabeled individual. It can be
assumed that the unlabeled data (C and X) is drawn from the
same population as the training data, i.e., it is also generated
by M, except the labels unknown. Therefore, in the predic-
tions, the values of all the attributes other than the label are
still determined by the mechanisms in M, while the classifier
now acts as a new mechanism for determining the value of
the label. Consider the mechanisms from M with function
f1 replaced with classifier /4 as a new causal model, denoted
by M;,. It is written as

c = fcuc)
Model M, xi = fi(paj,u;) i=1,....,m
[ =h(c,x)

In this way, discrimination in prediction is given by discrim-
ination in M}, denoted by DE p4, . Similarly, DE x, can be
measured by the risk difference, where the labels are deter-
mined by the classifier. Note that M}, is also unknown. It
can be estimated by applying the classifier on the training
data D. A new dataset Dj, is obtained by replacing the orig-
inal labels with the predicted labels. Thus, discrimination in
Dy, is similarly defined as the maximum likelihood estima-
tion of DE 4, , denoted by DEp, . A bound for the difference
between DE p, and DEp, is similarly derived. In addition,
the difference between DEp and DEp, is given by a mea-
surement depending on the classification error rates of #,
which is referred to as the error bias denoted by ¢;, p.

The goal is to derive a relationship between DEp, the
discrimination measured in the training data, and DE 4, ,
the discrimination in prediction. The result from [41] is
that, if [DEp + ¢j, p| is bounded within a threshold, then
with high probability [DE s, | will also be bounded within
a close threshold if the sample size of D is large enough.
This result indicates that, to ensure non-discrimination in
prediction, in addition to having a non-discriminatory train-
ing dataset, the disturbance from the classification error must
also be considered. A following result is about achieving
non-discrimination in prediction if |DEp + ¢, p| is not
bounded. Let D* be a new dataset derived from D when
only f1 is modified, and #* is a new classifier #* trained
on D*. The result from [41] shows that, if we can make
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IDEp+ + &5+ p+| be bounded by the threshold, then with
high probability [DE 4, . |, i.e., discrimination in prediction
of the new classifier 2*, will also be bounded within a close
threshold.

The above results provide a guideline of how to modify
the training data to the researchers when designing anti-
discrimination algorithms. The guideline can be summarized
as a two-phase framework. Denote the threshold by . In the
first phase, if IDEp| > 7, then modify D to reduce the dis-
crimination it contains. The modification process should only
change f1 . For example, we can modify the CPT of L, or we
can directly modify the labels in D. However, we can neither
modify other CPTs, nor directly modify the values of other
attributes. The result of the first phase is a modified dataset
D* with |DEp+| < 7. In the second phase, a new classifier
h* is learned from D* with its error bias g« p« calculated.
If we still have [DEp+ + &« p+| > t, then modify i* to
reduce its error bias. Finally, we meet the requirement that
|DEp« + 811*,'[)*' <.

As a preliminary work, [41] used the risk difference met-
ric as the measurement of discrimination. As discussed in
Sect. 4.2, the risk difference metric correctly measures direct
discrimination only when there is a single causal path from
C to L, and correctly measures indirect discrimination only
when every causal path from C to L passes through redlin-
ing attributes. Therefore, future investigations are needed on
whether the theoretical results in [41] can be extended to
more elaborate discrimination measurements such as those
introduced in Sect. 4. On the other hand, we can see that both
phases in the framework reduce discrimination at the cost of
utility loss. Thus, how to balance the trade-off between non-
discrimination and utility loss is another challenge.

