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Abstract  Immunotherapy, especially immune checkpoint inhibitors, is becoming a promising treatment for
hepatocellular carcinoma (HCC). However, the response rate remains limited due to the heterogeneity
of HCC samples. Molecular subtypes of HCC vary in genomic background, clinical features, and prog-
nosis. This study aims to compare the immune profiles between HCC subtypes and find subtype-specific
immune characteristics that might contribute to the prognosis and potential of immunotherapy. The
immune profiles consist of immune-related genes, cytolytic activity, immune pathways, and tumor-
infiltrating lymphocytes. HCC-c1 samples showed an overall higher activation level of immune genes
and pathways, and this pattern was consistent in validation sets. We associated the difference in
immune profiles with the activation level of cancer hallmarks and genomic mutations. There was a
negative correlation between most of the metabolism pathway and immune-related pathways in HCC
samples. CTNNB1/WNT signaling pathway mutation, one of the common mutations in HCC, appears to
be associated with the expression of immune genes as well. These results reveal the difference of
immune profiles between HCC subtypes and possible reasons and influence, which may also deepen our
understanding of the carcinogenesis process.
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and the leading cause of cancer-related death world-
wide, with a steady increasing incidence and mortality.
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Worldwide, there are about 841,000 new diagnosed
cases and 782,000 deaths annually. Hepatocellular car-
cinoma (HCC) is the most common type of liver cancer,
accounting for 75%-85% of primary liver cancer cases
(Bray et al. 2018).

HCC originates from hepatocytes. Hepatocytes con-
stitutes of liver lobules, which is the basic function unit
of liver. The risk factors of HCC vary geographically.
Common risk factors include hepatitis infection, alcohol
abuse, aflatoxin B, and so on (Forner et al. 2018) The
development of HCC is closely related to chronic liver
disease, with 90% of HCC developed from cirrhosis
(Llovet et al. 2016).

Despite metabolism function, liver has critical
immune-regulatory functions. Facing amounts of
microbial byproducts and antigens from intestine, liver
is under an immune-suppressive state in normal phys-
iological conditions, to avoid overreacting to these
molecules. While liver is under infection or inflamma-
tory stateliver could also recruit immune cells and
activate immune systems rapidly (Guha et al 2017;
Ringelhan et al. 2018). The immune-suppressive state of
liver is often utilized by cancer cells to avoid immune
surveillance.

Early-stage HCC patients could be treated with
resection, liver transplantation, or local ablative therapy.
For liver transplantation, the limited liver source
restricts its application. For other treatments, the
recurrence rate remained high because the chronic liver
disease is not cured with the cancer (El-Serag 2011). For
advanced stage patients, sorafenib has been approved as
first-line therapy but just prolong patients’ mean sur-
vival time for three months (Llovet et al. 2008). Rego-
rafenib and nivolumab have been approved as second-
line therapy with promising efficacy (Bruix et al. 2017;
El-Khoueiry et al. 2017) while the response rate is not
desirable (~30%) and no definitive predictive
biomarkers have been found (Llovet et al. 2018). Nivo-
lumab is anti-PD1 drug, which is one of the immune
checkpoints. In recent years, immune checkpoint inhi-
bitors have made great progress in treating several
cancer types. The heterogeneity of tumor microenvi-
ronment may contribute to the low response rate (Pitt
et al. 2016). This study aims to analyze the immune
profiles of HCC subtypes and identify subtype-specific
immune characteristics that might contribute to the
potential of immune therapy and difference in
prognosis.

In recent years, the development of sequencing
technology enables us to know more about the hetero-
geneity of HCC, from which we could also extract
immune profiles. The immune profiles include the
immune-related gene expression, immune-related
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pathway/gene sets, estimated tumor-infiltrating lym-
phocytes (TILs) score, and immunogenicity. The tumor
immunogenicity could be evaluated with several signa-
tures, including mutation load, neoantigen load, and
cancer-germline antigen expression. The response of
immune system could be measured with TILs score and
cytolytic activity (CYT). In the following, we compared
the immune profiles between HCC subtypes, with data
from TCGA (the Cancer Genome Atlas). Immune gene
expression, pathway activation, and TILs score were
obtained from transcriptome data. Mutation and
neoantigen information was obtained from previous
studies (Charoentong et al. 2017). The study provides
an integral comparison of immune profiles between
HCC subtypes which might be valuable to clinical
application.

