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rates in Brazil vary from 14 to 64% depending on the loca-
tion being studied [2, 3].

Oxidation leads to reinforcement corrosion, creating 
an oxide coating around the metallic element. This corro-
sion type progresses slowly at room temperature (± 25 ℃), 
unless exposed to severe conditions or highly aggressive 
gases like CO2 and chloride ions in the atmosphere [4–6].

Carbonation-induced corrosion occurs uniformly over 
the longitudinal portion of the reinforcement due to CO2 dif-
fusion into the concrete matrix. The corrosive process hap-
pens at a regulated speed, influenced by numerous factors, 
either environmental or associated with material character-
istics [7–9]. Key environmental factors are CO2 concentra-
tion in the atmosphere, rainfall frequency, relative humidity, 
and temperature [6, 10–13]. Internal factors include the 
water-binder ratio used in concrete production, compressive 
strength, concrete cover thickness, and concrete composi-
tion [5, 14–18].

Andrade [3] categorizes corrosion degradation on RC 
structures as a decrease in mechanical capacity, weakening 

1  Introduction

Corrosion significantly decreases the lifespan of reinforced 
concrete structures. The World Corrosion Organization 
reports that the expenses of this destructive phenomenon 
surpass 3% of the Gross Domestic Product (GDP) in mul-
tiple nations. The prevalence of this deteriorative process in 
reinforced concrete structures is notable, with rates reaching 
up to 48% in South Africa, 25% in the United Kingdom, 
36% in India, and 31% in the United States [1]. Corrosion 
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This study introduces an original approach that integrates a machine-learning algorithm and a Monte Carlo simulation 
technique to evaluate the durability of reinforced concrete (RC) structures subjected to carbonation-induced corrosion. The 
study commences by forecasting the carbonation depth of concrete samples subjected to natural conditions, employing 
Artificial Neural Networks (ANNs) with the backpropagation algorithm. A database was created by gathering information 
from 870 literature sources, and it was utilized to build 100 ANN models with different topologies. A rigorous evaluation 
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evaluate the design life of structures in a real scenario, thereby demonstrating its tangible value in real-world applications. 
In addition, a parametric study was undertaken to examine the material’s compressive strength and the thickness of the 
concrete cover, which influences its durability. The design life was determined using the Monte Carlo Simulation tech-
nique coupled with the ANN model, in which the probability of depassivation due to carbonation was forecasted. Findings 
indicate that decreasing the concrete cover by 25% would lead to a 48% decrease in the structure’s design life, highlighting 
the influence of accurately determining and implementing the thickness of the concrete cover for RC structures.
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of the bond strength between steel and concrete, and spall-
ing of the concrete cover.

According to Helene [4], carbonation-induced corrosion, 
known as uniform corrosion, is frequently seen in structures 
in metropolitan areas and can also occur in coastal regions, 
depending on the concentration of chloride ions in the 
atmosphere. The corrosive process caused by carbonation 
is divided into two phases: initiation and propagation. The 
changeover is marked by the depassivation of steel, as seen 
in Fig. 1.

Corrosion initiation finalizes when the reinforcement 
undergoes depassivation. Carbonation-induced corro-
sion occurs when carbon dioxide meets the steel surface. 
The carbonation process can be simplified as the chemical 
interaction between CO2 and calcium hydroxide (Ca(OH)2) 
in the cement paste, resulting in the formation of calcium 
carbonate (CaCO3) [6, 20–22]. In addition, carbonation can 
decrease the porosity and permeability of concrete, leading 
to steel depassivation [17, 23, 24].

Following the loss of the steel protective layer, the propa-
gation phase starts, which is marked by the pace of corro-
sion and the effectiveness of the concrete covering. These 
factors mainly influence the internal tensions that develop 
at the steel/concrete interface due to the formation of corro-
sion products [25, 26]. The concrete cover cracks due to the 
stress field created at the interface between the two materials 
due to the expansion produced by rust (corrosion products). 
Macro-cracks emerge due to tensile stress caused by rust 
development, leading to material degradation and decreased 
service life [25]. Du et al. [27] found that the mutual action 
of corrosion and external loading causes a decrease in the 
residual strength of the reinforcement, which is not directly 
proportional to the rate of steel cross-sectional loss.

