
Vol:.(1234567890)

Data Science and Engineering (2021) 6:310–322
https://doi.org/10.1007/s41019-021-00163-3

1 3

Efficient Personalized Influential Community Search in Large Networks

Yanping Wu1 · Jun Zhao1 · Renjie Sun1 · Chen Chen1 · Xiaoyang Wang1 

Received: 20 January 2021 / Revised: 12 March 2021 / Accepted: 18 April 2021 / Published online: 29 April 2021
© The Author(s) 2021

Abstract
Community search, which aims to retrieve important communities (i.e., subgraphs) for a given query vertex, has been widely
studied in the literature. In the recent, plenty of research is conducted to detect influential communities, where each vertex
in the network is associated with an influence value. Nevertheless, there is a paucity of work that can support personalized
requirement. In this paper, we propose a new problem, i.e., maximal personalized influential community search. Given a
graph G, an integer k and a query vertex u, we aim to obtain the most influential community for u by leveraging the k-core
concept. To handle larger networks efficiently, two algorithms, i.e., top-down algorithm and bottom-up algorithm, are devel-
oped. In real-life applications, there may be a lot of queries issued. Therefore, an optimal index-based approach is proposed
in order to meet the online requirement. In many scenarios, users may want to find multiple communities for a given query.
Thus, we further extend the proposed techniques for the top-r case, i.e., retrieving r communities with the largest influence
value for a given query. Finally, we conduct extensive experiments on 6 real-world networks to demonstrate the advantage
of proposed techniques.

Keywords  Influential community · Personalized search · k-core · Top-r

1  Introduction

Retrieving communities and exploring the latent structures
in the networks can find many applications in different fields,
such as protein complex identification, friend recommenda-
tion, event organization, etc. [9, 11]. There are two essen-
tial problems in community retrieval, that is, community
detection and community search. Generally, given a graph,
community detection problem aims to find all or top-r com-
munities from the graph [13, 18], while community search
problem is to identify the cohesive communities that contain
the given query vertex [7, 20]. In this paper, we focus on

the category of community search problem, which is very
important for personalized applications. For instance, we
can conduct better friend recommendation by identifying the
important community that contains the query users. Simi-
larly, we can make better event organization by retrieving the
community, which contains the user that we want to invite.

In the literature, lots of research tries to find personal-
ized communities by emphasizing the structure cohesive-
ness, while, in many cases, we also need to consider the
influence of obtained communities. Recently, there are some
research that tries to find communities with large influence,
e.g., [2, 3, 16]. In [16], Li et al. propose a novel community
model called k-influential community, where each vertex is
associated with a weight (i.e., influence value) in the graph.
A community (i.e., subgraph) is essential when it is cohe-
sive and has large influence value. Efficient algorithms are
developed to obtain the top-r communities with the largest
influence value. Given the importance of the problem, [2,
3] try to speed up the search from different aspects. Since
influence value is user’s natural property, by considering the
influence value, it can lead us to identify more significant
communities.

Nevertheless, the existing works on influential commu-
nity detection mainly focus on finding all or top-r influential

 *	 Xiaoyang Wang
	 xiaoyangw@zjgsu.edu.cn

	 Yanping Wu
	 yanpingw.zjgsu@gmail.com

	 Jun Zhao
	 junzhao.zjgsu@gmail.com

	 Renjie Sun
	 renjiesun.zjgsu@gmail.com

	 Chen Chen
	 chenc@zjgsu.edu.cn

1	 Zhejiang Gongshang University, Hangzhou, China

http://orcid.org/0000-0003-3554-3219
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-021-00163-3&domain=pdf

Efficient Personalized Influential Community Search in Large Networks﻿	

1 3

311

communities. The personalized situation is not considered.
To fill this gap, in this paper, we propose the maximal per-
sonalized influential community (MPIC) search problem.
Given a graph G, an integer k and a query vertex q, the
MPIC is the community with the largest influence value that
contains q, and satisfies the k-core (i.e., the degree of each
vertex inside is no less than k), connectivity (i.e., the sub-
graph is connected) and maximal (i.e., no other supergraph
satisfies the previous criteria) constraints. As defined in the
previous work [16], the influence value of a community is
the minimum weight of all the vertices in the community.
Given the graph in Fig. 1, if k = 3 and the query vertex is
v8 , then the vertices in the dotted line is the corresponding
MPIC. Note that, the k-core model is also used in the previ-
ous works to measure the cohesiveness of the community
[2, 3, 16]. In real applications, users may require to retrieve
multiple communities for a given query. The top-r model is
widely adopted for this scenario. Therefore, in this paper, we
also investigate the top-r case, denoted as TPIC, i.e., find-
ing r communities with the largest influence value, which
can facilitate analyzing the significance or global properties
for the query vertex. In addition, users can make a trade-off
between the community influence and community size.

Challenges The main challenges of the problem lie in
the following two aspects. Firstly, the real-world networks,
such as social networks, are usually large in size. It is criti-
cal for the algorithms to scale for large networks. Secondly,
since we investigate the personalized scenario, there may
be plenty of queries generated by users in real applications,
it is important that the developed algorithms can meet the
online requirements.

Contributions To the best of our knowledge, we are the
first to investigate the maximal personalized influential com-
munity (MPIC) search and top-r personalized influential
community (TPIC) search problems. The contributions of
this paper are summarized as follows.

•	 We formally define the MPIC and TPIC search problems.
•	 For the MPIC search problem, to handle large networks,

two algorithms, i.e., top-down algorithm and the bottom-
up algorithm, are developed based on different searching
orders.