RESULT AND DISCUSSION
Difference of immune-related genes by subtype

Transcriptome data, mutation files, and clinical infor-
mation for HCC samples were downloaded from TCGA
with cBioPortal (Cerami et al. 2012; Gao et al. 2013).
Based on transcriptome data, TCGA-HCC samples were
classified into three classes according to Hoshida's work
(Hoshida et al. 2009) (supplementary Fig. S1). Clinical
features differed between three subtypes, as summa-
rized in Table 1. Similar to previous studies (Hoshida
et al. 2009), there were less advanced tumor in class 3
(c3), higher AFP levels in class 2 (c2), and less hepatitis
infection samples in class 1 (c1). Both overall survival
(0S) and disease-free survival (DFS) differed between
subtypes, with c3 better in OS and c2 worse in DFS
(Fig. 1C).

Firstly, we paid attention to the expression of 386
immune-related genes. It could be identified that three
subtypes showed obvious different expression of these
genes (Fig. 1A). In TCGA datasets, HCC-cl subtype
presented an overall higher expression of immune-
related genes. By comparing gene expression values
between c1 and other samples with Wilcoxon rank sum
test, 229 immune-related genes were identified as
upregulated in c1 subtype (FDR < 0.1). This pattern
could be observed in the three independent validation
sets as well (Fig. 1A).

In HCC, CD577 natural killer cells (NK cells) and
CD8* T cells mediate the main cytolytic attack to the
tumor cells (Ringelhan et al. 2018). Cytolytic activity
(CYT), evaluated as the mean expression value of five
genes (GZMA, PRF1, CD8A, CD8B, GZMB) (Jiang et al.
2018), could be regarded as a measurement of
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Table 1 Clinical difference between HCC subtypes

Variable Class 1 (n = 101) Class 2 (n = 92) Class 3 (n = 174) NA's p value
Gender 0 0.044
Male 64(63%) 56(61%) 129(74%)
Female 37(37%) 36(39%) 45(26%)
Family history of cancer 49 0.01273
Yes 31(31%) 17(18%) 63(36%)
No 61(60%) 59(64%) 87(50%)
Weight 69.00 65.00 73.00 25 0.011
[59.00,79.00] [56.00,78.00] [62.00,85.00]
Grade 4 <0.001
G1 11(11%) 7(8%) 36(21%)
G2 43(43%) 37(40%) 95(55%)
G3 43(43%) 42(46%) 37(21%)
G4 4(4%) 5(5.4%) 3(2%)
Stage 23 0.0201
Stage i 38(38%) 36(39%) 96(55%)
Stage ii 26(26%) 24(26%) 34(20%)
Stage iii 28(28%) 28(30%) 29(17%)
Stage iv 2(2%) 1(1%) 2(1%)
AFP? at procurement (ng/mL) 26[7,1390] 238.5[14.5,5293.2] 6[3,25] 91 <0.001
ECOG score 81 0.001
0 33(33%) 37(40%) 91(52%)
1 24(24%) 16(17%) 44(25%)
2 6(6%) 11(12%) 9(5%)
3 2(2%) 8(9%) 2(1%)
4 3(3%) 0 0
Age 60.5[49,68] 56.5[48,66] 64[55,70] <0.001
Hepatitis infection 0.03925
HBV 20(20%) 35(38%) 42(24%)
HBV/HCV 3(3%) 0 4(2%)
HCV 11(11%) 9(10%) 28(16%)
No 67(66%) 48(52%) 100(57%)

“AFP: Alpha fetoprotein

antitumor effects. HCC-c1 samples showed higher CYT
compared with the other two subtypes (Fig. 1B,
p value = 1.2 x 1073 9.9 x 10™°). Previous study has
found CYT is associated with better prognosis in some
cancer types (Wakiyama et al 2018). In TCGA-HCC
samples, patients with higher CYT had better prognosis
in both OS and DFS (Fig. 1D), even after adjusted to
stage (OS: p value = 0.026; DFS: p value = 0.0034). The
prognostic value of CYT reached agreement with the
previous ideas that the immune cells preserved part of
the function even in the advanced tumor site (San-
mamed and Chen 2018).

