
Vol.:(0123456789)1 3

Data Science and Engineering (2021) 6:209–228
https://doi.org/10.1007/s41019-020-00148-8

Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query
Processing

Brandon Tran1 · Brennan Schaffner1 · Joseph M. Myre1 · Jason Sawin1 · David Chiu2

Received: 9 June 2020 / Revised: 17 October 2020 / Accepted: 10 November 2020 / Published online: 30 November 2020
© The Author(s) 2020

Abstract
Once exotic, computational accelerators are now commonly available in many computing systems. Graphics processing
units (GPUs) are perhaps the most frequently encountered computational accelerators. Recent work has shown that GPUs
are beneficial when analyzing massive data sets. Specifically related to this study, it has been demonstrated that GPUs can
significantly reduce the query processing time of database bitmap index queries. Bitmap indices are typically used for large,
read-only data sets and are often compressed using some form of hybrid run-length compression. In this paper, we present
three GPU algorithm enhancement strategies for executing queries of bitmap indices compressed using word aligned hybrid
compression: (1) data structure reuse (2) metadata creation with various type alignment and (3) a preallocated memory
pool. The data structure reuse greatly reduces the number of costly memory system calls. The use of metadata exploits the
immutable nature of bitmaps to pre-calculate and store necessary intermediate processing results. This metadata reduces the
number of required query-time processing steps. Preallocating a memory pool can reduce or entirely remove the overhead of
memory operations during query processing. Our empirical study showed that performing a combination of these strategies
can achieve 32.4× to 98.7× speedup over the current state-of-the-art implementation. Our study also showed that by using
our enhancements, a common gaming GPU can achieve a 15.0× speedup over a more expensive high-end CPU.

Keywords Bitmap indices · Big data · Query processing · GPU

Abbreviations
CPU Central processing unit
CUDA Compute unified device architecture
GPU Graphics processing unit
MSB Most significant bit
WAH Word-aligned hybrid
COA Column oriented access
ROA Row oriented access
ALU Arithmetic logic unit
BBC Byte-aligned bitmap compression
PLWAH Position list word-aligned hybrid
FAST Fast architecture sensitive tree
GB Gigabyte
EWAH Enhanced word-aligned hybrid

RAM Random access memory
KDD Knowledge discovery and data mining
BPA Bonneville power administration

1 Introduction

Modern companies rely on big data to drive their business
decisions [14, 16, 31]. A prime example of the new corpo-
rate reliance on data is Starbucks, which uses big data to
determine where to open stores, target customer recommen-
dations, and menu updates [30]. The coffee company even
uses weather data to adjust its digital advertisement copy
[6]. To meet this need, companies are collecting astound-
ing amounts of data. The shipping company UPS stores
over 16 petabytes of data to meet their business needs [14].
Of course, large repositories of data are only useful if they
can be analyzed in a timely and efficient manner. In this
paper, we present techniques that take advantage of syner-
gies between hardware and software to speed up the analysis
of data.

 * Jason Sawin
 jason.sawin@stthomas.edu

1 Department of Computer and Information Sciences,
University of St. Thomas, 2115 Summit Ave, Mail Number
OSS 402, St. Paul, MN 55105, USA

2 Department of Mathematics and Computer Science,
University of Puget Sound, Tacoma, WA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-020-00148-8&domain=pdf

210 B. Tran et al.

1 3

Indexing is one of the commonly used software tech-
niques to aid in the efficient retrieval of data. A bitmap
index is a binary matrix that approximates the underlying
data. They are regularly used to increase query-processing
efficiency in data warehouses and scientific data. It has
been shown that bitmap indices are efficient for some of
the most common query types: point, range, joins, and
aggregate queries. They can also perform better than
other indexing schemes like B-trees [49]. One of the main
advantages of bitmap indices is that they can be queried
using fast bitwise operations. Additionally, there is a
significant body of work that explores methods of com-
pressing sparse bitmap indices [7, 12, 15, 17, 46, 47]. The
focus of most compression work is on various forms of
hybrid run-length encoding schemes. These schemes not
only achieve substantial compression, but the compressed
indices they generate can be queried directly, bypassing
the overhead of decompression. One commonly used com-
pression scheme is word aligned hybrid (WAH) [46]. To
improve query processing, WAH compresses data to align
with CPU word size.

One of the oft-cited shortcomings of bitmap indices is
their static nature. Once a bitmap is compressed, there is no
easy method to update or delete tuples in the index. For this
reason, bitmap indices are most commonly used for read-
only data sets. However, the immutable nature of bitmaps
can be exploited to increase the efficiency of query algo-
rithms. Specifically, as bitmap indices are rarely updated, it
is relatively cheap to build and maintain metadata that can
be used to aid in query processing. Additionally, static data
structures can be preallocated to reduce query processing
overhead.

Recent work has shown how graphics processing units
(GPUs) can exploit data-level parallelism inherent in bit-
map indices to significantly reduce query processing time.
GPUs are massively parallel computational accelerators
that are now standard augmentations to many computing
systems. Previously, Andrezejewski and Wrembel [1] pro-
posed GPU-WAH, a system that processes WAH compressed
bitmap indices on the GPU. To fully realize the data par-
allel potential inherent in bitmaps, GPU-WAH must first
decompress the bitmap. Nelson et al. extended GPU-WAH
so that it could process range queries [33, 34]. Nelson et al.
demonstrated that tailoring the range query algorithm to the
unique GPU memory architecture can produce significant
improvements (an average speedup of 1.48× over the base-
line GPU approach and 30.22× over a parallel CPU algo-
rithm). Currently, Nelson et al. presents the only other work
using GPU’s to process WAH bitmap range queries.

In this paper, we explore techniques that use metadata,
data structure reuse, and preallocation tailored to speed up
the processing of WAH range queries on GPUs. The major
contributions of this paper are:

• We present a novel tiered restructuring of the current
state-of-art WAH decompression algorithm for GPUs.
Our algorithm uses pre-compiled metadata to circumvent
stages of the decompression process. Each tier represents
a memory/time trade-off which allows for a tailored
application of our algorithm.

• We present several memory strategies that exploit the
static nature of bitmaps. These include recycling data
structures and using a pre-allocated memory pool. We
also demonstrate how data-type selection aligns our algo-
rithms to the GPU architecture.

• We present a novel reduction-based method for process-
ing WAH range queries in parallel on a CPU.

• We present an empirical study of our proposed enhance-
ments to the GPU-WAH decompression algorithm
applied to both real and synthetic data sets. Our experi-
mental results show that our enhancement strategies pro-
vide an average and a maximum speedups of 75.43× and
98.7× , respectively, over the current state-of-the-art of
GPU-WAH range query processing algorithms.

• We compare the querying performance of our proposed
enhancements to GPU-WAH to our parallel CPU WAH
implementation. Our experimental results show that
with our enhancements on relatively inexpensive GPUs
are able to achieve an average 3.07× and a maximum of
15.0× speedup over a high-end CPU.

The remainder of the paper is organized as follows. In
Sect. 2, we provide an overview of bitmap indices and
WAH compression. Section 3 provides a high-level over-
view of GPU architecture. Section 4 describes procedures
for executing WAH range queries on the CPU and GPU. Sec-
tion 5 describes our enhancement strategies. We present our
methodology in Sect. 6, our results in Sect. 7, and discuss
the results in Sect. 8. We briefly describe related works in
Sect. 9. We conclude and present future work in Sect. 10.

2 Bitmap Indices and WAH Compression

In this section, we describe how bitmap indices are cre-
ated. We also present how WAH can compress such bitmap
indices and the algorithms for querying WAH compressed
bitmap indices.

211Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing

1 3

2.1 Bitmap reation

A bitmap index is created by discretizing a relation’s
attribute values into bins that represent distinct values or
value-ranges.

Table 1 shows a relation and a corresponding bitmap
index. The right most table shows a possible bitmap for the
Stocks relation to its left. The si columns in the bitmap are
the bins used to represent the Symbol attribute. As stock
symbols are distinct values, each value is assigned a bin
(e.g., s

0
 represents the value GE, s

1
 represents WFC, and so

on). The pj bins represent ranges of values into which Price
values can fall. p

0
 represents the range [0, 50), p

1
 denotes

[50, 100), p
2
 is [100, 150), and p

3
 represents [150,∞).

After the bins have been established, each tuple in the
relation is processed. For example, consider the first tuple
in the Stocks relation (Table 1). This tuple’s Symbol value
is GE, and thus in the bitmap a 1 is placed in s

0
 and all other

s bins are set to 0. The Price value is 11.27. This value falls
into the [0, 50) range, so a 1 is assigned to the p

0
 bin, and

all other p bins get 0. This binning process is performed on
all the tuples in Stocks to create the shown bitmap shown to
the right of the relation.