Regarding the modeling of carbonation-induced corro-
sion, most existing literature focuses on studying the initia-
tion period of corrosion, particularly in developing models 

representing CO2 diffusion in concrete or the time required 
for steel depassivation immersed in concrete [6, 10, 13, 
21, 28–34]. Developing models for the initiation phase is 
important due accurately predicting the steel depassivation 
time allows for a more accurate assessment of the level 
of deterioration in reinforced concrete structures and the 
remaining service life of the composite material. Further-
more, employing these models in the design phase enables 
estimating the design working lives of a concrete structure 
and implementing measures to reduce reinforcement corro-
sion. This can be achieved by adjusting the concrete com-
position by including admixtures or inhibitor additives [35].

Despite several corrosion mapping models, estimations 
of steel depassivation periods still need to be improved 
associated with the models’ lack of generality regarding 
exposure conditions and climatic aspects of the environ-
ment surrounding RC structures. Liberati et al. [36] and 
Ramezanianpour et al. [37] report the lack of representa-
tion of uncertainties associated with environmental climatic 
conditions, thus requiring the addition of random variables 
describing the variability of these parameters.

Ramezanianpour et al. [37] suggest using reliability 
theory analyses to improve the accuracy of estimating the 
probability of corrosion or steel depassivation to address the 
absence of parameter variability in deterministic models. 
This involves incorporating factors related to the random-
ness of variables affecting the issue. Ramezanianpour et al. 
[37] state that deterministic methods may produce unreli-
able findings when the environmental conditions around the 
RC structure substantially change.

Multiple techniques are available to assess the perfor-
mance and durability of RC structures when faced with 
changes in their mechanical and physical characteristics 
[38–41]. The Monte Carlo simulation technique is a solid 
way to analyze problems by considering multiple random 
factors [42, 43]. Integrating mathematical diffusion laws 

Fig. 1  Stages of corrosion induced by carbonation. Adopted from Felix and Carrazedo [19]
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with reliability algorithms provides a practical approach for 
modeling the service life of concrete structures affected by 
corrosion, yielding more dependable and thorough results 
than deterministic estimates [14, 36–38, 43, 44].

Therefore, considering the increasing use of reliability 
theory in the probabilistic analysis of structural component 
failure due to various deterioration mechanisms, especially 
reinforcement corrosion, this work presents a framework 
for analyzing the design life of RC structures subjected to 
carbonation-induced corrosion. As an original contribution, 
we propose an approach that combines a carbonation depth 
model based on Artificial Neural Networks with the Monte 
Carlo simulation technique, utilizing only data from con-
crete elements exposed to natural degradation conditions. 
The carbonation depth model was created using feedfor-
ward Multilayer Perceptron ANNs (MLP-ANN) with the 
backpropagation algorithm. The model was trained on a 
database of 870 data points derived from natural carbon-
ation results found in the literature. These sources encom-
passed studies that measured carbonation depths in concrete 
under various natural environmental conditions and are 
related to concrete elements located in nine countries with 
different weather conditions. The depassivation probability 
was calculated using reliability theory principles and the 
ANN-based model of carbonation depth, where a case study 
is offered to showcase the technique’s efficiency.

2  Probabilistic approach

Figure 2 illustrates the two main methodological processes 
adopted in the approach development: (i) building an ANN-
based model for mapping the concrete carbonation front and 
(ii) coupling the Monte Carlo Simulation technique with the 

carbonation model. The following subsections detail all the 
processes used to define the probabilistic approach.

2.1  Building the carbonation model based on ANN

2.1.1  Data analysis and processing

It is crucial to ensure the reliability of the database used 
within an artificial neural network model to train it effec-
tively. The database was meticulously built based on 870 
literature sources [6, 13, 45–53]. These sources included 
studies that measured carbonation depths in concrete under 
various natural environmental conditions and encompassed 
concrete elements from nine countries with diverse weather 
conditions (Brazil, Canada, China, Estonia, USA, France, 
India, Portugal, and Taiwan).