Signature genes for each subtype were identified
among the 386 immune-related genes. In TCGA-HCC

© The Author(s) 2020

dataset, 229 immune-related genes expressed significantly
higher in ¢l compared with the other two subtypes
(Wilcoxon rank sum test, FDR < 0.1) while for c2 and c3
samples, 13 and 23 immune-related genes were over-
expressed, respectively. Pathway overrepresentation
analyses were applied to signature genes for each subtype,
and the results are summarized in supplementary
Table S1. C1 over-expressed genes were enriched in
antigen processing and presentation pathway (hsa04612),
T cell receptor signaling pathway (hsa04660), and Thl
and Th2 cell differentiation (hsa04658).

Interferon gamma (IFN-y) is the signature cytokine
for Th1 cells (Rengarajan et al. 2000), which also plays
an crucial role in the tumor immune surveillance.
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Fig. 1 A Heatmap of immune-related genes expression in TCGA-HCC and three validation sets. The gene expression values were
calculated as log2 (RSEM + 1) and scaled by row. Values deprived out of 4SD were substituted by mean £ 4SD. The column represents
sample and the row represents genes. The genes were clustered by row while gene trees were not shown here. The red color represents
higher expression and blue represents lower expression. Three subtypes were annotated with different colors. B Difference of cytolytic
activity (CYT) between subtypes. C Prognosis difference between TCGA-HCC subtypes. OS: Overall survival; DFS: disease-free survival.

D Prognosis value of CYT in TCGA-HCC samples. Patients were separated into two groups by median

Recent studies find that IFN-y plays dual roles in
microenvironment. It could activate antigen presenta-
tion, thus enhancing immunogenicity of tumor cells
(Saha et al 2010). In contrast, it also regulates the
expression of immune checkpoint genes, such as PD-L1,
CTLA4, and IDO1, which may lower immune response
by effector T cells (Mojic et al. 2017). In TCGA-HCC
samples, the expression of IFN-y is upregulated in cl
(supplementary Fig. S2A) and positively correlated with
the expression of PD-L1 (cor = 0.47), CTLA4 (cor =
0.71), and CYT (cor = 0.82) and the activation of path-
way hsa04612 (cor = 0.73) (supplementary Fig. S2B-
2E). After all, the differential expression of IFN-y
between subtypes plays critical role in the difference of
immune profiles.
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Immune checkpoint inhibitors targeting PD1, PD-L1,
and CTLA4 have achieved great success in several
cancer types. And the expression of PD-L1 is consid-
ered as a potential biomarker for anti-PD1 drugs
(Ocker 2018). C1 subtype showed higher expression of
all these three genes and it was consistent in most of
the validation set except PD-L1 in GSE36376 (Fig. 2).
An IFN-y-related signature gene was used as a poten-
tial predictive marker for anti PD-1 drug pem-
brolizumab (Ayers et al. 2017). The 18 signature genes
showed higher expression in cl samples as well
(supplementary Fig. S3). Considering the higher
expression of IFN-y signature genes and PD-L1, the c1
subtype may have the greater potential to benefit from
immune checkpoint inhibitors.

© The Author(s) 2020
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Fig. 2 Expression difference of immune checkpoints between subtypes. The p value calculated with Wilcoxon rank sum test was marked
in the figure. Only significant results (p value > 0.05) were shown here. Outliers were removed from the boxplot. A PD1: programmed
death 1; B PDL1: CD274 molecule; C CTLA4: cytotoxic T-lymphocyte associated protein 4

For over-expressed genes in c2 and c3 subtypes, we
focused on the genes whose corresponding receptors
were over-expressed in the same class. For c2 samples,
cytokine encoding genes, BMP4, NODAL, and their cor-
responding receptors, BMPR1A, and ACVR2B were
upregulated (supplementary Fig. S4A). For c3 samples,
NRG1 and their receptors ERBB2 showed higher
expression values (supplementary Fig. S4B). Both BMP4
(bone morphogenetic protein 4) and NODAL encode
ligand of the TGF-B superfamily. Recent studies revealed
that BMP4 could enhance HCC proliferation and
metastasis (Ma et al. 2017; Zeng et al. 2017) and is
associated with poor prognosis in HCC samples
(Guo et al. 2012). Over-expression of NODAL is involved
in promoting invasive phenotypes of tumor cells in vitro
(Duan et al. 2015; Quail et al. 2014). The over-expression
of BMP4 and NODAL might contribute the poorer DFS of
c2 samples.

