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Abstract Mechanical force regulates a variety of cellular functions through inducing modulations in nuclear
chromatin structures and epigenetic landscapes (outside in). The epigenetic modifications, in turn,
regulate gene expressions and affect phenotypic outcomes, including cytoskeletal organization and cell–
cell/cell–ECM interactions (inside out). While there have been significant advances in the under-
standing of mechanotransduction in the nucleus, there is still a lack of knowledge on the potential
mechanisms through which mechanical cues affect epigenetic and chromatin regulations to determine
genetic outcomes. This review firstly focuses on the current understanding of epigenetic regulations
and then summarizes how mechanotransduction and epigenetic modification couple together to reg-
ulate molecular and cellular functions, eventually causing functional phenotype changes e.g., diseases.
Lastly, we introduce related technologies for mechanistic studies, particularly fluorescence resonance
energy transfer (FRET) biosensors for the visualization of dynamic epigenetic regulations in single
living cells, as well as the applications of FRET biosensors to visualize mechanotransduction events
occurring in the nucleus. These studies could provide new insights into epigenetics in regulating the
physiological and pathological processes in living cells under different mechanical environments.
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INTRODUCTION

Epigenetics, changing gene expression without altering
the DNA sequence, plays an essential role in governing
genomic regulation and ultimately cell fates (Li et al.
2012). It has been well documented that external
mechanical force can be transmitted from the cell
membrane through the cytoplasm to the nucleus, which

can induce modulations in nuclear chromatin structures
and epigenetic landscapes to impact gene transcription
(Irianto et al. 2016; Kelkhoff et al. 2016; Peng et al.
2016; Wang et al. 2016). However, it is still largely
unclear how epigenetics is regulated spatiotemporally
in relation to genomics. Due to cell–cell heterogeneity,
conventional ChIP-Seq technology is insufficient for
measuring the dynamic nature of epigenetic signals
crucial for cellular function in single cells (Li et al.
2012). Genetically encoded biosensors based on fluo-
rescent proteins (FPs) and fluorescence resonance
energy transfer (FRET) could be powerful tools
for single live cell imaging to elucidate the

Shitian Li, Dingyi Yang and Li Gao have contributed equally to this
review.

& Correspondence: yiw015@ucsd.edu (Y. Wang),
q3peng@ucsd.edu (Q. Peng)

� The Author(s) 2020 33 | June 2020 | Volume 6 | Issues 2–3

Biophys Rep 2020, 6(2–3):33–48
https://doi.org/10.1007/s41048-020-00106-x Biophysics Reports

http://crossmark.crossref.org/dialog/?doi=10.1007/s41048-020-00106-x&amp;domain=pdf
https://doi.org/10.1007/s41048-020-00106-x


mechano-chemical mechanisms underlying the adaptive
epigenetic response and cell fate to understand nuclear
mechanotransduction.

EPIGENETIC REGULATION AND MECHANOBIOLOGY
IN THE NUCLEUS

Chromatin

Chromatins are highly ordered nuclear structures that
contain DNA, histones, and other chromosomal proteins.
The fundamental unit of chromatin is the nucleosome,
which is wrapped by 147 base pairs of genomic DNAs.
The nucleosome consists of two copies of the four core
histones (H): H2A, H2B, H3, and H4, which are tied
together by the linker histone H1. Each histone within
the nucleosome contains a flexible N-terminus tail
(Black et al. 2012; Kornberg 1974; Kornberg and Tho-
mas 1974).

Epigenetic regulation of the chromatin is often
achieved through the modulation of nucleosomes. It is
the ensemble of mechanisms of concurrent chromatin
modification that modulates global manners without
affecting the DNA sequence itself. Such epigenetic reg-
ulations mainly include DNA methylation (Laird 2003),
histone post-translational modifications (PTMs) (Jenu-
wein 2001), chromatin remodeling (Zhang and Reinberg
2001), and non-coding RNAs (ncRNAs); all these regu-
lations exert their various functions in a coordinated
manner (Allis and Jenuwein 2016). DNA methylation
occurs on nucleotide cytosine next to guanine (CpG) to
regulate the transition of chromatin states. During DNA
methylation, DNA methyltransferases (DNMTs) aid the
covalent addition of a methyl group from S-
adenosylmethionine to the 50 position of cytosine (Yu
et al. 2011). DNA methylation is known to affect the
formation of constitutive heterochromatin. Histone
PTMs are also important for chromatin geometry and
gene expression (Inaba et al. 2015). Histone tails can
combine and undergo various PTMs, allowing regula-
tory proteins to access the genome dynamically (Önder
et al. 2015). In addition to histone PTMs, chromatin
remodeling can be achieved by ATP-dependent
chromatin-remodeling complexes, during which ATP
hydrolysis is used to alter the histone–DNA interactions.
(Lusser and Kadonaga 2003). On the other hand,
nucleosome positioning also contributes to epigenetic
regulations. It has been found that nucleosomes
assemble in heterogeneous groups of varying sizes
interspersed with nucleosome-depleted regions. RNA
polymerase II preferentially associates with smaller
clutches, while linker histone H1 and heterochromatin

are more enriched in larger ones, suggesting that tran-
scription can be activated more preferentially in smaller
clutches (Ricci et al. 2015). This review mainly focuses
on histone post-translational modifications.