As known, several parameters influence the process of 
concrete carbonation, including the composition of the 
binder, concrete mix design, environmental conditions, 
and exposure time. In this study, ten parameters have been 
identified and selected as input parameters for the model: 
the average proportion of clinker + gypsum in the cement 
“CG+” (in %), concrete’s compressive strength at 28 days 
“CS” (in MPa), type of admixture “TADMIX” (0 - concrete 
without admixture; 1 – with blast furnace slag; 2 – with fly 
ash; 3 – with limestone filler; 4 – other pozzolanic materi-
als; 5 – silica fume), the admixture-cement ratio “AMDIX” 
(in %), CO2 concentration in the atmosphere “CO2” (in 
%), annual average relative humidity “RH” (in %), annual 
average temperature “TEMP” (in °C), exposure condition 
“EXP” (0.65 – outdoor, exposed to rain; 1.0 – outdoor, 
sheltered from rain; 1.3 – indoor), the water-binder ratio 
“W/B”, and exposure time “TIME” (in years). Figures  3 
and 4 illustrate the dispersion of the feature values with the 

Fig. 2  Flowchart of the main methodological processes
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testing the model and assessing its actual performance. This 
method is crucial as it evaluates the model’s generalization 
capacity more accurately by minimizing the chances of 
overfitting to a particular data subset [54–56]. The data split 
was done using stratified sampling to preserve the database 
patterns [57].

2.1.2  Training, validation, and performance test

Artificial Neural Networks emulate the human brain, com-
prising interconnected layers of artificial neurons [58]. 
Neurons process weighted inputs, apply non-linear activa-
tion functions, and transmit outputs to subsequent layers 
(Fig. 6a). The ANN architecture features input, hidden, and 
output layers, with weights adjusted during training using 
optimization algorithms like gradient descent. ANNs excel 
at learning complex data patterns and performing tasks such 
as classification, regression, and natural language process-
ing, with applications spanning image recognition, speech 
processing, medical diagnosis, and financial forecasting, 
showcasing the versatility of machine learning.

The MLP, a specific ANN type, consists of multiple inter-
connected layers of neurons, including input, hidden, and 
output layers (Fig. 6b). Backpropagation is a pivotal tech-
nique for training MLPs, enabling them to learn from data 
and make predictions. Modeling an MLP with backpropa-
gation entails defining the network architecture, initializing 
parameters, and training the network by feeding input data 
forward and comparing the output to target values using 
a chosen loss function. Backpropagation updates network 
parameters by computing error gradients and adjusting 
parameters using optimization algorithms. This iterative 
process is repeated for multiple epochs until convergence, 
resulting in an accurate MLP model capable of capturing 
complex data patterns and making precise predictions. The 

carbonation depth and frequency distribution of all continu-
ous variables of the original database. Table 1 provides the 
maximum, minimum, average, and standard deviation val-
ues. Since EXP and TADMIX are discrete variables, their 
histograms were not plotted, and statistical parameters were 
not defined.

As shown in Fig. 3a, 51% of the database had a water-
binder ratio varying from 0.45 to 0.65. Figure 4c shows that 
the proportion of admixtures varies between 0 and 60% 
and that three peaks exist, indicating more than one high 
frequency in the data. The histograms of CS (ranging from 
14.3 to 84.3 MPa), TIME (ranging from 0.25 to 41.0 years), 
and YCARB (ranging from 0.07 to 40.0 mm) exhibit right 
skewness. For relative humidity and temperature, in Fig. 4e, 
f, there is more than one peak in the concentration of data, 
and the most significant proportion of data is located close 
to the average values.

Figure  5 displays a Pearson correlation matrix among 
all variables, offering further insight into the database. The 
matrix shows no stronger correlations between the input 
features and the carbonation depth (YCARB). The data 
analysis points out that the carbonation depth exhibits mod-
erate relationships with the exposure time (0.52), water-
binder ratio (0.40), concrete’s compressive strength (-0.37), 
and annual average temperature (0.27), indicating that 
these parameters directly influence the carbonation depth 
mapping. It is important to note that temperature showed a 
median positive linear correlation with carbonation depth, 
suggesting the importance of considering it when mapping 
natural carbonation.