© The Author(s) 2020

Difference of TILs between subtypes

The tumor-infiltrating lymphocyte (TIL) scores were
estimated using CIBERSORT (Newman et al. 2015) from
transcriptome data. TILs for 22 kinds of immune cells
were estimated. It could be observed that in LIHC
samples, 14 types of immune cells had different infil-
tration levels between three subtypes (Fig. 3A). C1
samples had higher infiltration level of macrophage MO,
activated CD4" memory T cells, and lower infiltration
level of naive B cell, monocytes, resting mast cells,
resting CD4" memory T cells, T follicular helper cells,
and regulatory T cells. C2 samples had lower infiltration
level of ydT cells. C3 samples had higher infiltration
score of macrophage M2, resting dendritic cells, and
lower infiltration level of activated dendritic cells.
Among all solid organs in the body, the liver harbors
the greatest proportion of macrophages, which are in
term the most common infiltration immune cells in liver

23 | February 2020 | Volume 6 | Issue 1
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Fig. 3 Tumor-infiltrating lymphocytes (TILs) between subtypes. A Heatmap of TILs scores. The immune cell type significantly differed
between subtypes (Kruskal-Wallis test, FDR < 0.1) was marked with star. B TILs score of macrophage and monocytes between subtypes
with significant level marked. The Wilcoxon rank sum test was applied. Outliers were removed from the boxplot. *p < 0.05, **p < 0.01,
and ***p < 0.001. C TILs score of regulatory T cells (Tregs) between subtypes with p value marked

cancers (Robinson et al. 2016). Tumor-associated liver
macrophages may be derived from self-proliferation of
Kupffer cells and differentiation of recruiting mono-
cytes. In response to different signals in microenviron-
ment, macrophages are polarized to different status and
exert opposite functions. Macrophage M1, activated with
IFN-y, produces proinflammatory cytokines and che-
mokines. Macrophage M2, activated with IL4 and IL13,
produces immune-regulatory cytokines and has phago-
cytic activity (Sica et al. 2014). In several cancer types,
infiltration level of macrophage M1 is associated with
better prognosis while macrophage M2 is associated
with poor prognosis (Fridman et al. 2017).

From Fig. 3B, it could be observed that the TIL score
of macrophage M2 is higher than macrophage M1 in
every subtype, indicating a local immune-suppressive
microenvironment. As stated above, c1 showed lower
infiltration score of monocytes and higher infiltration of
macrophage M1, consistent with higher expression level
of IFN-vy in c1. C3 showed higher infiltration of macro-
phage M2, compared with the other two classes. When
comparing the main activation signals and expressing
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cytokines distinguishing M1 and M2 state (Sica et al
2014), it could be found that most of the signature
genes for macrophage M1, such as IL1B, TNF, STAT1,
and IL6, showed elevated expression in c1. The signa-
ture genes for macrophage M2 showed less significant
difference between subtypes, among which ARG1 and
ARG2 were over-expressed in c3 samples (supplemen-
tary Fig. S5). ARG1 could dampen the proliferation of T
cells by limiting the availability of arginine (Carambia
and Herkel 2018), which may partly contribute to the
lower CYT in c3 samples.

Regulatory T cells (Tregs) play an important role in
establishing immune-suppressive microenvironment in
tumors, impairing the activity of effector T cells. The
infiltration of Tregs is associated with poor prognosis in
several cancer types, including HCC. In TCGA-HCC
samples, we observed that the infiltration of Tregs is
associated with poor prognosis as expected (0S: HR =
2384; DFS: HR = 391.5). C1 samples show lower infil-
tration of Tregs than the other two classes, which might
partly explain the overall higher activation level of
immune genes in cl.

