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Abstract
Link prediction in knowledge hypergraphs is essential for various knowledge-based applications, including question answer-
ing and recommendation systems. However, many current approaches simply extend binary relation methods from knowledge 
graphs to n-ary relations, which does not allow for capturing entity positional and role information in n-ary tuples. To address 
this issue, we introduce PosKHG, a method that considers entities’ positions and roles within n-ary tuples. PosKHG uses 
an embedding space with basis vectors to represent entities’ positional and role information through a linear combination, 
which allows for similar representations of entities with related roles and positions. Additionally, PosKHG employs a rela-
tion matrix to capture the compatibility of both information with all associated entities and a scoring function to measure 
the plausibility of tuples made up of entities with specific roles and positions. PosKHG achieves full expressiveness and 
high prediction efficiency. In experimental results, PosKHG achieved an average improvement of 4.1% on MRR compared 
to other state-of-the-art knowledge hypergraph embedding methods. Our code is available at https://​anony​mous.​4open.​scien​
ce/r/​PosKHG-​C5B3/.
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1  Introduction

In knowledge graphs, real-world knowledge is represented as 
triples consisting of a head entity (h), a binary relation (r), 
and a tail entity (t). Recently, knowledge hypergraphs have 
gained increasing attention as a more general and expres-
sive way of representing knowledge, as they can model non-
binary relations commonly found in real-world scenarios. 
A significant portion of relations in the Freebase dataset is 
nonbinary; 61% of relations are nonbinary [1], and more 
than one-third of entities participate in non-binary relations 
[27]. Therefore, examining how knowledge hypergraphs 
can enhance various downstream tasks, such as link pre-
diction and node classification, are significant. However, 
due to the high cost of storing all correct tuples, knowledge 
hypergraphs are often incomplete, making it worthwhile to 
attempt predicting the correctness of hidden tuples based 
on existing tuples.

N-ary relations, which describe relationships between 
more than two entities, offer a more nuanced and expres-
sive way to model complex semantics. In Fig. 1, an oval 
represents a tuple, while a circle represents an entity. The 
entities in the tuple are arranged in a specific order, each 
occupying a unique position and fulfilling a particular role. 
The position represents the order of entities in a tuple. The 
role is distinct from the entity type and is defined by a par-
ticular relation at a specific position, serving as the semantic 
meaning of the entity in the tuple. For example, in relation to 
SportAward, the roles of entities at positions 1, 2, and 3 are 
defined as Award, Season, and Winner, respectively. They 
are represented by the entities Best Scorer, Season 07-08, 
and LeBron James, indicating that "LeBron James won the 
best scorer award in the 07-08 season." If LeBron James and 
Season 07-08 are swapped, the fact represented by the tuple 
would be inconsistent with reality. This definition was first 
introduced by Wen et al. [27]. All entities and their respec-
tive roles determine the meaning of the tuple. The impor-
tance of considering roles and positions in the modeling of 
knowledge hypergraphs is clear from this example. At the 
same time, prior work has yet to focus on using position and 
role information in knowledge hypergraph modeling.
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Several previous studies have focused on the link pre-
diction task in knowledge hypergraphs. However, these 
existing methods [11–30, 1, 19] overlook the importance of 
positions and roles and continue to utilize binary modeling 
ideas similar to those used in knowledge graphs. Specifi-
cally, these methods embed n-ary relations and entities into 
a low-dimensional space without considering the specific 
order of entities and employ these embeddings to assess 
the plausibility of tuples. For example, m-TransH [27] and 
RAE [32] both extend the knowledge graph model TransH 
[25] by projecting entities onto relation-specific hyper-
planes for tuple plausibility scoring, but these models have 
limited expressivity [30, 11], while HypE [1] and GETD 
[30] extend the knowledge graph model SimplE [11] and 
TuckER [2], respectively. However, these models entirely 
ignore position and role semantics [10]. On the other hand, 
NaLP [9], HINGE [18], and NeuInfer [10] do consider role 
information. However, they only utilize neural networks to 
measure tuple plausibility and do not consider the effect of 
entity position on semantics. To the best of our knowledge, 
no model currently considers both positional information 
and role semantics in the context of knowledge hypergraphs.

Therefore, we have identified that, in order to fully and 
expressively represent knowledge hypergraphs, the follow-
ing requirements must be met: (1) the complex semantics of 
tuples in terms of roles and positions should be taken into 
account during the modeling process, including the seman-
tic relationships among roles, positions, and entity compat-
ibility, and (2) the modeling method should be sufficiently 
expressive to represent all types of relations. To the best of 
our knowledge, none of the existing methods fully satisfy 
these requirements.