The binary representation of a bitmap index means that
hardware primitive bitwise operations can be used to pro-
cess queries. For example, consider the following query:
SELECT * FROM Stocks WHERE Price>60;. This
query can be processed by solving p

1
∨ p

2
∨ p

3
= res . Only

the rows in res that contain a 1 corresponds to a tuple that
should be retrieved from disk for further processing.

2.2 WAH Compression and Querying

One of the predominate compression algorithms for bit-
map indices is word aligned hybrid (WAH). WAH com-
pression operates on stand-alone bitmap bins (also referred

to as bit vectors). Figure 1a presents an example bit vector
consisting of 252-bits (shown in chunks). Figure 1b shows
that same bit vector compressed using WAH.

Assuming a 64-bit architecture, WAH clusters a bit
vector into consecutive (system word length)−1 (or 63-)
bit “chunks.” In Fig. 1a the first chunk is heterogeneous
and the remaining 3 chunks are homogeneous. Each chunk
is then encoded into system word sized (64-bit) atoms.
Heterogeneous chunks are encoded as literal atoms of the
form (flag, lit). The most-significant-bit (MSB), or flag,
is zero to indicate a literal. The remaining 63-bits (lit)
record the original heterogeneous chunk from the bit vec-
tor. Since the first chunk is heterogeneous it is encoded
into a literal atom.

Homogeneous chunks are encoded as fill atoms of the
form (flag, val, len), where the MSB (flag) is set to 1 to
indicate a fill and the second-MSB (val) records the value
of the homogeneous sequence of bits. The remaining 62
bits (len) record the run length of identical chunks in the
original bit vector. The last three chunks in Fig. 1a are
homogeneous and are encoded into a fill atom, where the
val bit is set to 0 and the len field is set to 3 (as there are
three consecutive repetitions of the homogeneous chunk).

Table 1 Example relation
(stocks) and a corresponding
bitmap (symbol and price bins)

Stocks Symbol bins Price bins

Symbol Price s
0

s
1

s
2

s
3

s
4

s
5

p
0

p
1

p
2

p
3

GE 11.27 1 0 0 0 0 0 1 0 0 0
WFC 54.46 0 1 0 0 0 0 0 1 0 0
M 15.32 0 0 1 0 0 0 1 0 0 0
DIS 151.58 0 0 0 1 0 0 0 0 0 1
V 184.51 0 0 0 0 1 0 0 0 0 1
CVX 117.13 0 0 0 0 0 1 0 0 1 0

Fig. 1 An example bit vector represented with WAH compression

212 B. Tran et al.

1 3

Algorithm 1 [46] shows how two bit vectors compressed
using WAH can be queried directly without the need for
decompression. As shown, the algorithm takes two WAH
compressed bit vectors, A and B, as input. The ◦ operator at
lines 14 and 19 represents any hardware supported bitwise
logical operator (e.g., AND, OR, XOR, etc.) The procedure
returns Z a compressed bit vector that contains the result
of A◦B . In the algorithm, A and B are treated as stacks of
WAH atoms. It first pops an atom off each “stack” (lines 3
and 4). The algorithm continues to process atoms as long
as both stacks are not empty (line 5). During each iteration,
it first checks if the current operand atoms have been fully
processed, or exhausted. If the atom has been exhausted,
the next atom from the appropriate bit vector is fetched
(lines 6-11).

At line 12, Point Query determines the type of atom
pairing is currently being processed. If both atoms are fills,
a new resulting fill atom is pushed onto the result stack. The
val bit of the new fill atom is the result of ◦ being applied
to the two val bits of the operand atoms. The len of the
resulting atom is nLen, which is the minimum value of the
two len values of the operand atoms. The reduce operation
shown in lines 16 and 17, is a bookkeeping procedure that
records that nLen words have been processed in both the
operand atoms. Note that in the Fill/Fill, pairing the
atom with the minimum len value will be fully exhausted

and will require replacing during the next iteration. If one
of the operand atoms is a literal (lines 18-22), a new literal
atom is added to Z. The lit value of the new atom is the result
of applying ◦ to the lit values of the two operand atoms. If
one of the atoms is a fill, the getLitVal() method returns a
single literal atom representation of the fill (i.e., either 63
zeros or 63 ones). Then, each operand atom is reduced by 1
to indicate a single word has been processed. This reduction
will exhaust any literal atoms. After all the atoms have been
processed, Z is returned.

3 Graphics Processing Units

As shown above, a significant advantage of WAH is that
compressed bitmaps can be queried directly without being
decompressed first. It has been shown that the use of system
word alignment by WAH can provide enhanced querying
performance over other compression schemes [45]. This
approach is well-suited for CPU implementations. While
querying compressed columns is possible using graphics
processing units (GPUs), the parallelism present in GPUs
is unlikely to be fully utilized. This is due to low data
alignment and a significant amount of branching instruc-
tions. Unlike CPUs, GPUs do not have branch predictors
and branch instructions can induce a phenomenon called

213Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing

1 3

warp divergence (described later in this section). It has been
shown that GPUs can efficiently query decompressed bit
vectors as this produces a high degree of data level parallel-
ism and reduces the amount of branch instructions encoun-
tered [1, 2, 33].

With NVIDIA’s compute unified device architecture
(CUDA) programming platform for GPUs, tens of thousands
of threads can be organized into 1-, 2-, or 3-dimensional
Cartesian structures. Cartesian layouts naturally maps to
many computational problems. With CUDA, these struc-
tures hierarchically comprise thread grids, thread blocks,
and threads. Threads are executed in groups (conventionally
known as cooperative thread arrays or warps) of 32, ergo,
thread blocks are typically composed of 32m threads, where
m is a positive integer.

The memory hierarchy for CUDA capable NVIDIA
GPUs is closely linked to the organization of threads. The
CUDA memory hierarchy is composed of global, shared,
and local memory. Global memory is accessible to all
threads. Thread blocks have private access to their own low-
latency shared memory (∼ 100× less than global memory
latency) [13]. Each thread also has access to its own private
local memory.

For a CUDA capable NVIDIA GPU to fully realize high-
bandwidth global memory transfers, it is critical to coalesce
global-memory accesses. Coalesced global memory accesses
occur when two criteria are fulfilled: 1) the accessed mem-
ory addresses are sequential and 2) the accessed memory
addresses span the addresses 32n to 32n + 31 , for some inte-
ger, n. Coalescing global memory accesses allow the GPU
to batch memory transactions in order to reduce the total
number of memory transfers.

The NVIDIA CUDA GPU functional units for integer
arithmetic are 32-bits at their core [35]. This incurs a per-
formance penalty when performing 64-bit integer arithmetic
as 64-bit integer arithmetic is emulated using 32-bit types.
Modern 64-bit CPUs do not suffer this penalty.

A core challenge to ensuring high computational
throughput on CUDA capable GPUs is warp divergence.
The phenomenon of warp divergence occurs when threads
within the same warp resolve a branching instruction (com-
monly resulting from loops or if-else statements) differently.
At an architectural level, CUDA GPUs require all threads
within a warp to execute the same sequence of instructions.
When warp divergence occurs, a CUDA GPU will execute
the multiple instruction sequences present in the warp seri-
ally. This serial execution of thread subsets within a warp
can significantly reduce performance as computational
throughput is reduced. For example, two possible branch
outcomes exist when an if-else statement is encountered.
Warp divergence occurs when a warp fails to evaluate the
condition uniformly. Some subset of the warp will execute
the true path and the complementary subset will execute

the false path. The execution of these two branch outcomes
occurs serially. The total execution time required for the
serial execution of the two outcomes is then tT + tF+t� ,
where tT is the execution time of the true path, tF is the
execution time of the false path, and t� is the overhead nec-
essary to orchestrate the serial execution. To accomplish
the serial execution necessary to resolve warp divergence,
the CUDA runtime environment “deactivates” subsets of
the threads within the divergent warp. The active subset of
threads executes instructions from a single path. Once all
paths are executed, the threads within the warp continue
executing uniformly.

4 Architectural Approaches to WAH Range
Query Processing

4.1 CPU Processing of WAH Range Queries

We implement a parallel approach for WAH range query
processing using multi-core CPUs. The majority of multi-
core CPUs do not exhibit the same degree of parallelism that

Fig. 2 Processing a range query using a reduction

214 B. Tran et al.

1 3

is present in GPUs. As such, our CPU approach is restricted
to a parallel reduction. This approach executes up to p paral-
lel point queries (using OpenMP on a p-core CPU) on paired
compressed bit vectors for any given reduction level. If more
than p bit vector pairs exist in a given reduction level, the
CPU must iterate through the remaining pairs until all of the
bit vectors for that level have been processed. Once the final
reduction level (consisting of a single bit vector pair) has
been processed, the range query result is obtained.

Figure 2 shows this process for a range query of four
bit vectors. Each thread reads from two operand bit vectors
and writes to one result bit vector. Executing a range query
using a reduction requires log

2
(n) reduction levels, where n

is the number of bit vectors being processed. This is due to
the consecutive halving nature of the reduction operation.