6 Group and individual-level discrimination

In Sect. 4, the developed discrimination discovery and
removal methods rely on the system-level post-intervention
distribution P (I |do(c)), which can be certainly computed
from the data with the Markovian assumption. However, this
assumption may not be true when we confine the scope of
discrimination to a particular subgroup or even an individ-
ual, which makes these methods not applicable to the group
or individual-level discrimination. This is because unlike
the system-level post-intervention distribution, the post-
intervention distribution on a particular subgroup becomes
a counterfactual statement that may not be identifiable from
the data without knowing the exact functional relationships
in the causal model. In this section, we introduce two recent
works for studying group and individual-level discrimination
within the causal modeling framework but adopting differ-
ent strategies than path-specific effect. Both works deal with
direct discrimination only.

6.1 Group-level direct discrimination

The work [38] considers group-level direct discrimination
as the discrimination measured on subgroups produced by
partitioning the dataset. Here a partition is determined by a
subset of non-protected attributes and a subgroup is specified
by a value assignment to the subset. This work proposed to
use the classic metric, risk difference, as the measurement of
group-level direct discrimination. The idea is as follows. It
is known that the risk difference may not correctly measure
direct discrimination due to the spurious influences caused by
the confounders and the part of differences that are explain-
able by justified attributes. However, it correctly measures
direct discrimination if there is a single path from C to L.
Therefore, the risk difference is meaningful for a subgroup
if all effects other than the direct causal effect are shielded or
blocked within the subgroup. Such subgroup is referred to as
the meaningful subgroup. The partition that determines the
meaningful subgroup is referred to as the meaningful parti-
tion.

Consider a toy model for a university admission sys-
tem that contains four attributes: gender, major, test_
score, and admission, where gender is the protected
attribute, and admission is the label. The summary statis-
tics of the admission rate is shown in Table 1, and the
causal graph is shown in Fig. 4. Intuitively, test_score
should not be used for partitioning the data as it is uncor-
related with the protected attribute. As can be seen, when
conditioning on test_score, there exist significant dif-
ferences (from either 35—25% for L or from 65—55% for
H) between the admission rates of females and males within
the two subgroups. However, this result is misleading since
carefully examining the admission rates of females and
males of each major and each score level shows no bias
against any of the groups. Therefore, test_score is not
a meaningful partition. On the other hand, the combination
{major,test_score} is a meaningful partition based on
which we can obtain the correct result. The goal of this work
is to identify all meaningful partitions, measure discrimina-
tion for each meaningful partition, and develop algorithms
to ensure non-discrimination for all meaningful partitions.

We start from introducing the criterion for identifying
meaningful partitions. Given a partition B and a subgroup
b produced by B, let AP, denote the risk difference mea-
sured on subgroup b. We already know that all influences
from C to L are transmitted along paths connecting C and L.
Assume that the only desired influence is the effect transmit-
ted along path C — L. Thus, the partition B is meaningful if
all the influences from C to L transmitted through all paths
except C — L are blocked conditional on b. The condi-
tion of identifying whether these influences are blocked is
derived based on the d-separation criterion. As introduced
in Sect. 3.3, if C and L are d-separated, no influence can
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Table 1 Summary statistics of

the example Test score L H
gender Female Male Female Male
Major CS EE CS EE CS EE CS EE
No. applicants 450 150 150 450 300 100 100 300
Admission rate 20% 40% 20% 40% 50% 70% 50% 70%
25% 35% 55% 65%

major

N

gender admission

d

test_score

Fig. 4 Causal graph of an example university admission system

be transmitted from C to L. Therefore, we first delete edge
C — L from the causal graph, and then find a set of nodes
B that d-separates C and L in the modified causal graph.
As a result, all influences transmitted through paths other
than C — L are blocked within each subgroup produced
by partition B. Under this situation, if AP, does not equal
to zero, the difference must be due to the effect transmit-
ted along C — L, which means that the risk difference
can be used to measure the group-level discrimination for
subgroup b.

Based on the above analysis, the criterion for the mean-
ingful partition is derived as follows. A partition B is a
meaningful partition if the node set B d-separates C and L in
the graph G with C — L deleted. By using the criterion of the
block set, we can identify all the meaningful partitions. For
each subgroup b produced by a block set B, the group-level
discrimination can be measured using A P|p. Then, similar
to Sect. 4.2, the quantitative evidence of discrimination can
be given by comparing A P, with a user-defined threshold,
i.e., whether inequality |A P,| < t holds or not.