In this paper, we focus on each tuple’s role and position 
features in knowledge hypergraphs and propose a Position-
award Knowledge HyperGraph embedding model with 

full expressivity for knowledge hypergraphs. Unlike previ-
ous knowledge hypergraph embedding methods, PosKHG 
introduces a latent space for positions and roles, such that 
entities with related roles and the same positions have simi-
lar representations. Additionally, PosKHG learns a relation 
matrix for each relation to capture its compatibility with all 
related entities and devises a scoring function for efficient 
prediction. The critical innovation of PosKHG is its ability 
to model knowledge hypergraphs in terms of positions and 
roles.

The contributions of this paper are as follows:

•	 PosKHG is a novel knowledge hypergraph embedding 
model that predicts links in knowledge hypergraphs. It 
strengthens the emphasis on the roles and positions of 
entities in n-ary relations. It learns a latent space and a 
relation matrix of roles to capture semantic relatedness 
and compatibility.

•	 We prove that PosKHG is fully expressive for knowledge 
hypergraphs, which can model all patterns of relations 
without any limitation.

•	 Extensive experiments are conducted on six representa-
tive datasets, demonstrating that PosKHG achieves state-
of-the-art performance on knowledge hypergraph data-
sets and comparable performance on knowledge graph 
datasets.

The rest of this paper is organized as follows. In Sect. 3, we 
introduce the preliminaries. In Sect. 4, we provide a detailed 
description of PosKHG. Section 5 presents a theoretical 
analysis of PosKHG’s full expressivity and complexity. In 
Sect. 6, we present the results of our experiments. Finally, 
we conclude this paper in Sect. 7.

2 � Related Work

Our algorithm is conceptually related to previous models in 
knowledge graphs and recent models in knowledge hyper-
graphs, which can be classified into two categories.

2.1 � Link Prediction in Knowledge Graphs

One popular approach to modeling knowledge graphs is ten-
sor decomposition, exemplified by methods like RESCAL 
[17] and ComplEx [23]. RESCAL associates knowledge 
graphs with three-way tensors of head entities, relations, 
and tail entities and learns entity and relation embeddings 
to minimize reconstruction error. ComplEx similarly asso-
ciates each relation with a matrix of head and tail entities, 
decomposed and learned like RESCAL. However, the main 
drawback of tensor decomposition methods is that they 
are limited to modeling a specific arity of relations. At the 

Fig. 1   An example of the knowledge hypergraph for Lebron James is 
shown. Each relation in the knowledge hypergraph consists of entities 
with semantic roles assigned to specific positions. These roles may 
be explicit or implicit, while the positions are always explicit. In the 
figure, the roles are explicitly indicated
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same time, PosKHG can predict multiple arities of relations 
simultaneously.

Translation-based methods, such as TransE [4, 24], 
treat each valid triple as a translation from a head entity 
to a tail entity through their relation. Subsequently, several 
improved methods based on TransE have been proposed, 
including TransH [25], which introduces a relation-specific 
hyperplane. In TransH, entities are projected onto the rela-
tional hyperplane before translation. However, these meth-
ods are limited to modeling symmetric relations, while our 
method, PosKHG, can model any pattern of relations with 
full expressiveness.

Neural network-based methods model the effectiveness 
of triples using techniques such as convolutional layers and 
fully connected layers. For example, ConvKB [16] repre-
sents each triple as a three-column matrix fed into these 
layers to generate an effectiveness score. Nathani [15] pro-
posed a generalized graph attention model as an encoder 
to capture neighborhood features and applied ConvKB as a 
decoder. While these methods can be effective, they often 
come with high time complexity. In contrast, the complexity 
of our method, PosKHG, is linear in both time and space.

2.2 � Link Prediction in Knowledge Hypergraphs

Since binary relations simplify the complexity of real-world 
facts, some recent studies have tried to represent and predict 
links in knowledge hypergraphs, primarily through embed-
ding-based methods. These studies represent n-ary facts as 
tuples with predefined relations and generalize binary rela-
tion methods to n-ary cases.

m-TransH [27] and RAE [32] extend the TransH model 
[25], which is a translation embedding model for binary 
relations, to the n-ary case. However, these models are not 
fully expressive and cannot model asymmetric relations. 
They also do not consider the influence of role and position 
on tuple semantics. NaLP [9] and HINGE [18] represent 
n-ary facts as attribute-value pairs and model the associa-
tions between these attributes and values. However, these 
methods assume that the properties of n-ary facts are equally 
important, which is not always the case in reality. In contrast, 
our method, PosKHG, uses the tuple form where different 
entities have different levels of importance, more reflective 
of real-world scenarios.