Chromatin and histone PTMs

The first histone modification reported was histone
acetylation in the early 1960s (Allfrey et al. 1964). Since
then, more than 100 different histone PTMs have been
identified and categorized (Abranches et al. 2013; Cota
et al. 2013; Goss 2014; Kouzarides 2007; Luger et al.
1997; Tan et al. 2011) (Table 1). Currently, six major
PTMs are known to occur on histone tails in cells:
acetylation, methylation, phosphorylation, adenosine
diphosphate (ADP)-ribosylation, SUMOylation, and
ubiquitylation, each with their own distinct functions
and regulatory mechanisms.

Histone PTMs are important for the activation state
of both promoters and enhancers. Histones are pri-
marily modified on the lysine and arginine residues on
histone tails of the H3 and H4 subunits. Histone PTMs
have been shown to play central roles in regulating gene
expression by modulating chromatin assembly and by
coordinating the recruitment of specific readers or other
chromatin-modifying or chromatin-remodeling enzymes
(Strahl and Allis 2000). Distinct histone modifications
are dynamically catalyzed or erased by specific enzymes
in response to environmental challenges, while new
types of biologically important PTMs, their modifiers,
and their readers are continuing to be identified (An-
drews et al. 2016).

Histone acetylation is the first reported PTM to be
associated with gene activation and has since been
identified as the most frequent PTM (Allfrey et al.
1964). Histone acetylation and deacetylation are
observed on conserved lysines of the N-terminal tails of
all four core histones and are conducted by histone
acetyltransferases (HATs) and histone deacetylase
(HDACs), respectively. The HATs catalyze the acetylation
of specific lysines within histones by transferring an
acetyl moiety from the cofactor acetyl-CoA to the lysine,
which neutralizes the lysine’s positive charge and
potentially weakens the interactions between histones
and DNA for chromatin remodeling, a process important
to gene expression (Fig. 1). HDACs, on the other hand,
catalyze the reverse reaction and are also generally
associated with gene repression (Bannister and Kou-
zarides 2011; Lee and Grant 2019). Histone acetylation
has a significant effect on gene expressions. Researchers
recently discovered that some cancer cells with
increased acetylation levels on H3K18 and H3K27 share
the characteristics of truncated acetyltransferase genes
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EP300 and CREBBP, suggesting a functional conse-
quence of malfunction in epigenetic factors (Ghandi
et al. 2019).

Histone methylation mainly occurs in lysines and
arginines. Lysine residues can be mono-, di-, or tri-
methylated, whereas arginines can be mono-methylated
or symmetrically or asymmetrically di-methylated
(Fig. 1) (Han et al. 2019). The different levels of
methylation greatly increase the complexity of histone
modification and regulation of gene expressions (Ban-
nister and Kouzarides 2005, 2011; Bedford and Clarke
2009; Ng et al. 2009; Xhemalce et al. 2011; Han et al.

2019). Histone lysine methylations have been found on
a range of lysine residues in various histones, including
K4, K9, K27, K36, and K79 residues in histone H3, K20
in histone H4, K59 in the globular domain of histone H4
(Dillon et al. 2005), and K26 in histone H1B (Cai et al.
2010). The methylation level is controlled by enzymes
called histone methyltransferases (HMTs) and histone
demethylases (HDMs) that possess strong substrate
specificity. Histone methylation does not alter the
charge of histone proteins, unlike the case with histone
acetylation and phosphorylation. Transcriptional activi-
ties can be regulated by the methylation of histone tails

Fig. 1 Schematic representation of a nucleosome. A nucleosome functions as the fundamental packing unit of chromatin. Different PTMs
(mainly acetylation and methylation) at core histones and the processes of these modifications are also shown (He et al. 2018)

Table 1 Classes of post-translational histone modification

Histone modification Residues modified Putative function

Acetylation Lysine, serine, threonine Transcription, repair, replication, condensation

Methylation Lysine, arginine Transcription, repair

Phosphorylation Serine, threonine Transcription, repair, condensation

Ubiquitination Lysine Transcription, repair

SUMOylation Lysine Transcription

ADP ribosylation Glutamic acid Transcription

A selection of the common varieties of histone PTMs including the residues modified and putative roles for the modifications. This list is
not comprehensive (Abranches et al. 2013; Goss 2014; Kouzarides 2007; Tan et al. 2011)
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which function as a recognition motif to recruit effector
proteins to local chromatin regions (Cloos et al. 2008).
Thus, histone lysine methylation can be associated with
either activation or repression of transcription,
depending on the functions of the effectors.

