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Abstract
Once exotic, computational accelerators are now commonly available in many computing systems. Graphics processing 
units (GPUs) are perhaps the most frequently encountered computational accelerators. Recent work has shown that GPUs 
are beneficial when analyzing massive data sets. Specifically related to this study, it has been demonstrated that GPUs can 
significantly reduce the query processing time of database bitmap index queries. Bitmap indices are typically used for large, 
read-only data sets and are often compressed using some form of hybrid run-length compression. In this paper, we present 
three GPU algorithm enhancement strategies for executing queries of bitmap indices compressed using word aligned hybrid 
compression: (1) data structure reuse (2) metadata creation with various type alignment and (3) a preallocated memory 
pool. The data structure reuse greatly reduces the number of costly memory system calls. The use of metadata exploits the 
immutable nature of bitmaps to pre-calculate and store necessary intermediate processing results. This metadata reduces the 
number of required query-time processing steps. Preallocating a memory pool can reduce or entirely remove the overhead of 
memory operations during query processing. Our empirical study showed that performing a combination of these strategies 
can achieve 32.4× to 98.7× speedup over the current state-of-the-art implementation. Our study also showed that by using 
our enhancements, a common gaming GPU can achieve a 15.0× speedup over a more expensive high-end CPU.
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Abbreviations
CPU  Central processing unit
CUDA  Compute unified device architecture
GPU  Graphics processing unit
MSB  Most significant bit
WAH  Word-aligned hybrid
COA  Column oriented access
ROA  Row oriented access
ALU  Arithmetic logic unit
BBC  Byte-aligned bitmap compression
PLWAH  Position list word-aligned hybrid
FAST  Fast architecture sensitive tree
GB  Gigabyte
EWAH  Enhanced word-aligned hybrid

RAM  Random access memory
KDD  Knowledge discovery and data mining
BPA  Bonneville power administration

1 Introduction

Modern companies rely on big data to drive their business 
decisions [14, 16, 31]. A prime example of the new corpo-
rate reliance on data is Starbucks, which uses big data to 
determine where to open stores, target customer recommen-
dations, and menu updates [30]. The coffee company even 
uses weather data to adjust its digital advertisement copy 
[6]. To meet this need, companies are collecting astound-
ing amounts of data. The shipping company UPS stores 
over 16 petabytes of data to meet their business needs [14]. 
Of course, large repositories of data are only useful if they 
can be analyzed in a timely and efficient manner. In this 
paper, we present techniques that take advantage of syner-
gies between hardware and software to speed up the analysis 
of data.
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Indexing is one of the commonly used software tech-
niques to aid in the efficient retrieval of data. A bitmap 
index is a binary matrix that approximates the underlying 
data. They are regularly used to increase query-processing 
efficiency in data warehouses and scientific data. It has 
been shown that bitmap indices are efficient for some of 
the most common query types: point, range, joins, and 
aggregate queries. They can also perform better than 
other indexing schemes like B-trees [49]. One of the main 
advantages of bitmap indices is that they can be queried 
using fast bitwise operations. Additionally, there is a 
significant body of work that explores methods of com-
pressing sparse bitmap indices [7, 12, 15, 17, 46, 47]. The 
focus of most compression work is on various forms of 
hybrid run-length encoding schemes. These schemes not 
only achieve substantial compression, but the compressed 
indices they generate can be queried directly, bypassing 
the overhead of decompression. One commonly used com-
pression scheme is word aligned hybrid (WAH) [46]. To 
improve query processing, WAH compresses data to align 
with CPU word size.

One of the oft-cited shortcomings of bitmap indices is 
their static nature. Once a bitmap is compressed, there is no 
easy method to update or delete tuples in the index. For this 
reason, bitmap indices are most commonly used for read-
only data sets. However, the immutable nature of bitmaps 
can be exploited to increase the efficiency of query algo-
rithms. Specifically, as bitmap indices are rarely updated, it 
is relatively cheap to build and maintain metadata that can 
be used to aid in query processing. Additionally, static data 
structures can be preallocated to reduce query processing 
overhead.

Recent work has shown how graphics processing units 
(GPUs) can exploit data-level parallelism inherent in bit-
map indices to significantly reduce query processing time. 
GPUs are massively parallel computational accelerators 
that are now standard augmentations to many computing 
systems. Previously, Andrezejewski and Wrembel [1] pro-
posed GPU-WAH, a system that processes WAH compressed 
bitmap indices on the GPU. To fully realize the data par-
allel potential inherent in bitmaps, GPU-WAH must first 
decompress the bitmap. Nelson et al. extended GPU-WAH 
so that it could process range queries [33, 34]. Nelson et al. 
demonstrated that tailoring the range query algorithm to the 
unique GPU memory architecture can produce significant 
improvements (an average speedup of 1.48× over the base-
line GPU approach and 30.22× over a parallel CPU algo-
rithm). Currently, Nelson et al. presents the only other work 
using GPU’s to process WAH bitmap range queries.

In this paper, we explore techniques that use metadata, 
data structure reuse, and preallocation tailored to speed up 
the processing of WAH range queries on GPUs. The major 
contributions of this paper are:

• We present a novel tiered restructuring of the current 
state-of-art WAH decompression algorithm for GPUs. 
Our algorithm uses pre-compiled metadata to circumvent 
stages of the decompression process. Each tier represents 
a memory/time trade-off which allows for a tailored 
application of our algorithm.

• We present several memory strategies that exploit the 
static nature of bitmaps. These include recycling data 
structures and using a pre-allocated memory pool. We 
also demonstrate how data-type selection aligns our algo-
rithms to the GPU architecture.

• We present a novel reduction-based method for process-
ing WAH range queries in parallel on a CPU.

• We present an empirical study of our proposed enhance-
ments to the GPU-WAH decompression algorithm 
applied to both real and synthetic data sets. Our experi-
mental results show that our enhancement strategies pro-
vide an average and a maximum speedups of 75.43× and 
98.7× , respectively, over the current state-of-the-art of 
GPU-WAH range query processing algorithms.

• We compare the querying performance of our proposed 
enhancements to GPU-WAH to our parallel CPU WAH 
implementation. Our experimental results show that 
with our enhancements on relatively inexpensive GPUs 
are able to achieve an average 3.07× and a maximum of 
15.0× speedup over a high-end CPU.

The remainder of the paper is organized as follows. In 
Sect. 2, we provide an overview of bitmap indices and 
WAH compression. Section 3 provides a high-level over-
view of GPU architecture. Section 4 describes procedures 
for executing WAH range queries on the CPU and GPU. Sec-
tion 5 describes our enhancement strategies. We present our 
methodology in Sect. 6, our results in Sect. 7, and discuss 
the results in Sect. 8. We briefly describe related works in 
Sect. 9. We conclude and present future work in Sect. 10.

