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Abstract
In order to address the challenges to repair uncontrollable cracks and to enhance the life span of civil engineering struc-
tures in a sustainable manner the technique of self-healing of cracks by introducing bacterial concrete has been developed, 
researched and implemented by many researchers. The present paper focuses on the overview of self-healing concrete (SHC) 
and conducting laboratory investigation of the prep bacteria, feeding material and water. The study experimentally inves-
tigates its compressive strength and explores an alternate mathematical approach to predict its mechanical characteristics. 
An attempt is made to predict the compressive strength of self-healing concrete with varying proportions of calcium lactate 
using an artificial neural network (ANN) and adaptive neuro-fuzzy interface system (ANFIS). It has been discovered that 
using bacteria improves the compressive strength of normal concrete and aids in the self-healing property of concrete. The 
best prediction models that can learn, compute, and solve problems with non-linear data are the artificial neural network 
(ANN) and adaptive neuro-fuzzy inference system (ANFIS). The study finally compares the compressive strength values 
obtained from experimental work, ANN and ANFIS models and determines the best suitable model out of both ANN and 
ANFIS for the considered dataset in the study. The study concludes that the ANN design model produces the most accurate 
results with a regression value of 0.9865 and a mean square error of 3.07 in comparison to the regression value of 0.9725 
and a mean square error of 3.16 obtained from the ANFIS model.

Keywords Self-healing concrete · Artificial neural network · Uncontrolled cracks · Adaptive neuro-fuzzy inference system · 
Calcium lactate

1 Introduction

Many advances in the field of the construction industry have 
been carried out to improve the properties of concrete by 
introducing supplementary cementitious materials or addi-
tives to enhance the property of concrete and reduce carbon 
emissions due to the overuse of cement. The ease of produc-
tion process, accessibility to raw materials, and compres-
sion strength qualities make concrete a good choice for con-
struction. However, the material yields low tensile strength 
(10–15% of compressive strength), low ductility, and a low 

strength-to-weight ratio and is susceptible to cracking [1]. 
The uncontrollable cracks in concrete are primarily devel-
oped due to its weakness in tension, shrinkage, fatigue load-
ing and the weather [2]. The likelihood of cracking in con-
crete can be caused in several ways by its tensile properties. 
The well-known property of concrete is that it is a brittle 
material and is subjected to cracks due to excess load on 
structures. At any stage of the service life of concrete, it 
experiences cracking as shown in Fig. 1 and this happens 
when the concrete is in a plastic state or a hardened state 
due to thermal stresses, plastic shrinkage, settlement, dry-
ing shrinkage, weathering, and various loading conditions, 
or a combination of various factors [3]. Moreover, external 
exposure to environmental conditions and loadings (cyclic 
or static) such as freeze–thaw cycling, chemical attack, car-
bonation, abrasion and erosion, chemical reactions, moisture 
and temperature variations and corrosion of reinforcement 
cause the micro-size cracks to develop into macro-size frac-
tures [4]. The micro-cracks cause permeability in concrete 
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by which undissolved particles of unwanted fluids and gases 
flow through the cracks. This lowers the durability of con-
crete. As a result, the reinforcing steel is exposed to oxygen 
and moisture, increasing the risk of structural failure and 
steel corrosion. Corrosion of steel reinforcement in concrete 
due to oxygen and moisture exposure can compromise the 
protective oxide layer, leading to steel corrosion, cracking, 
reduced load-bearing capacity and decreased durability, ulti-
mately affecting the structure's service life and stability. The 
urge to stop this kind of degeneration led to the development 
of numerous techniques of upkeep and repair. One such idea 
is self-healing concrete, which began with the research con-
ducted by Siddiqui [5]. Autogenous self-healing in concrete 
is driven by factors such as hydration of cement, calcium 
hydroxide conversion to calcium carbonate, self-induced 
swelling of C–S–H gel, and self-sealing through water seep-
age. These processes fill small cracks, enhance concrete's 
resistance to further cracking, and improve its overall integ-
rity naturally [6, 7]. The cracks can be fixed naturally by 
adding different healing agents or components to the con-
crete. The most likely solution to the problem of concrete 
fractures seems to be self-healing technology. The microbial 
method is thought to be the one that will be commercialized 
in the upcoming years in many ways. The main benefit of 
microbial self-healing technology [8, 9] as an eco-friendly 
solution is that it can fix cracks in places where it is impos-
sible to access them by using bacteria's metabolic processes. 
This enhances the useful life of the concrete structure while 
significantly lowering the expense of fracture identification 
and the difficulties of repair. Concrete is a highly alkaline 
substance, and bacteria can survive in an alkaline environ-
ment. The other components of concrete, such as sand and 
gravel, are bound by calcium carbonate precipitation, and 
the microcracks in the concrete are filled. Increased concrete 
durability may result from microorganism engagement in 
calcite precipitation. Bacillus species can precipitate  CaCO3 

