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Abstract
Concrete is a fundamental building material, and efforts are continually made to enhance its properties, sustainability, and 
performance. This study investigates the influence of incorporating nano-silica (1-5%), alccofine (10%), and fly ash (20%) as 
partial replacements of cement on the strength characteristics (compressive strength, tensile strength, and flexural strength) 
of concrete by performing experiments at various curing periods in the laboratory. The objective of the current study is to 
develop a predictive model using Artificial Neural Network (ANN) to forecast the compressive strength of concrete with 
varying combinations of these supplementary cementitious materials. Subsequently, an ANN-based predictive model was 
trained using the collected data to establish a relationship between the composition of the concrete mix and its strength 
characteristics. The ANN model takes into account various input parameters, including the percentage replacements of 
nano-silica, alccofine, and fly ash, as well as other relevant mix design parameters. The trained model aims to provide accu-
rate predictions of compressive strength based on the selected input variables. The findings of this research contribute to a 
better understanding of the synergistic effects of nano-silica, alccofine, and fly ash on the strength properties of concrete. 
Moreover, the co-efficient of the correlation value comes out to be 0.924, revealing that observed and predicted values are in 
agreement with each other. Additionally, the developed ANN model serves as a valuable tool for engineers and researchers 
to efficiently forecast the strength characteristics of concrete with different combinations of these supplementary materials, 
facilitating more informed decision-making in concrete mix design and optimization.
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1 Introduction

Concrete, a versatile and widely used construction material, 
plays a crucial role in shaping the infrastructure of our mod-
ern world. Its adaptability, durability, and strength make it an 
indispensable component in the construction industry. Over the 
years, researchers and engineers have sought innovative ways 
to enhance the properties of concrete, addressing challenges 

such as sustainability, environmental impact, and performance. 
Concrete production faces a myriad of challenges that span 
environmental, economic, and social dimensions. Cement is 
an indispensable material, second only to water, and its global 
production and consumption are enormous, reaching 4.37 and 
4.27 billion metric tonnes in 2021. Cement manufacturing 
accounts for between 5% and 7% of human-made  CO2 emis-
sions [23]. The construction industry is a significant contribu-
tor to global carbon emissions, accounting for about 23% of 
greenhouse gas emissions worldwide [15]. Cement production 
is a significant contributor to these emissions, accounting for 
8% of global carbon emissions [2]. Therefore, reducing the 
carbon footprint of the construction industry requires finding 
alternatives to cement that are sustainable, eco-friendly, and 
cost-effective. To address the environmental impact of the con-
struction industry and mitigate carbon emissions further, vari-
ous strategies and alternatives have been pursued. Researchers 
and engineers are actively investigating the development of 
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alternative binding materials that can replace or reduce the use 
of cement in concrete. These alternative binders may include 
materials like fly ash, blast furnace slag, silica fume, and 
metakaolin, which have lower carbon footprints compared to 
cement. In addition to material alternatives, adopting sustain-
able construction practices can contribute to reducing the car-
bon footprint of the industry. Optimizing building designs for 
energy efficiency, utilizing renewable energy sources during 
construction, promoting modular and prefabricated construc-
tion methods, and incorporating recycling and waste manage-
ment strategies all fall under the umbrella of sustainable con-
struction practices. However, cement production heavily relies 
on natural resources, which can have significant environmental 
impacts, such as releasing  CO2 emissions. Cement is a cru-
cial ingredient in concrete because it is most comprehensively 
used construction material in the world. Therefore, reducing 
the carbon footprint of the construction industry requires find-
ing alternatives to cement that are sustainable, eco-friendly, 
and cost-effective. To address this issue, researchers have been 
exploring the use of mineral admixtures as partial replace-
ments for cement, such as alccofine materials. The use of 
SCMs as partial replacements for Portland cement in concrete 
is necessary due to the environmental, economic, and technical 
benefits they offer. One of the potential alternatives to cement 
is the use of supplementary cementitious materials (SCMs), 
such as alccofine, fly ash, and nano-silica. These materials can 
partially replace cement in concrete, reducing its environmen-
tal impact without compromising its mechanical properties and 
durability. This paper aims to review the existing literature on 
the use of these SCMs as partial replacements for cement in 
concrete. The use of these SCMs in concrete has been exten-
sively studied in the literature, and several studies have shown 
that the addition of these SCMs to concrete improves the com-
pressive strength, flexural strength, and durability of concrete 
[10, 13, 14, 16, 18, 19]. The use of these SCMs reduces the 
waste generated by industrial processes, contributing to sus-
tainable development.