Histone phosphorylation is another highly dynamic
mark that takes place on serines, threonines, and
tyrosines, predominantly in the N-terminal histone tails
(Xhemalce et al. 2011). The phosphorylation level is
controlled by kinases and phosphatases that add and
remove the phosphate group, respectively (Oki et al.
2007). Histone kinases catalyze the addition of a phos-
phate group from ATP to the hydroxyl group of the
target amino acid side chain, which increases the neg-
ative charge of histone to affect the chromatin structure
(Fig. 2). The specific histone phosphorylation

modifications are regulated during different stages of
the cell cycle, involving different sets of kinases and
phosphatases. For instance, the proteins phosphatase 1
(PP1) can rapidly neutralize the action of Aurora B
kinase, which causes a large-scale genome-wide phos-
phorylation events at H3S10ph and H3S28ph during
mitosis (Goto et al. 2002; Sugiyama et al. 2002). How-
ever, it is still unclear how the kinases are accurately
recruited to the phosphorylation sites on histones at
chromatins. Even less is known regarding the roles of
histone phosphatases, although it is clear that a high
level of phosphatase activity exists in the nucleus to
direct a rapid turnover of histone dephosphorylations
(Bannister and Kouzarides 2011).

Among the different HMTs, SUV39H1 is the first
identified histone lysine methyltransferase (HKMT)

Fig. 2 Histone phosphorylation regulation model. The main phosphorylated residues of histones are shown, with the corresponding
kinases and phosphatases. Residues in red indicate phosphorylation during mitosis; in green during DNA transcription; in blue during
DNA damage; and in light purple during spindle assembly checkpoint (SAC). Histone H2AX is colored in light green (A), H2A in dark green
(B), H2B in purple, H3 in blue, H4 in pink, and CENP-A in light blue (C). Phosphatases involved are highlighted in orange. RM: Repo-man;
PP1, PP2A, PP5, and PP6: protein phosphatase 1, 2A, 5, 6, respectively. ATM: ataxia-telangiectasia mutated; ATR: ataxia-telangiectasia and
Rad3-related protein; VRK: vaccinia-related protein kinases; JAK: Janus kinase; PKC: protein kinase C; Dlk: death-associated protein
(DAP)-like kinase; PRK: phosphoribulokinase; CKII: casein kinase II (Gil and Vagnarelli 2019)
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which targets H3K9 for tri-methylation (Bannister and
Kouzarides 2005). Many pieces of evidence suggest a
direct role of histone H3K9 methylation as a histone
marker, which is positively correlated with DNA
methylation and participated in repressive heterochro-
matin formation in tumorigenesis. In the cell cycle,
H3K9me3 is also important for HP1 recruitment to
regulate gene expression, chromatin packaging, and
heterochromatin formation (Dormann et al. 2006).
However, the dynamics of H3K9me3 remains contro-
versial, mainly due to the lack of the appropriate tool for
H3K9me3 detection in living cells.

The interactions between different histone chemical
modifications show that the same modification of dif-
ferent histone residues can modify the occurrence of
other modifications. This process is also regulated by
other histone residues. On the other hand, different
modifications of the same amino acid residue on his-
tones may be synergistic or antagonistic at the same
time. The interaction between different modifications of
the same histone is called cis-effect, and the interaction
between modifications of different histones is called
trans-effect.

Epigenetic regulations in relation to the cell cycle

The cell cycle consists of a chain of inter-connected
events, during which DNA is accurately duplicated, and
chromosomes are segregated into two genetically
identical daughter cells. These events outline the two
major phases of the cell cycle: the synthetic phase (S-
phase), where DNA replication takes place, and the
mitotic phase (M-phase), characterized by chromosomal
segregation followed by cellular division. These phases
are separated by two gap phases, G1- and G2-phase,
respectively, during which cellular growth and check-
point controls occur. The process of a cell cycle is con-
trolled by chromatin modifiers. Locally, chromatin
modifiers control the expression of individual genes;
globally, they control chromatin condensation and
chromosome segregation (Fig. 3). It is reported that the
histone tail modifications on H3 and H4 are required for
the normal progression of the cell cycle (Morgan et al.
1991). Indeed, many histone modifications are of fun-
damental importance across cell types (Ernst et al.
2011).

The S-phase is a crucial stage of the cell cycle where
histones and DNA modifications must be deposited
correctly to the newly synthesized chromatin. Global
methylation levels of the histone H3 and histone H4 tails
have been detected to increase in late G1- and S-phase
(Bonenfant et al. 2007). H3K79 di-methylation by
KMT4/Dot1 is required for efficient entry into the

S-phase, which is an example of transcriptional control
of cell cycle genes (Schulze et al. 2009). The overex-
pression of KDM4A, an H3K9me3 demethylase, results
in a faster progression through S-phase, possibly due to
the better chromatin accessibility increase in replication
forks and alteration of replication timing at hete-
rochromatin regions (Black et al. 2012). Conversely, the
loss of KDM4A in MDA-MB-231 breast cancer cells leads
to a G1/S arrest and decreased proliferation rates (Black
et al. 2010). Chromatin microenvironment can also
affect the cell cycle indirectly by changing the replica-
tion timing. For example, KMT6/EZH2, by regulating
epigenetic H3K27me3 levels, can target transcriptional
regulations of cell cycle proteins Cyclin D1, E1, and A2
(Black and Whetstine 2011; Bracken et al. 2003).
H3K9Ac, which peaks during G1-phase, has been
reported to remain high during S-phase together with
H4K16Ac (McManus and Hendzel 2006; Rice 2002). In
contrast, H4K20 and H3K79 methylations were not
detected on newly deposited histones until later time
points in the cell cycle (Scharf et al. 2009).