RAM [14] and NeuInfer [10] consider incorporating 
entity role information into embeddings, using tensor 
decomposition-based and neural network-based methods, 
respectively, to measure tuple plausibility. However, these 
models only consider role semantics and do not consider 
the effect of positional information. To the best of our 
knowledge, no existing work considers both entity role and 
positional semantics in knowledge hypergraph modeling. 
Therefore, we propose PosKHG, which utilizes both role 

and positional information to improve the performance of 
knowledge hypergraph link prediction.

3 � Preliminaries

This section presents the preliminaries of the knowledge 
hypergraph and the link prediction task. The notations 
used throughout the paper are summarized in Table 1.

Definition 1  (Knowledge Hypergraph) A knowledge hyper-
graph is defined as H = (E,R, TO) , where E , R , and TO is a 
finite set of entities, relations, and observed tuples, respec-
tively. ti = r(�r

1
∶ e1, �

r
2
∶ e2, ..., �

r
�
∶ e�) denotes a tuple 

where r ∈ R is a relation, each ei ∈ E is an entity, i is the 
position index, each �r

i
 is the corresponding role of relation 

r, and � is the non-negative integral arity of the relation r.

After defining the knowledge hypergraph, which fol-
lows the definition given by Liu et al. [14], we define the 
task of link prediction in knowledge hypergraphs.

Definition 2  (Link Prediction in Knowledge Hypergraphs) 
Let T  denote all tuples set, TO ⊆ TT ⊆ T  indicates the rela-
tionship among the set of observed, all ground truth, and all 
tuples, respectively. The hidden tuples set TH is the differ-
ences between T  and TO . Given the observed tuples TO , the 
aim of link prediction in knowledge hypergraphs is to predict 
the labels of the hidden tuples TH.

Table 1   Notations and explanations

Notation Explanation

H Knowledge hypergraph
e, E Entity and entity set
r,R Relation and relation set
� Arity of relation
t, T, T

T
, T

O
, T

H
Tuple and four kinds of tuple sets

L Latent space size of role
d Embedding dimension
�r Role of relation r
� Scoring function
� Element-wise softmax function
e, c Embedding of entity and role
b Role latent vector
w Weight vector of role latent vector
B Basis matrix of relation
R Relation matrix
⟨⋅⟩ Multi-linear product
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4 � The PosKHG Model

As previously mentioned, positions and roles are crucial 
elements of knowledge hypergraphs, as they help identify 
entities’ semantics and relations. In particular, positions 
and roles play a crucial role in determining the plausibility 
of tuples in knowledge hypergraph modeling by consider-
ing two key aspects.

•	 One key aspect of knowledge hypergraph modeling is 
the semantic relatedness of roles in n-ary relational 
tuples. For example, data from the WikiPeople dataset 
[9] show that over 80% of the roles found in n-ary rela-
tions also appear in 2-arity relations. This highlights 
the importance of considering the shared semantics of 
different roles in knowledge hypergraph modeling.

•	 Another factor contributing to the plausibility of tuples 
in knowledge hypergraph modeling is the compatibility 
between positions, roles, and entities, e.g., in Fig. 1, 
the role of “Player” and the corresponding entity of 
“LeBron James” interact with the entities of “Small 
Forward” and “Cavaliers” to affect the overall plau-
sibility of the tuple. In other words, the compatibility 
between different elements within a tuple is crucial for 
accurately modeling knowledge using hypergraphs.

To address these issues, we propose a method called 
PosKHG that models knowledge hypergraphs at the role 
and position level, allowing for the capture of the semantic 
relatedness between roles and positions through a latent 
space. A relation matrix is also used to represent the com-
patibility between roles, positions, and all relevant entities. 
To measure the plausibility of tuples, we use a multi-linear 
product, which allows for full expressiveness. The overall 
structure of PosKHG is depicted in Fig. 2.

4.1 � Latent Space for Roles and Positions

Since one entity may correspond to multiple positions and 
roles in a knowledge hypergraph dataset, such as the entity 
LeBron James in Fig. 1, the multi-embedding mechanism 
[22] is designed for entities and maps each entity ei ∈ E to 
multiple embeddings. Let ei ∈ ℝ

m×d denote entity embed-
ding, m be the layers of multi-embedding, d be the embed-
ding dimension.