2  Bitmap Indices and WAH Compression

In this section, we describe how bitmap indices are cre-
ated. We also present how WAH can compress such bitmap 
indices and the algorithms for querying WAH compressed 
bitmap indices.
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2.1  Bitmap reation

A bitmap index is created by discretizing a relation’s 
attribute values into bins that represent distinct values or 
value-ranges.

Table 1 shows a relation and a corresponding bitmap 
index. The right most table shows a possible bitmap for the 
Stocks relation to its left. The si columns in the bitmap are 
the bins used to represent the Symbol attribute. As stock 
symbols are distinct values, each value is assigned a bin 
(e.g., s

0
 represents the value GE, s

1
 represents WFC, and so 

on). The pj bins represent ranges of values into which Price 
values can fall. p

0
 represents the range [0, 50), p

1
 denotes 

[50, 100), p
2
 is [100, 150), and p

3
 represents [150,∞).

After the bins have been established, each tuple in the 
relation is processed. For example, consider the first tuple 
in the Stocks relation (Table 1). This tuple’s Symbol value 
is GE, and thus in the bitmap a 1 is placed in s

0
 and all other 

s bins are set to 0. The Price value is 11.27. This value falls 
into the [0, 50) range, so a 1 is assigned to the p

0
 bin, and 

all other p bins get 0. This binning process is performed on 
all the tuples in Stocks to create the shown bitmap shown to 
the right of the relation.

The binary representation of a bitmap index means that 
hardware primitive bitwise operations can be used to pro-
cess queries. For example, consider the following query: 
SELECT * FROM Stocks WHERE Price>60;. This 
query can be processed by solving p

1
∨ p

2
∨ p

3
= res . Only 

the rows in res that contain a 1 corresponds to a tuple that 
should be retrieved from disk for further processing.

2.2  WAH Compression and Querying

One of the predominate compression algorithms for bit-
map indices is word aligned hybrid (WAH). WAH com-
pression operates on stand-alone bitmap bins (also referred 

to as bit vectors). Figure 1a presents an example bit vector 
consisting of 252-bits (shown in chunks). Figure 1b shows 
that same bit vector compressed using WAH.

Assuming a 64-bit architecture, WAH clusters a bit 
vector into consecutive (system word length)−1 (or 63-) 
bit “chunks.” In Fig. 1a the first chunk is heterogeneous 
and the remaining 3 chunks are homogeneous. Each chunk 
is then encoded into system word sized (64-bit) atoms. 
Heterogeneous chunks are encoded as literal atoms of the 
form (flag, lit). The most-significant-bit (MSB), or flag, 
is zero to indicate a literal. The remaining 63-bits (lit) 
record the original heterogeneous chunk from the bit vec-
tor. Since the first chunk is heterogeneous it is encoded 
into a literal atom.

Homogeneous chunks are encoded as fill atoms of the 
form (flag, val, len), where the MSB (flag) is set to 1 to 
indicate a fill and the second-MSB (val) records the value 
of the homogeneous sequence of bits. The remaining 62 
bits (len) record the run length of identical chunks in the 
original bit vector. The last three chunks in Fig. 1a are 
homogeneous and are encoded into a fill atom, where the 
val bit is set to 0 and the len field is set to 3 (as there are 
three consecutive repetitions of the homogeneous chunk).

Table 1  Example relation 
(stocks) and a corresponding 
bitmap (symbol and price bins)

Stocks Symbol bins Price bins

Symbol Price s
0

s
1

s
2

s
3

s
4

s
5

p
0

p
1

p
2

p
3

GE 11.27 1 0 0 0 0 0 1 0 0 0
WFC 54.46 0 1 0 0 0 0 0 1 0 0
M 15.32 0 0 1 0 0 0 1 0 0 0
DIS 151.58 0 0 0 1 0 0 0 0 0 1
V 184.51 0 0 0 0 1 0 0 0 0 1
CVX 117.13 0 0 0 0 0 1 0 0 1 0

Fig. 1  An example bit vector represented with WAH compression
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Algorithm 1 [46] shows how two bit vectors compressed 
using WAH can be queried directly without the need for 
decompression. As shown, the algorithm takes two WAH 
compressed bit vectors, A and B, as input. The ◦ operator at 
lines 14 and 19 represents any hardware supported bitwise 
logical operator (e.g., AND, OR, XOR, etc.) The procedure 
returns Z a compressed bit vector that contains the result 
of A◦B . In the algorithm, A and B are treated as stacks of 
WAH atoms. It first pops an atom off each “stack” (lines 3 
and 4). The algorithm continues to process atoms as long 
as both stacks are not empty (line 5). During each iteration, 
it first checks if the current operand atoms have been fully 
processed, or exhausted. If the atom has been exhausted, 
the next atom from the appropriate bit vector is fetched 
(lines 6-11).

At line 12, Point Query determines the type of atom 
pairing is currently being processed. If both atoms are fills, 
a new resulting fill atom is pushed onto the result stack. The 
val bit of the new fill atom is the result of ◦ being applied 
to the two val bits of the operand atoms. The len of the 
resulting atom is nLen, which is the minimum value of the 
two len values of the operand atoms. The reduce operation 
shown in lines 16 and 17, is a bookkeeping procedure that 
records that nLen words have been processed in both the 
operand atoms. Note that in the Fill/Fill, pairing the 
atom with the minimum len value will be fully exhausted 

and will require replacing during the next iteration. If one 
of the operand atoms is a literal (lines 18-22), a new literal 
atom is added to Z. The lit value of the new atom is the result 
of applying ◦ to the lit values of the two operand atoms. If 
one of the atoms is a fill, the getLitVal() method returns a 
single literal atom representation of the fill (i.e., either 63 
zeros or 63 ones). Then, each operand atom is reduced by 1 
to indicate a single word has been processed. This reduction 
will exhaust any literal atoms. After all the atoms have been 
processed, Z is returned.

3  Graphics Processing Units

As shown above, a significant advantage of WAH is that 
compressed bitmaps can be queried directly without being 
decompressed first. It has been shown that the use of system 
word alignment by WAH can provide enhanced querying 
performance over other compression schemes [45]. This 
approach is well-suited for CPU implementations. While 
querying compressed columns is possible using graphics 
processing units (GPUs), the parallelism present in GPUs 
is unlikely to be fully utilized. This is due to low data 
alignment and a significant amount of branching instruc-
tions. Unlike CPUs, GPUs do not have branch predictors 
and branch instructions can induce a phenomenon called 
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warp divergence (described later in this section). It has been 
shown that GPUs can efficiently query decompressed bit 
vectors as this produces a high degree of data level parallel-
ism and reduces the amount of branch instructions encoun-
tered [1, 2, 33].