Although the above result provides a clear criterion for
group-level discrimination, one drawback is that it requires
examining every subgroup of every meaningful partition,
i.e., every block set. A brute force algorithm may have an
exponential complexity. Thus, instead of examining all block
sets, a further result shows that we only need to examine
one set Q, which is the set of all L’s parents except C, i.e.,
Q = pa \{C}.If |APy| < 7 holds for every subgroup of Q,
then itis guaranteed that | A Pp| < t holds for every subgroup
of every block set. Therefore, if there is no discrimination for
every subgroup of Q, it guarantees there is no discrimination
for every meaningful subgroups.

To modify the dataset to ensure that there exists no mean-
ingful subgroup with discrimination, two algorithms were
proposed. The first algorithm is similar to the one introduced
in Sect. 4.3. It modifies the causal graph so that the modified
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graph does not contain discrimination, and then generates
a new dataset using the modified graph. The difference is
in the constraints in the quadratic programming problem,
which ensures that | A P4| < 7 holds for every q. The second
algorithm directly modifies the labels of selected individuals
from the dataset to meet the non-discrimination criterion. For
each q with APy > 7, a number of tuples with C = ¢~ and
L = [~ are randomly selected and their labels are changed
from [~ to!™. Foreach q with A Py < —7,anumber of tuples
are similarly selected and their labels are changed from [ to
[7. Asaresult, itis ensured that | A Py| < 7 holds for each q.

In real situations, a subgroup q may have a small sam-
ple size, which decreases the reliability of the discrimination
measurement. In order to handle randomness and small sam-
ple size, a relaxed discrimination criterion was proposed.
For the node set Q, AP|q is treated as a random variable
and AP|qs across all subgroups are treated as samples. A
user-defined parameter « (0 < « < 1) is introduced to
indicate a threshold for the probability of |[AP|g| < 7.
If P(|JAP|gl < 1) > «, then we say there is no group-
level discrimination under partition Q. It is proved that if we
observe no discrimination for Q, then it guarantees no dis-
crimination for every meaningful partitions. One issue here
is that the exact distribution of A P|q for accurately estimat-
ing P(|AP|gl < 7) is not known. To deal with this issue,
the Chebyshev’s inequality is employed to provide a lower
bound of probability P(|AP|q| < t) using the mean and
variance of AP|q.

6.2 Individual-level direct discrimination

Situation testing is a legally grounded technique for analyz-
ing the discriminatory treatment on an individual. It has been
widely adopted both in the USA and the European Union.
Situation testing is carried out in responding to a complaint
about discrimination from an individual. Pairs of testers who
are similar to the individual are sent out to participate in the
same decision process (e.g., applying for the same job). For
each pair, the two testers possess the same characteristics
except the membership to the protected group. For example,
in the case of employment, the resumes of a pair of testers
with different gender can be made equivalent in the educa-
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tion background, work experience, expertise and skills, and
only vary in details and formats to avoid being considered
as duplicates. The objective is to measure the treatments or
decisions given to the members from the same pair. If one of
the pair receives a different decision, the distinction implies
discriminatory behavior.

By simulating situation testing, individual-level direct dis-
crimination can be detected by finding a representative group
of individuals who are closest to the target individual. The
representative group contains pairs of individuals, where
each pair has the same characteristics apart from belonging
to the protected group and non-protected group. Then, the
target individual is considered as discriminated if significant
difference is observed between the decisions from the two
parts of tuples.