The query shown in Fig. 2 requires two reduction levels. In
the first level, two independent pairs of bit vectors can be
processed in parallel. The final level consists of processing
a single pair of bit vectors to produce the result of the query.

4.2 GPU Processing of WAH Range Queries

Figure 3 illustrates the execution steps used in [33] to pro-
cess a range query on the GPU. Initially, the compressed
bit vectors are stored on the GPU. When the GPU receives
a query, the required bit vectors are sent to the Decompres-
sor. The decompressed columns are then sent to the Query
Engine where the query is processed in parallel, and the
result is sent to the CPU. Without decompression, the WAH
query process has very low data level parallelism and the
query engine would not be able to take advantage the the
parallelism inherent in the GPU.

Fig. 3 Main components used
to process WAH range queries
on a GPU

Using NVIDIA’s CUDA, Nelson et al. [33, 34] presented
four parallel reduc-tion-based methods for the query engine:
column-oriented access (COA), row-oriented access (ROA),
and a (standard and ideal) hybrid approach. COA performs
the reduction on columns, and ROA performs the reduction
across single rows. In the hybrid approaches, GPU threads are
grouped into blocks, and thread blocks are tiled into grids to
cover the query data. The blocks then perform two rounds of

215Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing

1 3

reduction on their data. The ideal hybrid approach is formed
when queries are sufficiently small to complete the query in a
single round of reduction.

The ideal hybrid approach makes the most efficient use
of the GPU memory system. Specifically, it utilizes both
the coalesced memory accesses of COA and the use of
shared memory for processing along rows of ROA; the
hybrid was found to be the fastest method in their experi-
mental study. The ideal hybrid approach is shown in Algo-
rithm 2 [33] and is applicable to queries of up to 1024 bit
vectors. Thread blocks are tiled to maximize the parallel
processing of input bit vectors. Each tile, which represents

one thread block, has a width that spans all columns and
an adjustable length (inversely proportional to the width)
so that each thread block can use the maximum of 1024
threads. Every thread block is partitioned and executed
in parallel where each thread (also in parallel) performs
log

2
(b) levels of reduction, where b is the number of bit

vectors spanned by the thread block, storing the result
in the lower order column. The final result of the range
query, which resides in the first column, is returned. For
the remainder of the paper, we will only be considering
the ideal hybrid approach for the query engine though our
improvements would benefit all approaches.

216 B. Tran et al.

1 3

The work of this paper focuses on the decompressor com-
ponent of the above approach. Algorithm 3 presents a proce-
dure for the decompressor unit. It was designed by Andreze-
jewski and Wrembel [1] and modified in [33] to decompress
multiple columns in parallel. The input to the algorithm is
a compressed bit vector, CompData, the size of the com-
pressed data, CSize, and the size of the decompressed data,
DSize. The output is the corresponding decompressed bit
vector, DecompData. The algorithm itself comprises five
stages; the stages execute sequentially, but the work within
stages is processed in parallel.
Stage 1 (lines 5–13) generates an array DecompSizes

which has the same number of elements as CompData. At
the end of Stage 1, each element in DecompSizes will
hold the number of words being represented by the atom
with the same index in CompData. This is accomplished
by creating a thread for each atom in CompData. If an atom
is a literal, its thread assigns 1 to the appropriate index in
DecompSizes (line 9). If the atom is a fill, the thread assigns
the number of words compressed by the atom (line 11).
Stage 2 (lines 14–17) executes an exclusive scan

(parallel element summations) on DecompSizes storing the
results in StartingPoints. The element, StartingPoints[i],
contains the total number of decompressed words com-
pressed into CompData[0] to CompData[i − 1] , inclusive.
StartingPoints[i] ∗ 63 is the number of the bitmap row first
represented in CompData[i].
Stage 3 (lines 18–22) creates an array of zeros, End-

Points. The length of EndPoints equals the number of words
in the decompressed data. A 1 is assigned to EndPoints at
the location of StartingPoints[i] − 1 for i < |StartingPoints| .
In essence, each 1 in EndPoints represents where a hetero-
geneous chunk was found in the decompressed data by the
WAH compression algorithm. Note that each element of
StartingPoints is processed in parallel.
Stage 4 (lines 24–27) performs an exclusive scan over

EndPoints storing the result in WordIndex. WordIndex[i]
provides the index to the atom in CompData that contains
the information for the ith decompressed word.
Stage 5 (lines 28–42) contains the final for-loop,

which represents a parallel processing of every element of
WordIndex. For each element in WordIndex, the associated
atom is retrieved from CompData, and its type is checked.
If CompData[WordIndex[i]] is a WAH literal atom (MSB is
a zero), then it is placed directly into DecompData[i]. Oth-
erwise, CompData[WordIndex[i]] must be a fill atom. If it
is a fill of zeroes (second MSB is a zero), then 64 zeroes are
assigned into DecompData[i]. If it is a fill of ones, a word
consisting of 1 zero (to account for the flag bit) and 63 ones
is assigned to DecompData[i]. The resulting DecompData
is the fully decompressed bitmap.

4.3 Cost Analysis of GPU WAH Range Queries

We analytically found the operation count for all of
Decomp’s stages (algorithm 3) using n for the number of
WAH atoms in the compressed column, m for the number
of system words in a decompressed column, and w for the
WAH atom length in bits. The work factor given for each
stage regards apparent work, not total work. In other words,
we are concerned with the work that cannot be hidden by
parallelism. For example, consider a loop that executes
50,000 iterations. Due to the serial nature of the loop, each
operation in its body would need to be counted 50,000 times.
However, if each iteration of the same loop could be exe-
cuted concurrently using 50,000 threads the entirety of the
loop could be completed in the time of one iteration. Our
analysis treats multiple simultaneous (parallel) executions of
an operation as a single event. We considers both arithmetic
operations and memory operations. Arithmetic operations
include additions, subtractions, conditional checks, etc., and
memory operations include assignments, array accesses,
allocations, and frees.

The first operation of Stage 1 is the allocation (via
cudaMalloc()) of n × w bits of memory for the array
DecompSizes. All iterations of the following loop are exe-
cuted in parallel, as are all other remaining loops shown in
the algorithm. Getting the 63-rd bit of CompData and check-
ing its value at line 8 takes one memory operation and one
arithmetic operation. For Decomp, the worst-case configura-
tion for a compressed column of n atoms is for all of them
to be fills. This configuration would lead to the conditional
statement only executing line 11. This path through Stage
1 is the most costly, as there are two memory operations
to decode the value of len and assign it to DecompSizes.
Therefore, in the worst-case, Stage 1 takes a total of 1
arithmetic operation and 4 memory operations, including an
allocation of size n × w.
Stage 2 (lines 14 to 17) first allocates n × w bits of

memory for the array StartingPoints. This new array stores
the result of an exclusive scan of DecompSizes at line 16.
DecompSizes has the same length as the compressed col-
umn, n; with the parallelism attained by the GPUs, the
exclusive scan has a total memory and arithmetic operation
count of O(log

2
(n)) , each. Then, since DecompSizes is no

longer needed, cudaFree() is called to free its n × w bits
of memory.

In Stage 3, a memory allocation of m × w bits is
required for Endpoints. Note that this requires a call to both
cudaMalloc() and cudaMemset() to initialize the
array to zeroes. There is also a single arithmetic operation
for subtraction and 2 memory operations to cover the End-
Points array access and assignment. Following the final use
of StartingPoints, its n × w bits of memory is freed.

217Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing

1 3

Stage 4 (lines 24 to 27) requires a memory alloca-
tion of m × w bits for WordIndex, which holds the result
of the exclusive scan on EndPoints. Similar to Stage 2,
the parallel exclusive scan has a work factor of O(log

2
(m))

memory and arithmetic operations each. Then, the m × w
bits of memory allocated for EndPoints is freed.
Stage 5 first allocates m × w bits of memory to store

the resulting decompressed column. Then line 31 requires
2 memory operations to access and store an atom from the
input column. For the remainder of the stage, the worst-
case occurs when both conditionals (line 32 and 35) fail.
This happens when the atom is a fill of 1’s. The conditional
checks execute a memory access and a boolean evaluation
each, followed by an addition and assignment. Ending this
stage, a cudaFree() releases the w × m bits allocated for
WordIndex. In total, Stage 5 uses 7 memory and 3 arith-
metic operations. After the query is made, a final cuda-
Free() is called on the decompressed column memory.