One particular mineral admixture is Alccofine, which is a 
micro-fine level admixture that lowers the heat of hydration and 
enhances the strength of the concrete as well as its durability. 
Alccofine is a pozzolanic material that is produced from the 
calcination of kaolinite clay. It is a by-product of the manufactur-
ing process of aluminum. Alccofine has high pozzolanic activ-
ity, which means that it reacts with calcium hydroxide to form 
calcium silicate hydrate gel (C-S-H), contributing to the strength 
and durability of concrete [17, 20]. Alccofine can help concrete 
achieve higher strength at an early stage, improve durability and 
workability, and balance out the slow early-stage strength-gain-
ing ability of fly ash. Moreover, alccofine and NS work as pore-
filling materials that compact concrete and increase its durability 
[3]. It can replace cement in two ways: by reducing the cement 
concentration and by being added to concrete to improve its 
properties. Alccofine’s low calcium silicate content raises the 

pH of the concrete, protects it from corrosion, and improves its 
pumpability, shuttering removal, durability, and permeability.

Another mineral admixture that shows promising results 
is nano-silica (NS). NS can enhance the mechanical qualities 
by compacting concrete micro and nanostructures, prevent-
ing water penetration, and improving durability by control-
ling the breakdown of the calcium silicate hydrate reaction. 
It also interacts with calcium hydroxide to produce additional 
C-S-H in concrete, which is a nanoporous, nanostructured 
substance that controls most of the mechanical characteristics 
of concrete [4]. Also, fly ash (FA) is an increasingly popular 
substitute for Portland cement in concrete production due to 
its positive effects on technology and the economy. A byprod-
uct of coal combustion is FA, collected from the chimneys of 
power plants, and bottom ash, which is taken from the base of 
the furnace [22]. The use of NS as a partial replacement for 
cement in concrete has shown promising results in improving 
the mechanical properties and durability of concrete. Studies 
have shown that NS can significantly improve the compres-
sive strength, tensile strength, and flexural strength of concrete. 
This is due to its high pozzolanic activity and its ability to fill 
the voids in the concrete matrix, leading to the formation of 
additional C-S-H gel. One of the key benefits of using NS 
as a partial replacement for cement in concrete is its ability 
to enhance the durability of concrete. nano-silica improves 
the durability of concrete by reducing the permeability of the 
concrete matrix, thereby reducing the ingress of harmful sub-
stances such as chloride ions and sulfates. Additionally, the use 
of NS in concrete production can reduce the risk of alkali-silica 
reaction (ASR), a chemical reaction that can cause concrete to 
crack and deteriorate over time [24]. Overall, mineral admix-
tures such as alccofine and NS and the use of FA as a substi-
tute for cement show promising results in reducing cement’s 
environmental impact while enhancing concrete’s properties.

Artificial Neural Networks (ANNs) have emerged as a valu-
able tool in the field of concrete technology, offering a versatile 
approach for modeling and predicting various properties and 
behaviors of concrete. Researchers have extensively applied 
ANN models to address diverse challenges in concrete engineer-
ing, including the prediction of compressive strength, assess-
ment of durability properties, optimization of mix designs, and 
modeling of fresh and hardened concrete properties. Studies 
have demonstrated the effectiveness of ANN models in accu-
rately predicting concrete performance under different curing 
conditions, considering factors such as mix proportions, aggre-
gate properties, and environmental exposures. The processes 
involved in producing ANN models are divided into several sec-
tions: selecting inputs and outputs, dividing and pre-processing 
data, selecting a model architecture, training the model, select-
ing preventing criteria, and validating the model [11–13, 21]. 
The feed-forward neural network was the initial and simplest 
artificial neural network design, and it is applied in the current 
study. The primary reason for selecting this architecture was 
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because information in this network is only transmitted in a sin-
gle direction ahead, from the inputs of the nodes to the output 
nodes, passing through any hidden nodes that may exist. There 
are no loops or cycles in the network. It is important to note 
that because feed-forward neural network structures lack con-
nections for feedback, they are limited in their ability to store 
time-dependent variables or handle sequential input.