After defining the dataset and the input features model, 
the data was scaled to a range of 0 to 1 to enhance the per-
formance and accuracy of the networks. The dataset was 
split into two subsets for modeling: one including 80% of 
the data for training and cross-validation using a 10-fold 
approach for the ANN, and another containing 20% for 

Fig. 3  Dispersion and distribution 
graphs of (a) water-binder and 
(b) exposure time
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Table 1  Statistical parameters of the continuous features
Feature Unit Minimum Maximum Average Standard deviation
proportion of clinker + gypsum (CG+) % 45.00 97.50 94.73 5.01
compressive strength at 28 days (CS) MPa 14.30 84.30 38.44 8.83
admixture-cement ratio (ADMIX) % 0.00 60.00 20.02 16.11
CO2 concentration (CO2) % 0.01 0.046 0.040 0.007
annual average relative humidity (RH) % 65.00 79.80 69.83 3.41
annual average temperature (TEMP) °C 6.40 30.50 17.98 6.13
water-binder ratio (W/B) - 0.27 0.76 0.52 0.07
exposure time (TIME) years 0.25 41.00 5.50 7.08
Carbonation depth (YCARB) mm 0.07 40.00 7.16 5.44

Fig. 4  Data dispersion and distri-
bution considering: (a) propor-
tion pf clinker + gypsum in the 
cement; (b) concrete’s compres-
sive strength; (c) admixture-
cement ratio; (d) CO2 concentra-
tion; (e) relative humidity and; (f) 
temperature
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at 0.4 and 0.7, respectively. The hyperbolic tangent function 
was defined as the activation function in all training, and the 
mean square error was established as a training convergence 
criterion, with a maximum of 106 iterations.

After training all the ANNs, a performance analysis was 
conducted to define the model with the best prediction and 
generalization, in which the coefficient of determination 
(R²) and the root-mean-square error (RMSE) were evalu-
ated, using Eqs. 1 and 2, respectively.
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


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i=1

(
Oi − O

) (
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)
√∑n

i=1

(
Oi −O

)2√∑n
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)2


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� (1)

RMSE =

√√√√1

n

n∑

i=1

(Oi − Yi)
2 � (2)

in which Yi  are the real values and Oi  are the model predic-
tions. n is the amount of data samples evaluated, −

Y  are the 
average of real values and −O  represent the means of model 
outputs.

2.2  Probabilistic modeling

Monte Carlo simulation is a computational method for con-
ducting reliability analysis [36, 45, 60]. This method utilizes 
random samples to characterize the probability of failure 
(that in this work means the depassivation probability), as 
shown in Eq. (3).

Pf =

∫

G≤ 0

fx (x1, x2, . . . , xn) dx1, dx2, . . . , dxn � (3)

trained model enables various classification, regression, and 
pattern recognition applications.

Several topologies were tested in this work, differing by 
the number of neurons in the two hidden layers. The number 
of neurons varied from 1 to 10 in the first and second hidden 
layers. The topologies were defined to have low complexity, 
ensuring that all ANNs have a maximum of 20 neurons. To 
analyze the influence of topology, the initial weights were 
defined at 0.5 in all training processes.

Considering that supervised learning with the backpropa-
gation training algorithm was utilized, it was necessary to 
establish a learning rate since it is directly associated with 
the network’s convergence rate [59]. Based on Felix et al. 
[13], the learning rate and momentum variable were fixed 

Fig. 6  (a) Perceptron ANN and 
(b) MLP-ANN with two hidden 
layers

 

Fig. 5  Pearson correlation matrix
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performance, was integrated with the Monte Carlo simula-
tion algorithm defining G(X), as presented in Eq. (8).

G (X) = Cnon − fANN (XR,XD)� (8)

where X is the vector of random and discrete variables, Cnon 
is a random variable associated with the concrete cover 
thickness (mm), fANN  is the ANN-based model of carbon-
ation depth, XD is the vector of discrete variables (gypsum in 
the cement in %, type of admixture, the admixture-cement 
ratio in %, exposure condition, the water-binder ratio, and 
exposure time in years) and, XR is the vector of discrete vari-
ables (concrete’s compressive strength at 28 days in MPa, 
CO2 concentration in the atmosphere in %, annual average 
relative humidity in %, annual average temperature in °C).

