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Abstract
Community search (CS) is a vital research area in network science that focuses on discovering personalized communities for 
query vertices from graphs. However, existing CS methods mainly concentrate on homogeneous or simple attributed graphs, 
often disregarding complex semantic information and rich contents carried by entities in heterogeneous graphs (HGs). In 
this paper, we propose a novel problem, namely the “Semantic Network Oriented Community Search with Meta-Structures 
in Heterogeneous Graphs (SNCS),” which aims to find dense communities that contain the query vertex, with vertices of 
the same type sharing similar topics. In response to this new problem, we present a novel approach, also named SNCS, 
representing the first solution employing meta-structures and topic constraints to tackle community search, leveraging both 
topological and latent features. To overcome the high-time complexity challenge posed by searching through meta-structures, 
we introduce a unique graph reconstruction technique. Our proposed method’s superiority is validated through extensive 
evaluations on real-world datasets. The results demonstrate a significant improvement in the quality of the obtained commu-
nities, with increases of 3.5–4.4% in clustering coefficient and 5–11% in density while requiring only 4–46% of the running 
time when compared with the state-of-the-art methods.
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1  Introduction

With the explosive growth of data generated from everyday 
applications, graphs have emerged as an effective model for 
describing real-world data, in such an environment, research 
on graphs has developed rapidly, especially heterogeneous 
graphs [1, 2], including bibliographic networks, knowledge 
graphs, shopping networks and others. For instance, an Ama-
zon dataset [3] was used to extract a movie review network, 
showcasing relationships between various entities, such as 
moviegoers, movies, categories, and tags (see Fig. 1). The 
toy network includes six moviegoers (i.e., u1, u2,… , u6 ), 
six movies (i.e., m1,m2,… ,m6 ), one category (c), and two 
tags (t1, t2) represented as vertices. Semantic relationships 
between different entities are shown by undirected edges. 

Moreover, each movie node includes text depicting mov-
iegoers’ comments. Similarly, other heterogeneous graph 
(HG) entities often contain additional descriptive text as 
well, as demonstrated in this movie network.

Community search has recently gained considerable 
attention [4–8] due to its deployment in real-world appli-
cations, such as temporary grouping, event organization, 
friend and advertisement recommendations. The primary 
goal of community search is to obtain a dense subgraph 
that satisfies the user’s requirements quickly [9, 10]. To the 
best of our knowledge, current studies mainly concentrate 
on homogeneous and attributed graphs. Community search 
on HGs is an emerging problem, with only limited studies 
focusing solely on capturing the heterogeneous information 
via meta-paths [11–14]. However, to better align with the 
user’s intent in a semantically rich world, it is necessary to 
consider not only the structural correlations among entities, 
but also integrates the unstructured textual information of 
the entities. For instance, in Fig. 1, if reviewer u1 wishes to 
find a group with similar taste in movies, u1 might anticipate 
that the group’s reviewers are not only connected but also 
share high content similarity. Fortunately, meta-structures 
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have been shown to be more effective than meta-paths in 
computing entity similarities [15]. However, searching 
through meta-structures is highly computationally expen-
sive. To obtain a community with higher quality and lower 
computational complexity, we propose SNCS, a semantic 
network oriented community search by meta-structures in 
heterogeneous graphs with the graph reconstruction algo-
rithm. In this paper, we present a detailed approach that pro-
vides personalized communities for query vertices. Here is 
a realistic application scenario of finding potential members 
for a movie club.

Example 1  Movie club members. Fig. 1 depicts a movie 
review network with different vertex types and edge rela-
tionships. Suppose a reviewer u1 aims to form a movie 
club with like-minded individuals. Using the meta-path 
P = U → M → C → M → U  results in a community of 
{ u1, u3, u5, u6 }. However, this community is not tailored to 
the personalized outcomes of reviewer u1 , to learn the movie 
reviewers’ preferences; we utilize the latent topic model [16] 
to extract their topic information. Subsequently, we search 
for the movie reviewers based on a pre-specified meta-
structure ( MS = U → M → C&&T → M → U ). As illus-
trated in Fig. 1, it depicts an instance of the meta-structure 
marked by dotted contour lines. The meta-structure pattern 
u1 → m1 → c&&t1 → m2 → u3 is an example, where we can 
add u3 , along with other potential reviewers, to the candidate 
reviewer list that complies with this meta-structure pattern. 
To ensure the community’s cohesion and exclude irrelevant 

entities (e.g., u3 ), every reviewer within the same community 
must connect to at least k other edge-disjoint meta-struc-
ture-based neighbors (detailed in Sect. 3). Taking u1 as the 
query vertex, the SNCS algorithm results in the community 
composed of u1 , u5 , and u6 , where each vertex has at least 
two meta-structure-based edge-disjoint neighbors, with 
the exclusion of u3 . SNCS exhibits the following notable 
advantages compared to meta-path methods: (a) SNCS can 
differentiate movie reviewers’ preferences by utilizing topic 
models to consider the content information of movies. (b) 
SNCS can reveal the relevance of movie reviewers and iden-
tify potential ‘spurious movie lovers.’ For instance, u3 has 
watched and reviewed only one movie (m2) , and it should not 
be included in this community, but meta-path includes it. (c) 
SNCS can further constrain the category of movies, allowing 
for the identification of films belonging to multiple catego-
ries simultaneously (e.g., ( m1,m2)), whereas meta-paths can 
only consider movies belonging to a single category. Addi-
tionally, in the end of Sect. 3, we have provided a detailed 
comparison between Meta-Paths and Meta-Structures.

In this paper, we propose a novel approach to the prob-
lem of community search, namely SNCS. Specifically, our 
contributions are summarized as follows:

•	 We present SNCS, a novel community search approach 
that utilizes topic models to account for content prefer-
ences, which has not been explored before (Sect. 4).

Fig. 1   An example of heteroge-
neous graphs
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•	 Our study is the first to utilize meta-structures to improve 
the quality of community search in heterogeneous graphs. 
Additionally, we develop an efficient graph reconstruc-
tion algorithm to tackle the high time complexity asso-
ciated with searching through meta-structures. The 
algorithm is based on cutting-edge community search 
techniques and is proved to be effective in our analysis 
(Sect. 4).

•	 We conduct comprehensive experiments on real HGs 
to demonstrate the efficiency and effectiveness of our 
proposed SNCS approach. We also perform an in-depth 
comparison and analysis of the experimental parameters. 
Finally, to illustrate a practical application of the pro-
posed method, we provide a case study on a real dataset 
(Sect. 5).