Fig. 1   Running example (the
number in the vertex denotes its
weight)

•	 An optimal index-based method is further proposed for
the MPIC search problem in order to meet the online
requirements.

•	 To meet the requirement in real applications, we also
extend the proposed techniques to support the top-r sce-
narios, i.e., TPIC search problem.

•	 We conduct extensive experiments on 6 real-world net-
works to evaluate the performance of proposed tech-
niques. As shown, the developed techniques can signifi-
cantly speed up the search compared with the baseline.

Roadmap The rest of the paper is organized as follows.
In Sect. 2, we briefly introduce the related concepts and
the problems studied. In Sect. 3, three approaches are
proposed to process the maximal personalized influen-
tial community search problem. In Sect. 3.4, we conduct
the extension to further support the top-r personalized
influential community search problem. We demonstrate
the efficiency and effectiveness of proposed techniques in
Sect. 5. Lastly, we introduce the related works in Sect. 6
and conclude the paper in Sect. 7.

2 � Problem Definition

We consider a network G = (V ,E,�) as an undirected graph,
where V and E denote the vertex set and edge set, respec-
tively. Each vertex u ∈ V is associated with a weight denoted
by �(u) , representing the influence of vertex u. The ver-
tex weight can be its PageRank score or other user defined
value. Without loss of generality, we use the same setting
as the previous work for vertex weight, where different
vertices have different weights [16]. Note, if that is not the
case, we use the vertex id to break the tie. We denote the
number of vertices by n = |V| and the number of edges by
m = |E| . A subgraph S = (VS,ES) is an induced subgraph
of G, if VS ⊆ V and ES = {(u, v)|u, v ∈ VS, (u, v) ∈ E} .
Given a subgraph S, the neighbors of u ∈ VS is denoted by
N(u, S) = {v|v ∈ VS, (u, v) ∈ ES} , and deg(u, S) represents
the degree of u in S, i.e., deg(u, S) = |N(u, S)| . In this paper,
we utilize the k-core model to represent the cohesiveness

	 Y. Wu et al.

1 3

312

of a community, which is also widely used in the literature
[2, 16].

Definition 1  (k-core) Given a graph G and a positive integer k, a
subgraph S ⊆ G is the k- core of G, denoted by Ck(G) , if S satis-
fies the following conditions. (i) deg(u, S) ≥ k for each vertex u
in S. (ii) S is maximal, i.e., any subgraph S′ ⊃ S is not a k-core.

To compute the k-core of a graph, we can remove the ver-
tex whose degree is less than k recursively. The time com-
plexity of computing k-core is O(m) [26], and the detailed
algorithm is shown in Algorithm 1. To identify important
communities, we consider both the cohesiveness and the
influence of a community. We employ the widely used influ-
ence value to measure the influence of a community [2, 16].

Definition 2  (Influence value) Given an induced subgraph
S of G, the influence value of S is the minimum weight of
the vertex in VS , denoted as f(S), i.e., f (S) = minu∈VS

�(u).

In the previous works, people usually focus on finding
all or top-r influential communities [2, 3, 16], while, as dis-
cussed, in real applications, it is also essential to identify
the personalized influential communities for different user
queries. Given this requirement, we define the personalized
influential community as follows.

Definition 3  (Personalized Influential Community) Given a
graph G, a positive integer k and a query vertex q, a person-
alized influential community is an induced subgraph S of G,
which meets all the following constraints.

•	 Connectivity: S is connected;
•	 Cohesiveness: each vertex in S has degree at least k;
•	 Personalized: query vertex q is contained in S, i.e., q ∈ VS;
•	 Maximal: there is no other induced subgraph S′ that

(i) satisfies the first three constraints (i.e., connectiv-
ity, cohesiveness and personalized constraints), (ii) is a
supergraph of S, i.e., S′ ⊃ S , and (iii) has the same influ-
ence value as S, i.e., f (S) = f (S�);

Definition 4  (Maximal Personalized Influential Community
MPIC) Given a graph G, a positive integer k and a query

vertex q, the m aximal personalized i nfluential c ommunity,
short as MPIC, is the personalized influential community
with the largest influence value.

Definition 5  (Top-r Personalized Influential Community
(TPIC)) Given a graph G, two integers k, r and a query ver-
tex q, the t op-r p ersonalized i nfluential c ommunities,
short as TPIC, is the r personalized influential communities
with the largest influence value.

Problem Statement 1 Given a graph G = (V ,E,�) , a
query vertex q and a positive integer k, we aim to develop
efficient algorithm to find the MPIC for the query, denoted
by MPIC(q , k).

Problem Statement 2 Given a graph G = (V ,E,�) , a
query vertex q, and two positive integers k, r, we aim to
develop efficient algorithms to find the TPIC for the query,
denoted by TPIC(q , k , r).

Example 1  As shown in Fig. 1, the number in each vertex is
the corresponding weight. Suppose k = 3 and query vertex
is v8 . Then, we can see that the subgraph S1 = {v6 , v7 , v8 , v9 ,
v10} in the dotted line is the corresponding MPIC with influ-
ence value of 6. While the subgraph S2 = {v1 , v2 , v3 , v4 , v5 ,
v6 , v7 , v8 , v9 , v10} , which satisfies the first four constraints of
MPIC with influence value of 1, is not the MPIC, because it
is not the one with the largest influence value. For the top-r
problem, suppose r = 2 , then S1 and S2 are the two com-
munities returned.