With NVIDIA’s compute unified device architecture 
(CUDA) programming platform for GPUs, tens of thousands 
of threads can be organized into 1-, 2-, or 3-dimensional 
Cartesian structures. Cartesian layouts naturally maps to 
many computational problems. With CUDA, these struc-
tures hierarchically comprise thread grids, thread blocks, 
and threads. Threads are executed in groups (conventionally 
known as cooperative thread arrays or warps) of 32, ergo, 
thread blocks are typically composed of 32m threads, where 
m is a positive integer.

The memory hierarchy for CUDA capable NVIDIA 
GPUs is closely linked to the organization of threads. The 
CUDA memory hierarchy is composed of global, shared, 
and local memory. Global memory is accessible to all 
threads. Thread blocks have private access to their own low-
latency shared memory ( ∼ 100× less than global memory 
latency) [13]. Each thread also has access to its own private 
local memory.

For a CUDA capable NVIDIA GPU to fully realize high-
bandwidth global memory transfers, it is critical to coalesce 
global-memory accesses. Coalesced global memory accesses 
occur when two criteria are fulfilled: 1) the accessed mem-
ory addresses are sequential and 2) the accessed memory 
addresses span the addresses 32n to 32n + 31 , for some inte-
ger, n. Coalescing global memory accesses allow the GPU 
to batch memory transactions in order to reduce the total 
number of memory transfers.

The NVIDIA CUDA GPU functional units for integer 
arithmetic are 32-bits at their core [35]. This incurs a per-
formance penalty when performing 64-bit integer arithmetic 
as 64-bit integer arithmetic is emulated using 32-bit types. 
Modern 64-bit CPUs do not suffer this penalty.

A core challenge to ensuring high computational 
throughput on CUDA capable GPUs is warp divergence. 
The phenomenon of warp divergence occurs when threads 
within the same warp resolve a branching instruction (com-
monly resulting from loops or if-else statements) differently. 
At an architectural level, CUDA GPUs require all threads 
within a warp to execute the same sequence of instructions. 
When warp divergence occurs, a CUDA GPU will execute 
the multiple instruction sequences present in the warp seri-
ally. This serial execution of thread subsets within a warp 
can significantly reduce performance as computational 
throughput is reduced. For example, two possible branch 
outcomes exist when an if-else statement is encountered. 
Warp divergence occurs when a warp fails to evaluate the 
condition uniformly. Some subset of the warp will execute 
the true path and the complementary subset will execute 

the false path. The execution of these two branch outcomes 
occurs serially. The total execution time required for the 
serial execution of the two outcomes is then tT + tF+t� , 
where tT  is the execution time of the true path, tF is the 
execution time of the false path, and t� is the overhead nec-
essary to orchestrate the serial execution. To accomplish 
the serial execution necessary to resolve warp divergence, 
the CUDA runtime environment “deactivates” subsets of 
the threads within the divergent warp. The active subset of 
threads executes instructions from a single path. Once all 
paths are executed, the threads within the warp continue 
executing uniformly.

4  Architectural Approaches to WAH Range 
Query Processing

4.1  CPU Processing of WAH Range Queries

We implement a parallel approach for WAH range query 
processing using multi-core CPUs. The majority of multi-
core CPUs do not exhibit the same degree of parallelism that 

Fig. 2  Processing a range query using a reduction
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is present in GPUs. As such, our CPU approach is restricted 
to a parallel reduction. This approach executes up to p paral-
lel point queries (using OpenMP on a p-core CPU) on paired 
compressed bit vectors for any given reduction level. If more 
than p bit vector pairs exist in a given reduction level, the 
CPU must iterate through the remaining pairs until all of the 
bit vectors for that level have been processed. Once the final 
reduction level (consisting of a single bit vector pair) has 
been processed, the range query result is obtained.

Figure 2 shows this process for a range query of four 
bit vectors. Each thread reads from two operand bit vectors 
and writes to one result bit vector. Executing a range query 
using a reduction requires log

2
(n) reduction levels, where n 

is the number of bit vectors being processed. This is due to 
the consecutive halving nature of the reduction operation. 

The query shown in Fig. 2 requires two reduction levels. In 
the first level, two independent pairs of bit vectors can be 
processed in parallel. The final level consists of processing 
a single pair of bit vectors to produce the result of the query.

4.2  GPU Processing of WAH Range Queries

Figure 3 illustrates the execution steps used in [33] to pro-
cess a range query on the GPU. Initially, the compressed 
bit vectors are stored on the GPU. When the GPU receives 
a query, the required bit vectors are sent to the Decompres-
sor. The decompressed columns are then sent to the Query 
Engine where the query is processed in parallel, and the 
result is sent to the CPU. Without decompression, the WAH 
query process has very low data level parallelism and the 
query engine would not be able to take advantage the the 
parallelism inherent in the GPU.

Fig. 3  Main components used 
to process WAH range queries 
on a GPU

Using NVIDIA’s CUDA, Nelson et al. [33, 34] presented 
four parallel reduc-tion-based methods for the query engine: 
column-oriented access (COA), row-oriented access (ROA), 
and a (standard and ideal) hybrid approach. COA performs 
the reduction on columns, and ROA performs the reduction 
across single rows. In the hybrid approaches, GPU threads are 
grouped into blocks, and thread blocks are tiled into grids to 
cover the query data. The blocks then perform two rounds of 
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reduction on their data. The ideal hybrid approach is formed 
when queries are sufficiently small to complete the query in a 
single round of reduction.

The ideal hybrid approach makes the most efficient use 
of the GPU memory system. Specifically, it utilizes both 
the coalesced memory accesses of COA and the use of 
shared memory for processing along rows of ROA; the 
hybrid was found to be the fastest method in their experi-
mental study. The ideal hybrid approach is shown in Algo-
rithm 2 [33] and is applicable to queries of up to 1024 bit 
vectors. Thread blocks are tiled to maximize the parallel 
processing of input bit vectors. Each tile, which represents 

one thread block, has a width that spans all columns and 
an adjustable length (inversely proportional to the width) 
so that each thread block can use the maximum of 1024 
threads. Every thread block is partitioned and executed 
in parallel where each thread (also in parallel) performs 
log