The key issue in the implementation of situation testing
is how to determine the closest individuals for the target. To
deal with this issue, we can extend the group-level direct
discrimination to the individual-level direct discrimination
when the subgroup is specified by all attributes except C and
L. Consider an individual described by profile x, where X is
the set of all attributes except C and L. It can be proved that X
must be a meaningful partition. Therefore, according to the
notion of the block set, the individual-level direct discrimi-
nation can be measured using A P |x. In fact, it can be further
proved that AP |y = AP|q, where q is the subset of x which
are the parents of L. This result implies that for determining
the closest individuals, we should first select the individuals
from subgroup q, and then select the individuals from the fol-
lowing appropriate subgroups when subgroup q has a small
size. This enforces a requirement on the distance measuring
such that we cannot directly adopt the classic distance func-
tions (e.g., the Manhattan distance or overlap measurement),
but also need to consider the causal structure of the dataset
and the causal effects among attributes.

It turns out that the above requirement is a natural result
when the causal graph is used as a guideline of measuring the
similarity, as shown in [40]. The ideas are as follows. First,
only the attributes that are the direct causes of the decision
should be used in the distance computation. Other attributes
are either not causally related to L or have the causal effects
on L that are transmitted by the direct causes. Including these
attributes in the distance computation may lead to incorrect
results in the similarity measurement. For illustration, con-
sider a toy model for a university admission system. The
profile of an applicant includes gender, major, score,
height, weight, and admission. The causal graph is
shown in Fig. 5, and part of the dataset is presented in Table
2. Suppose that tuple 1 is the target for testing, and we want
to find the closest tuple from the tuples listed in the table. If
we use all non-protected attributes to compute the distance,
tuples 3 and 7 are the closest ones as both of them have only
one attribute mismatch. However, from the causal graph we

13
height major
gender ———— admission
weight test score
Fig. 5 Causal graph of the illustrative example
Table 2 Part of the dataset of the illustrating example
No. Gender Major Score Height  Weight  Admission
1 F CS B Low Low Reject
2 M CS B High High Admit
3 F CS A Low Low Reject
4 M CS A Median Median ~ Admit
5 F CS C Low Median  Reject
6 M CS C High Median  Reject
7 M EE B Low Low Reject

can see that, height and weight are not causally related
to admission and should not be involved in the computa-
tion. In fact, tuple 2 is closest to the target since their majors
and scores are exactly the same.

Second, distance function is usually defined by first estab-
lishing a distance metric for measuring the per-attribute
distance, and then computing the joint effect by summing
up all the per-attribute distances. When measuring the per-
attribute distance, the causal effect of each attribute on the
decision can reveal important information relating to simi-
larity. The response of the decision to change of the attribute
reflects the difference in how the two domain values affect
the decision. Thus, two values can be considered to be closer
if changing the attribute from one value to the other produces
smaller influence on the decision. Consider the same above
example and we want to measure the distance between differ-
ent values of attribute score. The distance between A and
B and the distance between B and C are measured as equiva-
lent if only the value difference is considered, e.g., using the
Manhattan distance. However, from the tuples listed in the
table we can see that, both the admission rates for A and B
are 50%, and the admission rate for C is 0%. Thus, the causal
effect of score on decision can facilitate to more accu-
rately characterize the similarity in situations where A and
B are closer than B and C with respect to the admission.
Furthermore, the per-attribute distance should be instance
dependent. For example, although both the score difference
between tuples 3 and 2 and that between tuples 3 and 7 are
the same A-to-B difference, they should not be equal since
tuples 3 and 2 apply to the same major while tuple 7 applies
to another, e.g., A and B stand for good and median and C
stands for failure.
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Following the above ideas, the distance function is defined
as follows. Consider two individuals, each of whom has
his/her own profile. First, the distance function is defined on
the basis of Q, where Q = pay \{C}. Denote one individual’s
value assignment to Q is q, and the other is q'. Then, for each
attribute Q € Q, its causal effect on the label is measured.
The change of Qj from g to g; is modeled as two interven-
tions that force Qy to take that two values, respectively, while
keeping all other attributes unchanged. Thus, the causal effect
is given by the difference of the two post-intervention distri-
butions. Then, the causal effect is combined by a production
with the value difference between g; and g, which employs
the classic distance metric such as the normalized Manhattan
distance for ordinal/interval attributes and the overlap mea-
surement for categorical attributes. The production can be
interpreted in two aspects: (1) the causal effect can be con-
sidered as the weight of the value difference, indicating how
significant this value difference is with regard to the deci-
sion; (2) the value difference can also be considered as the
weight of the causal effect, indicating to what extend this
causal effect is relating to the similarity between the two val-
ues. Finally, the distance function for the two individuals is
obtained by summing up the production of the causal effect
and value difference of all attributes in Q.