3  Results and discussion

3.1  Carbonation model based on ANN

The probabilistic approach proposed in this work uses a 
model with Artificial Neural Networks to calculate the con-
crete carbonation depth. Thus, an ANN-based model was 
established using the training strategy explained in the pre-
ceding section. After training all 100 ANNs, a performance 
study was undertaken to identify the architecture that pro-
vides the best learning and generalization. The coefficient 
of determination (R²) was assessed during the training and 
test phases and displayed in contour maps, as seen in Figs. 7 
and 8.

The results in Figs. 7 and 8 demonstrate that the general-
ization capacity (values of R² obtained in the test phase) was 
lower than the learning ability (R² obtained in the training 
phase) for mapping carbonation depth. While in the train-
ing phase, the ANN model with the topology [10-10-9-1]1 
generated the best learning, with a training R² of 0.952, in 
the test phase, the ANN [10-6-8-1] generated the best gen-
eralization with an R² of 0.849. With the best learning, the 
ANN [10-10-8-1] generates an ANN with R² of 0.252 in the 
test phase. These findings indicated a potential mismatch 
between generalization and learning capacity, complicating 
the determination of which ANN produces the best results 
when assessing the R2 of the test or training separately. It 
was therefore decided to use a new performance metric that 
considers both training and test performance, as well as the 
error metrics RMSE, obtained in both phases, as the goal 

1  The ANN topology in this study is represented by the notation [X-Y-
Z-W], where X is the number of model inputs (fixed at 10), Y is the 
number of neurons in the first hidden layer, Z is the number of neurons 
in the second hidden layer, and W is the number of model outputs 
(always one).

where Pf is the failure probability, fx(X) is the joint probabil-
ity density function (joint PDF) of the variables X.

The failure probability is calculated using samples cre-
ated according to the statistical distribution associated with 
the problem’s random variable. This strategy, founded on 
simulating the limit state function, uses a larger sample size 
to depict the probability of failure or establish reliability 
accurately [61].

Calculating the integral in Eq.  (3) is challenging and 
requires using different methods and procedures that rely 
on the dependability index β [61]. The reliability index is 
defined as the distance between the midpoint and the point 
of failure allocated on the limit state function, G(X) = 0, and 
it is related to the probability of failure through the cumula-
tive standard normal distribution function ϕ, as Eq. (4).

Pf = φ (−β)� (4)

The Monte Carlo simulation method involves generating 
samples for the random variables related to the issue. The 
probability of failure is determined by an estimator that 
evaluates the limit state function, following Eq. (5). Estima-
tor I(xi) is calculated using Eq. (6), assuming 1 or 0, repre-
senting failure or not, respectively.

Pf =

∫

G≤o

fx (xi)dxi

=

∫

G≤0

I (xi) fx (xi) dxi

= E [I (xi)]

� (5)

I (xi) =

{
1, G (X) ≤ 0

0, G (X) > 0
� (6)

The average value I(xi) will be an estimative for the prob-
ability of failure, so, according to Eq. (7), the failure prob-
ability can be estimated for the entire sample database.

Pf = E [I (xi)] =
1

N

N∑

i=1

I (xi)� (7)

where N is the number of simulations and evaluations of 
the limit state equation. In this work, samples were defined 
by the Importance of Sample technique. According to Jac-
quemart et al. [62]. The Importance Sample is an interesting 
theoretical approach to estimating rare event probabilities in 
a continuous Markov process.

Once the method for determining the probability of 
failure (that means depassivation) is established, the only 
task remaining is to define the limit state equation G(X). 
The ANN-based model of carbonation depth, with the best 
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Weighted Performance =
0.6R2

TES + 0.4R2
TRA

0.6RMSETES + 0.4RMSETRA
� (9)

in which R2
TRA  and R2

TES  are the R² values obtained in 
the training and test phases, respectively. RMSETRA  and 
RMSETES  refer to the RMSE values obtained in the train-
ing and test phases, in that order.