The G2-phase of the cell cycle is a short phase
marked by significant protein synthesis. Histone PTMs
often maintain across the G2-phase and the following
M-phase. During mitosis, cell growth is halted, and cel-
lular energy is focused on the division into two daughter
cells. A large number of transcription factors are dis-
placed from the chromatin and general transcription is
also suppressed (Egli et al. 2008; Gottesfeld and Forbes
1997). Histone modifications are important for chro-
matin condensation and chromosomal segregation
during this phase in several cell types (Liu et al. 2017;
Stephens et al. 2018). Histone phosphorylation is
upregulated during M-phase and linked to chromatin
condensation, such as H3T3p, H3T11p, H3.3S31p,
H2AS1p, and H4S1p (Bonenfant et al. 2007; Kang et al.
2007). Transcription is believed to be turned off during
mitosis, which is in accordance with observed global
deacetylation of histones. A dramatic decrease in
acetylation has been reported on histones H3K9,
H3K18, H3K23, H4K5, H4K8, H4K12, and H4K16 during
this stage (Bonenfant et al. 2007; McManus and Hendzel
2006; Rice 2002). Lysine deacetylation has also been
observed on histone H2A and H2B, in particular, H2AK5,
H2BK12, H2BK15, and H2BK20. In addition to its role in
transcriptional repression, lysine deacetylation is
thought to ensure a correct packaging of nucleosomes
into metaphase chromosomes (Bonenfant et al. 2007).
This explanation is further supported by the observed
destabilization of the chromatin fiber and the decon-
densation of the chromatin upon the induction of mul-
tiple events of acetylation on the histone tails (Kruhlak
et al. 2001). Shogren-Knaak et al. showed that H4K16Ac,
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in particular, is responsible for chromatin decondensa-
tion (Shogren-Knaak 2006). In addition, SirT2, an HDAC
specific for H4K16, has been shown to be highly
expressed and associated with condensed chromatin
exclusively during mitosis (Vaquero 2006).

The low levels of transcriptional activity during the
mitotic phase is also evident from the histone methy-
lation patterns. Lys20 methylation on histone H4 is
generally increased, and its high level is correlated with
the deacetylation of H4K5, H4K8, and H4K12 and, in
particular, H4K16 observed during M-phase (Bonenfant
et al. 2007; Rice 2002). Other notable methylation
dynamics during G2/M-phase occur on H3K17, H3K79,
and H4R3 (Bonenfant et al. 2007; Pesavento et al. 2008;
Rice 2002). H3K9me3 was identified as a marker of
heterochromatin and epigenetic silencing regions, which
typically are located close to the centromeres (Schotta
et al. 2004; Stewart et al. 2005). Accordingly, H3K9me3
is dynamically regulated in a cell cycle-dependent
manner (Duan et al. 2008; McManus et al. 2006; Park

et al. 2011). H3K9me3 is increased rapidly in G2 to
reach a maximum, followed by a quick decline (McMa-
nus et al. 2006). It is also proposed that an increase in
H3K9me3 at the late G2-phase and early mitosis may be
needed to stabilize the pericentric heterochromatin so
that the centromeres and kinetochores have a rigid
structure required for proper tension transmission to
the inner centromere (Heit et al. 2009). However, this
hypothesized scenario is in contrast to the results of the
genome-wise dynamic change of H3K9me3 in the
overall cell cycle (Black et al. 2012). Another recent
study further revealed an association between chro-
matin and a lysine demethylase KDM4C during mitosis,
which is accompanied by a decrease in the mitotic levels
of H3K9me3 (Kupershmit et al. 2014). A most recent
study further proved that the histone methylations and
their combinations could serve as codes to determine
the overall gene expressions and phenotypic outcomes.
In particular, the coordinated regulation of H3S10p and
H3K9me3 may facilitate the timely dissolution of

Fig. 3 Histone dynamics across the cell cycle. Histone marks and chromatin-associated proteins are summarized by up- (red) and down-
(blue) regulation during each phase of the cell cycle. The time courses of these histone marks within the cell cycle are also represented in
the graph (Kheir and Lund 2010)
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heterochromatin-like structures and allow accessibility
by chromatin-remodeling complex for an efficient chro-
matin reorganization during mitosis (Peng et al. 2018).