3 � Solutions for MPIC Problem

In this section, we first introduce some properties about the
personalized influential community. Then, we develop two
approaches: top-down method and bottom-up method by
verifying the vertices in different orders. Finally, to support
efficient online processing and scale for large networks, an
index-based method is proposed based on the bottom-up
framework.

3.1 � Properties of Personalized Influential
Community

Lemma 1  Given a graph G, an integer k and a query ver-
tex q, then the influence value of MPIC(q, k) is at most the
weight of q, i.e., f (MPIC(q, k)) ≤ �(q).

Proof  MPIC(q , k) must contain q . Based on
the def in i t ion of inf luence value , we have

Efficient Personalized Influential Community Search in Large Networks﻿	

1 3

313

f (MPIC(q, k)) = minu∈MPIC(q,k) �(u) ≤ �(q) . Thus, the
lemma holds. 	� ◻

Lemma 2  Given a graph G and two induced subgraphs
S1 and S2 , we have VS2

⊂ VS1
 and VS1

= VS2
∪ {u}.If the

weight of u is smaller than the influence value of S2 (i.e.,
𝜔(u) < f (S2) ), then the influence value of S1 is smaller than
that of S2 (i.e., f (S1) < f (S2)).

Proof  Based on the definition of influence value, f (S1) =
minv∈VS1

�(v) ≤ �(u) < f (S2) . Therefore, the lemma holds. 	
� ◻

3.2 � Top‑Down Algorithm for MPIC

In this section, we present the top-down algorithm which
is inspired by the existing influential community detection
method [2]. According to Lemma 1, the influence value of
the identified MPIC is at most �(q) . To find the community
with the largest influence value, we can first add all the ver-
tices whose weight is no less than �(q) and check if we can
obtain a community that satisfies the first four constraints
of MPIC. If so, we can output the identified community.
Otherwise, we can add some vertices with weight smaller
than �(q) to find the MPIC. The detailed algorithm is shown
in Algorithm 2.

Algorithm 2: Top-Down Algorithm
Input : G : a weighted graph, k : degree constraint,

q : query vertex
Output : MPIC for the query
Ck(G) ← ComputeCore(G, k);1
if q /∈ Ck(G) then2

return error3

Ck(G, q) ← the connected component of Ck(G) that4
contains q;
S ← sort vertices of Ck(G, q) in descending order5
based on vertex weights;
Q ← ∅; i ← 0;6
while i < S.size do7

Q ← Q ∪ {S[i]};8
If S[i] = q then break;9
i ← i+ 1;10

if q ∈ Ck(Q) then11
return the connected component containing q in12
Ck(Q)

i ← i+ 1;13
while i < S.size do14

Q ← Q ∪ {S[i]};15
if q ∈ Ck(Q) then16

return the connected component containing q17
in Ck(Q)

i ← i+ 1;18

In Algorithm 2, we first compute the k-core of G, denoted
by Ck(G) . Since the MPIC must be inside Ck(G) , if q does not
belong to the k-core, error code is returned in Line 3, which
means we cannot find a MPIC containing q. Otherwise, due
to the connectivity constraint, we only need to keep the con-
nected component that contains q. Then we sort the survived
vertices in descending order by their weights and store them
in S (Lines 4–5). We load the query q and the vertices ranked
above q into Q (Lines 7–10). If the k-core Ck(Q) of Q con-
tains q, then we return the connected component containing
q, which can be obtained by conducting a BFS from q (Lines
11–12). Otherwise, we add the remaining vertices in S one
by one to Q until the k-core of Q contains the query vertex
q, and the connected component is returned (Lines 14–18).

Algorithm 3: Bottom-Up Algorithm
Input : G : a weighted graph, k : degree constraint,

q : query vertex
Output : MPIC for the query
Ck(G) ← ComputeCore(G, k);1
if q /∈ Ck(G) then2

return error3

Ck(G, q) ← the connected component of Ck(G) that4
contains q;
S ← sort vertices of Ck(G, q) in ascending order based5
on vertex weights;
while S �= ∅ do6

D ← ∅;7
u ← S.front();8
if Delete(u, q, S,D) = 1 then9

return S ∪D10

Procedure Delete(u, q, S,D);11
initialize a queue R = {u};12
while R �= ∅ do13

w ← R.pop();14
if w = q then15

return 116

for each v ∈ N(w, S) do17
deg(v, S) ← deg(v, S)− 1;18
if deg(v, S) < k then19

R.push(v);20

remove w from S;21
D ← D ∪ {w};22

for each connected component S′ in S do23
if q /∈ S′ then24

remove S′ from S;25

return 026

Example 2  Consider the graph in Fig. 1. Suppose k = 3 and the
query vertex is v8 . Following the top-down algorithm, we first
compute the k-core of G. Thus, v11 and v12 are deleted, because
they violate the degree constraint. Then, we add v8 and the
vertices ranked higher (i.e., { v10 , v9 }) than v8 into Q. However,
they cannot form a 3-core. Then, we insert vertex one by one
into Q. Until v6 is added, there is a 3-core containing query v8 ,
i.e., { v10 , v9 , v8 , v7 , v6 }, which is the MPIC returned.

	 Y. Wu et al.

1 3

314

3.3 � Bottom‑Up Algorithm for MPIC

In the top-down algorithm, we first add all the vertices
ranked higher than q into Q. After that, by adding each
vertex into Q, we need to invoke the k-core computation
procedure. Even though the time complexity of k-core com-
putation is O(m), in the worst case, we need to repeat the
process n times, which can be time-consuming. Ideally, we
can add more vertices into Q for each iteration. However,
in order to guarantee the correctness of the algorithm, it is
difficult to determine the appropriate number of vertices to
be added. If too many vertices are added, we may need a
lot of computations to shrink the result. Otherwise, we still
need to compute the k-core plenty of times. To reduce the
computation cost, in this section, the bottom-up method is
proposed, which can avoid computing the k-core repeatedly.