Figure  9 shows that the ANN with the highest perfor-
mance is configured by [10-6-6-1] topology, whose metric 
calculated by Eq. 9 is 0.67. The ANN [10-6-6-1] obtained 

of this work is to propose an approach with overall appli-
cability for durability analysis in RC structures subjected 
to corrosion induced by carbonation. The equation defined 
and used in this study, presented in Eq. 9, combines the R² 
and RMSE values of the training and test phases to evaluate 
the network with the best performance. It gives more weight 
to the metrics values obtained during the test phase, result-
ing in a model with a reasonable degree of generalization. 
Figure 9 shows the performance values calculated by Eq. 9.

Fig. 9  Weighted performance 
values as a function of the ANN 
topology

 

Fig. 8  R² values obtained in the 
test phase as a function of the 
ANN topology

 

Fig. 7  R² values obtained in the 
training phase as a function of the 
ANN topology
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concrete utilized was produced at an on-site concrete batch-
ing plant, utilizing Brazilian Cement Portland CP IV, com-
parable to CEM IV (Portland cement with pozzolan). Three 
structural elements from the Central Building were chosen 
for the design life analysis: a wall-pier, a Column, and a 
beam. The data of these elements is presented in Table 2. 
Additional information regarding the structures is available 
in Possamai [63] and Possan et al. [64].

Possamai [63] analyzed the concrete technological-con-
trol reports from 2012 to 2014 to evaluate the variability 
of concrete’s compressive strength (CS) by treating it as a 
random variable. The data included six specimens tested 
at 7 days and 28 days. The analysis focused on concrete 
strength values at 28 days, with two specimens from distinct 
batches examined for each typical design strength of 35 and 
50 MPa. This process yielded 330 batches for CS ≥ 35 MPa 
and 410 for CS ≥ 50  MPa. Distribution curves and histo-
grams, treated as normal probability distribution functions, 
are depicted in Fig. 12.

an R² of 0.926 in the training and 0.810 in the test, with 
an overall performance of 0.910, as presented in Fig.  10. 
The model’s RMSE is 1.288 mm, with a maximum error of 
5.686 mm.

3.2  Probabilistic analysis – case study

The developed approach’s performance is assessed through 
a case study analyzing the design life of RC structures in the 
Central Building of the Campus of the Federal University 
of Latin American Integration, situated within the security 
perimeter of the Itaipu Hydroelectric Power Plant in Foz do 
Iguaçu - Paraná, Brazil. The construction commenced in 
2011 and was suspended in 2014. The data utilized in the 
case study were sourced from architectural and structural 
projects, descriptive memoranda, and technological control 
reports available in [63, 64] (See Fig. 11).

The Central Building’s RC structures were built using a 
combination of reinforced and prestressed concrete, with 
compressive strengths ranging from 35 MPa to 50 MPa. All 

Fig. 11  (a) General view of the 
building site and (b) structure of 
the Central Building [63]

 

Fig. 10  (a) residuals plot and (b) observed-prediction correlation plot
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pulled from the meteorological database for Teaching and 
Research (BDMEP) of the National Institute of Meteorol-
ogy (INMET) [66]. Daily data from station A846, located 
in Foz do Iguaçu, were obtained, and annual averages were 
calculated. Finally, for the characterization of CO2 expo-
sure, data on Brazilian CO2 concentration were considered, 
according to the “CO2 levels” organization [67], due to the 
absence of data for the city of Foz do Iguaçu, PR. Table 3 
presents the means and standard deviations for the afore-
mentioned parameters. The normal distribution function 
was utilized to define all the random variables.

The first step in the probabilistic analysis involves deter-
mining the number of samples and simulations necessary 
to ensure dependable outcomes. As Liberati et al. [36] out-
lined, the failure probability of civil structures typically 
falls within the range of 10− 3 to 10− 6, necessitating approx-
imately 105 to 109 limit state simulations. Alternatively, a 
convergence study is another effective method to reduce 
computing workload. Thus, a study assessed the impact 
of sample size on assessing the depassivation probability 
of the Wall-Pier (Table 3) considering a 100-year analysis 
period. Figure 13 shows the convergence analysis results for 
the variability of the probability of depassivation over 100 
years, with the number of samples used in the simulations.