The worst-case scenario for Decomp (Algorithm 3)
is dominated by memory operations. These encompass 5
memory allocations and frees, 10 + O(log

2
(n)) + O(log

2
(m))

other memory operations which include global reads and
writes, and 5 + O(log

2
(n)) + O(log

2
(m)) arithmetic opera-

tions. There is a significant body of work that has shown
that conventional memory allocation is inefficient on CUDA
GPUs [19, 25, 38, 44]. The inefficiency of these operations is
compounded because they act as a blocking operation for all
threads within a CUDA stream, a hindrance to parallelism.
The next biggest expense comes from the exclusive scans.
Despite our use of a high-performance implementation [32],
the exclusive scans still incur numerous accesses to global
memory, which each take hundreds of cycles [35]. Our
implementation strategies detailed in Sect. 5 focus on reduc-
ing the need for the costly memory operations. Reusing data
structures removes the need for calls to cudaMalloc()
(and respective cudaFree() function calls) for Starting-
Points, WordIndex, and DecompData which reduces the
number of memory allocations and frees to 2 each. Storing
pre-calculated metadata eliminates the need for additional
cudaMalloc()s, cudaFree()s, and exclusive scans.
Utilizing a memory pool avoids the final cudaFree().
Overall, the memory operation count is reduced to a single
cudaMalloc() plus O(1) assignments and accesses.

It is important to note that the operation counts are ideal-
ized. In reality, the parallelism is reduced significantly by
warp divergence when threads in the same warp take dif-
ferent execution paths because of conditional variation. The
parallelism is further reduced by architectural limits such as
limited number of threads and registers. There is also limited
memory throughput due to concurrent memory access and
memory bus bandwidth.

4.4 Potential Sources and Impacts of Warp
Divergence

As described in Sect. 3, warp divergence can have a det-
rimental effect on execution time. There are six points in
Algorithm 3 that might induce warp divergence. The loop on
line 7 is the first such instance. Because we align the threads
in this loop to the sequential chunks of the bit vectors, only
the warp covering the end of CompData may experience
divergence. This is because the total number of threads
used are a multiple of 32 and the length of CompData may
not be. This behavior is identical for subsequent loops on
lines 20 and 30 regarding the warps of threads that cover
the bit vectors StartingPoints and WordIndex,
respectively. The conditional expressions on lines 8, 32, and
35 pose a different possibility: any warp could experience
divergence. Nested branches (like the if-else statements in
Algorithm 3 on lines 8, 32, and 35) can be additionally prob-
lematic, as already divergent warps can experience further
divergence. This imposes additional thread serialization and
overhead. In total, the three loops in Algorithm 3 may cause
warp divergence in one warp out of those spanning their
respective bit vectors, and the three conditional statements
may cause warp divergence in any number (zero to all) of
the executing warps.

The worst case scenario for warp divergence occurs when
a warp must execute all possible branch outcomes serially.
Potential divergent pathways due to branching instructions in
Stages 1, 3, and 5 are shown in Fig. 4. When the worst case
scenario for warp divergence is encountered Stage 1, 3, or
5, the total branch outcomes that must be executed serially
are three, two, and four, respectively. Again, each of these
divergent branch outcomes incur some additional overhead
by the CUDA runtime to resolve the warp divergence.

5 Memory Use Strategies

We explored memory-focused strategies to accelerate GPU
query processing: (1) data structure reuse, (2) metadata
storage, and (3) employing a preallocated memory pool.
Descriptions of each strategy are provided below.

Figure 5a depicts the steps required for our baseline
implementation of Algorithm 3. As shown, this imple-
mentation requires five cudaMalloc() calls and four
cudaFree() calls in the decompressor and an additional
cudaFree() after the query engine has finished. Each
cudaMalloc() is allocating an array needed in the fol-
lowing algorithmic stage. The CUDA library only supports
synchronous memory management routines (allocations and
frees). Synchronous memory operations combined with data
dependencies in Algorithm 3 make memory operations a
limiting factor for decompression.

218 B. Tran et al.

1 3

Data Structure Reuse- We can reduce the number of
CUDA memory calls by reusing data structures. The
arrays created in Stage 1 and Stage 2 of Algorithm 3,
DecompSizes and StartingPoints, are both the length of
the compressed data. By performing an in-place exclusive
scan on DecompSizes, meaning the results of the scan are
saved back to DecompSizes, we no longer need to create
StartingPoints. We use a similar in-place scan on End-
Points in Stage 4. Moreover, we can reuse EndPoints
for DecompData. After the data are read from EndPoints
(line 31), the results of the writes in line 36 and line 38
can be written back to EndPoints without loss of data.
Figure 5b shows the steps of implementation with data
structure reuse. As shown, it only requires two calls to
cudaMalloc(), one before Stage 1 and another
before Stage 3. It requires a call to cudaFree()
after Stage 3 is finished with DecompSizes and the final
cudaFree() after the query engine has finished with the
decompressed data saved in EndPoints. By careful reuse of
data structures, we reduce the number of CUDA memory
calls from 10 to 4.

Storing Metadata- Further memory management and
even some processing stages can be skipped by pre-gener-
ating intermediate results of the decompression algorithm
(Algorithm 3) and storing them as metadata. For example,
the only information from Stage 1 and Stage 2 used in
the remainder of the algorithm is stored in StartingPoints.
By generating StartingPoints prior to query-time and storing
the results as Stage 2 metadata both Stage 1 and 2 of
Algorithm 3 can be skipped. Figure 5c depicts an extension
of our data structures reuse system enhanced with Stage
2 metadata. At start up time, the metadata is stored stati-
cally in memory on the GPU, so there is no need to allocate
memory for StartingPoints. By injecting the stored informa-
tion, the decompression algorithm can be started at Stage
3. As shown, this approach still requires a call to cuda-
Malloc() to create the array that will eventually hold the
decompressed bit vector. That memory will need to be freed
after the query has been processed. Starting the algorithm at

Stage 3 has the additional benefit of eliminating 2 points
of potential warp divergence (see Sect. 4.4).

Using a metadata approach, it is possible to skip all but
the final stage of the decompression algorithm. The only
information that flows from Stage 4 to Stage 5 is
stored in WordIndex which can be pre-computed and stored.
Figure 5d shows a system that uses Stage 4 metadata. In
addition to skipping Stages 1-4, this method provides
the added benefit of eliminating additional (total of 3) points
of potential warp divergence (see Sect. 4.4). However, this
method still requires a memory allocation for Stage 5
as the data structure reuse system saved the final decom-
pressed data in the original WordIndex array. Now WordIn-
dex is stored as metadata and overwriting it would slow the
performance of subsequent queries as they would no longer
have access to stored information. The cudaMalloc()
call in Fig. 5d is allocating memory for a structure that will
hold the fully decompressed data. This memory will need to
be freed after the query is completed.

Any speedup realized by our metadata approaches are
achieved at the cost of a larger memory footprint. To reduce
the space requirements of our implementation, we explore
the effects of using 32-bit and 64-bit integer types to store
Stage 2 and Stage 4 metadata. Our version of the
decompression algorithm expected the WAH compres-
sion to be aligned with a 64-bit CPU system word size.
However, Stage 2 metadata contains the total number
of decompressed words compressed from CompData[0] to
CompData[i − 1] , for some non-zero index i. The largest
possible element is equal to the number of system words
comprising the decompressed bit vector. Hence, for decom-
pressed bitmaps containing less than (232 − 1) × 64 rows
Stage 2 metadata can be a 32-bit data type. Essentially,
this type-size reduction would make the Stage 2 metadata
half the size of the compressed bitmap.

For each decompressed word, w, in a bit vector, Stage
4 metadata stores an index into CompData where w is
represented in compressed format. In essence, Stage 4
metadata maps decompressed words to their compressed

Fig. 4 Possible divergent pathways due to branching instructions (conditionals and loops) in stages 1, 3 and 5. The dotted lines represent the
branch outcome that does not execute the loop contents

219Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing

1 3

representations. As long as the compressed bit vector does
not contain more than (232 − 1) atoms, a 32-bit data type can
be used for Stage 4 metadata. This type reduction makes
Stage 4 metadata half the size of the decompressed data.
Note that storing Stage 4 metadata using 64-bit integer
types would require the same memory footprint as the fully
decompressed bitmap. In this case, it would be advantageous
to store just the decompressed bitmap and circumvent the
entire decompression routine.

Memory Pool A common approach to avoid the overhead
of cuda memory operations (e.g., cudaMalloc() and
cudaFree()) is to create a preallocated static memory
pool (e.g., [24, 42, 48]). We create a memory pool tailored
to the bitmap that is stored on the GPU. A hashing func-
tion maps thread-ids to positions in preallocated arrays. The
arrays are sized to accommodate a decompressed bit vector.
Threads lock their portion of the array during processing
and release them only after all of the query have been pro-
cessed. All available GPU memory that is not being used to
store the bitmap and metadata is dedicated to the memory
pool. This design will lead to a query failure if the memory
requirements are too large.