Inspired by sharing feature information of training exam-
ples in machine learning [26, 35, 28], in order to utilize 
semantic information about the positions and roles of the 
entities, a latent space is built for roles with L role latent 
vectors bl ∈ ℝ

d, l = 1, 2, ..., L . First of all, the role embed-
ding cr

i
 is computed by a combination of role latent vectors:

where wr
i
∈ ℝ

L is the weight vector of the role latent vector, 
known as the role weights. As a result, semantic relatedness 
is parameterized implicitly by role weights, while the weight 
vector needs to be normalized by the element-wise Softmax 
function � for all l and l′ ≤ L:

After obtaining the role embedding, it further assigning 
various semantics to entities that at different positions. 
To be specific, the entity embedding and the role embed-
ding are multiplied to obtain an embedding e�

i
= ei ⋅ c

r
i
 that 

incorporates the role semantics. Moreover, the i-th positional 
semantics is combined by the concatenation function cat:

where cat(v, x) shifts vector v to the left by x steps.

4.2 � Relation Matrix

The relations in knowledge hypergraphs consist of enti-
ties at different positions and corresponding roles. Fig-
ure 3 illustrates the latent space for roles. To measure the 
degree of compatibility among the positions, roles, and 
all participated entities, the roles at each position in the 
relation are learned with a relation matrix. For a relation 
r ∈ R , the relation matrix for the role at the i-th position 
is represented by Rr

i
∈ ℝ

�×m , where the j-th row Rr

i
[j, ∶] 

(1)c
r
i
=

L∑

l=1

bl ⋅ �(w
r
i
)[l]

(2)�(wr
i
)[l] = exp(wr

i
[l])∕

L∑

l�=1

exp(wr
i
[l�])

(3)e
�
i
= (e1

i
, cat(e2

i
,m ⋅ d∕�), ..., cat(e�

i
,m ⋅ d ⋅ (� − 1)∕�))

Fig. 2   Overview of PosKHG. Each entity generates an entity embed-
ding, combining it with the role embedding to integrate the role 
semantics. Then, implements the incorporation of the positional 
semantics through concatenation operation. The relation matrix is 
produced by combining the basis matrices of a relation. Finally, entity 
embedding, role embedding, and relation matrix of each entity are fed 
into the scoring function to calculate the confidence score of the tuple



139PosKHG: A Position‑Aware Knowledge Hypergraph Model for Link Prediction﻿	

1 3

denotes the compatibility with multi-embedding of the j-th 
position entity. With a designed latent space of positions 
and roles, the relation matrix can be learned as follows 
for all i ≤ �:

where Bl ∈ ℝ
�×m is the basis matrix of relation linked with 

latent vector of role bl in the latent space. The entire basis 
matrix is also normalized by � . The basis relation matrix 
Bl is aligned with the latent role vector bl , which is used to 
compute for role embeddings and relation matrices.

4.3 � Scoring Function

The scoring function employs a multi-linear product 
approach to calculate the confidence of the knowledge hyper-
graph tuple, which can effectively improve the performance 
and introduce fewer parameters, making the training more 
efficient. For each tuple ti = r(�r

1
∶ e1, �

r
2
∶ e2, ..., �

r
�
∶ e�) , 

the score of tuples is calculated by the following equation:

(4)R
r
i
=

L∑

l=1

�(wr
i
)[l] ⋅ �(Bl)

where Rr

i
[1, ∶]e1 captures the compatibility between the 

role �r
i
 and i-th entity ei , i.e., the multi-embedding of ei is 

weighted by the elements of Rr

i
[1, ∶] . Each summation term 

of the multi-linear product is the compatibility of the entity 
with the corresponding role at a different position.

4.4 � Model Training

Generally, the knowledge hypergraph only provides posi-
tive examples, while negative examples need to be sam-
pled by some way. Based on the scoring function designed 
above, the training loss and the learning target of the 
model are designed in the following way. For each positive 
tuple t ∈ TO , the negative samples are obtained by replac-
ing the entity linked with �r

i
 . The strategy generalizes from 

the ones in the binary case:

Furthermore, an instantaneous multi-class log-loss is 
adopted and a optimizer of an empirical risk is formulated 
as follows:

where the set E, B, W, and B contains all elements of ei , bi , 
w

r
i
 , and Bi , respectively, the Softmax loss guarantees that 

exactly one correct sample is learned among the candidates.
Algorithm 1 is the training process of PosKHG. For 

each tuple sampled from a knowledge hypergraph, its 
negative sample is obtained at first. Next, the embeddings 
and the relation matrix are computed. Then, the confidence 
score of this sampled tuple is calculated. Finally, PosKHG 
is trained in mini-batch to minimize the above empirical 
risk formulation.