2 � Related Work

With the initial introduction of community search [17], 
there has been a proliferation of variants in recent years. 
These variants are applied to homogeneous graphs, attribute 
graphs, heterogeneous graphs, and dynamic graphs, but their 
core focus remains on discovering tightly connected com-
munities that satisfy specific constraints. Community detec-
tion and community search represent two main categories of 
studies related to finding communities on graphs [18–20].

Community detection algorithms have been studied 
extensively on both homogeneous and heterogeneous graphs 
[21–24]. The number of communities retrieved by commu-
nity detection algorithms is typically uncertain, but vertices 
within the same community are closely related [25]. The 
algorithms implemented on heterogeneous graphs typically 
utilize meta-paths to leverage relation information, which 
can be categorized into four types: graph neural networks 
[26, 27], graph division [28], module optimization [29], 
and label transmission [30, 31]-based methods. Regretta-
bly, community detection algorithms operate on the entire 
graph, which hinders their ability to search for communities 
specific to a given set of vertices, thus posing challenges in 
the pursuit of personalized community identification.

Community search [4] offers highly personalized que-
ries for communities based on the given query vertex q. 
Numerous community search variations have been proposed 
since its inception [32–34]. One can specify one or more 
vertices to search for the designed communities that contain 
the query vertices [17]. Most methods typically return only 
one community, while some yield several different com-
munities [35]. One of the most significant advantages of 
community search is its high personalization [36], efficiency 
[5], and robust support for dynamic graphs [4]. Community 
search studies mainly focus on homogeneous graphs and 
attributed graphs [18]. The study of homogeneous graphs 

focuses on topology, finding communities that satisfy 
k-clique [37], k-core [17], or k-truss [38] constraints, and 
contain the query vertices. The study on attributed graph 
[10, 39] focuses on both topology and vertices’ properties 
to find a community that is closer in attributes. Research 
on community search in heterogeneous graphs is limited, 
which are meta-path-based methods. For instance, Batch-
Ecore [11] utilizes meta-paths to extract topologically dense 
communities in heterogeneous networks; ISCH [40] defines 
an influential community by considering the significance of 
vertices, and SACS-HIN [41] defines new spatially aware 
communities by utilizing the geographic location of vertices. 
Some topic-based community search methods use vertices’ 
attributes to personalize the resulting communities. The het-
erogeneous graph oriented method kKP-core [13] consider 
the vertex keywords in the search process, proposing dense 
connection communities based on keywords. However, none 
of these methods fully exploit the rich information available 
in the graphs, especially in the complex semantic networks, 
as the information extracted from meta-path-based methods 
is limited. On the other hand, the use of keywords in exist-
ing methods during community search is limited in terms 
of flexibility, as they require manual selection of an appro-
priate set of keywords to identify appropriate communities. 
In the context of community searches on heterogeneous 
graphs [20, 33, 40, 41], the “community” to be searched for 
is typically tailored to address specific problem definitions 
and lacks generality. Certain NLP topic models [42, 43] can 
derive an m-dimensional vector z for each user, representing 
the distribution of topics for that user, such as non-negative 
Matrix Factorization (NMF) [44], Latent Dirichlet Alloca-
tion (LDA) [45], Neural LDA [46], Embedded Topic Mod-
els (ETM) [47], among others. In order to flexibly identify 
topic-related communities, it is essential to consider the use 
of topic models to incorporate content information during 
the search.

3 � Preliminaries

Table 1 presents a summary of the symbols used in this 
paper. In the following subsections, we will introduce the 
Heterogeneous Graphs (HGs) model and compare the con-
cepts of meta-paths and meta-structures as described in the 
literature.

Definition 1  (Community Search [17]) Since its inception, 
Community Search has undergone various variants, but its 
definition can be generalized as follows: Given an undi-
rected (connected) graph G = (V ,E) and a set of query nodes 
Q ∈ V  , subject to constraints defined by the problem, we 
aim to identify an induced subgraph H = (VH ,EH) of G that 
satisfies at least the following conditions: (a) H contains Q; 
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(b) H is connected; (c) it adheres to the constraints defined 
by the problem.

Definition 2  (Heterogeneous Graph (HG)) [48, 49], also 
called a Heterogeneous Information Network, is a graph data 
structure represented by G = (V ,E) that contains multiple 
types of vertices and edges. Additionally, it has type map-
ping functions that include a vertex type mapping function 
� ∶ V → L and a link type mapping function � ∶ E → R , 
satisfying |L| + |R| > 2 . Each object v belongs to an object 
type �(v) ∈ L , and each link e belongs to a relation type 
�(e) ∈ R . Moreover, certain vertices in this model can hold 
descriptive text information. Heterogeneous graph is a prev-
alent data type that can be found in various scenarios, such 
as in knowledge graphs and social networks [50].

Definition 3  (Heterogeneous Graph Schema [48, 49]) is a 
directed graph TG = (L,R) which is based on an Heteroge-
neous Graph G = (V ,E) . The vertex types and edge types of 
G correspond to the vertices and edges of TG , respectively. 
This schema serves to reveal semantic information between 
different types of vertices.

Definition 4  (Meta-Path [51]) A meta-path, denoted by P , is 
a path defined on the Heterogeneous Graph schema TG . The 
vertices and edges of the meta-path correspond to the verti-
ces and edges on the HG schema, which represent the rela-
tionships from one vertex type to another. For every meta-
path, there must exist an opposite path on the HG schema, 
which we denote by P−1.

Definition 5  (Meta-Structure [15]) A meta-structure, 
denoted by S , is a directed acyclic graph (DAG) with a sin-
gle source node ns and a single sink (target) node nt , defined 
on the HG schema TG = (L,R) . The reverse meta-structure 
of S in HG, with all edges of S reversed, is denoted by S−1 , 
representing the relationship from the sink node nt to the 
source node ns . Moreover, a meta-structure consists of ver-
tical layers in level order, and we define any vertical layer 
with the number of vertices greater than one as a bifurcation.

As an example, we can refer to the schema of HG dis-
played in Fig. 2a. Figure 2c, d shows instances of the cor-
responding meta-path and meta-structure presented in 
Fig. 2b, respectively. Particularly, in Fig. 2d, the vertical 
layer containing c and t2 is a bifurcation, which is enclosed 
by a dashed line.