2
(b) levels of reduction, where b is the number of bit 

vectors spanned by the thread block, storing the result 
in the lower order column. The final result of the range 
query, which resides in the first column, is returned. For 
the remainder of the paper, we will only be considering 
the ideal hybrid approach for the query engine though our 
improvements would benefit all approaches.
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The work of this paper focuses on the decompressor com-
ponent of the above approach. Algorithm 3 presents a proce-
dure for the decompressor unit. It was designed by Andreze-
jewski and Wrembel [1] and modified in [33] to decompress 
multiple columns in parallel. The input to the algorithm is 
a compressed bit vector, CompData, the size of the com-
pressed data, CSize, and the size of the decompressed data, 
DSize. The output is the corresponding decompressed bit 
vector, DecompData. The algorithm itself comprises five 
stages; the stages execute sequentially, but the work within 
stages is processed in parallel.
Stage 1 (lines 5–13) generates an array DecompSizes 

which has the same number of elements as CompData. At 
the end of Stage 1, each element in DecompSizes will 
hold the number of words being represented by the atom 
with the same index in CompData. This is accomplished 
by creating a thread for each atom in CompData. If an atom 
is a literal, its thread assigns 1 to the appropriate index in 
DecompSizes (line 9). If the atom is a fill, the thread assigns 
the number of words compressed by the atom (line 11).
Stage 2 (lines 14–17) executes an exclusive scan 

(parallel element summations) on DecompSizes storing the 
results in StartingPoints. The element, StartingPoints[i], 
contains the total number of decompressed words com-
pressed into CompData[0] to CompData[i − 1] , inclusive. 
StartingPoints[i] ∗ 63 is the number of the bitmap row first 
represented in CompData[i].
Stage 3 (lines 18–22) creates an array of zeros, End-

Points. The length of EndPoints equals the number of words 
in the decompressed data. A 1 is assigned to EndPoints at 
the location of StartingPoints[i] − 1 for i < |StartingPoints| . 
In essence, each 1 in EndPoints represents where a hetero-
geneous chunk was found in the decompressed data by the 
WAH compression algorithm. Note that each element of 
StartingPoints is processed in parallel.
Stage 4 (lines 24–27) performs an exclusive scan over 

EndPoints storing the result in WordIndex. WordIndex[i] 
provides the index to the atom in CompData that contains 
the information for the ith decompressed word.
Stage 5 (lines 28–42) contains the final for-loop, 

which represents a parallel processing of every element of 
WordIndex. For each element in WordIndex, the associated 
atom is retrieved from CompData, and its type is checked. 
If CompData[WordIndex[i]] is a WAH literal atom (MSB is 
a zero), then it is placed directly into DecompData[i]. Oth-
erwise, CompData[WordIndex[i]] must be a fill atom. If it 
is a fill of zeroes (second MSB is a zero), then 64 zeroes are 
assigned into DecompData[i]. If it is a fill of ones, a word 
consisting of 1 zero (to account for the flag bit) and 63 ones 
is assigned to DecompData[i]. The resulting DecompData 
is the fully decompressed bitmap.

4.3  Cost Analysis of GPU WAH Range Queries

We analytically found the operation count for all of 
Decomp’s stages (algorithm 3) using n for the number of 
WAH atoms in the compressed column, m for the number 
of system words in a decompressed column, and w for the 
WAH atom length in bits. The work factor given for each 
stage regards apparent work, not total work. In other words, 
we are concerned with the work that cannot be hidden by 
parallelism. For example, consider a loop that executes 
50,000 iterations. Due to the serial nature of the loop, each 
operation in its body would need to be counted 50,000 times. 
However, if each iteration of the same loop could be exe-
cuted concurrently using 50,000 threads the entirety of the 
loop could be completed in the time of one iteration. Our 
analysis treats multiple simultaneous (parallel) executions of 
an operation as a single event. We considers both arithmetic 
operations and memory operations. Arithmetic operations 
include additions, subtractions, conditional checks, etc., and 
memory operations include assignments, array accesses, 
allocations, and frees.

The first operation of Stage 1 is the allocation (via 
cudaMalloc()) of n × w bits of memory for the array 
DecompSizes. All iterations of the following loop are exe-
cuted in parallel, as are all other remaining loops shown in 
the algorithm. Getting the 63-rd bit of CompData and check-
ing its value at line 8 takes one memory operation and one 
arithmetic operation. For Decomp, the worst-case configura-
tion for a compressed column of n atoms is for all of them 
to be fills. This configuration would lead to the conditional 
statement only executing line 11. This path through Stage 
1 is the most costly, as there are two memory operations 
to decode the value of len and assign it to DecompSizes. 
Therefore, in the worst-case, Stage 1 takes a total of 1 
arithmetic operation and 4 memory operations, including an 
allocation of size n × w.
Stage 2 (lines 14 to 17) first allocates n × w bits of 

memory for the array StartingPoints. This new array stores 
the result of an exclusive scan of DecompSizes at line 16. 
DecompSizes has the same length as the compressed col-
umn, n; with the parallelism attained by the GPUs, the 
exclusive scan has a total memory and arithmetic operation 
count of O(log

2
(n)) , each. Then, since DecompSizes is no 

longer needed, cudaFree() is called to free its n × w bits 
of memory.

In Stage 3, a memory allocation of m × w bits is 
required for Endpoints. Note that this requires a call to both 
cudaMalloc() and cudaMemset() to initialize the 
array to zeroes. There is also a single arithmetic operation 
for subtraction and 2 memory operations to cover the End-
Points array access and assignment. Following the final use 
of StartingPoints, its n × w bits of memory is freed.
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Stage 4 (lines 24 to 27) requires a memory alloca-
tion of m × w bits for WordIndex, which holds the result 
of the exclusive scan on EndPoints. Similar to Stage 2, 
the parallel exclusive scan has a work factor of O(log

2
(m)) 

memory and arithmetic operations each. Then, the m × w 
bits of memory allocated for EndPoints is freed.
Stage 5 first allocates m × w bits of memory to store 

the resulting decompressed column. Then line 31 requires 
2 memory operations to access and store an atom from the 
input column. For the remainder of the stage, the worst-
case occurs when both conditionals (line 32 and 35) fail. 
This happens when the atom is a fill of 1’s. The conditional 
checks execute a memory access and a boolean evaluation 
each, followed by an addition and assignment. Ending this 
stage, a cudaFree() releases the w × m bits allocated for 
WordIndex. In total, Stage 5 uses 7 memory and 3 arith-
metic operations. After the query is made, a final cuda-
Free() is called on the decompressed column memory.