(5)�(t) =

��

i=1

⟨cr
i
,Rr

i
[1, ∶]e1, ...,R

r
i
[�, ∶]e�⟩

(6)S
(i)
t
=

𝛼⋃

i=1

{r(e1, ..., êi, ..., e𝛼) ∉ TO ∣ êi ∈ E, êi ≠ ei}

(7)

min
ei∈E,bi∈B,w

r
i
∈W,Bi∈B

�

t∈TO

��

i=1

− log
�
exp(�(t))∕(exp(�(t))

+
�

t�∈S
(i)
t

exp(�(t�)))

⎤
⎥
⎥
⎦

Fig. 3   Latent space for roles and relation matrices in PosKHG, with 
the multiplicity of entity embeddings m = 2 (in example of relation 
TeamRoster with roles (player, position, and team))
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Algorithm 1 Training procedure for PosKHG
Require: Observed tuples TO, iteration count niter, mini-batch size mb, latent

space size L
Ensure: Role embedding, entity embedding, relation matrices
1: for t = 1, ..., niter do
2: Sample a mini-batch Tbatch ⊆ TO of size mb

3: for each tuple t ∈ Tbatch do
4: Construct negative samples for tuple t
5: cri ← compute role embeddings using (1)
6: e′i ← compute entity embeddings using (3)
7: Rr

i ← compute relation matrices using (4)
8: Update learnable parameters w.r.t. gradients based on the whole

objective in (7) =0

5 � Theoretical Analysis

Table 2 summarizes the role-aware and position-aware prop-
erties, expressiveness, and the time and space complexity of 
existing n-ary relational approaches.

The PosKHG model is fully expressive, indicating that 
the model can correctly learn any valid n-ary relation in the 
knowledge hypergraph without being restricted to a specific 
pattern of relations. Given any ground truth tuples in the 
knowledge hypergraph, at least one embedding assignment 
of the model can correctly separate valid tuples from inva-
lid ones. Furthermore, the PosKHG model can achieve a 
linear time and space complexity. Its embedding dimension 
constraint is presented in Theorem 1, and the complexity 
analysis is conducted.

Theorem 1  For any ground truth over entities E and rela-
tions R of the knowledge hypergraph containing � ≥ 1 
ground truth tuples, there exists a PosKHG model with 
the embedding dimension d = � , the multiplicity of entity 

embedding m = maxr∈R� , and the latent space size L = � , 
which accurately represents the ground truth tuple.

Proof  Let TT  be the set of all ground truth tuples in the 
knowledge hypergraph with � = |TT | . Then, the statement 
of Theorem 1 is equivalent to assigning parameters entity 
embeddings E, role basis vectors B, role weights W, and rela-
tion basis matrices B to PosKHG. Under the conditions of 
embedding dimension d = � , multiplicity of entity embed-
dings m = maxr∈R� , and latent space size L = � , the scoring 
function can be expressed as follows:

when � ≥ 1 , for each entity e ∈ E with multiple embeddings 
e ∈ Rm×d , e[i, j] is set to 1 if the entity e involves with the 
i-th role of the j-th tuple in TT , and to 0 otherwise. As for 
the latent space, an identity matrix IL is concatenated by the 
role latent vectors [b1, ..., bl] . The form of the relation basis 
matrix is Bi = [I� , 0] ∈ {0, 1}�×m . Since an identity matrix 

(8)�(t) =
{

> 0, if t ∈  all

= 0, if t ∉  all , for t: = {�r1:e1, ..., �
r
�:e�}

Table 2   A comparison of knowledge hypergraph models. The role-
aware property considers the semantic relatedness between differ-
ent roles and the compatibility between roles and entities. The posi-
tion-aware property involves considering the semantic information 
between entities and the compatibility between relations and entities. 