in an environment with high levels of carbonate and ammo-
nium by converting urea to these two compounds. Concrete 
itself can seal cracks that are less than 0.2 mm in width 
[10]. However, concrete cannot repair itself if fissures are 
larger than 0.2 mm, which allows harmful materials (mois-
ture, chemical substances, corrosive agents and biologi-
cal agents) to pass through. In self-healing concrete, when 
cracks occur, dormant or inactive bacteria become activated 
and start functioning [11]. During the self-healing process, 
calcium carbonate precipitates into the cracks and fills them 
through the metabolic activities of bacteria. Bacteria resume 
their sleep phase once the calcium carbonate fills in all of 
the crevices. The bacteria get activated and plug the frac-
tures if any developed in the future by consuming nutrients, 
including calcium-based compounds and producing calcium 
carbonate within the cracks. This precipitation fills and seals 
the damaged area, promoting self-healing. The process is 
triggered by the presence of water and nutrients in the crack 
environment, enhancing the concrete's durability and reduc-
ing the need for external repairs. Microbiologically induced 
calcium carbonate precipitation (MICP), is a process that 
bacteria use as a long-lasting healing agent [12]. The bacte-
ria involved in the procedure known as induced microbial-
induced calcium carbonate precipitation (MICP) carries a 
negative charge on its cell wall as depicted in Fig. 2a. The 
bacteria then attract cations, including  Ca2+, from their sur-
roundings to deposit onto their cell surface, as illustrated 
in Fig. 2b. The  Ca2+ ions then interact with  CO3

2− to form 
calcium carbonate, which precipitates at the cell surface and 
serves as a starting point for further mineralization. Fig-
ure 2c shows the resulting precipitation of calcium carbonate 
on the bacterial cell wall. Equations 1 and 2 elaborate on 
the chemical reactions during the entire self-healing process 
with the help of bacteria as discussed by [13–16]. The pro-
cess is also illustrated in Fig. 3.

(a)Corner Cracks (b)Wall Cracks

Fig. 1  Structural cracks in the concrete components of the building
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The impact of nutrients on the strength and healing 
capacity of bio concrete was studied by [17] using the 
bacillus subtilis category of bacteria. A nutrient named 
calcium lactate is utilized as a feeding material for bac-
teria. The concentration of the microorganism is kept 
constant with  105 cells and the proportion of  C6H10CaO6 
is varied. Variations are done concerning the weight of 
cement as 0.5%, 1%, 1.5%, 2%, and 25%. Though the 
Bacillus subtilis species has proven [18] to produce good 
compressive strength the process of healing in its heal-
ing capacity needs further investigation. From past stud-
ies [19–22] it has been observed that the bacillus subtilis 
bacteria survive in extreme pH conditions 10 and above, 
internal dryness and lack of nutrients. The prime reason 
to select Bacillus subtilis is its high resistance capacity 
towards the pH level of concrete as not many species of 
bacteria can resist the alkaline pH of 13 which is pro-
duced when cement is mixed with water. These bacte-
ria can survive up to 200yrs and can stay dry stay up to 

(1)Ca2+ + Cell → Cell − Ca2+,

(2)Cell − Ca2+ + CO2−
3

→ Cell − CaCO3 ↓

50yrs. Suitable choice of food for bacteria is also impor-
tant for the bacteria to effectively perform the self-healing 
mechanism.

The findings of the testing of the mixtures suggested that 
calcium lactate, which serves as a food source for bacteria, 
has an adverse impact on strength if it is not ingested and 
transformed into  CaCO3. The study by Shen [23] reviewed 
the evaluation of the compressive strength of self-healing 
concrete with the effect of food on bacteria. Along with the 
materials, the conditions under which bacteria is mixed in 
concrete play a significant role in understanding the self-
healing mechanism of bacteria [24]. Some studies [25, 26] 
employed various characterization techniques to understand 
the self-healing process in concrete using microbial agents. 
Researchers [27, 28] have also conducted flexural, non-
destructive tests and nanoindentation tests to evaluate the 
effectiveness of healing in concrete. Hence the first objec-
tive of the present study focuses on incorporating bacillus 
subtilis bacteria into a cement concrete matrix along with 
calcium lactate as a food source for it to survive and study 
its impact on compressive strength properties. The present 
study intends to perform a mix design of concrete and iden-
tify the optimum mix through compressive strength with 
four different categories as listed below:

Fig. 2  Bacteria-based self-healing concrete [10]