2  Research significance

The research proposed in this study holds paramount signifi-
cance within the realm of construction and civil engineering. 
Cement production is known to be a major contributor to 
greenhouse gas emissions and environmental degradation. 
By investigating the replacement of conventional cement 
with the innovative combination of alccofine, fly ash, and 
nano-silica, this research seeks to address a pressing concern 
of adding all these additives together to concrete. Thus, the 
potential of alccofine, fly ash, and nano-silica as sustainable 
alternatives presents a promising opportunity to mitigate 
the adverse effects of traditional cement use. Furthermore, 
this research will have practical implications for builders, 
engineers, and policymakers who are seeking sustainable 
construction materials and practices. The findings of this 
study may offer an economically viable and environmentally 
responsible alternative, thereby reducing the industry’s car-
bon footprint and dependence on finite resources.

3  Experimental program

3.1  Materials

3.1.1  Cement

Cement of grade 43 (OPC) was used in the current study for all 
concrete mixes as per IS: 8112-1989 [8] and was brough from 
local vendor from Kharar, Mohali, India. The physical proper-
ties and chemical composition of cement used in the current 
study are shown in Table 1.

3.1.2  Aggregates

River sand was used as fine aggregate that passed via a 
4.75 mm screen and lying into grading zone 2 of BIS: 383-
2016. The coarse aggregates were procured from rocks 
left after passing through a 16 mm sieve and meeting BIS 
383-2016 requirement.

3.1.3  Fly ash (FA)

An amount of 20% by dry weight of cement of fly ash 
which was obtained from Lehragaga Powerplant, Punjab, 
India, was used in present study. Class F, fly ash was used 
for all mix types in accordance with IS 3812-2013 [6]. The 
physical properties and chemical compositions of FA are 
presented in Tables 1 and 2.

3.1.4  Alccofine (ALC)

Alccofine was obtained from Ultracon Infrachem Pvt Ltd., 
Gurugram, India and was added to concrete specimen by 
adding 10% by dry weight of cement. The characteristics 
of ALC-1203 conforming to ASTM C989-1999 are pre-
sented in Tables 1 and 2.

Table 1  Physical properties of various materials

Property Cement Fine aggregate Coarse aggregate Fly Ash Alccofine Nano-silica

Particle size 16 nm 70 microns 4–6 microns 17 nm
Bulk density (Kg/m3) 1440 1540 900 600–700 1220
Specific gravity 3.16 2.64 2.70 2.1 2.7 2.2–2.4
Water absorption (%) - 1.22 0.936
Fineness modulus - 3.11 7.061
Specific surface  (m2/Kg) 300–350 3500–4000 12,000 250–500
Particle shape Spherical Spherical Irregular Spherical

Table 2  Chemical properties of various materials

Chemical analysis Cement Alccofine Nano-silica Fly ash

Cao 62.7 33.2 - 5.12
SiO2 19.29 36.5 99.98 58.91
Al2O3 6.7 24.6 0.005 24.8
MgO 3.2 5.2 - 0.6
Fe2O3 5.6 0.32 0.001 6.2
SO3 2.5 0.18 - 0.28
Na2O 0.02 - - 0.16
TiO2 - - 0.001 2.1
LOI - - - 1.8
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3.1.5  Nano‑silica (NS)

Nano-silica used for this research work was obtained from 
Fiber Region, Chennai, India. For this experiment, NS 
with a particle size of 17 nm was used. The nano silica 
used in the current research was varied from 1%, 2%, 3% 
and 4% respectively by dry weigh of cement and further 
testing were carried out. All the characteristics related to 
NS are tabulated in Tables 1 and 2 and confirming to IS 
15388-2003.

3.1.6  Superplasticizer

Forsoc Conplast P211 plasticizer was used for every con-
crete mix group, conforming to BIS 5075 (Part 1), having 
specific gravity 1.17. The dosage of plasticizer was taken 
as 0.75% by replacing water content.

3.1.7  Water

When preparing the concrete, water was used from the tap 
available at the concrete laboratory (at room temperature) 
that complies with BIS 456-2000 guidelines.

4  Methodology

4.1  Blend proportions

The mix proportions play a vital role in determining the 
overall characteristics of the concrete, and the utmost 
attention was given to ensuring that the mix design met 
the required standards. The standards outlined in IS 
10262:2019 [5] were followed for M-30 concrete grade 
mix design in this study. The proportions of the mix were 
determined based on the information provided in Table 3. 
Careful consideration was given to select the appropriate 
mix proportions to achieve the desired concrete proper-
ties. Adhering to the guidelines of IS 10262:2019, it was 
ensured that the mix design for M-30 concrete grade was 
suitable for the experimental work.