Figure 5e shows the design of our fully enhanced GPU-
WAH range query system. The use of a memory pool
removes the need to invoke CUDA memory calls. As
shown, the memory pool can be used in conjunction with
both of our metadata strategies to circumvent stages of the

decompression algorithm. It can also be used as a standalone
enhancement strategy.

Appropriately sizing the memory pool can be done ana-
lytically. We used the cumulative distribution function for
a Poisson distribution to determine the effectiveness of any
given memory pool size at handling queries with different
amounts of bit vectors. This approach is illustrated in Fig. 6.
The shaded region in Fig. 6 shows the quantity of overall
queries (the sizes of which are described by the Poisson
distribution) that can be handled by the memory pool. From
the Poisson distribution analysis, the memory pool size can
be calculated as s⌈� + k�⌉ where s is the number of bytes in
a decompressed column, � is the mean number of bit vec-
tors in a query, � is the standard deviation of the distribu-
tion, and k ∈ ℝ

+ . Setting the memory pool size using k = 2
would effectively capture ∼96.82% of queries. Calculating a
memory pool size using k = 3 would be capable of fielding
∼99.45% of queries.

6 Experiments

In this section, we describe the configuration of our test-
ing environment and the process that was used to gener-
ate our results. All tests were executed on two different
machines. System A is machine running Ubuntu 16.04.5
LTS, equipped with dual 8-core Intel Xeon E5-2609 v4

Fig. 5 Various implementations of a GPU-WAH system specialized for range queries

220 B. Tran et al.

1 3

CPUs (each at 1.70 GHz) and 322 GB of RAM. The CPU
side of the system was written in C++ and compiled with
GCC v5.4.0. The GPU components were developed using
CUDA v9.0.176 and run on an NVIDIA GeForce GTX
1080 with 8 GB of memory. System B is a machine run-
ning Ubuntu 19.10 LTS equipped with a 16-core hyper-
threading (32 total concurrent threads) Intel Xeon Gold
6130 CPU (at 2.10 GHz) and 64 GB of RAM. The CPU
side of the system was compiled with GCC v8.4.0. The
GPU components were compiled with CUDA v10.1.243
and run on a Quadro RTX 4000 with 8 GB of memory.

We used the following data sets for evaluation. They are
representative of the type of read-only applications (e.g.,
scientific) that benefit from bitmap indexing.

• BPA – measurements reported from 20 synchropha-
sors (measures magnitude and phase of AC waveform)
deployed by Bonneville power administration over the
Pacific Northwest power grid [5]. Data from each syn-
chrophasors were collected over approximately one
month. The data arrived at a rate of 60 measurements
per second and was discretized into 1367 bins. We used
7, 273, 800 row subset of the measured data.

• linkage—anonymous records from the Epidemiologi-
cal Cancer Registry regarding the German state of North
Rhine-Westphalia [37]. The data set contains 5, 749, 132
rows and 12 attributes. The 12 attributes were discretized
into 130 bins.

• kddcup – data obtained from the 1999 Knowledge Dis-
covery and Data Mining competition. These data describe
network flow traffic. The set contains 4, 898, 431 rows
and 42 attributes [28]. Continuous attributes were discre-
tized into 25 bins using Lloyd’s Algorithm [29], resulting
in 475 bins.

• Zipf—data generated using a Zipf distribution.
These are the only synthetic data sets tested. A Zipf

distribution represents a clustered approach to dis-
cretization, which can capture the skew of dense
data in a bitmap. With the Zipf distribution genera-
tor, the probability of each bit being assigned to 1 is:
P(k, n, skew) = (1∕kskew)∕

∑n

i=1
(1∕iskew) where n is the

number of bins determined by cardinality, k is their rank
(bin number: 1 to n), and the parameter skew character-
izes the exponential skew of the distribution. Increasing
skew increases the likelihood of assigning 1s to bins with
lower rank (lower values of k) and decreases the likeli-
hood of assigning 1s to bins with higher rank. We set
n = 10 and skew = 0, 1, and 2 for 10 attributes, which
generated three data sets containing 100 bins (i.e., ten
attributes discretized into ten bins each) and 32 million
rows.

We tested multiple configurations of additional enhancement
strategies for query execution. These configurations are com-
prised of three classes of options:

1. Data structure reuse (unused only in baseline).
2. Metadata: None, 32-bit Stage 2, 64-bit

Stage 2, 32-bit Stage 4, and fully decom-
pressed columns.

3. Memory pool usage: used or unused.

We tested all valid combinations of these options on each of
the four data sets. Due to the mutually exclusive nature of
the metadata storage options, this resulted in 10 augmented
configurations plus the baseline approach (shown in Fig. 5a).

All tests used range queries of sizes 64 columns. To
obtain representative execution times for each query con-
figuration, we repeated each test 6 times. The execution time
of the first test was discarded to remove transient effects, and
the arithmetic mean of the remaining 5 execution times was
recorded. We used the average to calculate our performance

Fig. 6 An example Poisson distribution that could be considered
when setting the size of the memory pool. The shaded region indi-
cates the means for creating a memory pool that can store queries of
� + k� bit vectors, where � is the mean number of bit vectors in a

query, � is the standard deviation of the distribution, and k ∈ ℝ
+ . The

horizontal axis represents the range of possible query sizes (in num-
ber of columns), and the vertical axis shows the probability of receiv-
ing a query of any given size

221Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing

1 3

comparison metric, speedup = tbase∕t , where tbase is the exe-
cution time of the baseline for comparison and t is the execu-
tion time of the test of interest. The baseline we used for all
speedup calculations was the decompression algorithm and
best performing implementation of GPU-WAH from [33].

7 Results

Here, we present the results obtained from the experiments
described in the previous section. We first discuss the impact
of memory requirements. We then present results for data
structure reuse, metadata, data type size, and memory pool
strategies that were described in Sect. 5.

The performance provided by some of the techniques in
this paper comes at the cost of additional memory. Figure 7
illustrates this as a cost relative to the standard approach of
storing compressed bit vectors. Relative to standard storage
requirements, the average increase in storage requirements
when using 32-bit Stage 2 metadata, 64-bit Stage 2
metadata, and 32-bit Stage 4 metadata, are 1.5× , 2 × , and
9.04× , respectively.

The speedup provided by reuse of data structures to elimi-
nate memory operations is presented in Fig. 8. As shown,
significant performance improvements are realized due to
the elimination of 3 memory allocations and 3 memory
frees. For system A, this reduction provided a maximum
speedup of 23.7× and an average speedup of 13.9× , with
the linkage data set exhibiting greater speedup than others.
For system B, data structure reuse provided a maximum of
5.14× speedup and an average of 3.64× speedup. Again, the
linkage data set exhibited the greatest speedup.

The results of our other enhancement strategies on Sys-
tem A are shown in Fig. 9. Performance improvements pro-
vided by the use of a memory pool are shown in Fig. 9a.
This enhancement consistently provided an average speedup
of 22.1× across all databases and a maximum speedup of
37.0× . Incorporating metadata also provided consist-
ent results as can been seen in Fig. 9b. Using Stage 2
metadata provided an average of 14.1× speedup. Stage
4 metadata was more beneficial with an average of 19.3×
speedup. Varying data type size yielded negligible perfor-
mance improvements. When a memory pool was not used, as
shown in Fig. 9b, there was no observable performance dif-
ference between 32-bit and 64-bit data types. On average, the
use of the 32-bit data type size was 1.003× . When a memory
pool was used, as shown in Fig. 9c, there was still negligible
improvement when using 32-bit data types with an average
improvement of 1.04× over 64-bit types. Using a combi-
nation of metadata, data type size, and memory pool tech-
niques produced the greatest performance benefit, as seen in
Fig. 9c. Across all databases, using Stage 2 metadata

and a memory pool provided a maximum speedup of 58.8×
and an average speedup 33.6× . Using Stage 4 metadata
with a memory pool provided a maximum of 166× speedup
and an average 98.7× speedup.

The results of the same enhancement strategies on System
B are shown in Fig. 10. Improvements from using a memory
pool are shown in Fig. 10a with a maximum 5.64× speedup
and an average 3.67× speedup. Performance enhancement
when using the metadata and varying data type size strate-
gies on System B is shown in Fig. 10b. We see a maximum
improvement of 9.70× and an average performance enhance-
ment of 3.83× . The difference between 32-bit and 64-bit
data types only appears when using Stage 2 metadata and
was negligible. Using 32-bit only provided an average of
1.003× speedup over 64-bit when not using a memory pool.
When including the memory pool, varying data type size
remained negligible, with 32-bit types providing an average
1.02× speedup. The performance enhancement provided by
combining all strategies is shown in Fig. 10c. Combining
the memory pool and metadata storage methods provided
the most performance enhancement. For all data sets, using
Stage 2 metadata and a memory pool provided a maxi-
mum of 7.65× speedup and an average of 4.75× speedup.
Using Stage 4 metadata with the memory pool, we
achieved a maximum 21.1× speedup and and average 12.6×
overall.