EPIGENETIC REGULATION IN MECHANOBIOLOGY

Cells in our body are constantly exposed to a spectrum
of mechanical forces, such as blood flow-induced fluid
shear stress, compression, stretches, differential tissue
rigidity, and strain. Those forces modulate gene
expressions and cellular functions to influence and
govern physiology and pathophysiology in health and
disease. Epigenetic modifications play crucial roles in
these gene expressions to not only respond to the
external mechanical cues but also to allow cells to adapt
to differential mechanical environments (Chen et al.
2013; Miroshnikova et al. 2017). Here, we reviewed
current understanding of how mechanical and epige-
netic modifications couple together to regulate molec-
ular and cellular functions.

One current understanding is that mechanical stress
directly induces chromatin remodeling through epige-
netic modifications to alter gene expressions and cel-
lular functions. For example, shear stress (SS) is defined
as the frictional force generated by blood flow in the
endothelium. Endothelial cells (ECs) sense the changes
of SS and activate intracellular signaling pathways,
leading to the transcription of specific genes. Those
genes include mechanosensory complexes of platelet-
endothelial cell adhesion molecule 1 (PECAM-1) which
directly transmits mechanical force, vascular endothelial
cadherin (VE-cadherin) which functions as an adaptor,
and vascular endothelial growth factor receptor 2
(VEGFR2) which activates phosphatidylinositol-3-OH
kinase (Tzima et al. 2005). The expression of those
important genes is regulated by the modification of
chromatin structure, which depends on the activity of
histone modification enzymes, including histone
acetyltransferase (HAT) and histone deacetylase (HDAC)
(Jenuwein 2001). HDACs are sensitive to hemodynamic
forces and are mainly divided into three groups: Class I
(HDAC-1/2/3 and HDAC-8), Class II (HDAC-4/5/6/7
and HDAC-9/10), and Class III sirtuins (SIRT) (Chen
et al. 2013). Among the HDACs, it is worth noting that
Class III HDACs play a protective role in atherosclerosis
(Stein and Matter 2011). Besides, eNOS plays a key role
in vascular wall homeostasis and regulation of vaso-
motor tone. SS can also remodel chromatin structure
particularly on histone H3 and H4 by altering the state
of enzymes like phosphatidylinositol 3-kinase and HDAC
(Class II and III), resulting in modulating the endothelial
nitric oxide synthase (eNOS) gene expression at the

transcriptional level (Chen et al. 2010; Fish et al. 2005;
Illi et al. 2003, 2008). Further research indicates that SS
can increase H3K27ac level to open up chromatin and
subsequently activate the inositol 1,4,5-trisphosphate
receptor 3 (ITPR3)–eNOS axis in Ecs via krüppel-like
factor 4(KLF4)-regulated ITPR3 transcription, which is
a principal mechanosensitive cue of atheroma protective
flow (He et al. 2019). Coupling shear stress and epige-
netic modifications together to regulate vascular marker
gene expression eventually can affect phenotypes
(Gomez et al. 2015). For example, mechano-induced
DNA demethylase ten-eleven translocation-2 (TET2)
expression can modulate vascular tone by guiding the
phenotype of vascular smooth muscle cells (VSMCs)
between contractile and expansible (Liu et al. 2013).
The blood pressure (BP) can, subsequently, be changed
by the phenotype of vascular VSMCs (Brozovich et al.
2016). A trans-ancestry genome-wide study shows 12
genetic loci influencing blood pressure and implicates a
role for DNA methylation, with four of them (IGFBP3,
KCNK3, PDE3A and PRDM6) related to the vascular
smooth muscle function (Kato et al. 2015; Liu et al.
2015). An array of cardiovascular diseases associated
with epigenetic modifications caused by mechan-
otransduction are listed in Table 2 (Bauer and Martin
2017; Haberland et al. 2009; Koentges et al. 2016;
Kumar et al. 2013; Lee et al. 2012; Liu et al. 2013;
Nakamura and Sadoshima 2018; Ohtani et al. 2011; Oka
et al. 2011; Shao et al. 2017; Shpargel et al. 2014; Zhang
et al. 2011; Zheng et al. 2011; Zhu et al. 2016; Zhuang
et al. 2017).