4.2  Mix preparation

For conducting compression tests, moulds of dimensions 
150 mm x 150 mm x 150 mm were used; for conducting 
tensile strength tests, moulds of dimensions 150 mm x 300 
mm were used, while moulds having dimensions 100 mm 
x 100 mm x 500 mm were casted for determining flexural 
strength. All the samples were mixed thoroughly by taking 
water-cement ratio as 0.42 for all the combinations shown 
in Table 3. After the concrete was mixed, it was poured 
into pre-oiled moulds to facilitate easy removal of the hard-
ened samples and ensure a smooth and even surface finish 
(Fig. 1).

4.3  Curing

The curing process plays an important role in the produc-
tion of concrete samples. The samples were cured in large 
tanks, and tap water was utilized without the presence of 
any chemicals to prevent potential chemical reactions. The 
curing durations for the samples were carefully followed: 7, 
14, 28, and 56 days, respectively. Upon the completion of the 
curing process, the samples were deemed ready for testing 
to assess various mechanical properties of concrete such as 
compressive strength, tensile strength, flexural strength, and 
other relevant parameters.

Table 3  NS, FA and ALC Mix 
proportions in Kg/m3

Mix Proportion = 1: 1.88: 3.34: 0.42

Mix Id Cement NS Fly Ash ALC Sand Coarse aggre-
gates

Water

NS0 253.4 0 72.4 36.2 683.2 1209 152
NS1 252.2 3.62 71.2 35 683.2 1209 152
NS2 250.9 7.24 69.9 33.78 683.2 1209 152
NS3 249.8 10.86 68.78 32.58 683.2 1209 152
NS4 248.5 14.48 67.57 31.37 683.2 1209 152

Fig. 1  Casted samples
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5  Experimental results

5.1  Workability

Workability is a critical factor as it determines how easily the 
concrete can be placed, compacted, and finished. The work-
ability test was conducted using the slump cone method, 
following the guidelines provided by BIS 1199–1959. The 
findings of the slump test for each concrete mixture are pre-
sented in Fig. 2. It was observed that the inclusion of fine 
aggregate (FA) in the concrete mix resulted in a delay in 
the pozzolanic reactivity, which affected the early strength 
development of the concrete. To improve both strength 
and workability, various additives were added by replac-
ing cement. Notably, the results of the slump test exhibited 
slight variations among the different groups of mixtures. 
These variations in slump values may be attributed to dif-
ferences in consistency after adding water to the mixtures, 
underscoring the significance of precise measurements in 
the process of concrete mixing. In this particular study, a 
plasticizer (Forsoc Conplast P21) admixture was employed 
to enhance the workability of the concrete by decreasing the 
water-cement ratio. By reducing the water-cement ratio, the 
plasticizer improved the flowability and ease of handling 
of the concrete mixture, resulting in a higher slump value. 
Similar results on adding plasticizer on workability of con-
crete have been obtained in the past [1, 9].

5.2  Pulse velocity of ultrasound

Non-destructive evaluation of concrete structures plays 
a crucial role in construction and maintenance. In this 
study, Ultrasonic Pulse Velocity (UPV) test was con-
ducted on concrete samples that complied with the BIS 
13311-1 (1992) standards. The UPV test involved placing 

a transmitter and a receiver against two faces of the con-
crete, creating the UPV testing device. The equipment gen-
erated an electronic ultrasonic wave that was transmitted 
through the concrete by the transmitter. In this study, the 
direct method was employed, using an UPV meter for the 
test. The velocity of the ultrasonic wave was determined 
using the formula:

where ‘V’ represents the pulse velocity (in Km/s), ‘T’ 
denotes the effective time (in microseconds), and ‘L’ indi-
cates the length (in mm) of the cube sample (Table 4).

The results of the UPV tests indicated that the NS1 
group exhibited the highest pulse velocity, followed by 
NS0, NS3, NS4, and NS2 (Fig. 3). These findings dem-
onstrate the effectiveness of admixtures in improving the 
quality of the concrete structure and enhancing its resist-
ance to flaws and cracks. The NS1 series demonstrated the 
fastest ultrasonic pulses, while the NS4 group exhibited 
slower transitions. Overall, the UPV test proved to be an 
effective non-destructive method for evaluating the quality 
of concrete structures and detecting any flaws or defects. It 
provides valuable insights into the performance and integ-
rity of the concrete, helping to ensure the durability and 
reliability of the structure (Fig. 4).