8 Discussion of Results

The performance provided by data reuse is dependent on the
compressibility of the data set. Data sets with greater com-
pressibility exhibit stronger performance relative to those
with less compressibility. This is because data sets with less
compressibility incur more global memory accesses on the
GPU.

Fig. 7 Metadata memory space requirements relative to the baseline
approach storing only compressed bitmaps. Note, the vertical axis is
logarithmic

222 B. Tran et al.

1 3

Storing the results of the first exclusive scan as 32-bit
metadata instead of 64-bit not only reduced storage require-
ments but also provided slightly faster execution times
(0.35% faster, on average). On NVIDIA GPUs, 32-bit inte-
ger operations are faster than 64-bit because the integer
ALUs are natively 32-bits. 64-bit operations are emulated
as sequences of 32-bit operations.

By combining metadata and memory pool strategies, the
attained speedup was greater than the sum of the speedup
of each individual strategy. When only using metadata, the

final stage can not begin until the necessary memory is allo-
cated. When only using a memory pool, the final stage can
not begin until the subsequent stage is completed. Com-
bining the methods removes both bottlenecks and allows
Algorithm 3 to start at the stage using the metadata as input
(Stage 3 or Stage 5).

The results for the linkage database from both systems
are compared in Fig. 11. In Fig. 11a, we see the execution
times for both systems for all enhancement strategies. Sys-
tem B is on average 4.75 ms slower than than System A. A

Fig. 8 Speedup provided by
data structure reuse. The dashed
horizontal line indicates a
speedup of 1

Fig. 9 Shown are System
A performance results for a
memory pool usage, b differ-
ent metadata strategies and
data type sizes, and c different
metadata strategies, data type
sizes, and a memory pool. The
dashed horizontal line indicates
a speedup of 1. Figures b and c
share a legend

(a) Memory pool (b) Metadata strategies and data type
sizes

(c) Metadata strategies, data type sizes,
and a memory pool

223Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing

1 3

comparison of GPU speedups for each system against their
respective baselines is shown in Fig. 11b. Systems A and B
have maximum speedups of 166× and 21.1× , respectively,
when using Stage 4 metadata with a memory pool. Aver-
age speedups for each system are 52.9 × and 8.44× , respec-
tively. System A consistently outperforms System B, despite
the fact that it has an older GPU than that in System B. This
happens because the specifications of the GPU in System A
are more amenable to CUDA programs than those in System
B. The System A GPU has a 12.1% higher clock frequency,
11.1% more CUDA cores, and 100% more usable shared
memory per thread block. The GPU in System B is more
expensive and sacrifices CUDA performance for additional
performance for conventional graphics applications, with
focus on technologies like ray-tracing and 3D-rendering.

In Fig. 12, we compare the GPU method with different
combinations of our performance enhancements with the
CPU method (see Sect. 4.1) using the highest-performing
CPU (found on System B) and the linkage data set. The
GPUs provide a maximum speedup of 15.00× and an average
speedup of 3.07× . When looking at each system separately,
System A has a maximum speedup of 15.00× , a minimum
speedup of 2.13× and an average speedup of 4.77× . System
B, on the other hand, had a maximum speedup of 3.41× ,

a minimum speedup of 0.832× and an average speedup of
1.37× . Four of the GPU performance enhancements on Sys-
tem B do not provide speedup over the CPU method. On
average, these are 13% slower than the CPU method. This
only occurs on System B when a combination of enhance-
ment strategies is not used. When compared to System A,
System B has a GPU that is less CUDA capable and a CPU
with a faster clock rate and enhanced parallelism. This sce-
nario reduces the overall difference in performance between
the CPU and GPU methods on System B. This illustrates
the sensitivity that CPU/GPU combinations can have when
using various enhancement strategies.

Although it has the highest storage cost, using fully
decompressed columns as metadata reduces execution time
by completely avoiding the the decompression routine.
Figure 13 shows the performance enhancement provided
by using fully decompressed columns as “metadata”. This
option is only reasonable for small databases or GPUs with
large storage space. This strategy provided a maximum of
691× speedup and an average of 383× speedup.

Figure 14 shows execution profiles when using (a) data
structure reuse, (b) 32-bit Stage 2 metadata without a
memory pool, (c) 32-bit Stage 4 metadata without a
memory pool, (d) only a memory pool, and 32-bit Stage

Fig. 10 Shown are System
B performance results for a
memory pool usage, b differ-
ent metadata strategies and
data type sizes, and c different
metadata strategies, data type
sizes, and a memory pool. The
dashed horizontal line indicates
a speedup of 1. Figures b and c
share a legend

(a) Memory pool (b) Metadata strategies and data type
sizes

(c) Metadata strategies, data type sizes,
and a memory pool

224 B. Tran et al.

1 3

2 and 32-bit Stage 4 metadata with a memory pool in (e)
and (f), respectively.

Data structure reuse (shown in Fig. 14a) eliminated three
of five allocation/free pairs providing an average of 5.43×
speedup. Profiles using Stage 2 and Stage 4 metadata
are shown in Fig. 14b,c, respectively. Both provide a notice-
able reduction in execution time as each eliminate a memory
allocation and free pair. The major cost of memory opera-
tions remains a dominant factor so the difference between
Stage 2 and Stage 4 metadata use is limited.

The profile when using only a memory pool is shown in
Fig. 14d. The memory pool removes the overhead of mem-
ory operations providing a greater reduction in execution
time than pure metadata strategies. Strategies combining a
memory pool with Stage 2 or Stage 4 metadata are
shown in Fig. 14e, f, respectively. These combination strate-
gies provide the benefits of both strategies: short-circuiting
to a mid-point of the decompression routine and removing
the overhead of GPU memory operations.

9 Related Work

There has been a significant amount of research conducted in
the area of GPUs and database systems. We briefly describe
a few of the most relevant works. Govindaraju et al. [21]
presented several GPU algorithms from common database
operations, including predicates, Boolean combinations, and

aggregation. He et al. [23] designed and implemented a rela-
tional join algorithm for GPUs. Their approach was able to
achieve a 7 × speedup over an optimized CPU implementa-
tion. Bakkum and Skadron [4] implemented an SQLite com-
mand processor on the GPU. Their implementation achieved
70× speedup of SELECT queries. Rui and Tu [36] imple-
mented hash joins and sort-merge join algorithms for the
GPU. They were able to achieve speedups of up to 4.3× for
their hash joins and 12.8× for their sort-merge joins over the
respective CPU implementations. These works considered
specific database operations and not indexing techniques.

There has been an abundance of work related to using
GPUs to increase the efficiency of specific database indices.
For example, Gosink et al. [20] created a parallel index-
ing data structure that uses bin-based data clusters. They
showed that their GPU implementation could achieve 3×
speedup over their CPU implementation. The fast architec-
ture sensitive tree (FAST) presented in [26] is a configurable
binary index tree. FAST was approximately 1.7× faster on
the GPU than the CPU. Similarly, Kim et al. [27] showed
that their GPU algorithm for R-tree traversal outperformed
the traditional recursive R-tree traversals when answering
multi-dimensional range queries. Our work pertains to WAH
compressed bitmap indices.

Several works have explored the benefits of using the
GPU to create bitmap indices. For example Fusco et al.
[18] demonstrated that greater throughout of bitmap crea-
tion could be achieved using GPU implementations over

Fig. 11 Shown are execution
times and speedups (relative to
baseline implementation) using
the linkage data set: a with
data reuse b storing Stage 2
as 64-bit c storing Stage 2
as 32-bit d storing Stage 4
as 32-bit e using the memory
pool f storing Stage 2 as
64-bit and using memory pool g
storing Stage 2 as 32-bit and
using memory pool h storing
Stage 4 as 32-bit and using
memory pool. b–h all incorpo-
rate data reuse

(a) Execution time

(b) Speedup relative to the baseline GPU method

225Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing

1 3

CPU implementations of WAH, and a related compression
scheme, position list word-aligned hybrid (PLWAH) [15].
Similarly, Chen et al. [10] showed that a GPU implementa-
tion of their maximized stride with carrier (MASC) [43]
bitmap index compression scheme was 19.5× faster at con-
structing a compressed bitmap index their CPU implementa-
tion. These works focused only on the initial creation of the

bitmap index and did not address query processing, which
is the focus of our work.

Our work focuses on efficient GPU decompression and
querying of WAH compressed bitmaps. There are many
other hybrid run-length compression schemes designed
specifically for bitmap indices. One of the earliest was
byte-aligned bitmap compression (BBC) [3]. The smaller
alignment can achieve better compression but at the
expense of query speed [45]. Other compression schemes
have employed variable alignment length [12, 22]. These
approaches try to balance the trade-offs between compress-
ing shorter runs and increasing query processing time. Oth-
ers use word alignment but embed metadata in fill atoms
that improve compression or query speed [8, 9, 11, 15, 17,
47]. These techniques were developed for execution on the
CPU, though they could be ported to the GPU by altering
the decompressor component of the GPU system described
above. We believe that many, if not all, of these compression
techniques on the GPU would benefit from a variation of our
metadata and memory pool enhancements.