Comparison between Meta-Paths and Meta-Struc-
tures Meta-paths have been widely used in the analy-
sis of Heterogeneous Graphs [52, 53]. However, there 
are limitations in their ability to describe complex pat-
terns. For instance, consider the complex relationship 
( s = u1 → m1 → c&&t1 → m2 → u3 ) between film review-
ers u1 and u3 , as shown in Fig. 2d. This pattern can be 
captured accurately only by a meta-structure and not by a 
meta-path. One possible solution is to decompose s into 
two meta-paths [52, 53], p1 and p2 . However, this approach 
has two drawbacks: (a) Certain vertices are shared by two 
or more edges. In this example, e(u1,m1) and e(m2, u3) 
occur only once under the meta-structure, but they will be 
included multiple times in the meta-path, leading to inac-
curate semantic information. (b) In different instances of 
the meta-path, certain types of vertices cannot be restricted 
to a specific vertex. For instance, in Fig. 1, we can con-
nect u1 and u6 using s = u1 → m1 → c&&t1 → m6 → u6 , 
where m denotes any movie in the meta-structure. 
However, when the meta-structure is decomposed into 
meta-paths ( p1 and p2 ), the corresponding node m may 
refer to different movies. Thus, u1 and u6 can be con-
nected by either p1 = u1 → m1 → t1 → m6 → u6 or by 
p2 = u1 → m2 → t1 → m5 → u6 . Here, m5 only mentions the 
tag t1 and does not belong to category c, thereby weakening 
the semantic relationship constrained by the meta-structure.

4 � Problem Definition

This section proposes a new problem called the Semantic 
Network Oriented Community Search with Meta-Structures 
in Heterogeneous Graphs (SNCS). It extends the k-core [54] 
measure of community quality to a meta-structure enabled 
pattern. We extended the concept of k-core, introducing 
a new definition known as (k,S)-core. Subsequently, we 

Table 1   Symbols used in this paper

Symbol Description

G(V, E) A Heterogeneous Graph with vertex set V and edge set E
T
G

 = 
(L,R)

The Heterogeneous Graph schema

L,R The vertex and edge type set
P,S The meta-path and meta-structure
p, s The instance of meta-path and meta-structure
�(v)(�(e)) The vertex(edge) type of v(e)
� The threshold for topic similarity
u.t The topic vector of node u
Nbr(u) The neighbors directly connected to vertex u
�(v,C) The edge-disjoint meta-structure instances which

Start from vertex v and end at vertex in set C
Sim(u, v) The topic similarity between u and v
S
nbr

(v) The meta-structure-based neighbor of v
E
k
(S) An edge-disjoint ( k,S)-core
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explore the conditions allowing for the repetition of edge 
types and elaborate on the maximal community in commu-
nity search. Furthermore, based on the meta-structure, we 
provide a definition for the maximum community. Finally, 
we present the formal definition of SNCS.

Definition 6  ((k,S)-core) A k-core [55] is a maximal con-
nected subgraph within a homogeneous graph, in which each 
vertex has at least k neighbors. However, since connected 
vertices in a HG diverse in type, the same k-core cannot be 
applied directly for searching communities in HG. Let S be a 
meta-structure and Snbr(v) be the set of vertices connected to 
v. A (k, S)-core, Ek(S) , is a set of vertices v ∈ HG such that 
the size of Snbr(v) is no less than k. The vertices in Ek(S) are 
of the same type as the source/target nodes of S.

Definition 7  (Maximal community) Previously, works for 
community search on HGs based on meta-paths [11], where 

a maximal community consists of all vertices and their con-
nections, such that each vertex belongs to some community 
which satisfies the query constraint. We define the maxi-
mal community as a set of all vertices and their connections 
where each vertex belongs to a community that satisfies both 
the requirement of the (k,S)-core and the topic constraints 
based on the given meta-structure.

Figure  3a shows an example of a simple het-
e rogeneous  g raph .  Given  the  meta-s t r uc ture 
S = U → M → C&&T → M → U  ,  Snbr(u1)  con t a in s 
users u2 and u3 . Under the edge-disjoint constraint, edges 
e1(m2, c) and e2(m2, t) can be used only once during the 
search phase, which means that u1 and u2 cannot be con-
nected. However, this is unreasonable since u1 and u2 
watched and commented on the same film, belonged to 
category c, and contained tag t, indicating a strong asso-
ciation. Therefore, we suggest a partial type edge-disjoint 

(a) (b)

(c) (d)

Fig. 2   Schema, Meta-Path, Meta-Structure and instances

Fig. 3   An Heterogeneous 
Graphs (HG) and A community
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approach for practical purposes, e.g., edges �(e(m2, c)) and 
�(e(m2, t)) can be repeatable during the community search. 
Figure 3b depicts an example community obtained from 
Fig. 3a. Vertices u1 , u2 , and u3 are connected to each other 
if all edges can be repeated during the search. However, 
the size of Ek(s) is not two when using u3 as the query ver-
tex and adopting certain types of edge-disjoint constraints 
(i.e., edges from User type vertices to Movie type vertices 
are non-repeatable). We aim to find the largest community 
for u3 , not a subset of it. The constraint of non-repeated 
edges is used to ensure that the Ek(s) calculation is correct. 
Taking u3 as the query vertex, we can obtain two commu-
nities under the same constraint: u1,u3 and u2,u3 , as u3 is 
connected to both u1 and u2 through the meta-structure S . 
For instance, in Fig. 3b, the solid line between u1 and u2 
indicates a connection through the meta-structure, while 
the dashed lines connecting u3 with u1 and u2 signify that, 
under the constraint of disallowing edge repetition, u3 can-
not simultaneously connect with u1 and u2 . Although both 
communities are significant, we are interested in finding 
the union between them, i.e., { u1 , u2 , u3 }. In this com-
munity, u1 , u2 , and u3 are all potentially connected to each 
other through the meta-structure, but these three vertices 
cannot be connected simultaneously due to the edge-dis-
joint constraint. Consequently, the numbers of neighbors 
of u1 and u2 are both 1. Thus, this community is a (1,S)
-core.

Definition 8  (Semantic Network Oriented Community Search 
with Meta-Structures in Heterogeneous Graphs (SNCS)) 
SNCS is a variant of community search specifically tailored 

for heterogeneous graphs, given a HG with vertices having 
possible descriptive textual information, a query vertex q, a 
topic vector, a meta-structure S , a threshold � and a param-
eter k (as in (k,S)-core), the SNCS retrieves a maximal set 
C as a community, where the vertices in C should satisfy the 
following constraints:

•	 q ∈ C;
•	 ∀v ∈ C , �(v)=�(q);
•	 ∀v ∈ C , Sim(v, q) ≥ � , e.g., (v ⋅ q)∕(|v| × |q|) ≥ � , where 

v and q represent the feature vectors of vertices v and q, 
respectively;

•	 ∀v ∈ C , the size of Snbr(v) is no less than k.

Specifically, the term ‘Oriented’ emphasizes the integra-
tion and utilization of semantic information through meta-
structures, enabling a nuanced exploration of community 
structures in heterogeneous graphs. It focuses on enhancing 
the representation and discovery of communities by seam-
lessly integrating semantic information into the community 
search process.