V = L∕T
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Table 4  UPV test results

Mix Id TIME (ms) LENGTH (mm) UPV(Km/s)

NS0 34.2 150 4.38
NS1 33.4 150 4.68
NS2 34.9 150 4.49
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5.3  Compression strength

The compressive strength test (CST) was conducted on a 
compression testing machine (CTM) with a capacity of 2000 
KN, following the guidelines specified in IS 14858 (2000). 
The test was performed with a precision of ± 1% as per the 
requirements of the 1828 (class 1) standard at different ages: 
7, 14, 28, and 56 days. The results presented in Fig. 5, indi-
cated that the NS1 group exhibited the highest compression 
strength among all the other groups at each of the four ages, 
while the remaining groups displayed lower strength val-
ues. In previous studies these supplementary materials had 
a positive impact on the compressive strength of concrete 
[19, 20]. At 7 days, the compression strength values of NS0, 
NS1, NS2, NS3, and NS4 were 24.3, 25.68, 23.64, 23.73, 
and 22.79 MPa, respectively. NS1 exhibited higher compres-
sive strength than NS0, indicating that the addition of 1% 
NS had a favorable impact on early strength development. 
The NS1 group showed approximately 5.6% higher strength 
than the NS0 group at 7 days. At 14 days, the compres-
sion strength values of NS0, NS1, NS2, NS3, and NS4 were 

32.5, 33.96, 32.13, 31.73, and 31.84 MPa, respectively. Once 
again, NS1 demonstrated higher compression strength val-
ues compared to NS0, indicating the advantageous impact of 
including 1% NS on strength development. The NS1 group 
exhibited approximately 4.5% higher strength than the NS0 
group at 14 days. At 28 days, the compression strength val-
ues of NS0, NS1, NS2, NS3, and NS4 were 35.53, 36.07, 
34.62, 34.04, and 34.1 MPa, respectively. NS1 continued to 
show higher compressive strength values than NS0 at this 
age. The NS1 group displayed approximately 1.5% better 
strength than the NS0 group at 28 days. At 56 days, the com-
pression strength values of NS0, NS1, NS2, NS3, and NS4 
were 36.9, 37.52, 35.3, 35.1, and 34.7 MPa, respectively. 
NS1 once again exhibited higher compressive strength val-
ues compared to NS0 at this age. The NS1 group showed 
approximately 1.7% greater strength than the NS0 group at 
56 days.

The results of the compression strength tests demon-
strated that including 1% NS in the concrete mixtures 
improved early strength development. The NS1 group con-
sistently displayed higher compression strength values than 
the NS0 group at all ages. However, the increase in compres-
sive strength was relatively small, with a maximum percent-
age increase of approximately 5.6% at 7 days. Overall, the 
results suggest that the compression strength of concrete is 
enhanced with the inclusion of 1% nano-silica content.

5.4  Tensile strength

The STST (Split Tensile Strength Test) is another test that was 
conducted using the same compression testing machine (CTM) 
specified in IS 516–1959 to determine the split tensile strength 
(STS) of concrete at 7, 14, 28, and 56 days (Fig. 6). The cured 
specimens were removed and sun-dried before being placed in 
the compression testing equipment. The split tensile strength of 

Fig. 4  Machine used for UPV test
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the concrete cylinder specimens was calculated by measuring 
the load. The results of the STST indicated that the NS1 group 
exhibited superior endurance compared to the NS0 group at 7, 
14, 28, and 56 days. At 7 days, the STS of the NS1 group was 
29.1% higher than that of the NS0 group. At 14, 28, and 56 
days, the NS1 group’s split tensile strength was 6.4%, 9.3%, and 
7% higher than the NS0 group, respectively shown in Fig. 7. 
Nano-silica and alccofine outperforms the control group in STS 
characteristics of the concrete in previous studies as well [19, 
20]. The enhanced tensile strength observed in the NS1 group 
can be attributed to the pore-filling effect of ultra-fine parti-
cles and accelerated hydration, resulting in denser and more 
compact concrete. The fine particles of NS and ALC filled the 
small pores of the concrete, contributing to a denser and more 
compact structure. The use of a plasticizer aided in filling the 
air voids in the concrete and reducing water absorption, further 
enhancing the strength of the NS1 group.