Fig. 3  Schematic illustration 
of the self-healing process in 
concrete
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1. Cement concrete
2. Cement concrete (with bacteria alone)-bacteria concen-

tration is fixed taken as  105 cells/ml
3. Cement concrete (with calcium lactate alone-20 gm, 40 

gm, 60 gm)
4. Cement concrete (with calcium lactate-20 gm, 40gm and 

60 gm and bacteria-concentration is fixed as  105 cells/
ml)

It is a universal fact that the major ingredients of concrete 
usually are cement, coarse aggregate, cement and water. The 
strength and standard of concrete directly depend on the 
standards of material introduced in the concrete matrix. 
Hence, certain tests have to be conducted on concrete to 
determine its strength and standard of concrete. Majorly 
conducted test is a compressive test. Compression test on 
concrete indicates the durability of concrete. The concrete 
should attain the designed characteristic strength for better 
durability of structure this characteristic strength of concrete 
is achieved on the 28th day of curing. To know the charac-
teristic behaviour of concrete one has to wait for 28 days. 
Testing of cubes needs many specimens and each specimen 
needs a certain quantity of materials. To obtain one sin-
gle result of compression casting, testing, trials and cur-
ing have to be carried out manually which may cost money 
and time intensive. The cost and time-intensive methods 
can be replaced with advanced techniques such as artificial 
intelligence.

Fields like information technology, medicine, automo-
bile, mechanical and other engineering and non-engineer-
ing specializations are adopting artificial intelligence (AI) 
techniques to replace manual work. AI techniques are also 

Fig. 4  Comparison between ANN and BNN

Fig. 5  Layout of ANN model

Fig. 6  Layout of ANFIS model
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relevant to the civil engineering field and deal with compli-
cated problems and complex materials. AI involves many 
branches such as machine learning and deep learning. Arti-
ficial neural network (ANN) is part of deep learning which 
has the potential to get trained, learn, compute, solve and 
generate desired outputs. Accompanying the mathematical 
equations, maximum utilization of soft computing tech-
niques such as ANN and ANFIS in the branch of civil engi-
neering have been reported by many researchers in the last 
few years [29]. For instance, a fuzzy inference system model 
was introduced by [30, 31] and has proven that an artificial 
neural network is a renowned technique for approximating 
the compressive test results of a rock. Another study by [32] 
utilized an adaptive neuro-fuzzy system (ANFIS), ANN 
and multiple regression analysis for forecasting the uniaxial 
compressive strength and proposed that the ANFIS model is 
a reliable predictive model for further research.

Identifying the self-healing capacity and strength param-
eters of self-healing concrete using experimental techniques 
is being carried out for a limited duration but in practice, 
the self-healing of mortar of concrete is required after 
certain years of construction of the structure when cracks 
start emerging in the structural components. Therefore, the 
approximate prediction of strength and self-healing char-
acteristics of self-healing concrete is required. Machine 
learning techniques serve as the best methods for predic-
tion. Artificial intelligence methods in the form of artificial 
neural networks are one promising strategy for forecasting 
the effectiveness of concrete self-healing (ANN). The inves-
tigations carried out by Adeli [33] proved that ANN acts as 
a trustable tool which can model and predict complicated 
problems. It contains computational devices which are a 
replica of biological learning in a human brain.

The human biological neural network (BNN) passes 
information with the help of dendrites, nuclei and axons to 
give out proper decisions by humans as depicted in Fig. 4. 

Similarly in ANN with the help of weighing information is 
carried from one node to another node in a sequential man-
ner which gives out accurate output prediction values.

As per [34], ANN techniques are capable of applicability 
in various tasks and problems, such as classification, inter-
pretation, diagnosis, modelling, and control. The method is 
the best solution for problems that are extremely compli-
cated for solving mathematical models rather than traditional 
procedures. In the year 1989, the first research paper was 
published on the applications of ANN in civil engineering, 
thereafter many studies have been reported on the commend-
able ability of ANN to model and solve complex problems 
in different civil engineering areas. Many research papers 
project that ANN techniques are being successfully imple-
mented to investigate the concrete’s drying shrinkage [35], 
strain and dynamic modulus of elasticity [36], deflection 
analysis [37], cement-based material properties [38], slab 
behaviour [39], compressive and shear strength [40] in situ 
concrete strength [41]. Many researchers have trained the 
ANN model using the back-propagation (BP) algorithm. 
BP is a local search algorithm used in combination with 
gradient descent to update the weights and biases of the neu-
ral network and minimize the performance function [42]. 
According to [43], training ANN by BP has been a success-
ful approach that can provide solutions for several engineer-
ing applications. ANN and ANFIS models are the few best 
methods which provide an approximate prediction of con-
crete parameters [44, 45]. Prediction using ANN is carried 
out using various software methods out of which MATLAB 
is one of its best to produce accurate results with compara-
tive prediction data. Based on the nature of the problem, 
the ANN components need to be defined as an initial set of 
weights and display how weights should be changed during 
training to enhance performance [46]. ANN involves three 
layers namely the input layer which includes input nodes 
with input values, the hidden layer which consists of bias 