The results shown in Fig. 13 suggest that the probability 
of failure tends to stabilize at 0.0086 for samples greater 

The average value of the cover thickness (Cnon) was 
determined based on the project parameters, accounting for 
a 10% variation with a normal distribution function. Based 
on these numbers, we implemented appropriate quality con-
trol measures during the execution phase in alignment with 
Enright and Frangopol [65].

Climatic data on annual average relative humidity (RH) 
and annual average temperature (TEMP) were gathered 
from 2010 to 2023, spanning a 13-year period. The data was 

Table 2  Information on the assessed RC components [63]
Structural element Location of RC structure in 

Central Building’s
Concrete cover thick-
ness (mm)

Compressive strength 
(MPa)

W/B Exposure 
conditions

Wall-Pier Ground floor 2.0 50.00 0.55 outdoor, 
exposed to rain

Column 11th floor 2.5 35.00 0.50 outdoor, shel-
tered from rain

Beam 2nd floor 2.5 35.00 0.50 outdoor, 
exposed to rain

Table 3  Specifications of random variables. Fonte Possamai (2022)
Structural element Variable Mean Standard deviation
Wall-Pier CS (MPa) 59.920 5.1480

Cnon (mm) 20.000 2.0000
CO2 (%) 0.0410 0.0043
RH (%) 74.317 8.5084
TEMP (°C) 24.334 6.9532

Column CS (MPa) 43.640 4.0630
Cnon (mm) 25.00 2.5000
CO2 (%) 0.0410 0.0043
RH (%) 74.317 8.5084
TEMP (°C) 24.334 6.9532

Beam CS (MPa) 43.640 4.0630
Cnon (mm) 25.000 2.5000
CO2 (%) 0.0410 0.0043
RH (%) 74.317 8.5084
TEMP (°C) 24.334 6.9532

Fig. 12  CS distribution curve for concretes with (a) 35 MPa and (b) 50 MPa [63]
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of the probability in the Wall-Pier (0.412). The probability 
of depassivation is close to zero for the first 50 years of life, 
indicating that the structures’ durability limit state (DLS) is 
not reached during the design life. This observation is inde-
pendent of the concrete used in the structural element and 
the conditions of use of the RC structure.

According to the general principles on the design of RC 
structures for durability on ISO 13,823 [69]. The durability 
limit state is reached when the probability of depassivation 
is 0.05 to 0.2 (indicated in a yellow band in Fig. 14). Thus, 
the design service life of the evaluated structures is 109 years 
for the Wall-Pier (PD = 0.051), 136 years for the Column 
(PD = 0.0504), and 139 years for the Beam (PD = 0.051).

The Wall-Pier’s lower durability may be partly linked to 
the established definition of environmental aggressiveness 
in the structure’s design, which specified a concrete cover 
thickness of 20  mm. With a 25  mm concrete cover, the 
structure would have a depassivation probability of 0.137 at 
150 years, exceeding the design service life of 132 years by 
21% compared to employing a 20 mm cover. It is crucial to 

than 40,000. Thus, this study utilized 50,000 samples to per-
form a Monte Carlo simulation for each RC structure.

Once the number of samples required had been deter-
mined, simulations were carried out to estimate the prob-
ability of the structures collapsing. Figure  14 shows the 
probabilities of steel depassivation due to concrete carbon-
ation. The analyses were carried out for 150 years, with a 
value three times longer than the design service life (50 
years for RC structures) defined in the Brazilian perfor-
mance standard NBR 15575-1 [68]. In addition, Figs. 15, 
16 and 17 show the distributions of the carbonation depth 
values predicted by ANN and the concrete cover, consider-
ing the variables’ randomness and the region where the limit 
state equation is exceeded.