Another current understanding is that mechanical
force mediated by nuclear lamina can indirectly organize
chromosome through epigenetic modifications to regu-
late gene expression. Lamin A/C is a protein network that
connects the linker of nucleoskeleton and cytoskeleton
(LINC) complex to chromosomes. As a mechanosensory
structure, it can respond to mechanical forces and regu-
late gene expressions through epigenetic modifications
(Chowdhury et al. 2010; DuFort et al. 2011). Previous
reports show that stem cell differentiation into bone on
stiff matrix and into fat on soft matrix can be enhanced by
the high and low lamin-A levels corresponding to high
and low H3K9m3 levels on chromosomes, respectively
(Swift et al. 2013). This result is also confirmed in mela-
noma cells. People found that soft fibrin matrices indeed
promote H3K9 demethylation and increase Sox2
expression and self-renewal, while stiff fibrin has an
opposite effect (Tan et al. 2014). A recent study demon-
strated how mechanical force stretches chromatin to
affect transcription. A green fluorescent protein (GFP)-
tagged bacterial chromosome dihydrofolate reductase
(DHFR) and an Arg-Gly-Asp-coated magnetic bead were
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used to demonstrate that local stresses canbepropagated
from the tensed actin cytoskeleton to the LINC complex
via integrins and then stretch chromatin and upregulate
transcription via lamina-chromatin interaction (Tajik
et al. 2016). So, mutations in lamins can result in a wide
array of pathologies, collectively referred to as lamino-
pathies. Such diseases include Emery-Dreifuss muscular
dystrophy, limb-girdle muscular dystrophy, dilated car-
diomyopathy, familial partial lipodystrophy, Charcot-
Marie-Tooth, and the accelerated aging disorder
Hutchinson-Gilford progeria syndrome (HGPS) (Schrei-
ber and Kennedy 2013). In fact, HGPS is caused by pro-
gerin which is a truncated version of the lamin-A protein.
However, progerin remains permanently farnesylated
and carboxymethylated since it lacks the second site for
endoproteolytic cleavage. The accumulation of progerin
leads to altered H3K27me3 through the downregulation
of enhancer of zeste homolog 2 gene (EZH2) and disrupts
heterochromatin–lamina interactions, which eventually
lead to cellular and organismal decline (McCord et al.
2013). As a result, the senescence inHGPSmaybedelayed
if the post-translational modifications of progerin are
changed. Further research also showed that, blocking
farnesylation of progerin (Gonzalo et al. 2017), via
prenylation inhibitors (Moiseeva et al. 2016; Varela et al.

2008) and isoprenyl cysteine carboxyl methyltransferase
inhibitors (Ibrahim et al. 2013), can lead to effective
therapeutic treatment of HGPS. Another reported disease
connected to lamin-A is Dunnigan-type lipodystrophy,
namely, familial partial lipodystrophy type 2 (FPLD2),
which can be caused by the R482Wmutation on lamin-A,
preventing lamin-A’s binding at MIR335 locus. This locus
determines the aberrant transcription of the anti-
adipogenic miR-335 with subsequent inhibition of adi-
pogenic differentiation (Oldenburg et al. 2017). Lamina-
associated domains (LADs) are redistributed for LMNA
mutations in association with markedly altered CpG
methylation and gene expression. As such, LADs can
contribute to the pathogenesis of dilated cardiomyopathy
(DCM) through genomic alterations and epigenetic reg-
ulation (Cheedipudi et al. 2019).

FRET IMAGING OF EPIGENETIC REGULATION
IN SINGLE LIVING CELLS

Mechanical cues can serve as potent regulators of epi-
genetics, gene expression, and cell fate. In order to
bridge mechanical regulation with epigenetic regulation
at molecular levels, people have developed technologies

Table 2 Cardiovascular disease associated with epigenetic modifications caused by mechanotransduction

Epigenetics regulation Modifiers Residues Targets Diseases

Histone acetylation (:) P300, CBP (Bauer and Martin 2017) Histones and
non-histone
proteins

Cardiomyocytes,
VSMCs

Cardiomyocyte
proliferation and
hypertrophy

Histone deacetylation (:) HDAC-1-9 (Haberland et al. 2009; Zheng
et al. 2011; Nakamura and Sadoshima 2018;
Zheng et al. 2011)

(:) SIRT (Oka et al. 2011; Koentges et al. 2016,
p. 3; Oka et al. 2011)

Histones and
non-histone
proteins

Cardiomyocytes,
VSMCs

Cardiac hypertrophy,
failure fibrosis,
ischemia

Histone
demethylation

(:) UTX(KDM6A) (Lee et al. 2012; Shpargel
et al. 2014, p. 6)

H3K27 Embryonic stem
cells (ESCs)

Cardiovascular
malformation

(:) JMJD2a (KDM4A) (Zhang et al. 2011; Zheng
et al. 2011, p. 4)

H3K9, H3K36 Cardiomyocytes Cardiac hypertrophy,
ischemic
cardiomyopathy
(ICM)

(:) JMJD1a (KDM3A) (Ohtani et al. 2011) H3K9 Cardiomyocytes ICM, idiopathic
dilated
cardiomyopathy
(IDCM)

Histone methylation (;) EZH2 (Kumar et al. 2013; Shao et al. 2017;
Zhu et al. 2016, p. 1; Shao et al. 2017)

H3K27 VSMCs,
cardiomyocytes,
cardiac
myofibroblast

Atherosclerosis,
cardiac
hypertrophy,
fibrosis

DNA methylation (;) DNMT (Zhuang et al. 2017) DNA cytosines VSMCs Atherosclerosis