Table 1  Batches of material 
mix

Type of concrete Materials

Cement F. A C.A W/C Concen-
tration of 
bacteria

Calcium Lactate

Batch quantity for 1  m3

kg kg kg Cells/ml gm/l

Conventional concrete (CC) 395 640 1140 0.5 0 0
Bacterial concrete (BC) 395 640 1140 0.5 105 0
Calcium lactate concrete (CLC—20 gm) 395 640 1140 0.5 0 20
Calcium lactate concrete (CLC—40 gm) 395 640 1140 0.5 0 40
Calcium lactate concrete (CLC—60 gm) 395 640 1140 0.5 0 60
Bacterial concrete (BC—20 gm) 395 640 1140 0.5 105 20
Bacterial concrete (BC—40 gm) 395 640 1140 0.5 105 40
Bacterial concrete (BC—60 gm) 395 640 1140 0.5 105 60
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and weights used to compute the given inputs to produce 
target value and the output layer which produces the output 
computed by the hidden layer as discussed in Fig. 5. The 
output layer exploits these features to determine the output 
pattern [47]. Afterwards, the actual output is compared to 
the historical outputs to calculate the output error [48, 49]. 
This procedure is repeated until the error reaches a defined 
level such as the mean square error (MSE) [50, 51]. How-
ever, for training an ANN model, an experimental database 
requires an appropriate number of datasets [52].

An artificial neural network (ANN) and a fuzzy interface 
system (FIS) are combined to form the hybridized neural 
network known as ANFIS. In the FIS structure, there are five 
layers of perceptron or neurons [53–55] namely the fuzzi-
fying Layer in which the nodes are called adaptive nodes. 
Each node works based on MF such as trapezoidal and tri-
angular membership function, implication Layer where the 
node output from layer 1 shows the strength of rules. Next is 
the normalizing Layer where nodes represent the strength of 

rules and normalize it. The fourth layer is the De fuzzifying 
Layer in which the participation of each rule in giving output 
is measured. Last later is the combining layer in which the 
total output layer, a single node adds all the rules as detailed 
in Fig. 6. Such estimation capacity is expected where various 
membership functions (MFs) [56–58] have been examined 
concerning the datasets. Hence based on the past application 
of artificial intelligence in the field of civil engineering, the 
present study aims to develop ANN and ANFIS models to 
forecast the compressive strength of self-healing concrete 
depending on the input parameters namely curing period, 
weight of cement, coarse aggregate, fine aggregate, water 
cement ratio (w/c ratio), bacteria concentration and calcium 
lactate. The study also compares the compressive strength 
values obtained from experimental work, ANN and ANFIS 
models. The study aims to develop the best suitable model 

Fig. 7  Steps involved in the development of the ANN model

Fig. 8  Structure of ANN model for given case study

Table 2  Details of ANN-trained data

Data division Random

Training Levenberg–Marquardt
Performance Mean square error
Epoch 23 iteration
Number of hidden layers 14
Number of inputs 5 (5 × 96)
Number of output 1 (1 × 96)
Training 70% of the dataset

Fig. 9  Model of ANN developed
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from the amount of error between the values through root 
mean square error (RMSE). The best model was developed 
using 300 datasets using Sugeno FIS. Grid partition and sub-
clustering methods were applied to generate the model. Out 
of 30 combinations, hybrid-linear provides more accuracy 
than hybrid-constant, backdrop-linear and backdrop-con-
stant methods. The paper concludes that the hybrid constant 

is one of the best combinations for predicting the compres-
sive strength of high-strength concrete.

2  Experimental study

In this study, self-healing concrete is made using cement, 
coarse aggregate, fine aggregate, bacillus bacteria, calcium 
lactate and water. A mix proportion of 1: 1.62:2.89:0.5 ratio 
of cement, coarse aggregate (C.A), fine aggregate (F.A), 
and w/c ratio was used along with varying percentages of 
bacteria and calcium lactate. In the initial stage mixes of 
conventional concrete and concrete with only bacterial con-
centration of  105 cell/ml are tested. Later in the second stage 
mixes of concrete with the addition of only calcium lactate 
at three different weights of 20 gms, 40 gms and 60 gms are 
prepared for testing. In the final stage mixes of concrete with 
the addition of bacteria at a concentration of  105 cell/ml and 
calcium lactate at three different weights of 20 gms, 40 gms 
and 60 gms are prepared. The details of mixed proportions 
and their designations are as tabulated in Table 1.