N/A terms are not definite in literature. Additionally, m
e
 and m

r
 rep-

resent the number of entities and relations in the model. In contrast, 
m

a
 is the maximum arity of the knowledge hypergraph, and d is the 

embedding dimensionality

Model Role-aware Position-aware Expressive Otime Ospace

m-TransH × × × O(d) O(m
e
d + 2m

r
d�)

RAE × × × O(d2) O(m
e
d + 2m

r
d�)

NaLP × × N/A O(d2) O(m
e
d + m

r
m

a
d�)

HINGE × × N/A O(d2) O(m
e
d + m

r
m

a
d�)

NeuInfer × × N/A O(d2) O(m
e
d + m

r
m

a
d�)

HypE × ✓ ✓ O(d) O(m
e
d + m

r
d�)

RAM ✓ × ✓ O(d) O(m
e
d + Lm

r
d�)

PosKHG ✓ ✓ ✓ O(d) O(m
e
d + Lm

r
m�)
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is a group of latent vectors for R� , the role weights {Wr

i
} can 

be assigned to satisfy that cr
i
[j] = 1 if the relation r involves 

with the j-th tuple in TT , and cr
i
= 0 otherwise. Then, the 

confidence score of the j-th ground truth tuple can be calcu-
lated by PosKHG through the following equation:

and each summation term is equal to 1, the score for t is 
𝜙(t) = 𝛼 > 0

As for �(t) = 0 , assume there exists a false tuple t ∉ TT , 
𝜙(t) > 0 . Based on this assumption, there is at least one 
position j to ensure that cr

i
[j] = 1 and the j-th elements of 

R
r

i
[1, ∶]e1, ...,R

r

i
[�, ∶]e� are all equal to 1. However, this can 

only happen when entities e1, ..., e� and relation r appear in 
the j-th tuple of TT simultaneously, and then, t ∈ TT which 
contradicts the initial assumption. So that when t ∉ TT  , 
�(t) = 0 . 	�  ◻

For the time complexity, since our scoring function 
uses a multi-linear product, the linear time complexity 
is O(d) . For space complexity, since the arity of rela-
tions in the knowledge hypergraph is rarely higher than 
6 (as shown in Table 3), the assignment of parameter 
m will not exceed 3. If let m� be the maximum arity of 
relation in the knowledge hypergraph, me be the num-
ber of entities, mr be the number of relations, the param-
eters spent on the role latent vector, the basis matrix 
of relation, and the role weight vector are at most 
O(med + Lmrm� + Ld + Lmm�) = O(med + Lmrm�) . Thus, 
the PosKHG model remains linear in both time and space.

6 � Experiments

The performance of PosKHG was evaluated on two types 
of benchmarks. Section  6.1 describes the experimen-
tal setups, including the datasets and baselines used. In 

(9)�(t) =

��

i=1

⟨cr
i
,Rr

i
[1, ∶]e1, ...,R

r
i
[�, ∶]e�⟩

Sect. 6.2, we present the results of experiments designed 
to predict hidden tuples or hidden triples.

6.1 � Experiment Settings

6.1.1 � Datasets

The experiments on link prediction were conducted on 
six datasets. The knowledge hypergraph dataset JF17K 
was proposed by Wen et al. [27], while FB-AUTO was 
proposed by Fatemi et al. [1]. As no validation set was 
proposed for JF17K, we randomly selected 20% of the 
train set as validation. Four standard knowledge graph 
benchmarks, i.e., WN18, FB15k, WN18RR, and FB15k-
237 were used for link prediction in knowledge graphs. 
The detailed statistics of the datasets are summarized in 
Table 3.

6.1.2 � Baselines

For link prediction in knowledge hypergraphs, we compare 
PosKHG with the state-of-the-art approaches, including 
RAE [32], NaLP [9], HINGE [18], NeuInfer [10], HypE 
[1], and RAM [14]. In addition, GETD [30] can only model 
single-arity knowledge hypergraphs and therefore is not 
included in the comparison. As for link prediction in knowl-
edge graphs, we compared PosKHG with several baselines, 
including TransE [3], DistMult [24], ComplEx [23], Sim-
plE [11], RotatE [21], TuckER [2], HAKE [31], DualE [5], 
AutoSF [34], and ComplExRP [6].

6.1.3 � Evaluation Metrics

Two evaluation metrics were employed to compare the per-
formance of different link prediction methods: mean recip-
rocal rank (MRR) and Hit@K, where H@K is in %, and 
all results in Sect. 6.2 are rounded. Two metrics above are 
measured by ranking a test tuple t within a set of replaced 
tuples. For each tuple in the test set and each position i in 

Table 3   Dataset statistics

Dataset # entities # relations # train # valid # test # arity = 2 # arity = 3 # arity = 4 # arity = 5 # arity 
= 6

FB15k 14, 951 1345 483, 142 50, 000 59, 071 592, 213 0 0 0 0
WN18 40, 943 18 141, 442 5000 5000 151, 422 0 0 0 0
FB15k-237 14, 541 237 272, 115 17, 535 20, 466 310, 116 0 0 0 0
WN18RR 40, 493 11 86, 835 3034 3134 93, 003 0 0 0 0
JF17K 29, 177 327 77, 733 – 24, 915 56, 332 34, 550 9509 2230 37
FB- AUTO 3388 8 6778 2255 2180 3786 0 215 7212 0
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the tuple, |E| − 1 replaced tuples are generated by replacing 
the entity ei with each entity in E�{ei}.