© The Author(s) 2020
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Difference of cancer hallmarks
between subtypes

To explore the potential reasons for immune profile
difference, we compared the difference of cancer hall-
marks between HCC subtypes with ssGSEA (Barbie et al.
2009), as described in method. HCC subtypes showed
divergent activation levels of cancer hallmarks (Fig. 4A).
Consistent with immune-related gene expression pat-
tern, c1 samples were enriched in most of the immune-
related hallmarks, such as IFN-y response, IL6-JAk-
STAT3 signaling. c1 and c2 samples showed higher
enrichment scores in cell cycle and MYC hallmarks, such
as hallmark G2ZM checkpoint, E2F targets, and MYC

ES of pathways in TCGA-HCC

targets. While c3 samples were enriched in metabolism-
related hallmarks, such as fatty acid metabolism and
bile acid metabolism, most of which were closely related
to the physiological functions of liver. Considering the
lower CHILD-Pugh scores in HCC-c3 samples (Table 1),
it could be speculated that c3 samples may have better
liver function remained, resulting in the enrichment of
these metabolism pathways.

We found that the enrichment scores of immune
pathways/hallmarks were negatively correlated with
the metabolism-related hallmarks, except glycolysis
(Fig. 4B). Hallmark glycolysis, different from other
metabolism hallmarks, was enriched in c1 samples and
positively correlated with immune pathways (Fig. 4B).
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Transferring from oxidative phosphorylation to glycol-
ysis is one of the important metabolism reprogramming
features of tumor cells, termed as “Warburg effect”
Recent studies find that during T cell activation, similar
metabolism reprogramming feature could be observed
(Allison et al 2017). Since we cannot distinguish
metabolism profiles of different cells with bulk tumor
sample, the activation of glycolysis may exert complex
influence to the tumor microenvironment.

Hallmark bile acid metabolism is enriched in c3
samples and negatively correlated with most of the
immune pathways/hallmarks, especially IL-17 signaling
pathway (Fig. 4B, C). Similar pattern could be observed
in two available validation datasets (Fig. 4C). One of the
physiological functions of liver is to secret bile acids,
helping fatty acids digestion and absorption. Besides
its role in digestion, bile acids also exert immune-
regulatory functions, probably through activation of bile
acid receptors (Fiorucci et al. 2010). There are two
kinds of bile acid receptors in human, G-protein coupled
receptors (TRG5), and nuclear receptors (FXR, CAR,
PXR, etc.). FXR, also known as NR1H4, is a bile acid
receptor on hepatocytes. FXR and TRG5 are expressed
on circulating monocytes, macrophages, and Kupffer
cells. Activation of both receptors could repress the
expression of pro-inflammatory cytokines. Previous
study found that treated hepatocytes with hydrophobic
bile acids could upregulate the expression of IL-17A
(Fiorucci et al. 2018). IL-17 is a subset of cytokines
important to inflammatory responses and high expres-
sion of IL-17 is related to poor prognosis in HCC sam-
ples (Zhang et al. 2014).

Genomic associations with immune-related
genes

Genomic background may contribute to the difference of
immune profiles as well. In TCGA-HCC samples, 356
samples with the transcriptome data have the mutation
files. There were 26 significantly mutated genes. The

Table 2 Mutation frequency difference between HCC subtypes

most frequent mutations were detected in TP53 (111/
356), CTNNB1 (96/356), ALB (41/356), APOB (36/
356), ARID1A (31/356), AXIN1 (23/356), and RB1 (20/
356). TCGA-HCC subtypes showed no significant dif-
ference in mutation load and neoantigen load (supple-
mentary Fig. S6) while the mutation frequency of four
genes differed between subtypes. C1 samples have less
frequent CTNNB1 mutations and c3 samples have less
frequent TP53 mutations. Meanwhile, AXIN1 and
RPS6KA3 are more common in c2 samples (Table 2).

CTNNB1 encodes B-catenin, which binds to the pro-
duct of APC gene. Both CTNNB1 and APC belong to the
WNT signaling pathway. The most common mutated
genes in WNT signaling pathway in TCGA-HCC include
CTNNB1, AMER1 (6/356), AXIN1 (23/356), AXIN2 (6/
356), and APC (10/356). If we consider patients had
any one of these gene mutations as mutated in WNT
signaling pathway, it could be found that frequency of
WNT signaling pathway mutation varied between sub-
types. In c1 samples, only 13.1% samples had mutations
in WNT signaling pathway, while for c2 and c3 samples,
mutated samples accounted for 46.6% and 43.8%,
respectively.