According to Lemma 2, for a given induced subgraph,
we can increase its influence value by removing the vertex
with the smallest weight. Intuitively, since we aim to find
the MPIC, we can iteratively remove the vertices with the
smallest weight and keep tracking the other constraints of
MPIC, until the MPIC is found. Different from the top-down
approach, in the bottom-up method, we visit the vertices in
ascending order and remove the unpromising vertices itera-
tively. The detailed algorithm is shown in Algorithm 3.

For the algorithm, the first three steps are exactly the same
as the top-down method (Lines 1–4). Then, we sort the sur-
vived vertices in ascending order by the weight of vertex and
store them in S (Line 5). Then, we try to remove the vertex
with the current smallest weight one by one until the query
vertex q is met (Lines 6–10). For each vertex u processed,
we invoke the Delete procedure, which details are shown in
Lines 11–26. For each processed vertex u, we need to ensure
the remained subgraph satisfies the k-core constraint. After
deleting a vertex, it may cause its neighbors to have less than
k neighbors. Then we remove these vertices as well (Lines
17–20). We put the vertices that violate the degree constraint
into R and process them iteratively. When w = q (Line 15),
it means either (i) the input vertex u of Delete procedure is
q, or (ii) deg(q, S) becomes less than k because of the dele-
tion u. In this case, the remained subgraph S and D (i.e.,
S ∪ D ) form the MPIC. This is because, when we remove
the input vertex u, it will cause the remained subgraph does
not contain q or q violates the degree constraint. The reason
that we keep tracking the deleted vertices D for each Delete
procedure is for case when ii situation happens. Since the
identified community should satisfy the connectivity con-
straint, we can safely remove the connected components in
S that do not contain q (Lines 23–25).

Example 3  Consider the graph in Fig. 1. Suppose k = 3 and
the query vertex is v8 . Following the bottom-up approach,
v11 and v12 are firstly deleted due to the k-core computation.

After deleting the vertex v1 with the smallest weight, the
remained graph are separated into two connected compo-
nents. Therefore, we can safely remove the connected com-
ponent {v2 , v3 , v4 , v5} from S since it does not contain the
query vertex. Then, we process v6 . As we can see, when
processing v6 in the Delete procedure, it will result in v8
violating the degree constraint. Then, we can stop and output
{v6 , v7 , v8 , v9 , v10} as the result.

3.4 � Index‑Based Algorithm for MPIC

In the bottom-up approach, we invoke the k-core computa-
tion at the beginning of the algorithm and the total cost
of checking degree constraint in Delete only takes O(m)
time, which avoids lots of computations compared to the
top-down method. However, the bottom-up approach still
has some limitations. (i) When deleting the vertices, it still
costs a lot for processing very large graphs. (ii) For real
applications, different users may have different require-
ments and there may exist a large amount of queries.
Therefore, it is hard for it to meet the online requirement.

Motivated by the requirements, in this section, we pro-
pose an index-based algorithm by leveraging the bottom-up
framework. In the bottom-up method, for a given k, we try
to delete the vertex u with the smallest weight in each itera-
tion by Delete procedure. Then, we can obtain the MPIC for
certain vertices, such as the vertex u and the vertices removed

Efficient Personalized Influential Community Search in Large Networks﻿	

1 3

315

when processing u. If we process the vertices in order, we can
obtain the MPICs for all the vertices. Therefore, we can build
a tree structure index according to the processing order. Let
kmax be the largest core number, i.e., the largest k value for any
k-core. If we build a tree index for each k value, then we can
answer any given query efficiently. In Algorithm 4, we present
the details of how to index the visited vertices effectively.
Then, we show how to answer a query by utilizing the index.

Index construction In Algorithm 4, we build a tree index
for each k value from 1 to kmax (Lines 1–5). In each itera-
tion, we first compute the corresponding k-core, and for each
connected component, we construct the indexed tree nodes
by invoking BuildNode procedure. The details of Build-
Node procedure are shown in Lines 6–20. The BuildNode
procedure is very similar to the Delete procedure in Algo-
rithm 3. It starts by processing the vertex with the smallest
weight (Line 7). When we process a vertex u, it will cause
some other vertices violating the degree constraints (Lines
11–14) and we add them and u into D (Line 16). According
to the bottom-up method, it means the vertices in D belong
to the same MPIC. Then, we construct an intermediate node
crn that contains the vertices in D, and append it to its par-
ent node rn (Lines 17–18). Then, we recursively call the
BuildNode to process each connected component S′ of the
remained subgraph S (Lines 19–20). After processing each k,
the index is constructed. Based on the construction process,
we can see that the MPIC of a vertex consists of its belonged
intermediate node and its children nodes in the index.

Example 4  Figure 2 shows the constructed index for the graph
in Fig. 1 when k = 1, 2, 3 . The ER node is the empty root
node. It is for the case when the computed k-core in Line 2
of Algorithm 4 is not connected. For k = 1 , the constructed
index is shown in Fig. 2a. We first process v1 which will result
in 2 connected components. Then, we remove v2 and v3 and
create two intermediate nodes for them, since the removal of
them does not make other vertices violate the degree con-
straint. When deleting v4 , the degree of v5 becomes less than
1. Then, we construct an intermediate node that contains v4
and v5 . We conduct similar procedure for the other connected
component, and the constructed index is shown in the right
branch. Similar procedure is conducted for k = 2, 3 , where
the corresponding index are shown in Fig. 2b, c.