6.2 � Results

6.2.1 � Link Prediction in Knowledge Hypergraphs

Table 4 shows that PosKHG improves the MRR on the FB-
AUTO dataset by at most 2.6%. When modeling knowledge 
hypergraphs, RAE, NaLP, and HINGE ignore positional and 
role semantics. RAE is based on generalizing the TransH 
translation model for knowledge hypergraphs. However, it 
is not fully expressive and can only model symmetric rela-
tions, leading to lower prediction performance than state-of-
the-art models. NaLP and HINGE split tuples into primary 
tuple and auxiliary key-value pair attributes, which ignore 
the semantic information of positions and roles, resulting in 
lost information and lower prediction performance.

HypE is a generalization of the SimplE model, which 
variates the position differences but not the role. The experi-
mental results of RAM (only considering roles) outperform 
that of HypE, which further illustrates the importance of 
role semantics in link prediction. While NeuInfer and RAM 
model the knowledge hypergraph using neural networks and 
tensor decomposition-based methods, respectively, which 
consider the difference in role semantics but not the posi-
tional information. The lack of utilizing positional infor-
mation causes the worse experimental results of PosKHG, 
which fully justifies the significance of positional informa-
tion for knowledge hypergraph modeling.

We conducted an ablation study that separately excluded 
position and role information and labeled the results as 
PosKHG⊛ and PosKHG⋇ , respectively, to demonstrate the 
importance of position and role information in link predic-
tion tasks. As shown in Table 4, the experimental results for 
PosKHG⊛ are still better than those for RAM, which only 
considers role semantics, and the results for PosKHG⋇ are 

still better than those for HypE, which only considers posi-
tion semantics. However, the performance of both variants 
is inferior to that of PosKHG. This supports our conclu-
sion that both position and role information are essential for 
knowledge hypergraph modeling.

6.2.2 � Link Prediction with Different Arities

As shown in Fig. 4, to compare PosKHG with other models, 
we conducted experiments on knowledge hypergraphs with 
fixed arity using the JF17K-3 and JF17K-4 datasets, subsets 
of JF17K containing tuples with specific arities of relations. 

Table 4   Results of Link 
Prediction on Knowledge 
Hypergraph Datasets

Bolded and underlined are the highest and second highest performance results under the current evaluation 
metric, respectively

Model JF17K FB-AUTO

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

RAE 0.396 0.312 0.433 0.561 0.703 0.614 0.764 0.854
NaLP 0.310 0.239 0.334 0.450 0.672 0.611 0.712 0.774
HINGE 0.473 0.397 0.490 0.618 0.678 0.765 0.706 0.765
NeuInfer 0.451 0.373 0.484 0.604 0.737 0.700 0.755 0.805
HypE 0.507 0.421 0.550 0.669 0.804 0.774 0.824 0.856
RAM 0.539 0.463 0.573 0.690 0.830 0.803 0.851 0.876
PosKHG⊛ (Ours) 0.541 0.462 0.575 0.695 0.843 0.810 0.857 0.885
PosKHG⋇ (Ours) 0.521 0.442 0.551 0.664 0.823 0.794 0.840 0.862
PosKHG (Ours) 0.545 0.469 0.582 0.706 0.856 0.821 0.876 0.895

Fig. 4   Link Prediction in Knowledge Hypergraph with Fixed Arity on 
JF17K Dataset



143PosKHG: A Position‑Aware Knowledge Hypergraph Model for Link Prediction﻿	

1 3

Among the translational models, we only include RAE, an 
improved version of m-TransH. As baselines, we use the 
tensor decomposition models GTED and the neural network 
models NaLP, HINGE, and NeuInfer.

The performance on knowledge hypergraph data with 
fixed arity is shown in Table 5. The tensor decomposition 
model generally outperforms other models. This is likely 
due to their intense expressiveness. Our proposed PosKHG 
consistently achieves state-of-the-art performance on all 
benchmark datasets due to its consideration of both posi-
tion and role in its design.

Table 5 presents the results of directly predicting tuples of 
different arities after training on the entire knowledge hyper-
graph dataset. The RAM model considers role semantics 
but not positions, while GETD, an extension of the TuckER 
model, only considers positions but not roles.