Overall, the results of the STSS demonstrated that the 
addition of NS and ALC to the concrete mixture had a sig-
nificant positive impact on its tensile strength, with the NS1 
group identified as the optimal mixture. The higher tensile 
strength exhibited by the NS1 group makes it a suitable 
choice for structures that require high tensile strength, such 
as bridges, roads, and high-rise buildings.

5.5  Flexural strength

The Flexural Strength Test (FST) was performed to deter-
mine the ability of the concrete specimens to withstand 
bending forces. The test was conducted using a two-point 
flexural testing machine with a maximum capacity of 100 
KN, following the guidelines specified in IS 516-1959. 
The FST was conducted on all concrete mix groups at 28 
days of age after the specimens had been cured according 
to the standard procedure. The FS (flexural strength) of the 

concrete beam specimens was determined by measuring 
the load and calculating it using the equation,

Here, ‘fcr’ represents the flexural strength of the samples, ‘P’ 
indicates the applied force on the test specimen, and the speci-
men’s width and depth are denoted by “b” and “d,” respectively.

The results of the FST revealed that the NS4 group exhib-
ited the highest flexural strength at 28 days, whereas the con-
trol group (NS0) displayed the lowest strength as shown in 
Fig. 8. As the proportion of NS in the mix increased, the FS of 
the concrete samples also increased. The NS4 group demon-
strated a 10.06% improvement in flexural strength compared 
to the control group. The higher flexural strength observed 
in the NS4 group can be attributed to the improved micro-
structure and denser packing of the concrete matrix due to the 
presence of nano-SiO2. The reduction in voids and pores in 
the matrix leads to enhanced inter-facial bonding and a greater 
load-carrying capacity, resulting in higher flexural strength.

The outcomes of the FST align with previous studies 
that have reported the beneficial effects of nano-silica on 
flexural strength [19]. The improved flexural strength in 
the NS4 group suggests that the addition of nano-silica 
to be the mix at an optimal dosage that can effectively 
enhance the bending performance of concrete structures. 
The 28-day period for flexural strength tests is a standard 
practice because it allows concrete to reach a significant 
portion of its ultimate strength due to the completion 
of major hydration reactions; while, 7-day and 14-day 
strength tests can provide valuable early indications of 
concrete performance, they are often used for quality con-
trol purposes rather than design purposes.

5.6  Standard deviation and coefficient of variance

The standard deviation is a statistical measure that indicates 
the spread of data around the mean value. In the case of 
compressive strength, a smaller standard deviation indicates 

(1)fcr = PL∕bd2
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that the concrete samples are more consistent in terms of 
their strength. The coefficient of variation (COV) is the ratio 
of the standard deviation to the mean value, expressed as 
a percentage. It is a statistical indicator that quantifies the 
relative variation of the data under consideration. Similar 
measures of standard deviation and COV can be calculated 
for tensile and flexural strength tests as well. These statistical 
measures are important for evaluating the reliability of the 
test results and comparing the strength of different concrete 
mixes. A lower standard deviation and coefficient of vari-
ance value indicate that the test results have been evaluated 
for reliability and consistency, indicating a uniform and pre-
dictable concrete quality.

The calculations were performed according to the guide-
lines specified in IS 456:2000 [7]. These measures helped 
assess the uniformity and consistency of the concrete 
strength across the different mixes and ages. The bending 
strength, split tensile force, and compression strength tests 
were conducted on all five concrete mixes at the age of 28 
days. The statistical analysis was conducted to assess the 
consistency and variability of the strength data for each mix. 
The standard deviation and coefficient of variation values 
were also found to decrease with increasing NS content. 
The addition of NS to the concrete enhanced its mechanical 
properties, improving strength and reducing variability. The 
results overall suggest that NS can be used as an effective 
and sustainable supplementary cementitious material (SCM) 
to enhance the endurance and strength of concrete (Tables 5, 
6 and 7).

6  Database for ANN models

The ANN-based models are created utilizing a small data 
set containing 80 comprehensive experimental data from 
the compressive strength testing mentioned in prior parts. 
The database covers compressive strength tests on cubical 
specimens. Table 8 provides a detailed description of the 
whole information that was obtained. The experimental 
data was divided into two groups: The confirmation error 
can be determined by using the method’s leftover data from 
the selection. The training subset contains 70% of the data 
needed to train the network. Following each learning phase, 
the average square error of prediction and an estimate of 

compressive strength from test data are computed. If the 
error continues to develop during ten epochs in a row, the 
training is terminated. (This strategy reduces the impact of 
overfitting). Subset of tests: Once trained, the neural network 
may be used to forecast the compressive strength values of 
the test subset.