According to the results shown in Fig. 14, within a period 
of 150 years, the probability of depassivation (PD) of the 
structures does not reach 50%. The results show that dura-
bility in the face of carbonation is greater in the Column 
(PD = 0.128) and the Beam (PD = 0.113), with the probabil-
ity of depassivation in these structures being less than 20% 

Fig. 14  Depassivation probability 
or RC structures
 

Fig. 13  Number of samples 
versus depassivation probability 
of the Pilar structure
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carbonation depths were 15.16 mm for Wall-Pier, 18.65 mm 
for the Column, and 20.15 mm for the Beam. The proposed 
model suggests that the design service life for the Wall-
Pier would be 259 years, 272 years for the Column, and 
236 years for the Beam, based on deterministic analysis. 
Figure  18 shows that the carbonation process occurs at a 
slower rate in the Wall-Pier; however, as this structure was 
produced with a smaller cover (20 mm) compared to the 
Beam and the Column structures (with 25 mm of concrete 
cover), the probabilistic analysis resulted in a shorter design 
life. The results in Figs. 14 and 18 highlight the necessity 
of including probabilistic analyses in examining durabil-
ity and design service life. The deterministic analysis could 
lead to depassivation of the reinforcement occurring up to 
238% later than indicated by probabilistic analyses. This 
discrepancy could result in inaccurate durability assess-
ments, particularly in severe conditions or lower perfor-
mance concretes.

accurately assess the hostile environment during the design 
phase to select a suitable cover thickness.

According to the results shown in Figs. 13, 14, 15, 16 
and 17, the design service life (50 years) recommended in 
NBR 15575-1 [68] is guaranteed for the three structures 
evaluated, and according to the DLS indicated in ISO 
13,823 [69], the design service life is between 109 and 
139 years. Nevertheless, these findings were derived from 
a probabilistic analysis, an approach not widely used in 
the country for projects and durability studies. Durability 
analyses are typically conducted using deterministic stud-
ies that do not account for parameter uncertainties. Fig-
ure 18 shows the predicted carbonation depth for the three 
reinforced concrete structures using the proposed artificial 
neural network model. The predictions were established 
using the average values of the input parameters according 
to Tables 2 and 3.

Figure 18 shows that depassivation is not expected dur-
ing the 150-year period for any RC structures. The predicted 

Fig. 15  Carbonation depth and cover thickness distributions for the Wall-Pier structure at (a) 50 years, (b) 75 years, (c) 125 years, and (d) 150 years
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significance of accurately determining and implementing 
the thickness of the cover for the structure. This is crucial 
as any movements in the structure’s formwork system dur-
ing molding can displace spacers, resulting in covers that 
deviate from the intended design, as reported by Accord-
ing to Palm et al. [70], which indicated that a combination 
of concrete cover and construction best practices must be 
incorporated into every project to enhance the structure’s 
durability and lifespan.

At last, a parameter analysis was carried out on the pro-
posed model to investigate the influence of the concrete 
cover thickness on RC structures’ durability and approach 
performances. Nominal covers of 15, 20, 25, and 30  mm 
were evaluated for the Wall-Pier RC structure. Figure  19 
shows the results of this analysis.

According to Fig. 19, decreasing the concrete cover of 
the Wall-Pier Structure by 25% (from 20 to 15 mm) would 
lead to a 48% decrease in the structure’s design life, reduc-
ing it from 109 years to 56 years. These results highlight the 

Fig. 16  Carbonation depth and cover thickness distributions for the Column structure at (a) 50 years, (b) 75 years, (c) 125 years, and (d) 150 years
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Fig. 18  Deterministic assess-
ment of the design lives of RC 
structures

 

Fig. 17  Carbonation depth and cover thickness distributions for the Beam structure at (a) 50 years, (b) 75 years, (c) 125 years, and (d) 150 years
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thickness from 20 mm to 15 mm results in an almost 50% 
reduction in design life, highlighting the crucial need for 
accurate implementation throughout construction.

Besides, the proposed probabilistic approach, augmented 
by ANN models, offers a comprehensive and reliable 
method for predicting the Likewise, the proposed proba-
bilistic approach, enhanced by artificial neural network 
(ANN) models, provides a thorough and dependable tech-
nique for forecasting the degradation of reinforced concrete 
(RC) structures caused by carbonation. This methodology 
may substantially enhance the design and maintenance 
strategies, ensuring infrastructure’s durability and safety.
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