Query processing As we can see, for a given query, the
MPIC consists of the intermediate node that contains the
query vertex and all its children nodes in the correspond-
ing k index. If we maintain kmax pointers for each vertex to
its corresponding intermediate nodes, we can efficiently
locate the vertex’s intermediate node for a given k and
traverse the index to return the result. For a given query, if
we cannot find its intermediate node in the index, it means
it does not has a MPIC for the query.

Example 5  Consider the graph in Fig. 1. The constructed
index is shown in Fig. 2 for k = 1, 2, 3 . Given the query
vertex v8 , the MPIC is the vertices in the dotted line for
k = 1, 2, 3 , respectively.

Discussion If we do not need to retrieve the specific vertices
in MPIC, the index can answer the query in O(1) time by just
returning the pointer for the intermediate node. Otherwise, we
need to traverse from the intermediate node to obtain all the
vertices. In this paper, we use the second case in the experi-
ments, since the first two algorithms will obtain all the vertices
in MPIC. For a given query, we need to at least access all the
output data once. Therefore, the index-based method is optimal.

4 � Solutions for TPIC Problem

In real applications, top-r queries are widely adopted to pro-
vide users with more choices. In this section, we investigate
the top-r personalized influential community (TPIC) prob-
lem, and extend the proposed solutions for MPIC problem
to support the top-r cases. Note that, the MPIC problem is a
special case of TPIC when r equals 1.

Algorithm 5: Top-Down-R Algorithm
Input : G : a weighted graph, k : degree constraint,

r : number constraint, q : query vertex
Output : TPIC for the query
Ck(G) ← ComputeCore(G, k);1
if q /∈ Ck(G) then2

return error3

Ck(G, q) ← the connected component of Ck(G) that4
contains q;
S ← sort vertices of Ck(G, q) in descending order5
based on vertex weights;
initialize an empty queue C;6
Q ← ∅; i ← 0; j ← 0;7
while i < S.size do8

Q ← Q ∪ {S[i]};9
if S[i] = q then10

break;11

i ← i+ 1;12

while i < S.size and j < r do13
if q ∈ Ck(Q) then14

Let Cj
k(Q) be the connected component15

containing q in Ck(Q);
if |Cj

k(Q)| > |C.rear| then16

C.push(Cj
k(Q));17

j ← j + 1;18

Q ← Q ∪ {S[i]};19
i ← i+ 1;20

if j < r − 1 then21
return error22

return C23

	 Y. Wu et al.

1 3

316

4.1 � Top‑Down Algorithm for TPIC

For the top-down-based searching framework, in order to
support top-r queries, we need to conduct further explora-
tion to find r results. The algorithm details are shown in
Algorithm 5.

The first four steps are the same as Algorithm 2. We ini-
tialize an empty queue C to store r personalized influential
communities in Line 6 and an integer j to record the num-
ber of communities identified. Then, we add all the vertices
whose weight is no less than �(q) into Q in Lines 8–12. The
main difference is the process of checking and obtaining
top-r personalized influential communities in Lines 13–23.
When the k-core Ck(Q) of Q contains q, we use Cj

k
(Q) to

store the connected component containing q in Ck(Q) (Lines
14–15). Based on the formal definition of the queue, the first
community is inserted from one end called the rear, and
the removal of the existing community takes place from the
other end called as front. We use C.rear to denote the lat-
est community inserted in C. If |Cj

k
(Q)| > |C.rear| , it means

the current community is not the same as the community
obtained in the previous step. Then, we push it into C (Lines
16–18). Next, we iteratively add the remaining vertices from
S into Q to obtain the connected components containing q
(Line 19). The iteration is terminated until we find r commu-
nities or all the vertices have been visited. Finally, we return
top-r result set C if r communities have been retrieved in the
process. Otherwise, we return an error code.

Algorithm 6: Bottom-Up-R Algorithm
Input : G : a weighted graph, k : degree constraint,

r : number constraint, q : query vertex
Output : TPIC for the query
Ck(G) ← ComputeCore(G, k);1
if q /∈ Ck(G) then2

return error3

Ck(G, q) ← the connected component of Ck(G) that4
contains q;
S ← sort vertices of Ck(G, q) in ascending order based5
on vertex weights;
initialize an empty queue C;6
C.push(S);7
while S �= ∅ do8

D ← ∅;9
u ← S.front();10
if Delete(u, q, S,D) = 1 then11

if |C| = r then12
C.pop();13
C.push(S ∪D);14
return C15

else16
return error17

else18
if |C| = r then19

C.pop();20

C.push(S);21

(a) (b) (c)

Fig. 2   Example for Index Construction

Efficient Personalized Influential Community Search in Large Networks﻿	

1 3

317

1  http://​snap.​stanf​ord.​edu.

4.2 � Bottom‑Up Algorithm for TPIC Problem

In the top-down-based searching framework, we need to
invoke the k-core computation procedure many times.
Even though we can compute the k-core in linear time, it
still means a lot of computations. Therefore, we extend the
bottom-up search framework to reduce the cost. The detailed
algorithm is shown in Algorithm 6.

In the algorithm, we initialize an empty queue C to store
top-r communities in Line 6. We add the connected com-
ponent of Ck(G) that contains q into C in Line 7, which is
the personalized influential community with the smallest
influence value. Then, we iteratively invoke the Delete pro-
cedure, and keep maintaining the current best r results. The
details of Delete procedure are shown in Lines 11–26 of
Algorithm 3. Particularly, if DELETE(u, q, S,D) = 1 , it means
we reach the query vertex and no more vertices should be
removed. If there are already r communities in C, we first
pop the community with minimum influence value from C,
then we push the community currently found in C. An error
code is returned, if we cannot find r results.