7 Looking forward

This paper introduces a causal modeling-based framework
for anti-discrimination learning, which adopts the causal
models for modeling the mechanisms in data generation
and discrimination. Discrimination is categorized based on
two dimensions: direct/indirect and system/group/individual
level. Within the framework, we introduce a work for
discovering and preventing both direct and indirect system-
level discrimination in the training data using the path-
specific effect technique, and a work for extending the
non-discrimination result from the training data to prediction.
We then introduce two works for group-level direct discrim-
ination and individual-level direct discrimination, by using
the d-separation and simulating the situation testing method-
ology, respectively.

As can be seen, the framework is not complete yet, and
one can directly identify several research problems that need
to be addressed. Also, the framework makes the Markovian
assumption to facilitate the causal inference. Whether this
assumption can be relaxed is worthy of further exploration.
In addition, the framework mainly focuses on classification,
but there are other predictive models and data mining tasks
beyond classification. How to extend the existing works to
deal with anti-discrimination problems beyond classification
is of great importance as well. In the following, we suggest
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several potential future research directions from the above
three aspects.

7.1 Research problems within the framework

Several problems are remaining to be solved within the
framework. Here we list four problems which we believe
are especially worthy of devoting efforts.

In Sect. 4, we showed that indirect discrimination, i.e., the
m;-specific effect, is unidentifiable if the recanting witness
criterion is satisfied. In the discrimination removal algorithm
in [42], it simply cuts off several paths in 7; to dissatisfy the
recanting witness criterion. However, the 77; -specific effect in
this situation is important since the structure of the recanting
witness criterion itself implies potential indirect discrimi-
nation. Thus, how to approximate or bound the 7;-specific
effect in the unidentifiable situation is an important prob-
lem. A potential solution may be to employ the bound for
the probability of necessity and sufficiency [34], which was
developed within the causal modeling framework for esti-
mating the probability of causation.

The theoretical guarantee for non-discrimination in pre-
diction introduced in Sect. 5 only considers the risk difference
for measuring discrimination. As stated, risk difference is not
an accurate discrimination measurement in several situations.
It correctly measures direct discrimination only when a single
causal path exists from C to L, and correctly measures indi-
rect discrimination only when redlining attributes reside on
every causal path from C to L. Thus, the theoretical guarantee
is practically meaningful only if it can apply to causal-based
discrimination measurements such as the direct/indirect dis-
crimination criteria introduced in Sect. 4. The challenge lies
in that, since the formulations of these discrimination mea-
surements are significantly different from the risk difference,
the results in Sect. 5 may not be directly applicable.

Section 6 deals with the direct discrimination on the group
and individual level. However, it is unclear whether the
proposed techniques can be applied to deal with indirect
discrimination. It is also unclear whether the path-specific
effect technique used in Sect. 4 is applicable to group
and individual-level discrimination, due to the identifiable
issue of the post-intervention distribution on a subgroup.
Therefore, how to model, measure, and prevent group and
individual-level indirect discrimination are still significant
challenges in anti-discrimination learning.

From the practical view, it is important to study how to
balance the trade-off between non-discrimination and utility
loss. Recall the two-phase framework introduced in Sect. 5,
which provides non-discrimination guarantee in prediction.
Utility loss may occur during the first phase when modifying
the training data to remove discrimination, as well as during
the second phase when modifying the classifier to remove its
error bias. The discrimination removal algorithm proposed
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in Sect. 4 tackles the problem of minimizing utility loss in the
first phase, but minimizing utility loss in the second phase is
unexplored.