Gene mutations may influence specific gene or
pathway expression as well as immune-related genes.
We compared whether gene mutation could signifi-
cantly influence the expression of immune-related genes
out of whole transcriptome. Take CTNNB1 mutation as
an example, the expression of 9234 genes was corre-
lated with CTNNB1 mutation (Wilcoxon rank sum test,
FDR < 0.05), among which 240 is immune-related
genes. CTNNB1 influenced more immune-related genes
compared with other genes, under Fisher’s exact test
(p value = 2.30 x 1010, Fig. 5A). Besides, ALB, AXIN1
and CTNNB1 mutation as well as WNT signaling path-
way mutation could greatly influence the expression of
immune-related gene. And most of the immune-related
genes were downregulated in the CTNNB1 or WNT
pathway-mutated samples (Fig. 5B; supplementary
Fig. S7A). In the validation set GSE65485, 9 out of 50

Gene/pathway C1 (n=99) C2 (n=92) C3 (n=172) Mutation type p value

TP53 38 38 36| Putative driver 491 x 107*
CTNNB1 10/? 27 59 Putative driver 6.13 x 107°
AXIN1 1 137 10 Putative driver 112 x 1073
RPS6KA3 1 91 4 Putative driver 257 x 1073
Wnt. pathway® 14] 42 74 Pathway 317 x 1077

“Patients with mutation in any one of CTNNB1, AMER1, AXIN1, AXIN2, and APC were regarded as mutated in Wnt signaling pathway;
bThe up arrows and down arrows represent the frequency of gene mutation in this subtype, which is differed from other subtypes
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Fig. 5 A Percentage of genes significantly correlated with gene/pathway mutation in immune-related genes and other genes. Fisher’s
exact test was performed to test for difference. CTNNB1: catenin beta 1; WNT: samples mutated in six genes were considered as mutated
in WNT pathway. B Volcano plot of the differential expression of patients with and without CTNNB1 mutation. The x-axis represents the
fold change (FC) of mean values between two groups, after log2-transformed. The y-axis represents the log10 FDR value calculated with
Wilcoxon rank sum test. Each point represents one gene, and the significant genes (Jlog2(FC)| > 0.58; FDR < 0.1) were colored blue.
C Percentage of genes significantly correlated with gene/pathway mutation in immune-related genes and other genes. PRAD: prostate
adenocarcinoma, STAD: stomach adenocarcinoma, UCEC: uterine corpus endometrioid carcinoma

tumor samples harbored CTNNB1 mutation and most of
the immune-related genes were downregulated in the

CTNNB1-mutated samples as well (supplementary
Fig. S7B).
We wonder whether the negative correlation

between CTNNB1 mutation/WNT pathway mutation
and immune-related gene expression exists in other
cancer types. According to integrative cancer genomics
(IntOGen) (Gonzalez-Perez et al 2013), CTNNB1 is
considered as mutational cancer driver in seven cancer
types, including prostate adenocarcinoma (PRAD),
hepatocarcinoma, uterine corpus endometrioid carci-
noma (UCEC), stomach adenocarcinoma (STAD), col-
orectal adenocarcinoma (COAD), cutaneous melanoma,
and medulloblastoma. Data for the former six types
were collected from TCGA. Transcriptome data and
mutation files were downloaded from TCGA, and similar
analysis was conducted.

© The Author(s) 2020

Similar results were found in PRAD, STAD, and UCEC.
In these three cancer types, CTNNB1 mutation influ-
enced the expression of more immune-related genes
than other genes (Fig. 5C). However, the negative cor-
relation was not observed in these three cancer types
(supplementary Fig. S7C-E).

Previous research has found that WNT/B-catenin
pathway could influence the cancer immunity (Pai et al
2017). These findings, though preliminary, suggest that
the genomic background may influence the immune
profile.

Discussion
In this study, we compared the immune profiles
between HCC subtypes, searching for immune charac-

teristic for each subtype, possible reasons, and impacts.
The prognosis for HCC remains poor, and the treatment
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method is limited. Considering the special immuno-
suppressive microenvironment of liver and potential for
immunotherapy, we expect that the investigation of
immune profiles would deepen our understanding of
carcinogenesis process and provide clues to clinical
application.

C1 subtype showed a consistent higher expression of
immune-related genes, CYT as well as immune check-
points (PD-1, PD-L1,CTLA4) in TCGA data and validation
sets. The higher expression of IFN-y in c¢1 would
increase the antigen presentation pathway meanwhile
induce the expression of co-inhibitors. This would
probably explain why c1 subtype didn’t show advan-
tages in prognosis with an immune-active state.