To evaluate the performance of an ANN model, the cor-
relation coefficient (r) and root mean squared error (RMSE) 
were determined using the following formulae:

6.1  ANN models results and sensitivity analysis

After the training procedure was completed, a set of con-
nections biases and weights was formed. The hidden layer 
number has a significant influence on the MSE and the 
coefficient of efficiency  (R2). Figure 9a, b shows how 
MSE changes as the total number of neurons in the layer 
that is hidden grows. MSE drops while  R2 increases until 
the fourth neuron in the hidden layer, when this pattern 
reverses (Table 9). A crucial research methodology for 
categorizing input factors and elucidating their sequen-
tial influence on the outcome of a physical problem is 
sensitivity analysis. In this particular study, we employ a 
weighted approach technique to assess the relative signifi-
cance of all input factors. The analysis method utilized in 
this study is weight magnitude analysis. The arrangement 
of input values in this technique is determined by the rela-
tive weights assigned to the input layer and the hidden 
layer. The initial step involves normalizing the weight 

R =

∑n

i=1

�

hi−hi

�

(ti−ti)
√

∑n

i=1
(hi−hi)

2 ∑n

i=1
(ti−ti)

2
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�

∑n

i=1
(hi−ti)

2

n

Table 5  Standard deviation 
and coefficient of variance for 
compressive strength

Mix code S.D (σ) C.O.V (%)

NS0 0.54 2.05%
NS1 0.73 1.49%
NS2 0.77 2.22%
NS3 0.70 2.05%
NS4 0.72 2.11%

Table 6  Standard deviation 
and coefficient of variance for 
tensile strength

Mix code S.D (σ) C.O.V (%)

NS0 0.08 4.90%
NS1 0.11 2.90%
NS2 0.19 6.80%
NS3 0.18 6%
NS4 0.20 6.30%

Table 7  Standard deviation 
and coefficient of variance for 
flexural strength

Mix code S.D (σ) C.O.V (%)

NS0 0.019 0.42%
NS1 0.077 1.59%
NS2 0.073 1.49%
NS3 0.065 1.32%
NS4 0.078 1.56%
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magnitude of each input node. During this normalization 
process, the weight of each input layer is divided by the 
largest weight between the input and hidden layers. For 
each input layer, we calculate the sum of weights after 
normalizing their values. The higher the order of a node, 
the greater its weight when serving as input to the node 
responsible for generating the output. The mathematical 
expression governing the process of summing up the nor-
malized weights of the  ith input is as follows:

Figure 10 depicts the degree of sensitivity index for every 
input parameter. The analysis of Fig. 10 shows that the cur-
ing period has the greatest influence on the output, whereas 
fly ash has the least.

6.2  Neutral interpretation diagram (NID)

An approach called Neuronal Interpretation Diagram to 
illustrate the connection weights between neurons and to 
show the connections between input and output. The input 
layer, hidden layer, and output layer are the three network 
tiers that makeup NID. The weights are displayed as a line 
connecting input and hidden neurons, as well as hidden and 
output neurons. A schematic design of the ANN architec-
ture is shown in Fig. 11. The color of the line in the current 
NID, depicted in Fig. 11, shows the relative importance of 
every link weight. The gray lines reflect a connection weight 
magnitude less than zero, whereas the blue line indicates a 
connection weight magnitude greater than zero. The output 
of the residual analysis is a residue map for the full data 
set. As can be seen from a close examination of the figure, 

Ii =

4
∑

j=1

xji

maxall,j,i
(

xji
)

Table 8  Descriptive statistics of 
the parameters used to build the 
ANN-based model

Descriptive statistics

Variables N Minimum Maximum Mean Std. Deviation

Cement 80 248.50 253.40 250.9600 1.77064
Alccofine 80 31.37 36.20 33.7860 1.75276
Fly Ash 80 67.57 72.40 69.9700 1.75312
nano-silica 80 0.00 14.48 7.2400 5.25245
Time 80 7.00 56.00 26.2500 19.25419
Compressive Strength 80 22.79 37.52 31.8090 4.8804
Valid N (listwise) 80

Fig. 9  Relationship between 
MSE and the number of hidden 
layer neurons
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Table 9  The proposed model’s statistical parameters

Hidden neu-
rons

Rsqr MSE (Training) MSE (Test)

2 0.924 0.446 0.339
7 0.955 0.475 0.279
2 0.925 0.331 0.229
2 0.918 0.265 0.483
3 0.952 0.357 0.100
2 0.927 0.283 0.352
6 0.934 0.528 0.112
6 0.945 0.233 0.790
2 0.927 0.388 0.176
4 0.954 0.534 0.232
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residuals are evenly spaced around the plot’s center line. 
This may indicate that the network has been correctly trained 
and is capable of producing reliable estimates.