7.2 Relaxing Markovian assumption

The Markovian assumption represents the situation where
no part of the dependencies among endogenous variables V
are due to exogenous (unobserved) variables U, i.e., there is
no unobserved confounders. In this situation, the presence
of the unobserved variables does not hinder identifiability
of the causal effect in the causal model. Thus, the Marko-
vian assumption permits us to infer every post-intervention
distribution from the pre-intervention distribution that can
be derived from the observed data. However, when unob-
served confounders are known to exist in the system, simply
ignoring the presence of these variables in the causal model
can lead to erroneous conclusions about the causal rela-
tionship among endogenous variables. In order to deal with
unobserved confounders, the second requirement of the
Markovian assumption needs to be relaxed, i.e., variables
in U are no longer mutually independent. The corresponding
causal model is called semi-Markovian [24]. The situation in
the semi-Markovian model is much more complicated than
that in the Markovian model, both in the causal graph learn-
ing and causal effect inference.

The causal graph of the semi-Markovian model is com-
monly represented by the acyclic directed mixed graph
(ADMG) [32]. Different from the DAG, the ADMG con-
tains two types of edges, directed — and bidirected <.
When there exists a bidirected edge between nodes X and
Y, it implies presence of the unobserved confounder(s) for
the two variables. The ADMG learning attempts to solve
this problem: how to discover as much knowledge as possi-
ble from data regarding the causal structure among variables,
including whether two endogenous variables are confounded,
definitely not confounded, or is impossible to tell from data.
Although difficult, many works have been done and several
methods have been proposed such as the causal inference (CI)
and fast causal inference (FCI) algorithms [33]. Some recent
advances in ADMG learning include the ordinary Markov
model [11] and the nested Markov Model [32].

When the ADMG is given, the presence of unobserved
confounders can still cause troubles in anti-discrimination
discovery and removal due to the difficulties in causal
inference in semi-Markovian models. Unlike in the Marko-
vian model, the post-intervention distribution in the semi-
Markovian model is no longer always identifiable. Pearl
has given two sufficient graphical criteria for determin-
ing whether a post-intervention distribution is identifiable,
known as the back-door criterion and front-door criterion
[24]. The complete criterion for the identifiability of the
post-intervention distribution is given by the do-calculus

[25]. Regarding the path-specific effect, Shpitser [31] has
given the generalized version of the recanting witness cri-
terion that holds in the semi-Markovian model, known as
the recanting district criterion. Any anti-discrimination tech-
nique designed for models with unobserved confounders, i.e.,
semi-Markovian models, must be adapted to the differences
in the causal inference techniques.

7.3 Discrimination in tasks beyond classification

Although the causal model is not limited for categorical
attributes, the framework introduced in this paper mainly
focuses on classification problems. There are predictive mod-
els other than classification. For example, for problems such
as how to determine the salary of an employee, or how to
determine the amount of loan granted to an applicant, where
the decisions are continuous variables, regression models
should apply. How to extend the current discrimination cri-
terion to handling continuous decisions? In addition, there
are a large number of data mining tasks other than classifi-
cation and regression. For example, in the ranking problem,
the outcome is not a single label but a ranking of candi-
dates. In the recommendation problem, the outcome is a
list of recommended items. How to judge whether a rank-
ing or a recommendation list is discriminatory or not and
how to ensure fairness in the systems? Some preliminary
works (e.g., [36]) have proposed several association-based
methods. However, no work has been done within the causal
modeling framework.

With the causal framework and methodologies presented
in the paper, we hope that we can deepen the understanding
of discrimination from the causal perspective in the research
society of anti-discrimination and fairness-aware data min-
ing, and we look forward to continuous advancement in this
field.
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