5 � Method

This section provides a detailed description of the SNCS, 
which includes the topic extraction algorithm and the graph 
reconstruction algorithm. The pipeline for SNCS is illus-
trated in Fig. 4.

Meta-Structure

...

...

Text
information

Text
information

query
vertex

Input Graph

Topic vectors

...

Aggregation

...
... ...

New Graph

Topic Model

Graph Reconfiguration

Topic
Filtering

query
vertex

(k,S)-core
community

CSH

The Converted
Meta-Path

New
HIN

Fig. 4   The pipeline of SNCS. For the input heterogeneous graph 
(HG), we extract topics and reconstruct the graph in parallel. We 
aggregate topic vectors from the neighbors of vertices that have the 
same type as the query vertex q. Following the given meta-structure, 
we reconstruct a new HG from the input HG and return the meta-

paths that can represent this structure on the newly reconstructed 
graph. Subsequently, we filter the topics to obtain a specific set of 
vertices, which is further used to search for communities on the newly 
reconstructed HG by the converted meta-paths (e.g., conducting com-
munity search by the meta-path-based BatchEcore [11] algorithm)



226	 Y. Li et al.

5.1 � Topic Model

A recent paper [16] offers an excellent examination of com-
paring and optimizing topic models. Based on this research, 
we adopted the most widely used LDA approach [45] to 
extract the optimal topic from the messages conveyed by the 
vertices. LDA, an acronym for Latent Dirichlet Allocation 
[41], is a typical bag-of-words model, where each document 
is represented as a set of words without any inherent order. 
The purpose of LDA is to provide a probabilistic distribu-
tion of topics for each document in a collection, enabling the 
extraction of topics (distributions) from a set of documents 
through analysis. In our study, we treat the text associated 
with all vertices as the document collection, with each ver-
tex’s associated text considered as an individual document. 
The OCTIS [16] framework integrates a range of topic mod-
els, offering preprocessing methods and evaluation metrics. 
Additionally, optimal hyperparameters are estimated using 
a Bayesian Optimization approach. With its assistance, we 
extract a topic vector for each vertex based on the textual 
information.

We aggregated the topic to the vertices of the query type 
in the community search. For example, in Fig.  1, we 
extracted the topics of each film from its textual reviews and 
aggregated them to the users. The formula used for this is 
ui.t = Softmax(

∑
mi∈Nbr(ui)

mi.t) . To extract the weight of each 
user on k topics by LDA, we calculated the probability of 
preference for each topic through the softmax function. For 
evaluating the topic similarity of two vertices, we use the 
cosine function: Sim(u, v) = cos(u, v) =

u⋅v

|u|∗|v|.

5.2 � Graph Reconstruction Algorithm

Searching for communities through meta-structures is 
a challenging task, since vertices have many neighbors, 
and various combinations will appear when the meta-
structure has lots of bifurcations. For one vertex, if the 

meta-structure has m branches, then there would be 
∏m

i
ni 

combinations, where ni is the number of neighbors of 
that vertex of the ith type. In large networks where each 
vertex has numerous neighbors, combining neighbors in 
the searching process results in a high time complexity. 
Fortunately, the searching meta-structures are typically 
static, while query vertices and constraints may change. 
Therefore, by constructing a new graph from the original 
heterogeneous graph with the static meta-structure, we 
can perform community search through meta-path on the 
new graph. This process is equivalent to searching through 
meta-structures, a claim that we will prove later. Based on 
this, we design an efficient algorithm for performing graph 
reconstruction in batch.

Figure 5a displays a simple heterogeneous graph. If 
we do a community search through the meta-structure 
S = U → M → C&&T → M → U , we can first find all the 
combinations of vertices with types C and T and then, con-
nect the vertices of type M and vertices of the combination 
type. As seen in Fig. 5b, vertices v1, v2, v3, and v4 represent 
the combinations of (c1, t1), (c1, t2), (c2, t1),  and (c2, t2),  
respectively. In the reconstructed graph, we retained only 
the vertices appearing in any meta-structure instance. 
However, it is crucial to note that some edges will be 
repeated when finding combinations of vertices. For exam-
ple, as seen in Fig. 5b, m1 connects to both v3 and v4 , and 
the edge e1 ( m1 → c2 ) is used twice. We allowed this type 
of edge to repeat since it appears at bifurcations. Based 
on the above description, we propose a method for recon-
structing the HG for a given meta-structure, thus convert-
ing the high time-consuming meta-structure-based search 
into an efficient meta-path-based search. Algorithm 1 is 
the proposed method, which permits edge repetition for 
vertices in meta-structures with multiple bifurcations.

Fig. 5   Original HG and the 
Reconstructed Graph 1
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Algorithm 1   Graph reconstruction algorithm

Input: HG (H), meta-structure(S)
Output: A new graph (H′)

1 initialize l = the diameter of S
for i ← 1 to l do

2 if len(S[i]) ≥ 2 then
3 initialize a map M, a set B.

collect a set A of vertices with the S[i− 1].v
decompose S[i− 1 : i+ 1] to meta-paths, P
for each vertex u ∈ A do

4 using DFS to find the target vertex w located at S[i+ 1]
if w is connected to u by p ∈ P then

5 M[u].add (vertices connected to u and w)
B.add (vertices connected to u and w)

6 end
7 set C : all vertex combinations in B

for u in M.keys() do
8 set C[u] : all vertices combinations in M.get(u)

for each combined vertex v in C[u] do
9 connect u and v

update the type of e(u, v) and v

10 end
11 end
12 end
13 return: a new graph H′ with new index and type

We use l to denote the number of vertical layers (i.e., 
levels) of the meta-structure and traverse each layer of the 
meta-structure. For layers containing multiple vertex types, 
where bifurcation appear, we initialize a Map M and a set 
B on lines 3–4. We collect the set of all vertices where the 
bifurcation begins, denoted as A (e.g., all vertices of type 
M), and then decompose this meta-structure into a set P of 
meta-paths on lines 5–6. We traverse every vertex u of the 
set A , finding the meta-path instances in P using the depth 
first search (DFS). If the path from vertex u to a vertex w is 
a meta-path instance, then, we add the vertex connecting u 
and w to both M[u] and B on lines 7–11. M[ui] stores the 
valid vertices in instances where the bifurcations occur at ui , 
and B stores all the valid vertices that bifurcate. Note that 
valid vertices are defined as vertices appearing in instances 
of the set P of meta-paths. After this step, the vertices in 
the set B are combined according to the vertex types in s[i] 
on lines 13–14. Next, each vertex in the keyset of Map M 
is connected to the combined vertex belonging to it, and the 
type of new edges is updated on lines 15–21. Finally, we 