PosKHG performs the best on all arities of relations in 
the FB-AUTO dataset, and on the JF17K dataset, it performs 
the best on high-arity relations. This is likely due to low-
arity data noise during the training process for high-arity 
predictions. PosKHG improves by an average of 4.1% on 
all arities compared to RAM, demonstrating the importance 

Table 5   Results of Link 
Prediction on different arities of 
knowledge hypergraph datasets

Bolded values indicate the highest performance results under the current evaluation metric

Model JF17K FB-AUTO

2 3 4 5 6 2 4 5

GETD 0.339 0.583 0.751 0.746 0.350 0.524 0.237 0.786
RAM 0.337 0.578 0.736 0.805 0.697 0.557 0.456 0.904
PosKHG (Ours) 0.334 0.577 0.739 0.813 0.708 0.572 0.477 0.912

Table 6   Results of link prediction on knowledge graph datasets

Bolded and underlined are the highest and second highest performance results under the current evaluation metric, respectively

Model WN18 FB15k WN18RR FB15k-237

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

TransE 0.495 0.113 0.943 0.463 0.297 0.749 0.226 – 0.501 0.294 – 0.46
DistMult 0.822 0.728 0.936 0.654 0.546 0.824 0.430 0.390 0.490 0.241 0.155 0.419
ComplEx 0.941 0.939 0.947 0.727 0.660 0.838 0.440 0.410 0.510 0.247 0.158 0.428
SimplE 0.942 0.939 0.947 0.727 0.838 0.660 – – – – – –
RotatE 0.949 0.944 0.959 0.797 0.746 0.884 0.476 0.428

–
–

0.571 0.338 0.241 0.533

TuckER 0.953 0.949 0.958 0.795 0.741 0.892 – – – – – –
HAKE – – – – – - 0.497 0.452 0.582 0.346 0.250 0.542
DualE 0.951 0.945 0.961 0.790 0.734 0.881 – – – – – –
AutoSF 0.952 0.947 0.961 0.853 0.821 0.910 0.490 0.451 0.567 0.360 0.267 0.552
ComplExRP – – – – – – 0.488 0.443 0.578 0.388 0.298 0.568
PosKHG (Ours) 0.943 0.940 0.949 0.801 0.751 0.877 0.496 0.449 0.577 0.349 0.248 0.544

Fig. 5   Effects of embedding dimensionality d, latent space size L, and multiplicity of entity embeddings m on the testing MRR on JF17K dataset
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of considering both positional and role information for link 
prediction tasks in knowledge hypergraphs.

6.2.3 � Link Prediction in Knowledge Graphs

PosKHG achieves the second-best results on MRR and 
Hit@1 metrics and performs comparably on FB15k. These 
results demonstrate that while PosKHG may not achieve 
the optimal performance on binary datasets, it can achieve 
performance similar to binary relation models (Table 6). 
This shows that its design, which considers both position 
and (implicit) role, equally applies to knowledge graphs.

6.2.4 � Sensitivity of Hyperparameters

Figure 5 further investigates the influence of critical hyper-
parameters on the JF17K dataset, including the embedding 
dimensionality (d), the latent space size (L), and the multi-
plicity of entity embeddings (m). Since the full expressive-
ness of PosKHG guarantees its learning capacity, it consist-
ently performs well when d is greater than 30 (Fig. 5a). As 
for Fig. 5b, a small latent space size ( L ≥ 5 ) is sufficient 
for robust performance, which confirms the effectiveness of 
role semantic relatedness in knowledge hypergraphs. Fig-
ure 5(c) shows a peak point with the multiplicity of entity 
embeddings providing the best coverage for entity semantics 
when m = 3 or 4. Larger values of m lead to overfitting and 
intractable learning. Existing bilinear models also choose 
small values of m, such as m = 3 in DistMult and SimplE. 
Therefore, an appropriate value for m is 3 to 5, while the 
optimal values for the embedding dimensionality and latent 
space size depend on the scale of the dataset.

7 � Conclusion

In this paper, we propose a link prediction model PosKHG 
for knowledge hypergraphs, which learns the embedding 
representation from both role and position levels. Leveraging 
the latent space for entity semantic relatedness of role and 
position and relation matrix for entity compatibility achieves 
precise accuracy for link prediction, full expressiveness, and 
more generalized modeling of knowledge hypergraphs. The 
experimental results on both knowledge hypergraph datasets 
and four knowledge graph datasets demonstrate the superior-
ity and robustness of PosKHG.
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