4.3 � Index‑Based Algorithm for TPIC

To meet the online requirement, we extend the index-based
algorithm to solve the TPIC problem. Note that the index
structure is the same as that for the MPIC problem. To com-
puter the top-r communities for a given query, we first locate
the corresponding index tree and the intermediated node that
contains the query vertex. Then, we iteratively find its r − 1
parent nodes. Finally, we return all the vertices in the r sub-
tree rooted at the identified intermediated node and parent
nodes as the results. The correctness can be easily verified
based on the definition of the personalized influential com-
munity and index structure.

Example 6  Reconsider the graph in Fig. 1. The constructed
index is the same as that for MPIC problem, i.e., Fig. 2.
Given the query vertex v8 , k = 2 and r = 2 , we first locate the
tree node where v8 is located in Fig. 2b and return the verti-
ces set in the subtree rooted at this tree node as top-1 result,
i.e., {v7, v8, v9, v11, v12} , and then we return the vertices set
in the subtree rooted at the parent node of this tree node as
top-2, i.e., {v6, v7, v8, v9, v11, v12}.

Discussion In this paper, we investigate the case, where
each vertex has a different weight. It is also the most widely
adopted settings in the literature. However, our method can
also be easily extended to support the case, where vertices
have same weight. Specifically, in the top-down algorithm,
when we process some vertices with the same weight, we
add them together into the candidate set and then check the

result. Similarly, in the bottom-up algorithm, when there are
many vertices with the current smallest influence value, we
need to delete them together and then do the remaining pro-
cedure as the original algorithm. The index-based algorithm
is based on the bottom-up algorithm. Hence, different from
the original index construction algorithm that we iteratively
delete the vertex with the smallest weight, we only need to
modify it by removing all the vertices with the same smallest
weight at the same time and putting them with their follow-
ers into the same tree node.

5 � Experiments

In this section, we conduct extensive experiments on real-
world networks to evaluate the performance of proposed
techniques.

5.1 � Experiment Setup

Algorithms Since there is no previous work for the pro-
posed problem, we conduct experiments with the proposed
algorithms.

•	 Top-down. Algorithm proposed in Section 3.2 for the
MPIC problem.

•	 Bottom-up. Algorithm proposed in Section 3.3 for the
MPIC problem.

•	 Index-based. Algorithm proposed in Section 3.4 for the
MPIC problem.

•	 Top-down-r. Algorithm proposed in Section 4.1 for the
TPIC problem.

•	 Bottom-up-r. Algorithm proposed in Section 4.2 for the
TPIC problem.

•	 Index-based-r. Algorithm proposed in Section 4.3 for
the TPIC problem.

The top-down and top-down-r algorithms serve as the base-
line methods for the corresponding problems.

Datasets We evaluate the algorithms on 6 real-world
datasets, i.e., Email, Brightkite, Gowalla, YouTube, Wiki
and Livejournal. Table 1 shows the statistic details of the
datasets. The datasets are downloaded from the Stanford
Network Analysis Platform,1 which are public available.
Similar as previous work, we use the PageRank value to
serve as the vertex weight [16].

Parameter and workload To evaluate the performance
of proposed techniques, we vary the weight of query ver-
tex and k. To generate the query vertices, we sort the

http://snap.stanford.edu

	 Y. Wu et al.

1 3

318

Table 1   Statistics of datasets

Dataset # Vertices #Edges d
max

k
max

Email 36,692 183,831 1367 43
Brightkite 58,228 214,078 1134 52
Gowalla 196,591 950,327 14,730 51
YouTube 1,134,890 2,987,624 28,754 51
Wiki 1,791,488 13,846,826 16,063 72
Livejournal 3,997,962 34,681,189 14,815 360

vertices according to the weight and divide them into 5
buckets. For each bucket, we randomly select 200 vertices
as query vertices. For k, we vary k from 5 to 25 with 10 as
the default value. For r, we vary r from 5 to 25 with 10 as
the default value. For each setting, we run the algorithms
10 times and report the average response time.

All algorithms are implemented in C++ with GNU
GCC 7.4.0. Experiments are conducted on a PC with Intel
Xeon 3.2GHz CPU and 32GB RAM using Ubuntu 18.04
(64-bit).

5.2 � Experiment Results of Index Construction

We first present the index construction time for all data-
sets, the results are shown in Fig. 3. As we can observe,
the index construction phase is very efficient. It only
takes 0.290 seconds for Brightkite dataset. For the larg-
est network Livejournal, which has more than 34 million
edges, it only takes 325.656 seconds for constructing the
index.

5.3 � Experiment Results for MPIC Problem

Results of varying query vertex weight By varying the
query vertex weight, we conduct the experiments on all
the datasets. The response time is shown in Fig. 4, where
k is set as the default value. As observed, the bottom-up
method is much faster than the top-down method, since
the top-down method may compute the k-core many times.
Among all, the index-based method runs fastest, due to the
novel index structure proposed. For the top-down method,
the response time increases when the weight increases.
This is because, for query vertex with larger weight, it
may compute the k-core more times when adding vertices
one by one.

Results of varying k We conduct the experiments on all
the datasets by varying the query parameter k. The results
of response time are shown in Fig. 5, where similar trend
can be observed. The bottom-up and index-based methods
are significantly faster than the top-down method, and the
index-based method is the fastest one for all cases. With
the increase of k, the response time of top-down method
decreases. This is because, for larger k, the identified
MPIC tends to be smaller.