return a new graph with the given meta-structure on line 
23. Given a meta-structure, we can convert the original Het-
erogeneous Graph into a new graph by merging the vertices 
at the bifurcation point. This yields a novel meta-path Ps . 
The upper bound for the time complexity of Algorithm 1 is 
determined to be O(l ⋅ (|V| + |E|) ⋅ |A| + |A|) , where l repre-
sents the length of the meta-structure, typically a single-digit 
value. Here, A denotes the neighbors of each vertex during 
the algorithm’s iteration, usually with |A| ≪ |V| . The upper 
bound for the space complexity is O(|V| ⋅ |A|2 + |E|) , pri-
marily attributed to recording the upper bounds generated 
by C , and typically |A| ≪ |V| . With the state-of-the-art meta-
path-based community search algorithm BatchEcore [11], 
we can efficiently utilize complex semantic information, i.e., 
meta-structure, to do community search on heterogeneous 
graphs.

Theorem 1  To get the maximum community, the BatchEcore 
algorithm can be used on the reconstructed graph with the 
transformed meta-paths. This is equivalent to performing 
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meta-structure-based community search on the original HG 
and enables edges to be repeated at a bifurcation point in 
the meta-structure.

Proof  BatchEcore [11] first proposed to do community 
search on HGs and exclusively utilized meta-paths for this 
purpose. To address the low engagement problem (i.e., the 
“spurious viewer” u3 in Fig. 1), [11] proposed three different 
models to find the designated community in HG, which are 
edge and vertex repeatable, edge-disjoint, and vertex-dis-
joint, respectively. As introduced in the INTRODUCTION, 
the edge and vertex repeatable model often results in a sig-
nificant number of “spurious viewers” who, in reality, do 
not exhibit a high level of engagement. The vertex-disjoint 
model may lead to many unconnected vertices, as the num-
ber of vertices in bifurcated meta-structures is often limited. 
BatchEcore is an algorithm that requires edge-disjoint meta-
structures, removing vertices with core numbers less than 
k in a batch. It computes the number of meta-path-based 
neighbors of a vertex using the Max Flow algorithm [56]. 
Referring to BatchEcore, we define �(v, C) as the edge-dis-
joint meta-structure instances which start from vertex v and 
end at vertex in set C . Our objective is to find a community 
C such that ∀v ∈ C , �(v, C) ≥ k . Inspired by this, given the 
HGs and the searching meta-structure, we reconstruct the 
original HG into a new graph. It is perfectly feasible to apply 
the BatchEcore method directly on the reconstructed graph, 
not only to allow edges that connect the bifurcations to be 

repeated, but also to efficiently compute the exact �(v, C) . 
The requirement that edges at a bifurcation can be repeated 
is equivalent to the maximum community with edge-disjoint 
searched by BatchECore.

BatchEcore algorithm aims to find the largest community, 
so the �(v, S) of each vertex in the community C is computed 
independently by the maximum flow algorithm. This makes 
it possible to reuse certain edges when computing �(v�, S) 
for different vertices v′ , but it does not lead to an increase 
in the value of k. It can be seen from Fig. 6 that the addi-
tion of combinatorial vertices causes changes to the flow 
network. But this does not change the maximum flow of the 
network. The max flow min-cut theorem [56] states that in 
a flow network, if there is a maximum flow f in the network, 
the flow value of f is equal to the capacity of the minimum 
cut. An s-t cut C = (S, T) is a division of the vertices of the 
network into two parts S, T, and s ∈ S and t ∈ T  . We use c 
to denote the number of edges that connect the source part 
of the cut to the sink part. For example, in Fig. 6, c1, c2, c3 
and so on are all cuts of this flow network, and we denote 
the smallest cut as cmin.

For community search, we construct a flow network with 
vertex u as the source node and specify the capacity of each 
edge as 1. There is only one vertex in the layer of the source 
node u. So if we take u as S and the other vertices as T, the 
size of the cut, denote as c1 , is the number of vertices con-
nected to u. We use f to denote the maximum flow of this 
network, obviously, c ≥ f  . The addition of combinatorial 
vertices will bring a change in the cuts of the two layers, 

Fig. 6   The flow network
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for example, c2 and c3 in Fig. 6. Combinatorial vertices are 
virtual vertices used to connect different vertices that can 
be connected by a meta-structural bifurcation. Therefore, 
the minimum value of c2 and c3 must be no less than c1 , 
which can ultimately be formalized as: min(c2, c3) ≥ c1 ≥ f  . 
It can be seen that the addition of combined vertex layers 
does not change the max flow f. So, we can directly use 
the BatchEcore method on the reconstructed graph and can 
achieve the goal of allowing the edges at the bifurcation to 
be repeated. 	�  ◻

5.3 � Optimization

We propose an optimization of the graph reconstruction algo-
rithm to improve the accuracy and generality. Specifically, 
Algorithm 1 may be inaccurate in counting meta-structure 
instances in certain problems, as exemplified by Fig. 7a, which 
shows a subgraph with only M, C, and T vertex types derived 
from Fig. 5a. For example, if m2 is connected to both the com-
bination vertices ( c1, t1 ) and ( c2, t2 ), the edge e(m1, c2) would 

be counted twice, which can result in an incorrect �(k, S) . To 
address this issue, we propose an optimized edge-weighted 
graph reconstruction algorithm that can record the number 
of instances of meta-structures. Figure 7b shows the edge-
weighted graph reconstructed from Fig. 7a, which includes 
a new vertex type f called the “flow constraint vertex” and 
assigns weights to each edge. To conserve storage, we only 
store the weights for edges of type �(e(m, f )) , while the 
default weight for other types is 1. The weight of edges in type 
�(e(m, f )) is determined by counting the number of instances 
of the sub-meta-structure where the meta-structure bifurca-
tions. As an example, m2 from Fig. 7a has four possible meta-
structure instances. However, without repeated edges, there are 
only two meta-structure instances ( s1 = m2 → c2&&t1 → m1 , 
s2 = m2 → c1&&t2 → m3 ) connected to vertices of type �(m2) 
from m2 , so the weight of edge e2(m2, f2) is 2 (e.g., w(e2) = 2 ). 
Based on the above discussion, we introduce “flow constrained 
vertices” in Algorithm 2 to capture the number of instances of 
the meta-structure.