The worst-case scenario for Decomp (Algorithm  3) 
is dominated by memory operations. These encompass 5 
memory allocations and frees, 10 + O(log

2
(n)) + O(log

2
(m)) 

other memory operations which include global reads and 
writes, and 5 + O(log

2
(n)) + O(log

2
(m)) arithmetic opera-

tions. There is a significant body of work that has shown 
that conventional memory allocation is inefficient on CUDA 
GPUs [19, 25, 38, 44]. The inefficiency of these operations is 
compounded because they act as a blocking operation for all 
threads within a CUDA stream, a hindrance to parallelism. 
The next biggest expense comes from the exclusive scans. 
Despite our use of a high-performance implementation [32], 
the exclusive scans still incur numerous accesses to global 
memory, which each take hundreds of cycles [35]. Our 
implementation strategies detailed in Sect. 5 focus on reduc-
ing the need for the costly memory operations. Reusing data 
structures removes the need for calls to cudaMalloc() 
(and respective cudaFree() function calls) for Starting-
Points, WordIndex, and DecompData which reduces the 
number of memory allocations and frees to 2 each. Storing 
pre-calculated metadata eliminates the need for additional 
cudaMalloc()s, cudaFree()s, and exclusive scans. 
Utilizing a memory pool avoids the final cudaFree(). 
Overall, the memory operation count is reduced to a single 
cudaMalloc() plus O(1) assignments and accesses.

It is important to note that the operation counts are ideal-
ized. In reality, the parallelism is reduced significantly by 
warp divergence when threads in the same warp take dif-
ferent execution paths because of conditional variation. The 
parallelism is further reduced by architectural limits such as 
limited number of threads and registers. There is also limited 
memory throughput due to concurrent memory access and 
memory bus bandwidth.

4.4  Potential Sources and Impacts of Warp 
Divergence

As described in Sect. 3, warp divergence can have a det-
rimental effect on execution time. There are six points in 
Algorithm 3 that might induce warp divergence. The loop on 
line 7 is the first such instance. Because we align the threads 
in this loop to the sequential chunks of the bit vectors, only 
the warp covering the end of CompData may experience 
divergence. This is because the total number of threads 
used are a multiple of 32 and the length of CompData may 
not be. This behavior is identical for subsequent loops on 
lines 20 and 30 regarding the warps of threads that cover 
the bit vectors StartingPoints and WordIndex, 
respectively. The conditional expressions on lines 8, 32, and 
35 pose a different possibility: any warp could experience 
divergence. Nested branches (like the if-else statements in 
Algorithm 3 on lines 8, 32, and 35) can be additionally prob-
lematic, as already divergent warps can experience further 
divergence. This imposes additional thread serialization and 
overhead. In total, the three loops in Algorithm 3 may cause 
warp divergence in one warp out of those spanning their 
respective bit vectors, and the three conditional statements 
may cause warp divergence in any number (zero to all) of 
the executing warps.

The worst case scenario for warp divergence occurs when 
a warp must execute all possible branch outcomes serially. 
Potential divergent pathways due to branching instructions in 
Stages 1, 3, and 5 are shown in Fig. 4. When the worst case 
scenario for warp divergence is encountered Stage 1, 3, or 
5, the total branch outcomes that must be executed serially 
are three, two, and four, respectively. Again, each of these 
divergent branch outcomes incur some additional overhead 
by the CUDA runtime to resolve the warp divergence.

5  Memory Use Strategies

We explored memory-focused strategies to accelerate GPU 
query processing: (1) data structure reuse, (2) metadata 
storage, and (3) employing a preallocated memory pool. 
Descriptions of each strategy are provided below.

Figure 5a depicts the steps required for our baseline 
implementation of Algorithm 3. As shown, this imple-
mentation requires five cudaMalloc() calls and four 
cudaFree() calls in the decompressor and an additional 
cudaFree() after the query engine has finished. Each 
cudaMalloc() is allocating an array needed in the fol-
lowing algorithmic stage. The CUDA library only supports 
synchronous memory management routines (allocations and 
frees). Synchronous memory operations combined with data 
dependencies in Algorithm 3 make memory operations a 
limiting factor for decompression.
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Data Structure Reuse- We can reduce the number of 
CUDA memory calls by reusing data structures. The 
arrays created in Stage 1 and Stage 2 of Algorithm 3, 
DecompSizes and StartingPoints, are both the length of 
the compressed data. By performing an in-place exclusive 
scan on DecompSizes, meaning the results of the scan are 
saved back to DecompSizes, we no longer need to create 
StartingPoints. We use a similar in-place scan on End-
Points in Stage 4. Moreover, we can reuse EndPoints 
for DecompData. After the data are read from EndPoints 
(line 31), the results of the writes in line 36 and line 38 
can be written back to EndPoints without loss of data. 
Figure 5b shows the steps of implementation with data 
structure reuse. As shown, it only requires two calls to 
cudaMalloc(), one before Stage 1 and another 
before Stage 3. It requires a call to cudaFree() 
after Stage 3 is finished with DecompSizes and the final 
cudaFree() after the query engine has finished with the 
decompressed data saved in EndPoints. By careful reuse of 
data structures, we reduce the number of CUDA memory 
calls from 10 to 4.

Storing Metadata- Further memory management and 
even some processing stages can be skipped by pre-gener-
ating intermediate results of the decompression algorithm 
(Algorithm 3) and storing them as metadata. For example, 
the only information from Stage 1 and Stage 2 used in 
the remainder of the algorithm is stored in StartingPoints. 
By generating StartingPoints prior to query-time and storing 
the results as Stage 2 metadata both Stage 1 and 2 of 
Algorithm 3 can be skipped. Figure 5c depicts an extension 
of our data structures reuse system enhanced with Stage 
2 metadata. At start up time, the metadata is stored stati-
cally in memory on the GPU, so there is no need to allocate 
memory for StartingPoints. By injecting the stored informa-
tion, the decompression algorithm can be started at Stage 
3. As shown, this approach still requires a call to cuda-
Malloc() to create the array that will eventually hold the 
decompressed bit vector. That memory will need to be freed 
after the query has been processed. Starting the algorithm at 

Stage 3 has the additional benefit of eliminating 2 points 
of potential warp divergence (see Sect. 4.4).

Using a metadata approach, it is possible to skip all but 
the final stage of the decompression algorithm. The only 
information that flows from Stage 4 to Stage 5 is 
stored in WordIndex which can be pre-computed and stored. 
Figure 5d shows a system that uses Stage 4 metadata. In 
addition to skipping Stages 1-4, this method provides 
the added benefit of eliminating additional (total of 3) points 
of potential warp divergence (see Sect. 4.4). However, this 
method still requires a memory allocation for Stage 5 
as the data structure reuse system saved the final decom-
pressed data in the original WordIndex array. Now WordIn-
dex is stored as metadata and overwriting it would slow the 
performance of subsequent queries as they would no longer 
have access to stored information. The cudaMalloc() 
call in Fig. 5d is allocating memory for a structure that will 
hold the fully decompressed data. This memory will need to 
be freed after the query is completed.