In the lab, compressive tests on cube specimens are 
conducted on the batches of the above-mentioned material 
mixes as per IS 10262-200 [59, 60]. The mould used for 
casting has a cube size of 150 mm × 150 mm × 150 mm. 
After casting the specimens are demoulded after 24 h and 
left for water curing for a period of 7, 14, 21, 28 days. Upon 
curing, the specimens are allowed to air dry for 24 h at room 
temperature. Later the tests are conducted by placing them in 

Fig. 10  Steps involved in the development of the ANFIS model

Fig. 11  Sugeno fuzzy system in 
MATLAB
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a compression testing machine. The load was applied gradu-
ally at a rate of 140 kg/cm2 till the cubes.

The tests are conducted on conventional concrete and 
self-healing concrete with varying calcium lactate at respec-
tive curing periods and the results are analyzed with the 
help of artificial intelligence techniques namely ANN and 
ANFIS. The average compressive strengths obtained from 
the lab are used to train the developed model to accurately 
predict the compressive strength without any future experi-
mental testing. In the next section, the developed models 
are discussed to achieve the desired compressive strength 
results.

3  ANN model

An ANN model is generally developed to predict the com-
pressive strength of the self-healing concrete by using a mul-
tilayer feed-forward neural network using a backpropagation 
algorithm. The steps followed to develop the model are illus-
trated in Fig. 7. The backpropagation approach is utilized in 
this ANN model, where the input data are supplied to the 
input layer and transmitted through the network till the out-
put is formed. This input experimental compressive strength 
values pass through the activation function by initializing the 
weights. This is known as a learning or training technique. 
The network calculates its outputs, weights and mathemati-
cal function model threshold. Afterwards, the output error 
is calculated by comparing the actual output to the historical 
outputs. If the error values are greater than zero, the obtained 
error is propagated back through the network and the indi-
vidual weights are updated. This is known as the backward 
pass and the technique is carried out until the error becomes 
less than or equal to zero. Once the defined level is achieved 
the final compressive strength values are predicted as per 
the inputs provided.

In the present study, the compressive strength of self-
healing concrete was controlled by proportioning cement, 
coarse and fine aggregate, bacterial concentration and 
calcium lactate properly with a constant water-cement 
ratio of 0.5. The training has been carried out by feeding, 
five parameters namely days, the total weight of (cement, 
coarse and fine aggregate quantity), bacterial concentra-
tion and calcium lactate are used as the input nodes and 

Table 3  Details of ANFIS-trained data

Type of fuzzy system Sugeno fuzzy system

Membership function Input Triangular function

Output Constant

Type of method to 
generate fuzzy 
rules

Grid partitioning method

Epoch 100
Number of inputs 5 (5 × 96)
Number of output 1 (1 × 96)
Training 70% of the data set

Fig. 12  Membership functions for input and output in MATLAB
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the compressive strength was used as the target node as 
depicted in Fig. 8.

A total of 96 datasets are used to develop a neural net-
work. Among the 100% data set,70% is used for training and 
the rest was used for testing the dataset. The data division 
is random. The input data of ANN is shown in Table 2. The 
training method used was Levenberg- Marquardt.

For modelling, the mix proportioning and strength data of 
eight distinct mixes with varying curing durations are used. 

Three specimens are evaluated for each mix type and curing 
period, yielding a data set of 96 compressive strength values. 
The number of hidden layers used determines the quality of 
the ANN’s training pattern.

The developed neural network as shown in Fig. 9 is simu-
lated with the input parameters whose output values had 
to be predicted. The compressive strength of the bacterial 
concrete is predicted for the 7th day, 14th day, 21st day and 
28th day curing periods.

4  ANFIS model

The ANFIS model is used to validate the findings gener-
ated by the ANN model. Figure 10 depicts how training 
is carried out. This ANFIS model employs learning tech-
niques via a specific method that consists of a forward pass 
with the least square error. Later levels employ the gradi-
ent descent algorithm in conjunction with Backpropaga-
tion. By picking the triangular function, the experimental 

Fig. 13  Average compressive strengths obtained from an experimental study

Table 4  Statistical data of 
compressive strength obtained

Curing 
period (days)

Compressive 
strength range 
(MPa)

Min Max

7 days 17.5 32.62
14 days 17.52 46.27
21 days 17.52 49.75
28 days 17.53 52.91
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compressive strength values are sent through the member-
ship function. The network estimates its real outputs as 
well as the mistakes. The actual output is then compared 
to the historical outputs to determine the output inaccu-
racy. If the error values are more than zero, the error is 
propagated back via the network. Once the defined level 
is achieved the final compressive strength values are pre-
dicted as per the inputs provided.

Training of ANFIS was carried out by feeding, five 
parameters such as days, the total weight of (cement, 
coarse aggregate, fine aggregate), w/c ratio, bacterial con-
centration and calcium lactate quantity were used as the 
input vectors and compressive strength was used as the 
target value. The membership function used was a trian-
gular function for input and the membership function was 
constant for output. The dataset used for the development 
of both ANN and ANFIS remains the same in the present 
study.