DNA
hydroxymethylation

(:) Ten-eleven translocation (Liu et al. 2013) DNA
methylcytosine

VSMCs Hypertension

‘‘:’’ denotes activating and ‘‘;’’ denotes suppressing
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to study the dynamic manipulation and regulation. For
example, Guohong Li’s group has reported that the
tetranucleosomes-on-a-string appears as a stable sec-
ondary structure during hierarchical organization of
chromatin fibers using single-molecule magnetic
tweezers and force spectroscopy. This stability is
enhanced by histone chaperone facilitates chromatin
transcription (FACT) in vitro (Li et al. 2016). They fur-
ther reported that FACT displays dual functions in
destabilizing the nucleosome and maintaining the orig-
inal histones and nucleosome integrity at the single-
nucleosome level (Chen et al. 2018). As we mentioned
in ‘‘Epigenetic regulation in mechanobiology’’ section,
Ning Wang’s group used 3D magnetic twisting cytome-
try to apply local stresses on the cell surface via an Arg-
Gly-Asp-coated magnetic bead to deform chromatin as
well as force-induced gene expression in a living cell
(Tajik et al. 2016). Cheng Zhu’s group developed a DNA-
origami tension probe (DOTP) that maps the piconew-
ton forces generated by living cells at the nanometer-
length scale (Dutta et al. 2018). However, the molecular
pathways and mechanisms for mechanical and epige-
netic coupled regulations remain unclear, requiring
further studies using more advanced technologies like
FRET epigenetic biosensors.

FRET imaging

Understanding the molecular basis of physiological
regulations is crucial to understanding the pathways of
pathological events to find treatments. However, many
detection methods like genomic sequencing lack spatial
and temporal resolutions (Wang and Wang 2009). Fur-
thermore, those methods typically provide little infor-
mation on epigenetic modifications. As a result, an
imaging method that can simultaneously provide both
spatial and temporal information is much needed.
Fluorescence resonance energy transfer (FRET) emerged
as a recent advance in molecular detection, offering high
spatiotemporal resolutions (Wang et al. 2008).

FRET technique uses a pair of fluorescence proteins
(FP) to detect molecular signals in organisms. The first
discovered and isolated FP is the GFP from aequorin
(Shimomura et al. 1962), after which numerous other
natural and engineered FPs were discovered (Tsien
2005). Among those FPs, cyan-colored ECFP and yellow-
colored EYFP and its various derivatives are believed to
be the best FRET pairs (Miyawaki et al. 1997). There are
three main types of FRET biosensors. In the first type, a
donor FP and an acceptor FP are pulled by two inter-
acting sensing molecules (Fig. 4A). When activated, the
two sensing molecules bind together to change the
distance and orientation of FPs, resulting in a FRET

signal change. In the second type, only one sensing
molecule is present (Fig. 4B). This sensing molecule can
change conformation when activated, causing FRET
change. FRET biosensors with two interacting molecules
fused separately with the donor and acceptor FPs are
also possible (Fig. 4C). The interaction of the two
sensing domains can bring two FPs closer in the dis-
tance, resulting in a signal which measures this inter-
action (Wang et al. 2008). Three main factors
influencing the efficiency of FRET imaging are the dis-
tance between FPs, the relative orientation between the
donor and acceptor FPs, and the excitation/emission
spectrum of FPs. High FRET efficiency requires close
distance, correct orientation, and overlapping between
emission wavelengths of donor protein and excitation
wavelengths of acceptor protein (Clegg 1995; Wang and
Wang 2009).

One application of a FRET biosensor is to monitor
kinase activity in living cells. For example, biosensors
using FRET can monitor the mechanical activation of
Src (Wang et al. 2005). This biosensor consists of an
N-terminal ECFP, an SH2 domain from Src kinase, a
flexible linker, a substrate-binding domain derived
from p130cas which is sensitive to Src phosphoryla-
tion, and a C-terminal citrine (a variant of YFP) (Wang
et al. 2005, 2008; Wang and Wang 2009). Recently,
improved FRET biosensors with enhanced specificity
are being developed. For example, a biosensor that
monitors the activation of Fyn, a member of the Src
family, is reported. This biosensor used a similar
design with previously reported Src biosensor and was
altered only in the substrate peptide derived from
p34cdc2. In vitro kinase assays suggest that this
biosensor has a clear preference of the activation of
Fyn over other Src family kinases like Src, Yes, and Abl
(Ouyang et al. 2019). Other enzymatic activities
besides Src family kinases can also be detected using
FRET biosensors. For example, using a FRET biosensor,
Pan et al. reported that stronger EphA4 activation
might occur in non-raft regions than raft regions on
the plasma membrane (Pan et al. 2019).