Algorithm 2   Edge-weighted graph reconstruction algorithm

Input: HG (H), meta-structure(S)
Output: A new graph H′′ with weight

1 //Replace lines 8-13 in Alg. 1 by the following:
for u in M.keys() do

2 set Cu : all vertices combinations in M.get(u)
mins : number of instances of meta-structure with disjoint edges
create a new vertex fi and connect it to u
w(e(fi, u) = mins

for each vertex v in Cu do
3 connect fi and v

update the type of e(u, fi), e(fi, v), v, fi

4 end
5 end
6 return: a new edge weighted graph H′′

We replace lines 15–21 in Algorithm 1 by the following: 
For each vertex u in the key set of Map M , we capture the 
number of meta-structure bifurcation instances connected to 
u as follows: First, we combine its neighbors based on their 
vertex types at the bifurcation (lines 2–3). Next, we compute 
mins , which is the minimum number of vertices present in 
each bifurcation type that vertex u is connected to (line 4). To 
reflect this information, we introduce a new flow-constrained 
vertex, fi , for each u and connect it to u. The edge weight of 
e(fi, u) is set to mins (lines 5–6). Then, we connect fi to the 
combinatorial vertices related to vertex u and update the types 
of e(u, fi) , e(fi, v) , v, and fi (lines 7–9). It is worth noting that 

u is not directly linked to the combinatorial vertices. Algo-
rithm 2 is an improvement over Algorithm 1, with the most 
significant difference being the inclusion of edge-weight com-
putation. Consequently, the upper bound for time complexity 

Table 2   Statistics of real datasets

DataSet Vertices Edges Vertex Types Edge Types

AMRN 174,014 1,727,449 4 3
ASN 318,663 569,195 4 3
DBLP-4-Area 10,669 44128 4 3
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is O(l ⋅ (|V| + |E|) ⋅ |A| + |A| + |E|) , and the upper bound for 
space complexity is O(|V| ⋅ |A|2 + 2 × |E|) . As stated in Theo-
rem 1, our proposed graph reconstruction algorithm allows 
us to efficiently and accurately utilize the complex semantic 
relationships present in heterogeneous graphs (e.g., conducting 
community search through meta-structures).

6 � Experiments

6.1 � Experimental Setup

Datasets. We use three real datasets with textual information 
at vertices and a moderate number of types: the Amazon 
Movie review network dataset (AMRN) [3], the academic 
social network dataset (ASN) [57], and a bibliographic net-
work dataset DBLP-4-Area [48]. The statistics of the three 
datasets are shown in Table 2. The DBLP-4-Area dataset is 
the same dataset used in work that calculating node similari-
ties by meta-structures [15], which has the same characteris-
tics as the ASN dataset. The meta-path-based methods take 
a lot of time to process due to the large degree of the AMRN 
dataset. Thus, we selected the ASN and DBLP-4-Area data-
sets for comparison experiments. For the topic constrained 
experiment, we selected the DBLP-4-area dataset to ensure 
a fair comparison (i.e., consistent with the data type used in 
the baseline).

Community Quality Metrics. Since the vertices in the 
searched community are not directly connected, the exist-
ing quality evaluation metrics become inappropriate; thus, 
we propose an extension to overcome this challenge and 
expand the evaluation metrics to measure the community 
quality by treating the two end vertices connected by a meta-
structure instance as connected and defining the distance 
as one. The specific evaluation metrics, namely community 
diameter, average path length (APL), density of connection, 
and clustering coefficient (CC). Specifically, we assume that 
any two end vertices connected by a meta-structure instance 
are connected and set the distance between them to one. 
We extend the following evaluation metrics to measure the 
quality of the searched community: 1. Closeness of Com-
munities: The closeness of communities is measured using 
two widely accepted metrics [58], namely the community 
diameter and the average path length (APL). The community 
diameter is calculated by finding the largest shortest distance 
between any pair of vertices in the community, while the 
average path length is calculated as the average of the short-
est distance between all possible pairs of vertices. Although 
the former may be influenced by individual vertices, the 
latter provides a more accurate reflection of the distance 
between pairs of vertices. To redefine “the distance,” we set 
the length of a meta-structure instance to one. If the distance 

between two vertices is greater than one, it means that the 
meta-structure cannot connect them directly. Smaller values 
of these two metrics indicate higher overall connectedness 
of the community.

2. Density of Connection: The density of connection is 
defined as the number of edges over the number of vertices 
[59]. However, this may cause a problem that the density 
increases with the number of vertices, such as in complete 
graphs, take the complete graph as an example. Accord-
ing to the traditional definition, the density D should be 
D = n × (n − 1)∕2n = (n − 1)∕2 . The density increases with 
the number of vertices, but obviously the complete graph is 
already a very tightly connected community independent 
of the number of vertices. A good evaluation metric should 
minimize the impact of graph size. Therefore, we define the 
connection density as the average degree over the number of 
vertices, which can be used to reduce the effect of graph size.

3. Clustering Coefficient: Clustering coefficient is a 
measure of the degree to which nodes in a graph tend to 
cluster together [60]. Graphs with higher clustering coef-
ficients are found to have significant modular structures, 
and the average distance between different vertex pairs is 
smaller.

In short, a smaller diameter and average path length sig-
nifies closer relationships between searched communities; 
larger density of connection and clustering coefficient also 
indicate closer relationships.

Baselines. To demonstrate SNCS’s superiority in various 
aspects, we compare it with the SOTA methods for commu-
nity search on HGs: BatchEcore [11] and kKP-core [13]. 
BatchEcore conducts community search on HGs through 
meta-paths while requiring non-repeated edges. kKP-core 
redefines a kKP-core in HGs, i.e., every vertex has at least 
one KP-neighbor and k path instances. Here, one KP-neigh-
bor refers to a meta-path instance that covers all specified 
keywords set. kKP-core is a community search algorithm 
that utilizes meta-paths, permits edge duplicates, and incor-
porates keyword constraints. However, it defines a new 
community and cannot be directly compared to our method; 
thus, we made a simple modification (discussed in Table 4) 
for a comparison with SNCS. Furthermore, to validate the 
effectiveness of meta-structure-based search and topic con-
straints, we introduced several variants. For instance, we 
added topic constraints to the meta-path-based community 
search methods, denoted as P1 + T and P2 + T . We also take 
the intersection of the results obtained by separately search-
ing with two meta-path, denoted as P1 ∩ P2 . Additionally, we 
conducted a variant of the SNCS method by searching solely 
with structural motifs while eliminating topic constraints, 
referred to as SNCS/T.