A total of 96 datasets were used to design ANFIS. 
Among the 100% data set,70% is used for training and 
the rest was used for testing the dataset. The data division 
was done randomly and the number of MFs used was 4 for 
single input parameters. The grid partitioning method was 
used to generate fuzzy rules using the MATLAB applica-
tion as depicted in Fig. 11. The input data of ANFIS is 
shown in Table 3.

The developed ANFIS was simulated with the input 
parameter whose output values have to be predicted as 
elaborated in Fig. 12. In the present work, the quantity 
of material used in the concrete matrix and the day of 
strength required were fed as the input values. Prediction 
of compressive strength of Bacterial concrete has been 
conducted for the 7th day, 14th day, 21st day and 28th day.

5  Results and discussion

The average compressive strength of the self-healing 
concrete obtained at various curing periods is illustrated 
in Fig. 13. The ranges of compressive strengths given in 

Table 4 for various curing periods satisfied the require-
ment of self-healing concrete.

It is observed from Fig. 13 that at CLC-20 gms of cal-
cium lactate per litre of water there is a good increase in 
compressive strength on the 28th day when compared to 
CLC-40 gm of calcium lactate and CLC-60gms of calcium 
lactate. Thus, the optimum proportion of calcium lactate 
found is CLC-20 gms of water. The compressive strength 
of conventional concrete is 34.37 MPa and the compres-
sive strength of bacterial concrete with the optimum pro-
portion of calcium lactate of.

CLC-20gms was found to be 52.91 MPa for a curing 
period of 28 days. Hence, there is an increase in compres-
sive strength of bacterial concrete with 20gm calcium lac-
tate by 18% when compared to conventional concrete after 
28 days of curing. The highest compressive strength was 
achieved for bacterial concentration, BC-20 gms mix with 
the addition of bacteria at  105 cells/ml and CLC-20 gms 
of calcium lactate after curing for a period of 28 days. In 
contrast, the lowest compressive strength was achieved for 
a mix of CLC-60 gms mix with the addition of exclusively 
calcium lactate without any bacteria for a curing period 
of 7 days. The experimental results show that BC-20 gms 
optimized the gain in compressive strength. The addition of 
bacteria along with an optimum food quantity has enhanced 
the micro filling of the voids present in the concrete matrix 
thereby producing a dense concrete structure. Furthermore, 
the reaction of calcium lactate, which serves as a food source 
for bacteria, has increased the compressive strength of the 
concrete by improving the pore structure of the binder paste 
and strengthening the intermittent bond between the binder 
paste and the aggregate. The addition of calcium lactate has 
a favourable effect on producing faster production of cal-
cium carbonate which in turn helps in the sealing of the void 
spaces present in the concrete.

From the laboratory results obtained a database is devel-
oped which is both the training and validation for the ANN 
and ANFIS models as given in Table 5. The frequency 
histograms of the parameters and the relationship between 
compressive strength and the parameters of the mortars are 

Table 5  Statistical analysis of input and output parameters

Days Cement + F.A + C.A w/c Bacterial concentration Calcium lactate Compressive strength

count 96.000000 96.0 96.0 96.00000 96.000000 96.000000
mean 17.500000 2175.0 0.5 500,000.00000 30.000000 32.915729
std 7.867321 0.0 0.0 502,624.68995 22.478059 11.375413
min 7.000000 2175.0 0.5 0.00000 0.000000 16.850000
25% 12.250000 2175.0 0.5 0.00000 15.000000 20.225000
50% 17.500000 2175.0 0.5 500,000.00000 30.000000 32.495000
75% 22.750000 2175.0 0.5 1,000,000.00000 45.000000 43.847500
max 28.000000 2175.0 0.5 1,000,000.00000 60.000000 51.220000
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depicted in Fig. 14. This figure effectively demonstrates 
the complex and nonlinear behaviour of the mortar mixes, 
which is why deterministic methods are unable to provide 
a reliable analytical formula for predicting compressive 
strength. Although the database used in this research is from 
the experimental results, Fig. 15 indicates which parameter 
value ranges still need further investigation and experimen-
tation. Knowing about these data gaps reveals areas of high 

uncertainty about the reliability of the proposed numerical 
model. This issue will be discussed further in the results 
and discussion section, as will the authors' plans for future 
research. Each set consisted of five input parameters, cur-
ing period(days), the quantity of (cement, FA and CA (kg/
m3)), w/c ratio, the concentration of bacteria (cells/ml) and 
calcium lactate (gms). The output was only one component, 
which is the compressive strength.