The higher expression of PD-1 and IFN-y proposed
that c1 samples are most likely to benefit from immune
checkpoint inhibitors. For c2 and c3 samples, there is
possible therapy based on upregulated genes or gene
mutation, listed in Table 3. ERBB3, over-expressed in c2
samples, could be the target for antibody (Gaborit et al
2016). AXIN1 mutation and RPS6KA3 mutation, with
higher frequency in c2 samples, have inhibitors,
respectively (Khemlina et al. 2017; Schulze et al. 2015).
EGFR, over-expressed in c3 samples, is the target in
other cancer types (Schulze et al. 2015).

For TILs, several immune cells showed different
infiltration levels between subtypes, among which
macrophage M1 and M2 and Tregs might play important
roles in the tumor microenvironment. And the TILs
were associated with prognosis as previous studies
found. CIBERSORT provides a valuable estimation of
TILs, while the different status of immune cells some-
times is hard to perceive. Compared with immunohis-
tochemistry method, the location information is not
available.

The difference of immune profiles was probably due
to different activation level of cancer hallmarks and
genomic background. It was intriguing that there was a
negative correlation between most of the metabolism
pathways and immune pathways. In recent years, sev-
eral studies have found metabolism reprogramming is

important to the functions of immune cells (Allison et al.
2017; Renner et al. 2017; Zhang et al. 2018). While
sequencing of bulk tumor samples would not enable us
to distinguish expression profiles of different cell types.
Single-cell sequencing, if possible, would give us a more
precise landscape of metabolism status of different cells
in tumor site. However, these results may provide an
overall landscape which may need further study:.

Genomic background may affect the immune profile.
Mutations or neoantigens generated by tumor cells may
stimulate immune response. In TCGA-HCC samples,
there was no significant difference of muta-
tion/neoantigen load between subtypes. However, we
observed an association between CTNNB1/WNT muta-
tion and the expression of immune-related gene in HCC
and UCEC, STAD, and PRAD. It proposed a possibility
that mutations affect the immune profiles through var-
ious ways.

Besides genomic background, HCC is a disease closely
related with chronic liver diseases. Different risk factors
may result in different carcinogenesis process (Llovet
et al. 2016). In TCGA-HCC samples, several risk factors
other than hepatitis infection were documented, such as
alcohol consumption, non-alcohol fatty liver disease,
and hemochromatosis. The frequency of these risk fac-
tors didn’t differ between subtypes. It would be inter-
esting to identify the influence of risk factors to the
immune profiles but it was not covered in this study.

DATA AND METHODS
Genomic and clinical data

Genomic and clinical data for HCC from the Cancer
Genome Atlas (TCGA) were downloaded from cBioPor-
tal, including clinical information (n =373), RNA-
sequencing expression profiles (n = 376), and mutation
files (n = 366). Overall characteristic of clinical infor-
mation was listed in supplementary Table S2. Mutation

Table 3 Potential therapy

Subtype
based on signatures P

Gene/mutation

Target therapy

c2 ERBB3 (HER3)
FGFR3
AXIN1 mutation

RPS6KA3 mutation

c3 EGFR
ERBB2(HER2)
KDR

Monoclonal antibody

FGFR3 inhibitor on clinical trials(lenvatinib)

(preclinical) XAV939

CDK4/6 inhibitor palbociclib

NSCLC, PAAD: erlotinib; colorectal: panitumumab, cetuximab
Breast, gastric: trastuzumab; breast: pertuzumab;

Target of sorafenib(child-pugh classification-A) and lenvatinib

Target of regorafenib, cabozantinib, ramucirumab (AFP-high)
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profiles for 26 recurrently mutated genes identified by
MutSig were downloaded.

Three HCC datasets were used as validation set, listed
in supplementary Table S3. Processed transcriptome
data of GSE65485 and GSE36376 were downloaded
from GEO (Barrett et al. 2013) with the R package
GEOquery (Davis and Meltzer 2007). For GSE65485
dataset, mutation status for gene TP53 and CTNNB1
was also grepped from GEO. Another dataset of paired
HCC samples (Liver110) was provided from collabora-
tors. Liver110 dataset consisted of 55 tumor samples
and 55 paired normal samples acquired from surgical
resection. The RNA of specimens was sequenced and the
expression values of immune-related genes and classi-
fier genes were provided from collaborators.