Any speedup realized by our metadata approaches are 
achieved at the cost of a larger memory footprint. To reduce 
the space requirements of our implementation, we explore 
the effects of using 32-bit and 64-bit integer types to store 
Stage 2 and Stage 4 metadata. Our version of the 
decompression algorithm expected the WAH compres-
sion to be aligned with a 64-bit CPU system word size. 
However, Stage 2 metadata contains the total number 
of decompressed words compressed from CompData[0] to 
CompData[i − 1] , for some non-zero index i. The largest 
possible element is equal to the number of system words 
comprising the decompressed bit vector. Hence, for decom-
pressed bitmaps containing less than (232 − 1) × 64 rows 
Stage 2 metadata can be a 32-bit data type. Essentially, 
this type-size reduction would make the Stage 2 metadata 
half the size of the compressed bitmap.

For each decompressed word, w, in a bit vector, Stage 
4 metadata stores an index into CompData where w is 
represented in compressed format. In essence, Stage 4 
metadata maps decompressed words to their compressed 

Fig. 4  Possible divergent pathways due to branching instructions (conditionals and loops) in stages 1, 3 and 5. The dotted lines represent the 
branch outcome that does not execute the loop contents
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representations. As long as the compressed bit vector does 
not contain more than (232 − 1) atoms, a 32-bit data type can 
be used for Stage 4 metadata. This type reduction makes 
Stage 4 metadata half the size of the decompressed data. 
Note that storing Stage 4 metadata using 64-bit integer 
types would require the same memory footprint as the fully 
decompressed bitmap. In this case, it would be advantageous 
to store just the decompressed bitmap and circumvent the 
entire decompression routine.

Memory Pool A common approach to avoid the overhead 
of cuda memory operations (e.g., cudaMalloc() and 
cudaFree()) is to create a preallocated static memory 
pool (e.g., [24, 42, 48]). We create a memory pool tailored 
to the bitmap that is stored on the GPU. A hashing func-
tion maps thread-ids to positions in preallocated arrays. The 
arrays are sized to accommodate a decompressed bit vector. 
Threads lock their portion of the array during processing 
and release them only after all of the query have been pro-
cessed. All available GPU memory that is not being used to 
store the bitmap and metadata is dedicated to the memory 
pool. This design will lead to a query failure if the memory 
requirements are too large.

Figure 5e shows the design of our fully enhanced GPU-
WAH range query system. The use of a memory pool 
removes the need to invoke CUDA memory calls. As 
shown, the memory pool can be used in conjunction with 
both of our metadata strategies to circumvent stages of the 

decompression algorithm. It can also be used as a standalone 
enhancement strategy.

Appropriately sizing the memory pool can be done ana-
lytically. We used the cumulative distribution function for 
a Poisson distribution to determine the effectiveness of any 
given memory pool size at handling queries with different 
amounts of bit vectors. This approach is illustrated in Fig. 6. 
The shaded region in Fig. 6 shows the quantity of overall 
queries (the sizes of which are described by the Poisson 
distribution) that can be handled by the memory pool. From 
the Poisson distribution analysis, the memory pool size can 
be calculated as s⌈� + k�⌉ where s is the number of bytes in 
a decompressed column, � is the mean number of bit vec-
tors in a query, � is the standard deviation of the distribu-
tion, and k ∈ ℝ

+ . Setting the memory pool size using k = 2 
would effectively capture ∼96.82% of queries. Calculating a 
memory pool size using k = 3 would be capable of fielding 
∼99.45% of queries.

6  Experiments

In this section, we describe the configuration of our test-
ing environment and the process that was used to gener-
ate our results. All tests were executed on two different 
machines. System A is machine running Ubuntu 16.04.5 
LTS, equipped with dual 8-core Intel Xeon E5-2609 v4 

Fig. 5  Various implementations of a GPU-WAH system specialized for range queries
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CPUs (each at 1.70 GHz) and 322 GB of RAM. The CPU 
side of the system was written in C++ and compiled with 
GCC v5.4.0. The GPU components were developed using 
CUDA v9.0.176 and run on an NVIDIA GeForce GTX 
1080 with 8 GB of memory. System B is a machine run-
ning Ubuntu 19.10 LTS equipped with a 16-core hyper-
threading (32 total concurrent threads) Intel Xeon Gold 
6130 CPU (at 2.10 GHz) and 64 GB of RAM. The CPU 
side of the system was compiled with GCC v8.4.0. The 
GPU components were compiled with CUDA v10.1.243 
and run on a Quadro RTX 4000 with 8 GB of memory.

We used the following data sets for evaluation. They are 
representative of the type of read-only applications (e.g., 
scientific) that benefit from bitmap indexing.

• BPA – measurements reported from 20 synchropha-
sors (measures magnitude and phase of AC waveform) 
deployed by Bonneville power administration over the 
Pacific Northwest power grid [5]. Data from each syn-
chrophasors were collected over approximately one 
month. The data arrived at a rate of 60 measurements 
per second and was discretized into 1367 bins. We used 
7, 273, 800 row subset of the measured data.

• linkage—anonymous records from the Epidemiologi-
cal Cancer Registry regarding the German state of North 
Rhine-Westphalia [37]. The data set contains 5, 749, 132 
rows and 12 attributes. The 12 attributes were discretized 
into 130 bins.

• kddcup – data obtained from the 1999 Knowledge Dis-
covery and Data Mining competition. These data describe 
network flow traffic. The set contains 4, 898, 431 rows 
and 42 attributes [28]. Continuous attributes were discre-
tized into 25 bins using Lloyd’s Algorithm [29], resulting 
in 475 bins.

• Zipf—data generated using a Zipf distribution. 
These are the only synthetic data sets tested. A Zipf 

distribution represents a clustered approach to dis-
cretization, which can capture the skew of dense 
data in a bitmap. With the Zipf distribution genera-
tor, the probability of each bit being assigned to 1 is: 
P(k, n, skew) = (1∕kskew)∕

∑n

i=1
(1∕iskew) where n is the 

number of bins determined by cardinality, k is their rank 
(bin number: 1 to n), and the parameter skew character-
izes the exponential skew of the distribution. Increasing 
skew increases the likelihood of assigning 1s to bins with 
lower rank (lower values of k) and decreases the likeli-
hood of assigning 1s to bins with higher rank. We set 
n = 10 and skew = 0, 1, and 2 for 10 attributes, which 
generated three data sets containing 100 bins (i.e., ten 
attributes discretized into ten bins each) and 32 million 
rows.

We tested multiple configurations of additional enhancement 
strategies for query execution. These configurations are com-
prised of three classes of options: 

1. Data structure reuse (unused only in baseline).
2. Metadata: None, 32-bit Stage 2, 64-bit 

Stage 2, 32-bit Stage 4, and fully decom-
pressed columns.