Fig. 14  Histograms of the input parameters
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5.1  Results of ANN model

To avoid overfitting the network, approximately 70% of the 
database was used for training and was stopped when the 
network prediction closely matched the experimental results, 
as shown in Fig. 15. This stabilized at an epoch value of 14 
as depicted in Fig. 16. Thirty per cent of the total data was 
used for testing. It is shown the test and validation of the 
MSE/Epoch results with the predicted output concerning 
the experimental results of the compressive strength and the 
maximum error was found to be 4.66. The mean compres-
sive strength of experimental and predicted values was found 
to be 32.9 MPa and 32.7 MPa respectively whose difference 
was found to be only 0.2 MPa. This showed a very strong 
correlation between the two results.

In the current study evaluation of the accuracy and perfor-
mance of the ANN model was done through methods includ-
ing mean squared error (MSE) and coefficient of determina-
tion  R2. All these methods were considered after a detailed 

literature review as mentioned in [61]. It is revealed from 
these results that ANN provides excellent prediction accu-
racy and lower prediction error as compared to any other 
models. The MSE obtained was 3.07 for the outputs gener-
ated by the model after training. The MSE obtained was 0.08 
for predicated values by model. The coefficient of determi-
nation  R2 obtained was 0.9865 as achieved in Fig. 17a, b. 
The model developed can predict the compressive strength 
of bacterial concrete. It is noticed that the correlation coef-
ficient obtained by ANN (R = 98.4% during training and 
R = 98.7% during testing). The root mean square error 
(RMSE) values obtained were (RMSE = 1.751 for training 
and RMSE = 0.283 for testing). Similarly, the maximum 
average error (MAE) values obtained were (MAE = 1.240 for 
training and MAE = 0.20 for testing). Thus, indicating that 
ANN has the potential to predict the compressive strength 
of self-healing concrete. The study carries out the compari-
son of experimental compressive strength to the predicted 
compressive strength using ANN for every mix proportion 
as highlighted in Fig. 18.

The second model, ANFIS, was created in MATLAB using 
70% of the database for training and the remaining 30% for 
testing and predicting the compressive strength of bacterial 
concrete. The ANFIS model was tuned, and after 100 epochs, 
the errors between the target and output values were found to 
be the smallest. The model's generated coefficient of determi-
nation  R2 value is 0.9725, and the mean square error between 
experimental and output values is 3.16. Figure 19 depicts 
the predicted output based on the experimental compressive 
strength results, with the maximum error found to be 5.82. The 
mean compressive strength of the experimental and predicted 
values was found to be 32.9 MPa and 32.4 MPa, respectively, 
with a difference of 0.5 MPa. This demonstrated a very strong 
correlation between the two outcomes. Figure 20 depicts the 
results of a CA comparison between target values and output 
values for the training and testing datasets. The R-value of the 
correlation coefficient between the predicted and measured 
compressive strength values of bacterial concrete using ANFIS 
during the training and testing processes for all data sets is 
obtained as (R = 96.3% during training and R = 97.5% during 
testing). The root mean square error (RMSE) values obtained 
were (RMSE = 1.778 for training and RMSE = 2.416 for test-
ing). Similarly, the maximum average error (MAE) values 
obtained were (MAE = 1.257 for training and MAE = 1.711 
for testing). Hence, indicating that the ANFIS model can learn, 
train and predict the values for desired inputs. In the past, the 
compressive strength results of cement mortars using the 
ANFIS technique proved to be highly efficient as compared 
to the ANN technique [62]. The research conducted by [63] 
showed the accurate accuracy of ANN and ANFIS models in 
predicting the concrete properties with the help of ground-
granulated blast furnace slag. Similar conclusions were drawn 
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Fig. 15  Experimental versus predicted results from the ANN model

Fig. 16  Performance of the ANN model
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in the field of determining the compressive strength of concrete 
[64], manufactured sand concrete [65] and hydraulic impact 
hammers [66] depicting the efficiency of the ANFIS model as 
compared to that obtained by ANN models. Figure 21 shows 
the comparison of experimental compressive strength to the 
predicted compressive strength using ANFIS for each mix pro-
portion. On comparing the potential of both the models ANN 
is found to be more effective than ANFIS with a greater regres-
sion value (0.9865 > 0.9725). Based on the regression graphs 
as plotted in Fig. 22 the following equations are generated 

by ANN and ANFIS models giving the relation between the 
actual and predicted values of the compressive strength based 
on the trained dataset of bacterial concrete. The Equation of 
ANN as obtained is given by 3 whereas the obtained equation 
of the ANFIS model is given by 4.

(3)
Output strength = (0.9865 ∗ actual compressive strength) + 0.91

(4)
Output strength = (0.9723 ∗ actual compressive strength) + 0.8931

                 (a) Best performance graphs during training state

                 (b) Regression graph obtained from ANN model.