FRET-based epigenetic biosensors

Recently, FRET-based biosensors capable of monitoring
histone epigenetic modifications have been developed to
study the effect of epigenetic events on cell fate. Lin and
Ting first developed a histone H3S28 phosphorylation
biosensor (Lin and Ting 2004), and then, Lin et al.
reported a histone H3K9me3 and H3K27me3 biosensor
which can visualize the histone methylation both in vitro
and in single living cells (Lin et al. 2004). Later, Chu et al.
developed another FRET-based and centromere-targeted
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H3K9me3 biosensor to visualize the methylation
dynamics during chromosome segregation (Chu et al.
2012). As for acetylation, Sasaki et al. developed an H4K5
and H4K8 biosensor, followed by an H4K12 biosensor
developed by Ito et al. (Ito et al. 2011; Sasaki et al. 2009).
Recent studies further reported the monitoring of
H3K9ac and H3K14ac by FRET biosensors in 2016
(Nakaoka et al. 2016; Sasaki and Yoshida 2016).

FRET epigenetic biosensors have many applications.
For example, by using an H3K9me3 FRET biosensor, it
was reported that a low level of H3K9me3 is present in

tumor-repopulating cells that are not sensitive to matrix
stiffness and applied forces (Tan et al. 2014). Using an
H3K9 tri-methylation biosensor together with an H3S10
phosphorylation biosensor in the same cell, Peng et al.
found an anticorrelation between H3K9me3 and
H3S10p during cell cycles. Further studies revealed that
this coordinated regulation might allow increased
access of remodeling complexes to the chromatin in
preparation of the global reorganization of chromatin
during mitosis (Fig. 5) (Peng et al. 2018). To study the
dynamic epigenetics in mechano-regulation, epigenetic
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Fig. 4 Three designs of FRET biosensors. A Intramolecular FRET biosensor with two interacting sensing domains. The two sensing
domains interact with each other upon activation, resulting in FRET. B Intramolecular FRET biosensor with one target sensing domain.
The sensing domain changes conformation upon activation, bringing the two FPs into close distance and correct orientation.
C Intermolecular FRET biosensor. One molecule is fused to donor FP, and the other to the acceptor FP. Upon activation, two molecules
interact with each other to induce FRET changes
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FRET biosensors can be introduced into endogenous
genome to create stable cell lines by using CRISPR/Cas9,
such as EC stable cell line. Combining with liveFISH
labeling technology (Wang et al. 2019), the transcription
and epigenetic dynamics at specific genomic loci in EC
stable cell lines can be visualized in real time under
shear stress stimulation. As such, epigenetic visualiza-
tion will provide more mechanistic understanding on
mechano-epigenetic regulation in gene expression at
single living cell levels.

Even though several FRET biosensors have been
developed to study epigenetic events, the actual usage
of the FRET epigenetic biosensor is still limited. The
sensitivity of most epigenetic biosensors is typically low
comparing to other types of chemical or biological
imaging probes (Sasaki et al. 2009; Tan et al. 2014).
Some strategies to optimize the FRET biosensor are
proposed. For example, peptide scaffold (e.g., mono-
body)-based directed evolution will be a promising
technology to increase the specificity and sensitivity of
the FRET biosensors (Limsakul et al. 2018). Tools other
than the FRET biosensor are also helpful in under-
standing the relationship between epigenetics and

mechanobiology. For example, methods such as fluo-
rescence correlation spectroscopy (FCS), fluorescence
recovery after photobleaching (FRAP), and split
fluorescence-activating and absorption shifting tag
(splitFAST) are used to monitor protein dynamics (Liu
and Irudayaraj 2019; Tebo and Gautier 2019). Should
more FRET biosensors with increased specificity and
sensitivity become available in the future, mechanobio-
logical studies using FRET biosensors will thrive.

SUMMARY AND PERSPECTIVES

In general, there are multiple concurrent epigenetic
modifications involved in cellular processes. These
modifications synergistically cooperate to govern cellu-
lar functions at different subcellular compartments, e.g.,
in the nucleus. As such, developing more FRET epige-
netic biosensors for the visualization and quantification
of histone and other epigenetic modifications is in great
need. Simultaneous imaging of two or more histone
modifications in the same live cell, together with the
associated traction force map, could allow us to

Fig. 5 The designed activation
mechanism of H3K9 tri-
methylation FRET biosensor.
The H3K9me3 tri-methylation
biosensor contains a full-
length histone H3, an ECFP
(donor), a flexible EV linker
(120aa), a heterochromatin
protein 1 (HP1), and a YPet
(acceptor). At rest state, the
H3K9me3 biosensor has an
open conformation with low
FRET. When the histone H3
lysine 9 is methylated by an
upstream methyltransferase,
such as SUV39H1, HP1 binds
to the tri-methylated H3K9,
causing a strong FRET. The
excitation of ECFP at 433 nm
then results in the emission
from YPet at 527 nm
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generate a spatiotemporal landscape of multiplex his-
tone orchestration in association with the correspond-
ing mechanical stress distribution. Moreover, by
combining the CRISPR/dCas9 labeling system, these
biosensors should allow the more precise monitoring of
spatiotemporal epigenetics at specific genomic loci in
response to mechanical force. In summary, the single-
cell study of epigenetic regulation should not only
advance our precise understanding of the dynamic
coordination of epigenetics and genomic regulations,
but also identify new therapeutic targets in response to
mechanical cues in diseases.
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