Evaluation and Query Settings. In line with exist-
ing works about meta-structures [15], we focus on 
meta-structures with diameters at most four and select 
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meta-structures with more connected vertices as expert 
suggest, so as to ensure that our query is meaningful. We 
apply the “Edge-weighted graph reconstruction algorithm” 
to reconstruct a new graph and generated over 1000 que-
ries for each dataset. The reported values in all experi-
ments are the average values. To ensure a fair compari-
son, we first randomly selected multiple query vertices 
and specified the searching meta-structure. Using the ASN 
dataset as an example, the meta-structure was defined as 
S = A → P → L&&Y → P → A , where the vertex types 
A, P, L, and Y represent author, paper, publication, and 
year, respectively. The communities retrieved by SNCS 
were denoted as CT . To compare them with the algorithm 
for meta-path-based community search, we decomposed 
the meta-structure S into two meta-paths P1 = APLPA and 
P2 = APYPA . The community retrieved by BatchEcore 
with P1 and P2 was labeled as Cp1 and Cp2 , respectively. 
As previously discussed, meta-structures exhibit better 
semantic associations than meta-paths and are not merely 
a combination of meta-paths. To validate this point, we 
defined the community Cm as the common vertices of Cp1 
and Cp2 , i.e., Cm = Cp1 ∩ Cp2

 . Additionally, we conducted 
ablation experiments to demonstrate the effectiveness of 
topic constraint in community search, namely SNCS/T, 
and the communities are labeled as CS.

Our dataset contains four vertex types that, coinciden-
tally, constitute a meta-structure. To ensure the validity 
of our experiments, we randomly selected 20 vertices as 
the set of query vertices. The topic similarity threshold � 

is set from 0.5 to 0.95, and the k is set from 1 to 12. In the 
results reported in the following, each data point is the 
average result for these queries. From the parameter analy-
sis section in paper, we have analyzed that a larger k and 
� mean denser topology. In order to identify intermediate-
sized dense communities surrounding query vertices in 
the DBLP and ASN datasets, we determined appropriate 
parameter configurations to be k = 9 and � = 0.60 , and 
0.95, respectively (the settings of Table 3 in paper). For 
the parameters settings of Table 4 in paper, we utilized the 
same vertices set as query vertices and set k equal to 9 for 
k-core. For kKP-core, we employed the exact keywords 
set that corresponded with the query vertices, while for 
SNCS, we used the topic vectors that had been extracted 
from these vertices. Topic constraints for kKP-core and 
SNCS were established at 0.08 and 0.60, respectively. 
Setting topic constraints for kKP-core that covers a cer-
tain proportion of the keyword set are challenging, so we 
increased � starting from 0.01 in increments of 0.01 until 
the optimal community was achieved. Our codes and all 
the detailed settings are open in the repository, https://​
github.​com/​LIyvqi/​SNCS.

6.2 � Experimental Performance

In this subsection, we emphasize the superior performance 
of SNCS. Firstly, we introduce the efficiency of the SNCS’ 
graph reconstruction algorithm. Following that, we compare 
SNCS with baselines to demonstrate the high quality of the 

Table 3   Evaluation metrics on 
five experiments

The bold font signifies the best performance under each column

https://github.com/LIyvqi/SNCS
https://github.com/LIyvqi/SNCS
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communities retrieved by SNCS. We further validate the 
effectiveness of meta-structures and the topic model through 
ablation experiments. Finally, we present the highlights of 
the topic constraints. Table 3 provides a report on the com-
parative experiments, including their respective search times 
and searched community evaluations. And table 4 provides 
a comparative analysis between SNCS and other methods 
utilizing keyword-based community search.

Efficiency. Given the HGs and the meta-structure, SNCS 
only need to reconstruct the HG to the edge-weighted graph 
once and it is very efficient. Reconstructing AMRN, ASN, 
and DBLP-4-Area required 2.6s, 3056.0s and 4.0s, respec-
tively. This is because the algorithm becomes computation-
ally more complex to compute the combination of adjacent 
vertices as the number of vertices under each vertex type 
increases. The inclusion of topic constraints significantly 
reduces the size of searches, especially on larger datasets 
such as ASN. As shown in Table 3, SNCS requires no more 
than 4% of the time for meta-path search. The SNCS/T 
algorithm is more efficient than meta-path-based searches 
because the graph reconstruction algorithm reduces graph 
size. In addition, it is generally more efficient than com-
munity search through meta-paths. If there is uncertainty 
regarding which meta-path to select, employing a meta-
structure that includes multiple meta-paths can accelerate 
the search for high-quality communities.

Community Quality. For the retrieved communi-
ties, smaller size indicates stronger vertex connections. 
SNCS and SNCS/T can retrieve more closely connected 
communities by removing weakly correlated verti-
ces while meta-paths cannot filter out these weak cor-
relations. Table  3 reports the order of retrieved com-
munity sizes as Ct < CS < Cm ≤ min{Cp1 , Cp2} , showing 
that using a meta-structure avoids the drawbacks of 

methods that combine meta-paths. In practice, ASN 
and DBLP have only four vertex types, which together 
form one meta-structure. In academic citation networks, 
the meta-path P2 = APYPA connects more vertices than 
P1 = APLPA , leading to a community relationship: 
CS ∈ Cm = min{Cp1 , Cp2} ∈ max{Cp1 , Cp2} . Theoretically, 
the communities retrieved by different methods should 
have the relationship as in Fig. 8a. However, ASN and 
DBLP-4-Area have only four vertex types, which exactly 
constitute one meta-structure. In academic citation net-
works, the meta-path P2 = APYPA can connect more ver-
tices than P1 = APLPA , which leads to the relationships 
between communities retrieved as shown in Fig. 8b, which 
is a special case of Fig. 8a. In such datasets, it is difficult 
to search for tightly connected communities by meta-paths 
alone.

Highlights of topic constraints. To the best of our 
knowledge, currently, kKP-core is the only approach that 
performs community search on HGs while considering the-
matic constraints (i.e., specified keyword set). This approach 
is based on meta-paths and mandates that searched commu-
nities include at least one path instance that comprises the 
full specified keywords. However, specifying keywords are 
challenging and does not guarantee that communities can 
always be found. We have fine-tuned the topic constraints 
of kKP-core to achieve a specific keywords coverage ratio 
� . This fine-tuning allows for effective comparisons between 
communities. We report the comparative results with the 
same k in Table 4 and select � that produced the highest qual-
ity communities. SNCS detects significantly higher qual-
ity communities than kKP-core and has an advantage over 
using specified keywords in terms of convenience. Table 3 
shows that incorporating topic constraints can enhance both 
model efficiency and performance. An interesting phenom-
enon is that identical communities could be found for dif-
ferent query vertices if we ignore topic constraints, which is 
a limitation of existing works on community search. SNCS 
overcomes the limitations of topological similarity by intro-
ducing a topic model that creates a customized community 
for the query vertex q. Although community quality is evalu-
ated through topology, the communities retrieved by SNCS 
outperform those obtained using other methods.