3. Memory pool usage: used or unused.

We tested all valid combinations of these options on each of 
the four data sets. Due to the mutually exclusive nature of 
the metadata storage options, this resulted in 10 augmented 
configurations plus the baseline approach (shown in Fig. 5a).

All tests used range queries of sizes 64 columns. To 
obtain representative execution times for each query con-
figuration, we repeated each test 6 times. The execution time 
of the first test was discarded to remove transient effects, and 
the arithmetic mean of the remaining 5 execution times was 
recorded. We used the average to calculate our performance 

Fig. 6  An example Poisson distribution that could be considered 
when setting the size of the memory pool. The shaded region indi-
cates the means for creating a memory pool that can store queries of 
� + k� bit vectors, where � is the mean number of bit vectors in a 

query, � is the standard deviation of the distribution, and k ∈ ℝ
+ . The 

horizontal axis represents the range of possible query sizes (in num-
ber of columns), and the vertical axis shows the probability of receiv-
ing a query of any given size
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comparison metric, speedup = tbase∕t , where tbase is the exe-
cution time of the baseline for comparison and t is the execu-
tion time of the test of interest. The baseline we used for all 
speedup calculations was the decompression algorithm and 
best performing implementation of GPU-WAH from [33].

7  Results

Here, we present the results obtained from the experiments 
described in the previous section. We first discuss the impact 
of memory requirements. We then present results for data 
structure reuse, metadata, data type size, and memory pool 
strategies that were described in Sect. 5.

The performance provided by some of the techniques in 
this paper comes at the cost of additional memory. Figure 7 
illustrates this as a cost relative to the standard approach of 
storing compressed bit vectors. Relative to standard storage 
requirements, the average increase in storage requirements 
when using 32-bit Stage 2 metadata, 64-bit Stage 2 
metadata, and 32-bit Stage 4 metadata, are 1.5× , 2 × , and 
9.04× , respectively.

The speedup provided by reuse of data structures to elimi-
nate memory operations is presented in Fig. 8. As shown, 
significant performance improvements are realized due to 
the elimination of 3 memory allocations and 3 memory 
frees. For system A, this reduction provided a maximum 
speedup of 23.7× and an average speedup of 13.9× , with 
the linkage data set exhibiting greater speedup than others. 
For system B, data structure reuse provided a maximum of 
5.14× speedup and an average of 3.64× speedup. Again, the 
linkage data set exhibited the greatest speedup.

The results of our other enhancement strategies on Sys-
tem A are shown in Fig. 9. Performance improvements pro-
vided by the use of a memory pool are shown in Fig. 9a. 
This enhancement consistently provided an average speedup 
of 22.1× across all databases and a maximum speedup of 
37.0× . Incorporating metadata also provided consist-
ent results as can been seen in Fig. 9b. Using Stage 2 
metadata provided an average of 14.1× speedup. Stage 
4 metadata was more beneficial with an average of 19.3× 
speedup. Varying data type size yielded negligible perfor-
mance improvements. When a memory pool was not used, as 
shown in Fig. 9b, there was no observable performance dif-
ference between 32-bit and 64-bit data types. On average, the 
use of the 32-bit data type size was 1.003× . When a memory 
pool was used, as shown in Fig. 9c, there was still negligible 
improvement when using 32-bit data types with an average 
improvement of 1.04× over 64-bit types. Using a combi-
nation of metadata, data type size, and memory pool tech-
niques produced the greatest performance benefit, as seen in 
Fig. 9c. Across all databases, using Stage 2 metadata 

and a memory pool provided a maximum speedup of 58.8× 
and an average speedup 33.6× . Using Stage 4 metadata 
with a memory pool provided a maximum of 166× speedup 
and an average 98.7× speedup.

The results of the same enhancement strategies on System 
B are shown in Fig. 10. Improvements from using a memory 
pool are shown in Fig. 10a with a maximum 5.64× speedup 
and an average 3.67× speedup. Performance enhancement 
when using the metadata and varying data type size strate-
gies on System B is shown in Fig. 10b. We see a maximum 
improvement of 9.70× and an average performance enhance-
ment of 3.83× . The difference between 32-bit and 64-bit 
data types only appears when using Stage 2 metadata and 
was negligible. Using 32-bit only provided an average of 
1.003× speedup over 64-bit when not using a memory pool. 
When including the memory pool, varying data type size 
remained negligible, with 32-bit types providing an average 
1.02× speedup. The performance enhancement provided by 
combining all strategies is shown in Fig. 10c. Combining 
the memory pool and metadata storage methods provided 
the most performance enhancement. For all data sets, using 
Stage 2 metadata and a memory pool provided a maxi-
mum of 7.65× speedup and an average of 4.75× speedup. 
Using Stage 4 metadata with the memory pool, we 
achieved a maximum 21.1× speedup and and average 12.6× 
overall.

8  Discussion of Results

The performance provided by data reuse is dependent on the 
compressibility of the data set. Data sets with greater com-
pressibility exhibit stronger performance relative to those 
with less compressibility. This is because data sets with less 
compressibility incur more global memory accesses on the 
GPU.

Fig. 7  Metadata memory space requirements relative to the baseline 
approach storing only compressed bitmaps. Note, the vertical axis is 
logarithmic
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Storing the results of the first exclusive scan as 32-bit 
metadata instead of 64-bit not only reduced storage require-
ments but also provided slightly faster execution times 
(0.35% faster, on average). On NVIDIA GPUs, 32-bit inte-
ger operations are faster than 64-bit because the integer 
ALUs are natively 32-bits. 64-bit operations are emulated 
as sequences of 32-bit operations.

By combining metadata and memory pool strategies, the 
attained speedup was greater than the sum of the speedup 
of each individual strategy. When only using metadata, the 

final stage can not begin until the necessary memory is allo-
cated. When only using a memory pool, the final stage can 
not begin until the subsequent stage is completed. Com-
bining the methods removes both bottlenecks and allows 
Algorithm 3 to start at the stage using the metadata as input 
(Stage 3 or Stage 5).