5.4 � Experiment Results for TPIC Problem

Results of varying query vertex weight In Fig. 6, we report
the experiment results of TPIC on all the datasets by vary
the vertex weight, where r and k are set as the default
value. As we can observe, index-based-r is much faster

than top-down-r and bottom-up-r. In the two largest data-
sets, i.e., Wiki and Livejournal, the index-based-r method
achieves up to 5 and 6 orders of magnitudes speedup
compared with the top-down-r method, respectively. As
the weight increases, the processing time of Top-down-r
increases significantly, because it will invoke more k-core
computation procedure, while the bottom-up-r and index-
based-r methods are not sensitive to the weight of query
vertex.

Results of varying k In Fig. 7, we report the experiment
results of TPIC on all the datasets by vary k, where r is
set as the default value. Similar trend can be found. Index-
based-r is the fastest method among the three approaches.
In the largest dataset, i.e., Livejournal, the Index-based-r
method can achieve up to 6 orders of magnitudes speedup
compared with the top-down-r method. As k increases, the
processing time decreases, since larger k will lead to smaller
communities. With the increase of k, the response time of
top-down-r method decreases. This is because, for larger k,
the identified communities tend to be smaller. As shown,
the bottom-up-r and index-based-r methods can scale well
for the parameter k.

Results of varying r To further evaluate the techniques
proposed, in Fig. 8, we report the experiment results of
TPIC by varying r, and the other parameters are set as the
default value. As we can see, index-based-r still dominate
the other two methods. When r increases, the processing
time increases for all the methods. This is because, for lager
r, we need to retrieve more results.

5.5 � Summary

As demonstrated in the experiments, for both problems, i.e.,
MPIC and TPIC, the bottom-up and index-based methods
are significantly faster than the top-down method, and they
can scale well for different query parameters. Especially for
the index-based method, it usually can achieve orders of
magnitudes speedup, and is efficient enough for most online
requirements. As the index-based approach requires addi-
tional space to store the index structure, users can select the
appropriate strategies when facing the real scenarios.

Efficient Personalized Influential Community Search in Large Networks﻿	

1 3

319

6 � Related Work

We present the related work from the following three
aspects, i.e., cohesive subgraph mining, community search
and influential community detection.

Cohesive subgraph mining Cohesive subgraph mining is
a very important tool for graph analysis and can find many
applications in different fields [5, 17, 19]. In the literature,
different models are proposed to measure the cohesiveness
of a subgraph, such as k-core [21, 26], k-truss [25, 27],
clique [6, 22, 24], etc. There are also some works that try to
identify cohesive subgraph on special graphs, such as iden-
tifying k-core and k-truss over uncertain graphs [12, 23].

Community search For cohesive subgraph mining, people
usually focus on finding all or high ranked cohesive sub-
graphs. Given a graph G and query vertices, the community
search problem aims to identify a densely connected sub-
graph that contains the query vertices [9]. To measure the

Fig. 3   Index construction time

(a) (b) (c)

(d) (e) (f)

Fig. 4   Experiment results of MPIC by varying query vertex weight

cohesiveness of a community, different models are used. In
[7, 20], authors use the minimum degree to serve as the met-
ric, which is similar to the k-core constraint. [20] proposes
a global search framework to identify the community. Cui
et al. [7] develop a local search method to avoid visiting too
many vertices. Huang et al. [10] leverage the k-truss model
and propose the triangle-connected k-truss community prob-
lem. It designs a triangle connectivity-preserving index to
efficiently search the k-truss communities. There is lots of
research for other kinds of graphs, e.g., attribute graphs and
profile graphs [4, 8]. [9] presents a comprehensive survey of
recent advanced methods for community search problems.

Influential community detection In traditional community
detection/search problems, the influence value of a com-
munity has been neglected. In [16], Li et al. present a novel
community model called k-influential community. Given a
graph G, each vertex is associated with a weight, i.e., influ-
ence value. It aims to find the top-r k-influential communi-
ties, where the cohesiveness is measured based on the k-core
model. In [3], Chen et al. propose the backward searching
technique to enable early termination. Recently, Bi et al. [2]
develop a local search method, which can overcome the defi-
ciency of accessing the whole graph. Li et al. [15] present
an I/O-efficient algorithm to compute the top-r influential
communities. In [14], authors further investigate the case
when each user is associated with multiple weights. How-
ever, as observed, these works aim to identify the influential
communities for the whole network, while the personalized
case has not been considered.

	 Y. Wu et al.

1 3

320

7 � Conclusion

In this paper, we investigate the maximal personalized
influential community search and top-r personalized
influential community search problems, which is an

important tool for many applications, such as personal-
ized friend recommendation and social network advertise-
ment. For the maximal personalized influential commu-
nity search problem, in order to scale for large networks,
two algorithms, i.e., top-down algorithm and bottom-up

(a) (b) (c)

(d) (e) (f)

Fig. 5   Experiment results of MPIC by varying k 

(a) (b) (c)

(d) (e) (f)

Fig. 6   Experiment results of TPIC by varying query vertex Weight

Efficient Personalized Influential Community Search in Large Networks﻿	

1 3

321

algorithm, are developed based on different vertex access-
ing orders. To fulfill the requirement of online search-
ing, an index-based method is proposed. In addition,
we further extend the searching frameworks to support

top-r case when multiple communities are needed by the
users. Finally, comprehensive experiments are conducted
to verify the advantage of developed techniques on 6 real
world datasets.