Fig. 8   The relationships 
between communities

Table 4   Comparison of topic constrained methods

Evaluation metrics Diameter APL Clustering 
coefficient

kKP-core 7.5 2.7607 0.9050
SNCS 2.0 1.1048 0.9285
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Fig. 9   Diameter, APL, CC and Density of the retrieved community

Fig. 10   Size and Running time of “SNCS” with different k core number and �
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6.3 � Parameter Analysis

We analyze the performance of SNCS in terms of commu-
nity quality, community size, and runtime under varying 
parameter settings.

Quality. The community obtained by SNCS exhibits a 
high level of connectivity. As demonstrated in Fig. 9, we 
evaluated the quality of the communities on two datasets, 
ASN and DBLP-4-Area, under varying values of k (ranging 
from 5 to 12) and � (from 0.4 to 0.9). The results demon-
strate that the community obtained by SNCS represents a 
dense subgraph, with an increasing level of connectivity as 
k and � increase. For example, on the ASN dataset, the diam-
eters of the graphs are no greater than 3; the average path 
length is less than 2; the clustering coefficients are above 
0.7, and the density is greater than 0.8, particularly. The den-
sity of the community is becoming larger as k or � increase. 
For example, when analyzing the ASN dataset, we observed 
that the diameter of the graphs was less than or equal to 3; 
the average path length was below 2; the clustering coef-
ficients were higher than 0.7, and the density exceeded 0.8. 
Moreover, as depicted in Fig. 9a, b, we utilized bars and 
lines of the same color to indicate the same quality evalua-
tion metric at � values of 0.6 and 0.8, respectively. Our find-
ings suggest that, as k increases, the influence of increasing 
� on community density decreases. Similarly, we employed 
the same color of bars and lines to represent the same quality 
evaluation metric at k = 3 and k = 5 for Fig. 9c, d, respec-
tively. Our results demonstrate that, in the same ( k,S)-core, 
the obtained communities become increasingly cohesive as 
� increases, particularly when k is small.

Size. This analysis examines the ( k,S)-cores size distri-
bution for various � values to evaluate our proposed SNCS. 
Figure 10a–c displays the results of the analysis for three 
datasets, where k values range from 1 to 6 along the hor-
izontal axis, the number of vertices in the community is 
shown on the vertical axis, and different colors represent 
various topic similarity thresholds � . As shown in the figure, 
the number of vertices in the community diminishes as k 
increases while remaining under the same similarity thresh-
old. Similarly, the number of vertices in the same ( k,S)-core 
decreases as � increases. Notably, although an increase in 
� leads to a reduction in the number of vertices across the 
community, the extent of decrease varies among different 
( k,S)-cores. As the value of k increases, the decrease in the 
number of vertices caused by a similar increase in � reduces. 
This finding suggests that vertices within higher ( k,S)-cores 
exhibit greater similarity. Referring to the analysis of Qual-
ity, we can find that on the same heterogeneous graph, given 
the same query vertex, a smaller community means that the 
vertices in the community are more tightly connected.

Efficiency. The efficiency of the search process on the 
reconstructed graph is presented in Fig. 10d–f, which shows 

the running time at different k and � . Notably, with the same 
( k,S)-core value, it can be observed that the running time 
decreases as the similarity threshold � increases. For dif-
ferent datasets, the ( k,S)-core corresponding to the longest 
run time is different, and as k increases, the run time tends 
to rise and then fall. As we mentioned earlier, the similarity 
between vertices is high in a ( k,S)-core with a large value 
of k, but larger k may lead to increased time consuming. We 
can increase efficiency by reasonably increasing the �.

In summary, increasing k and � results in smaller commu-
nities with more interconnected vertices. The time for com-
munity search decreases as � increases in a monotonic trend. 
However, as k increases, the search time tends to increase 
and then decrease. Denoting the inflection point as kt , if we 
select a ( k,S)-core with a k smaller than or near kt , we can 
increase � to obtain a more semantically relevant community. 
This will not only improve the efficiency, but also break the 
topological constraints. When k is larger than kt , we can 
choose a smaller � (at around � = 0.75 ), which improves 
search efficiency and enhances semantic association.

6.4 � Case Study

We conducted a case study to compare the effectiveness 
of SNCS and BatchEcore (a meta-path-based approach) 
[11] on the ASN dataset. In this dataset, each researcher 
is associated with keywords related to their field of study. 
Assume that the query vertex q is Prof. Michael R. Lyu 
(a researcher in computer science); the meta-structure 
is S = A → P → L&&Y → P → A ; the meta-path is 
P = A → P → L → P → A , while k = 14 and � = 0.7 . There 
are 101 and 621 scholars searched by SNCS and BatchEcore, 
respectively. Figure 11a displays the distribution of key-
words in the community, with horizontal coordinates indi-
cating the most frequent keywords and vertical coordinates 
indicating the relative frequency of keywords.

In contrast to the meta-path-based method, the com-
munity obtained by SNCS is highly thematically relevant, 
and its keywords are distributed more centrally. Figure 11b 
reveals the advantages of personalization in SNCS, where 
the vertical coordinate indicates the percentage of people 
containing the keyword to the total number of people in the 
community, denoted as fkey . SNCS has a better fkey than the 
meta-path-based approach for most keywords, especially on 
the keywords with a smaller fkey . This result is in line with 
our expectation. If someone wants to organize a seminar, the 
members of the community found by SNCS not only has a 
concentrated keyword distribution, but also have a higher 
semantic similarity with the query vertex q.
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7 � Conclusion

In this paper, in order to improve the quality of community 
search and find a community with closely related vertices 
and rich semantic meanings, we have formalized and solved 
a new problem, SNCS. To tackle this problem, we first pro-
pose to use meta-structures for community search and design 
an efficient graph reconstruction algorithm with partial edge-
disjoint constraints, to better meet the practical needs. We 
also add topic constraints to find a result community, where 
vertices are not only topologically closely related, but also 
having high semantic similarities. Through extensive experi-
ments and case study analysis, we have demonstrated that 
the resulting communities found by our proposed method are 
tightly cohesive and have good semantic similarities. When 
comparing the quality of the communities found by different 
methods, SNCS is better on all metrics than the compet-
ing methods. Moreover, our proposed method is much more 
efficient, especially on large datasets. In summary, meta-
structures can express more complex relationships among 
vertices, which cannot be achieved by simply combining 
different meta-paths. Adding topic constraints can filter out 

vertices which may have high topological similarity, but low 
semantic similarity to the given query vertex q, resulting in a 
tightly cohesive community from the aspects of both topol-
ogy and semantic meaning.
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