Subtype classification based on transcriptome

HCC samples were classified into three subtypes based
on transcriptome as described in Hoshida's paper
(Hoshida et al. 2009). Subtype classification was per-
formed using gene pattern (Reich et al. 2006) module
nearest template prediction (Hoshida et al. 2008; Reiner
et al. 2003; Xu et al. 2008), given signature genes for
each class. The confidence level of classification was
evaluated with resampling, providing p value and FDR
for each sample. Samples with classification FDR < 0.1
were considered as successfully classified and other
samples were not included in the following analysis.
Same classification procedure was applied to TCGA-HCC
and three validation sets. Classification result of three
validation sets was listed in supplementary Table S3.

Identification of immune-related genes

Transcriptome data of TCGA samples were downloaded
from cBioPortal as RSEM values. The transcriptome data
were log2-transformed before further analysis. For
microarray data GSE36376, gene expression values
were calculated as mean of probe detection values. The
gene symbols were converted to ENTREZ ID with R
package AnnotationDbi (Herve et al 2018) and
org.Hs.eg.db database (Marc 2018).

The immune-related gene set was collected from
TCIA and KEGG (Charoentong et al. 2017; Kanehisa et al.
2017). It was composed of MHC-class-related genes,
immunoinhibitors, immunostimulators, cytokines, and
cytokine receptors. Among them, 386 gene expressions
were identified from the RNA-seq data. Genes not
expressed in more than 80% of sample were removed
from further analysis.

Cytolytic activity (CYT) was evaluated with the mean
expression value of GZMA (granzyme A), PRF1 (perforin

© The Author(s) 2020

1), CD8A, CD8B, and GZMB (granzyme B) referring to
previous study (Jiang et al. 2018).

Pathway analyses

Pathway overrepresentation enrichment test was con-
ducted with WebGestalt (Wang et al. 2017) to explicit
functions of over-expressed genes for each subtype.
KEGG was used as pathway database. Three hundred
and eighty-six immune-related genes were used as ref-
erence set and significance level as FDR < 0.1.

Enrichment of cancer hallmarks and immune-related
pathways was calculated with ssGSEA (Barbie et al
2009; Subramanian et al. 2005) using R package GSVA
(Hanzelmann et al. 2013). Fifty hallmark gene sets were
downloaded from MSigDB (Molecular Signatures Data-
base). Twenty immune-related pathways were down-
loaded from KEGG.

The correlation between enrichment scores of path-
ways were calculated as spearman correlation. For gene
expression correlation, Pearson correlation was used.

Estimation of TILs

A deconvolution method, CIBERSORT, was adopted to
identify the TILs in the tumor microenvironment. With
signature genes for each cell type, CIBERSORT could
provide a robust estimation of the abundance of 22
immune cell types. Expression data of tumor samples
were processed with the online version of the tool, with
default parameter settings. The relative values of TILs
were used in the following analysis.

Neoantigen and mutation load

The neoantigen information of TCGA-HCC was down-
loaded from TCIA (https://tcia.at/). Neoantigen load,
similar as mutation load, counts the number of possible
neoantigens per sample.

Statistical analyses

All statistical analyses were completed in R (R Core
Team 2017).

To test the difference of clinical data between sub-
types, continuous and categorical variables were tested
with Kruskal-Wallis test and Fisher’s exact test,
respectively.

To test differential gene expression and TILs score
between subtypes, the non-parametric Kruskal-Wallis
test was used. For comparison between two groups, the
non-parametric Wilcoxon rank sum test was used. The
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p values were adjusted for multiple testing using the
Benjamini-Hochberg approach.

Fisher’s exact test was used to identify whether
mutation of specific genes/pathways have greater
influence to immune-related genes compared with other
genes. Genes significantly differently expressed between
mutant and non-mutant groups were considered as
influenced by the mutation.

Survival analysis

To evaluate the influence of one variable on survival,
such as gene expression or TIL score, univariate cox
model was used. The cox model was adjusted to stage
where specified. To compare the survival difference
between groups, log-rank test was used. Survival anal-
ysis was conducted in R with the package survival.

For TCGA-HCC samples, two samples who had
received neoadjuvant treatment were excluded from the
survival analysis.
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