Fig. 17  a Best performance graphs during training state. b Regression graph obtained from ANN model
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Comparing the performance of the ANN and ANFIS 
models for predicting the compressive strength of bacterial 
concrete, we observe notable differences in their respective 
evaluation metrics. During training, the ANN exhibits a 
high correlation coefficient (R = 98.4%) and achieves a rel-
atively low RMSE (1.751) and MAE (1.240). Conversely, 
the ANFIS model demonstrates a slightly lower correla-
tion coefficient (R = 96.3%) during training, with a higher 
RMSE (1.778) and MAE (1.257) compared to the ANN. 

In the testing phase, both models maintain strong corre-
lation coefficients, with the ANN showing an R-value of 
98.7% and the ANFIS with an R-value of 97.5%. However, 
the ANN significantly outperforms the ANFIS in terms of 
RMSE (0.283 for ANN and 2.416 for ANFIS) and MAE 
(0.20 for ANN and 1.711 for ANFIS), indicating superior 
accuracy and precision in the ANN's predictions during test-
ing. Additionally, the mean squared error (MSE) for testing 
is considerably higher in the ANFIS (5.82) compared to the 

Fig. 18  Bar diagrams representing the comparison of experimental compressive strength to the predicted compressive strength using ANN for 
each mix proportion
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ANN (0.08), implying that the ANN model's predictions 
better align with the actual data during testing.

In conclusion, the ANN model exhibits higher accuracy 
and generalization performance for predicting the com-
pressive strength of bacterial concrete, as evidenced by its 
superior correlation coefficient, and lower RMSE, MAE, 
and MSE values compared to the ANFIS. The ANN's abil-
ity to provide more precise and reliable predictions during 
both training and testing phases makes it a more favourable 
choice for predicting the compressive strength of bacte-
rial concrete. Figure 23 gives a comparison graph between 
ANN-predicted values and ANFIS-predicted values with 
experimental compressive strength values.

6  Conclusion

The present research aims to employ artificial intelligence 
in the form of ANN and ANFIS techniques to evaluate the 
compressive strength of self-healing concrete. The study 
details the steps required to model and train the input param-
eters in generating the compressive strength of self-healing 
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Fig. 19  Experimental versus predicted results from the ANFIS model

Fig. 20  Comparison of output and target values in the ANFIS model
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concrete and prediction of its strength using AI techniques 
namely ANN and ANFIS. The major conclusions drawn 
from the study are as follows:

1. It is observed that 20 gm of calcium lactate per litre 
of water, shows an appreciable increase in compressive 
strength on the 28th day when compared to 40 gm of 
calcium lactate and 60 gm of calcium lactate. Thus, the 
optimum proportion of calcium lactate found is 20 g/l 
of water.

2. The compressive strength of conventional concrete is 
34.37 N/mm2 and the compressive strength of bacterial 

concrete with the optimum proportion of calcium lactate 
of 20 gm is found to be 52.91 N/mm2 on the 28th day. 
Hence, there is an increase in compressive strength of 
bacterial concrete with 20 gm calcium lactate by 18% 
when compared to conventional concrete after 28 days 
of curing.

3. The models adopted to predict compressive strength 
give good and satisfactory results proving that ANN 
and ANFIS both developed models have the potential 
to predict the compressive strength of self-healing con-
crete. The first model ANN designed using MATLAB 
gives accurate results with a regression value of 0.9865 

Fig. 21  Bar diagrams representing the comparison of experimental compressive strength to the predicted compressive strength using ANFIS for 
each mix proportion
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and mean square error of 3.07 between experimental 
values and output values. Hence, indicating that the 
ANN model can learn, train and predicate the values 
for desired inputs. The MSE of 0.08 is found between 
experimental values of bacterial concrete with calcium 
lactate and predicated values by ANN. Thus, indicating 
that ANN has the potential to predicate the compressive 
strength of self-healing concrete.

4. Second model ANFIS designed using MATLAB gives 
a regression value of 0.9725 and a mean square error 
of 3.16 between experimental values and output values. 
Hence, indicating that the ANFIS model can learn, train 
and predicate the values for desired inputs. The MSE of 
0.28 is found between experimental values of bacterial 
concrete with calcium lactate and predicated values by 
ANFIS. Thus, indicating that ANFIS is capable to predi-
cate the compressive strength of self-healing concrete.

5. On comparing the potential of both the model ANN is 
found to be more effective than ANFIS with a greater 
regression value (0.9865 > 0.9725).

6. Both models have successfully predicted the values 
obtained by Laboratory manual test results proving the 
ANN and ANFIS models to be a more feasible method 
to obtain compressive strength of self-healing concrete. 
Application of both models to obtain the compressive 
strength will reduce the material cost and will offer mod-
ification in mix design if the concrete does not meet the 
desired strength, strength can be obtained with a change 
in the quantities of materials. Both models can be used 
to determine the future strength of self-healing concrete.
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