To the best of our knowledge, we are first to use meta-
data to efficiently decompress WAH bitmap indices on the

Fig. 12 Shown are experiments done on the linkage data set where
the GPU speedups are relative to the CPU implementation on System
B: a with data reuse b storing Stage 2 as 64-bit c storing Stage
2 as 32-bit d storing Stage 4 as 32-bit e using the memory pool f

storing Stage 2 as 64-bit and using memory pool g storing Stage
2 as 32-bit and using memory pool h storing Stage 4 as 32-bit and
using memory pool. b–h all incorporate data reuse. The dashed hori-
zontal line indicates a speedup of 1

Fig. 13 Speedup provided by using decompressed bit vectors as
“metadata” relative to the baseline GPU

Fig. 14 A representative (albeit
approximate) view of execution
profiles of six identical query
executions on the linkage data-
base with varying enhancement
strategy configurations. Query
execution progresses from left
to right. Longer bars correspond
to longer execution times.
While execution profiles for
other databases exhibited slight
variations, their interpretations
remained consistent

226 B. Tran et al.

1 3

GPU. However, other work has used metadata to speed up
the processing of bitmap queries on the CPU. Enhanced
WAH (EWAH) [47] splits a fill word into two halves. The
most-significant half encodes a run much like WAH, but
the least significant half stores metadata that encodes the
number of succeeding literals. When performing bitwise
operations between two vectors, this encoded metadata can
be exploited to “short-circuit” the operation. This short-
circuiting allows successive words to be skipped. Similarly,
[39, 41] used externally stored metadata to enable query
time short-circuiting for WAH and PLWAH, respectively.

There has been a generous body of work that has explored
the benefits of memory pools on GPU in a variety of appli-
cations. For example, Hou et al. [24] used a specialized
memory pool to create kd-trees in the GPU. Their approach
allowed them to process larger scenes on the GPU than pre-
vious work. Wang et al. [42] used a preallocated memory
pool to reduce the overhead of large tensor allocations/deal-
locations. Their approach produced speedups of 1.12× to
1.77× over the use of cudaMalloc() and cudaFree().
The work of Simin et al. [48] is similar to our work in that
they use a memory pool to increase the query processing
of R-trees on GPU’s. We were unable to find any work that
used a GPU memory pool specifically designed for use with
bitmap indices.

As mentioned above, our work extends the works of
Andrzejewski and Wrembel [1, 2], Nelson et al. [33, 34],
and Tran et al. [40]. Andrzejewski and Wrembel introduced
WAH and PLWAH [15] compression and decompression
algorithms for GPUs as well as techniques to apply bitwise
operations to pairs of bit vectors. Their decompression algo-
rithm details a parallel approach for a decompressing a sin-
gle WAH or PLWAH compressed bit vector. Nelson et al.
modified Andrzejewski and Wrembel’s decompression algo-
rithm to apply it to multiple bit vectors in parallel. They then
presented multiple algorithms for executing bitmap range
queries on the GPU. At this time, Nelson et al. present the
only other work to process WAH range queries on the GPU.
Our experimental study used their most efficient range query
implementation. As the work in this paper improves the effi-
ciency of WAH bitmap decompression on the GPU, it rep-
resents a significant enhancement to approaches presented
by Andrzejewski and Wrembel’s and Nelson et al. The work
presented in this paper is a direct extension of [40]. We have
added an operation cost analysis of the GPU-WAH decom-
pression algorithm. This analysis provides context for the
improvements realized by our enhancements. Another addi-
tion is a discussion and analysis of sources and potential
impacts of warp divergence on CUDA capable GPUs. We
also present a Poisson distribution model that can be used to
estimate the size requirements of the memory pool used in
our approach. Additionally, we outlined an parallel reduction
algorithm for processing WAH range queries on the GPU.

We also greatly expanded the experimental study of our
approaches leading to new insights into the importance of
architectural details when selecting a GPU to process WAH
range queries.

10 Conclusion and Future Works

In this paper, we present multiple techniques for accelerating
WAH range queries on GPUs: data structure reuse, storing
metadata, and incorporating a memory pool. These methods
focus on reducing memory operations or removing repeated
decompression work. These techniques take advantage of the
static nature of bitmap indexing schemes and the inherent
parallelism of range queries.

We conducted an empirical study comparing these accel-
eration strategies to a the current state-of-the-art approach.
The results of our study showed that the data reuse, meta-
data, and memory pool strategies provided average speedups
of 13.9× , 16.7× , and 22.1× , respectively. Combining these
techniques provided an average of 66.2× speedup. We also
found that storing the entire bitmaps as accessible metadata
on the GPU resulted in an average speedup of 411× by elimi-
nating the need for decompression altogether. This option
is only feasible for configurations with small databases or
GPUs with large storage space. When comparing our GPU-
WAH range query performance enhancement techniques
against the high-end CPU, we were able to achieve a maxi-
mum speedup of 15.0× and an average speedup of 3.07×.

In future work, comparing energy consumption of the
above approaches may prove interesting. We would also
like to investigate executing WAH queries using multiple
GPUs. Additional GPUs would enhance parallelism and
storage capabilities. Furthermore, since WAH compression
is designed for CPU style processing, future studies could
investigate new compression schemes that are potentially
better fit for GPU architectures.

Acknowledgements JMM and JS would like to acknowledge the Uni-
versity of St. Thomas College of Arts and Science Dean’s office for
generously funding some of the computational resources that made
this study possible.

Author contributions Algorithmic design was primarily done by JMM,
JS, and DC with secondary contributions by BT and BS. The imple-
mentation of all algorithms was primarily performed by BT and BS
with secondary development by JMM and JS. All parties played an
equal role in manuscript development.

Funding Information BT and BS received Undergraduate Research
Funding from the University of St. Thomas.

Data Availability Statement Please contact the corresponding author
to obtain the data used in this manuscript.

227Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing

1 3

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no competing
interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Andrzejewski W, Wrembel R (2010) GPU-WAH: applying
GPUs to compressing bitmap indexes with word aligned hybrid.
In: International conference on database and expert systems
applications. Springer, Berlin, pp 315–329

 2. Andrzejewski W, Wrembel R (2011) GPU-PLWAH: GPU-based
implementation of the PLWAH algorithm for compressing bit-
maps. Control Cybern 40:627–650

 3. Antoshenkov G (1995) Byte-aligned bitmap compression. In:
Proceedings DCC’95 data compression conference, p 476. IEEE

 4. Bakkum P, Skadron K (2010) Accelerating sql database opera-
tions on a gpu with cuda. In: Proceedings of the 3rd workshop
on general-purpose computation on graphics processing units,
pp 94–103

 5. Bonneville power administration, http://www.bpa.gov
 6. Bradlow E, Gangwar M, Kopalle P, Voleti S (2017) The role of

big data and predictive analytics in retailing. J Retail 93:79–95
 7. Chambi S, Lemire D, Kaser O, Godin R (2016) Better bit-

map performance with roaring bitmaps. Softw Pract Exp
46(5):709–719

 8. Chang J, Chen Z, Zheng W, Cao J, Wen Y, Peng G, Huang W
(2015) Splwah: a bitmap index compression scheme for searching
in archival internet traffic. In: IEEE international conference on
communications (ICC), pp 7089–7094

 9. Chang J, Chen Z, Zheng W, Wen Y, Cao J, Huang W (2014)
Plwah+: a bitmap index compressing scheme based on plwah.
In: ACM/IEEE symposium on architectures for networking and
communications systems (ANCS), pp 257–258

 10. Chen Z, Wen Y, Cao J, Zheng W, Chang J, Wu Y, Ma G, Hak-
maoui M, Peng G (2015) A survey of bitmap index compression
algorithms for big data. Tsinghua Sci Technol 20(1):100–115

 11. Colantonio A, Di Pietro R (2010) Concise: compressed ’n’ com-
posable integer set. Inf Process Lett 110(16):644–650

 12. Corrales F, Chiu D, Sawin J (2011) Variable length compression
for bitmap indices. In: Database and expert systems applications,
pp 381–395

 13. CUDA, C.: Best practice guide (2019). https ://docs.nvidi a.com/
cuda/cuda-c-best-pract ices-guide

 14. Davenport T, Dyche J (2013) Big data in big companies. Tech.
rep, International Institute for Analytics

 15. Deliège F, Pedersen TB (2010) Position list word aligned hybrid:
optimizing space and performance for compressed bitmaps. In:

International conference on extending database technology, EDBT
’10, pp 228–239

 16. Erevelles S, Fukawa N, Swaynea L (2016) Big data consumer ana-
lytics and the transformation of marketing. J Bus Res 69:897–904

 17. Fusco F, Stoecklin MP, Vlachos M (2010) Net-fli: on-the-fly
compression, archiving and indexing of streaming network traf-
fic. VLDB 3(2):1382–1393

 18. Fusco F, Vlachos M, Dimitropoulos X, Deri L (2013) Indexing
million of packets per second using gpus. In: Proceedings of the
2013 conference on internet measurement conference, IMC ’13,
pp 327–332

 19. Gelado I, Garland M (2019) Throughput-oriented gpu memory
allocation. In: Proceedings of the 24th symposium on principles
and practice of parallel programming, pp 27–37

 20. Gosink LJ, Wu K, Bethel EW, Owens JD, Joy KI (2009) Data
parallel bin-based indexing for answering queries on multi-core
architectures. In: Winslett M (ed) Scientific and statistical data-
base management, pp 110–129

 21. Govindaraju NK, Lloyd B, Wang W, Lin M, Manocha D (2004)
Fast computation of database operations using graphics proces-
sors. In: Proceedings of the 2004 ACM SIGMOD international
conference on management of data, pp 215–226

 22. Guzun G, Canahuate G, Chiu D, Sawin J (2014) A tunable com-
pression framework for bitmap indices. In: 2014 IEEE 30th inter-
national conference on data engineering, pp 484–495. IEEE

 23. He B, Yang K, Fang R, Lu M, Govindaraju N, Luo Q, Sander P
(2008) Relational joins on graphics processors. In: Proceedings
of the 2008 ACM SIGMOD international conference on manage-
ment of data, pp 511–524

 24. Hou Q, Sun X, Zhou K, Lauterbach C, Manocha D (2011) Mem-
ory-scalable GPU spatial hierarchy construction. IEEE Trans
Visual Comput Graphics 17(4):466–474

 25. Huang X, Rodrigues CI, Jones S, Buck I, Hwu Wm (2010) Xmal-
loc: a scalable lock-free dynamic memory allocator for many-core
machines. In: 2010 10th IEEE international conference on com-
puter and information technology, pp 1134–1139. IEEE

 26. Kim C, Chhugani J, Satish N, Sedlar E, Nguyen AD, Kaldewey T,
Lee VW, Brandt SA, Dubey P (2010) Fast: fast architecture sensi-
tive tree search on modern cpus and gpus. In: Proceedings of the
2010 ACM SIGMOD international conference on management of
data, pp 339–350

 27. Kim J, Kim SG, Nam B (2013) Parallel multi-dimensional range
query processing with r-trees on gpu. J Parallel Distrib Comput
73(8):1195–1207

 28. Lichman M (2013) UCI machine learning repository. http://archi
ve.ics.uci.edu/ml

 29. Lloyd S (1982) Least squares quantization in pcm. IEEE Trans Inf
Theory 28(2):129–137

 30. Marr B (2018) Starbucks: using big data, analytics and artificial
intelligence to boost performance. Forbes. https ://www.forbe
s.com/sites /berna rdmar r/2018/05/28/starb ucks-using -big-data-
analy tics-and-artifi cial -intel ligen ce-to-boost -perfo rmanc e/#57849
02e65 cd

 31. McAfee A, Brynjolfsson E (2012) Big data: the management revo-
lution. Harvard Business Review, pp 61–68

 32. Merrill D (2016) Cub: Cuda unbound. http://nvlab s.githu b.io/cub
 33. Nelson M, Sorenson Z, Myre JM, Sawin J, Chiu D (2019) GPU

acceleration of range queries over large data sets. In: Proceedings
of the 6th IEEE/ACM international conference on big data com-
puting, application, and technologies (BDCAT’19), pp 11–20

 34. Nelson M, Sorenson Z, Myre JM, Sawin J, Chiu D (2020) Parallel
acceleration of CPU and GPU range queries over large data sets.
J Cloud Comput 9(1):1–21

 35. Nvidia C (2020) Programming guide
 36. Rui R, Tu YC (2017) Fast equi-join algorithms on GPUs: design

and implementation. In: Proceedings of the 29th international

http://creativecommons.org/licenses/by/4.0/
http://www.bpa.gov
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.forbes.com/sites/bernardmarr/2018/05/28/starbucks-using-big-data-analytics-and-artificial-intelligence-to-boost-performance/#5784902e65cd
https://www.forbes.com/sites/bernardmarr/2018/05/28/starbucks-using-big-data-analytics-and-artificial-intelligence-to-boost-performance/#5784902e65cd
https://www.forbes.com/sites/bernardmarr/2018/05/28/starbucks-using-big-data-analytics-and-artificial-intelligence-to-boost-performance/#5784902e65cd
https://www.forbes.com/sites/bernardmarr/2018/05/28/starbucks-using-big-data-analytics-and-artificial-intelligence-to-boost-performance/#5784902e65cd
http://nvlabs.github.io/cub

228 B. Tran et al.

1 3

conference on scientific and statistical database management, pp
1–12

 37. Sariyar M, Borg A, Pommerening K (2011) Controlling false
match rates in record linkage using extreme value theory. J
Biomed Inform 44(4):648–654

 38. Steinberger M, Kenzel M, Kainz B, Schmalstieg D (2012) Scat-
teralloc: massively parallel dynamic memory allocation for the
GPU. In: 2012 Innovative parallel computing (InPar), pp 1–10.
IEEE

 39. Taufen B, Sawin J, Chiu D (2017) Improving the querying effi-
ciency of the plwah bitmap algorithm. In: Proceedings of the 21st
international database engineering and applications symposium,
pp 127–134

 40. Tran B, Schaffner B, Sawin J, Myre JM, Chiu D (2020) Increas-
ing the efficiency of GPU bitmap index query processing. In: To
appear in Proceedings of the 25th international conference on
database systems for advanced applications (DASFAA’20)

 41. Velez M, Sawin J, Ingerson A, Chiu D (2016) Improving bitmap
execution performance using column-based metadata. In: 2016
IEEE 4th international conference on future internet of things and
cloud (FiCloud), pp 371–378. IEEE

 42. Wang L, Ye J, Zhao Y, Wu W, Li A, Song SL, Xu Z, Kraska T
(2018) Superneurons: dynamic GPU memory management for
training deep neural networks. In: Proceedings of the 23rd ACM
SIGPLAN symposium on principles and practice of parallel pro-
gramming, pp 41–53

 43. Wen Y, Wang H, Chen Z, Cao J, Peng G, Huang W, Hu Z, Zhou
J, Guo J (2016) Masc: a bitmap index encoding algorithm for fast
data retrieval. In: IEEE international conference on communica-
tions (ICC), pp 1–6

 44. Wu J, Di B, Sun J, Chen H, Zhong X, Hu D, Huang C (2019) A
fast and secure GPU memory allocator. In: 2019 IEEE 21st inter-
national conference on high performance computing and com-
munications; IEEE 17th international conference on smart city;
IEEE 5th international conference on data science and systems
(HPCC/SmartCity/DSS), pp 146–153. IEEE

 45. Wu K, Otoo EJ, Shoshani A (2002) Compressing bitmap indexes
for faster search operations. In: Proceedings 14th international
conference on scientific and statistical database management, pp
99–108. IEEE

 46. Wu K, Otoo EJ, Shoshani A (2006) Optimizing bitmap indices
with efficient compression. ACM Trans Database Syst 31(1):1–38

 47. Wu K, Otoo EJ, Shoshani A, Nordberg H (2001) Notes on design
and implementation of compressed bit vectors. Tech. Rep. LBNL/
PUB-3161, Lawrence Berkeley National Laboratory

 48. You S, Zhang J, Gruenwald L (2013) Parallel spatial query pro-
cessing on GPUs using r-trees. In: Proceedings of the 2Nd ACM
SIGSPATIAL international workshop on analytics for big geospa-
tial data, pp 23–31

 49. Zaker M, Phon-Amnuaisuk S, Haw SC (2008) An adequate design
for large data warehouse systems: bitmap index versus b-tree
index. Int J Comput Commun 2:39–46

	Exploring Means to Enhance the Efficiency of GPU Bitmap Index Query Processing
	Abstract
	1 Introduction
	2 Bitmap Indices and WAH Compression
	2.1 Bitmap reation
	2.2 WAH Compression and Querying

	3 Graphics Processing Units
	4 Architectural Approaches to WAH Range Query Processing
	4.1 CPU Processing of WAH Range Queries
	4.2 GPU Processing of WAH Range Queries
	4.3 Cost Analysis of GPU WAH Range Queries
	4.4 Potential Sources and Impacts of Warp Divergence

	5 Memory Use Strategies
	6 Experiments
	7 Results
	8 Discussion of Results
	9 Related Work
	10 Conclusion and Future Works
	Acknowledgements
	References