(a) (b) (c)

(d) (e) (f)

Fig. 7   Experiment results of TPIC by varying k 

(a) (b) (c)

(d) (e) (f)

Fig. 8   Experiment results of TPIC by varying r 

	 Y. Wu et al.

1 3

322

Acknowledgements  The preliminary version of this article has been
published in APWeb-WAIM 2020 [1].

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 –: Efficient personalized influential community search in large
networks. In: Asia-Pacific Web (APWeb) and Web-Age Informa-
tion Management (WAIM) joint international conference on web
and big data, pp 86–101 (2020)

	 2.	 Bi F, Chang L, Lin X, Zhang W (2018) An optimal and progres-
sive approach to online search of top-k influential communities.
VLDB

	 3.	 Chen S, Wei R, Popova D, Thomo A (2016) Efficient computation
of importance based communities in web-scale networks using a
single machine. In: CIKM

	 4.	 Chen Y, Fang Y, Cheng R, Li Y, Chen X, Zhang J (2018) Explor-
ing communities in large profiled graphs. TKDE

	 5.	 Cheng J, Ke Y, Chu S, Özsu MT (2011) Efficient core decomposi-
tion in massive networks. In: ICDE

	 6.	 Cheng J, Ke Y, Fu AWC, Yu JX, Zhu L (2011) Finding maximal
cliques in massive networks. TODS

	 7.	 Cui W, Xiao Y, Wang H, Wang W (2014) Local search of com-
munities in large graphs. In: SIGMOD

	 8.	 Fang Y, Cheng R, Luo S, Hu J (2016) Effective community search
for large attributed graphs. VLDB

	 9.	 Fang Y, Huang X, Qin L, Zhang Y, Zhang W, Cheng R, Lin X
(2019) A survey of community search over big graphs. VLDB J

	10.	 Huang X, Cheng H, Qin L, Tian W, Yu JX (2014) Querying
k-truss community in large and dynamic graphs. In: SIGMOD

	11.	 Huang X, Lakshmanan LV, Xu J (2017) Community search over
big graphs: models, algorithms, and opportunities. In: ICDE

	12.	 Huang, X., Lu, W., Lakshmanan, L.V.: Truss decomposition of
probabilistic graphs: Semantics and algorithms. In: SIGMOD
(2016)

	13.	 Khan BS, Niazi MA (2017) Network community detection: a
review and visual survey. arXiv

	14.	 Li R, Qin L, Ye F, Yu JX, Xiao X, Xiao N, Zheng Z (2018) Sky-
line community search in multi-valued networks. In: SIGMOD

	15.	 Li R, Qin L, Yu JX, Mao R (2017) Finding influential communi-
ties in massive networks. VLDB J

	16.	 Li RH, Qin L, Yu JX, Mao R (2015) Influential community search
in large networks. VLDB

	17.	 Liu B, Yuan L, Lin X, Qin L, Zhang W, Zhou J (2020) Efficient ( � ,
�)-core computation in bipartite graphs. VLDB J 29(5):1075–1099

	18.	 Parthasarathy S, Ruan Y, Satuluri V (2011) Community discovery
in social networks: applications, methods and emerging trends. In:
Social network data analytics

	19.	 Sariyüce AE, Pinar A (2016) Fast hierarchy construction for dense
subgraphs. VLDB

	20.	 Sozio M, Gionis A (2010) The community-search problem and
how to plan a successful cocktail party. In: KDD

	21.	 Sun R, Chen C, Wang X, Zhang Y, Wang X (2020) Stable com-
munity detection in signed social networks. TKDE

	22.	 Sun R, Zhu Q, Chen C, Wang X, Zhang Y, Wang X (2020) Dis-
covering cliques in signed networks based on balance theory. In:
DASFAA, pp 666–674

	23.	 Yang B, Wen D, Qin L, Zhang Y, Chang L, Li R (2019) Index-
based optimal algorithm for computing k-cores in large uncertain
graphs. In: ICDE

	24.	 Yuan L, Qin L, Zhang W, Chang L, Yang J (2018) Index-based
densest clique percolation community search in networks. IEEE
Trans Knowl Data Eng 30(5):922–935

	25.	 Zhao J, Sun R, Zhu Q, Wang X, Chen C (2020) Community iden-
tification in signed networks: a k-truss based model. In: CIKM,
pp 2321–2324

	26.	 Zhu W, Chen C, Wang X, Lin X (2018) K-core minimization: an
edge manipulation approach. In: CIKM

	27.	 Zhu W, Zhang M, Chen C, Wang X, Zhang F, Lin X (2019) Piv-
otal relationship identification: the k-truss minimization problem.
In: Kraus S (ed) IJCAI

http://creativecommons.org/licenses/by/4.0/

	Efficient Personalized Influential Community Search in Large Networks
	Abstract
	1 Introduction
	2 Problem Definition
	3 Solutions for MPIC Problem
	3.1 Properties of Personalized Influential Community
	3.2 Top-Down Algorithm for MPIC
	3.3 Bottom-Up Algorithm for MPIC
	3.4 Index-Based Algorithm for MPIC

	4 Solutions for TPIC Problem
	4.1 Top-Down Algorithm for TPIC
	4.2 Bottom-Up Algorithm for TPIC Problem
	4.3 Index-Based Algorithm for TPIC

	5 Experiments
	5.1 Experiment Setup
	5.2 Experiment Results of Index Construction
	5.3 Experiment Results for MPIC Problem
	5.4 Experiment Results for TPIC Problem
	5.5 Summary

	6 Related Work
	7 Conclusion
	Acknowledgements
	References