6.3  ANN model formulation

The results show how the experimental compressive 
strength differs from the compressive strength obtained by 
using the ANN, as shown in Fig. 12. The efficiency coef-
ficient  (R2) was discovered to be 0.924. The comparison’s 
success is demonstrated in Fig. 12. An artificial neural net-
work’s predicted compressive strength and the experimen-
tal compressive strength were found to differ by roughly 
12%. Rarely, and only in certain circumstances, does the 

Fig. 10  Impact of a variable’s 
disturbance on sensitivity index

20%

21%

18%

19%

22%

Cement Alccofine
Fly Ash Nano Silica
Time

Fig. 11  Lines in the neuronal 
interpretation diagram indicate 
the weight of connections

Fig. 12  Comparison of the obtained compressive strength with the 
experimental compressive strength using ANN
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deviation approach 16%. As revealed by the results, the 
outcome of the ANN model accurately forecasts the com-
pressive strength.

7  Conclusion

The feasibility of neural networks with artificial intelligence 
(ANN) for predicting the compressive strength of materials 
was investigated in this study. The constructed ANN model 
exhibited significant precision for estimating RAC strength 
when parameters such as water-to-cement ratio, materials, 
and curing age were considered. The ANN model also scored 
better than conventional regression models, highlighting its 
potential for capturing intricate interactions in the RAC sys-
tem. These findings demonstrate the potential of ANN as 
an effective method for precisely forecasting compressive 
strength. Based on the experiments conducted with M30-
grade concrete, the following conclusions were drawn:

• The inclusion of nano-silica and alccofine in the concrete 
had a positive effect on its density. The small particle 
sizes of nano-silica and alccofine helped fill small pores, 
resulting in denser concrete.

• Despite the use of a plasticizer, the low water-to-cement 
(W/C) ratio of 0.42 made it challenging to improve work-
ability and pumpability. High-range water-reducing 
(HRWR) admixtures were found to be more effective in 
enhancing these properties. The addition of a plasticizer 
contributed to filling air pores in the concrete and reduc-
ing its water absorption capacity.

• The NS1 group outperformed the NS0 group in terms of 
both compressive and tensile strength at all tested ages 
(7, 14, 28, and 56 days). Based on the results, the NS1 
mix was identified as the optimal group.

• The flexural strength (FS) of the concrete improved with 
increasing nano-silica content, along with the presence 
of fly ash and alccofine.

• Ultrasonic pulse velocity test proved to be a reliable, non-
destructive method for assessing the quality and durabil-
ity of concrete structures, with the NS1 mix displaying 
the highest pulse velocity.

• Predicting the strength of nano-silica, alccofine, and fly ash 
with an artificial neural network seems highly accurate.

• By examining additional factors, future research should 
try to improve the performance of neural network mod-
els. The durability of concrete with nano-silica, fly ash, 
and alccofine must also be investigated, as well as the 
effects of curing conditions. Improvements in concrete 
construction efficiency and durability can be accom-
plished by addressing these factors.

7.1  Limitation of the study

Overall, this study highlights the potential benefits of 
incorporating NS and ALC into concrete mixtures as well 
as the significance of selecting appropriate admixtures to 
achieve desired workability and strength properties. How-
ever, there are certain limitations of the study as follows:

The experiments are conducted under controlled laboratory 
conditions, which may not fully replicate real-world environ-
mental factors such as temperature fluctuations, humidity, and 
exposure to various chemicals. The performance of the con-
crete mix in actual field conditions might differ. Further, the 
study does not address the environmental impact or sustain-
ability metrics associated with using nano-silica, alccofine, 
and fly ash. While these materials can enhance concrete prop-
erties, their production, transportation, and lifecycle impacts 
need consideration for a holistic evaluation.
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