The results for the linkage database from both systems 
are compared in Fig. 11. In Fig. 11a, we see the execution 
times for both systems for all enhancement strategies. Sys-
tem B is on average 4.75 ms slower than than System A. A 

Fig. 8  Speedup provided by 
data structure reuse. The dashed 
horizontal line indicates a 
speedup of 1

Fig. 9  Shown are System 
A performance results for a 
memory pool usage, b differ-
ent metadata strategies and 
data type sizes, and c different 
metadata strategies, data type 
sizes, and a memory pool. The 
dashed horizontal line indicates 
a speedup of 1. Figures b and c 
share a legend

(a) Memory pool (b) Metadata strategies and data type
sizes

(c) Metadata strategies, data type sizes,
and a memory pool
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comparison of GPU speedups for each system against their 
respective baselines is shown in Fig. 11b. Systems A and B 
have maximum speedups of 166× and 21.1× , respectively, 
when using Stage 4 metadata with a memory pool. Aver-
age speedups for each system are 52.9 × and 8.44× , respec-
tively. System A consistently outperforms System B, despite 
the fact that it has an older GPU than that in System B. This 
happens because the specifications of the GPU in System A 
are more amenable to CUDA programs than those in System 
B. The System A GPU has a 12.1% higher clock frequency, 
11.1% more CUDA cores, and 100% more usable shared 
memory per thread block. The GPU in System B is more 
expensive and sacrifices CUDA performance for additional 
performance for conventional graphics applications, with 
focus on technologies like ray-tracing and 3D-rendering.

In Fig. 12, we compare the GPU method with different 
combinations of our performance enhancements with the 
CPU method (see Sect. 4.1) using the highest-performing 
CPU (found on System B) and the linkage data set. The 
GPUs provide a maximum speedup of 15.00× and an average 
speedup of 3.07× . When looking at each system separately, 
System A has a maximum speedup of 15.00× , a minimum 
speedup of 2.13× and an average speedup of 4.77× . System 
B, on the other hand, had a maximum speedup of 3.41× , 

a minimum speedup of 0.832× and an average speedup of 
1.37× . Four of the GPU performance enhancements on Sys-
tem B do not provide speedup over the CPU method. On 
average, these are 13% slower than the CPU method. This 
only occurs on System B when a combination of enhance-
ment strategies is not used. When compared to System A, 
System B has a GPU that is less CUDA capable and a CPU 
with a faster clock rate and enhanced parallelism. This sce-
nario reduces the overall difference in performance between 
the CPU and GPU methods on System B. This illustrates 
the sensitivity that CPU/GPU combinations can have when 
using various enhancement strategies.

Although it has the highest storage cost, using fully 
decompressed columns as metadata reduces execution time 
by completely avoiding the the decompression routine. 
Figure 13 shows the performance enhancement provided 
by using fully decompressed columns as “metadata”. This 
option is only reasonable for small databases or GPUs with 
large storage space. This strategy provided a maximum of 
691× speedup and an average of 383× speedup.

Figure 14 shows execution profiles when using (a) data 
structure reuse, (b) 32-bit Stage 2 metadata without a 
memory pool, (c) 32-bit Stage 4 metadata without a 
memory pool, (d) only a memory pool, and 32-bit Stage 

Fig. 10  Shown are System 
B performance results for a 
memory pool usage, b differ-
ent metadata strategies and 
data type sizes, and c different 
metadata strategies, data type 
sizes, and a memory pool. The 
dashed horizontal line indicates 
a speedup of 1. Figures b and c 
share a legend

(a) Memory pool (b) Metadata strategies and data type
sizes

(c) Metadata strategies, data type sizes,
and a memory pool
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2 and 32-bit Stage 4 metadata with a memory pool in (e) 
and (f), respectively.

Data structure reuse (shown in Fig. 14a) eliminated three 
of five allocation/free pairs providing an average of 5.43× 
speedup. Profiles using Stage 2 and Stage 4 metadata 
are shown in Fig. 14b,c, respectively. Both provide a notice-
able reduction in execution time as each eliminate a memory 
allocation and free pair. The major cost of memory opera-
tions remains a dominant factor so the difference between 
Stage 2 and Stage 4 metadata use is limited.

The profile when using only a memory pool is shown in 
Fig. 14d. The memory pool removes the overhead of mem-
ory operations providing a greater reduction in execution 
time than pure metadata strategies. Strategies combining a 
memory pool with Stage 2 or Stage 4 metadata are 
shown in Fig. 14e, f, respectively. These combination strate-
gies provide the benefits of both strategies: short-circuiting 
to a mid-point of the decompression routine and removing 
the overhead of GPU memory operations.

9  Related Work

There has been a significant amount of research conducted in 
the area of GPUs and database systems. We briefly describe 
a few of the most relevant works. Govindaraju et al. [21] 
presented several GPU algorithms from common database 
operations, including predicates, Boolean combinations, and 

aggregation. He et al. [23] designed and implemented a rela-
tional join algorithm for GPUs. Their approach was able to 
achieve a 7 × speedup over an optimized CPU implementa-
tion. Bakkum and Skadron [4] implemented an SQLite com-
mand processor on the GPU. Their implementation achieved 
70× speedup of SELECT queries. Rui and Tu [36] imple-
mented hash joins and sort-merge join algorithms for the 
GPU. They were able to achieve speedups of up to 4.3× for 
their hash joins and 12.8× for their sort-merge joins over the 
respective CPU implementations. These works considered 
specific database operations and not indexing techniques.

There has been an abundance of work related to using 
GPUs to increase the efficiency of specific database indices. 
For example, Gosink et al. [20] created a parallel index-
ing data structure that uses bin-based data clusters. They 
showed that their GPU implementation could achieve 3× 
speedup over their CPU implementation. The fast architec-
ture sensitive tree (FAST) presented in [26] is a configurable 
binary index tree. FAST was approximately 1.7× faster on 
the GPU than the CPU. Similarly, Kim et al. [27] showed 
that their GPU algorithm for R-tree traversal outperformed 
the traditional recursive R-tree traversals when answering 
multi-dimensional range queries. Our work pertains to WAH 
compressed bitmap indices.

Several works have explored the benefits of using the 
GPU to create bitmap indices. For example Fusco et al. 
[18] demonstrated that greater throughout of bitmap crea-
tion could be achieved using GPU implementations over 

Fig. 11  Shown are execution 
times and speedups (relative to 
baseline implementation) using 
the linkage data set: a with 
data reuse b storing Stage 2 
as 64-bit c storing Stage 2 
as 32-bit d storing Stage 4 
as 32-bit e using the memory 
pool f storing Stage 2 as 
64-bit and using memory pool g 
storing Stage 2 as 32-bit and 
using memory pool h storing 
Stage 4 as 32-bit and using 
memory pool. b–h all incorpo-
rate data reuse

(a) Execution time

(b) Speedup relative to the baseline GPU method
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CPU implementations of WAH, and a related compression 
scheme, position list word-aligned hybrid (PLWAH) [15]. 
Similarly, Chen et al. [10] showed that a GPU implementa-
tion of their maximized stride with carrier (MASC) [43] 
bitmap index compression scheme was 19.5× faster at con-
structing a compressed bitmap index their CPU implementa-
tion. These works focused only on the initial creation of the 

bitmap index and did not address query processing, which 
is the focus of our work.

Our work focuses on efficient GPU decompression and 
querying of WAH compressed bitmaps. There are many 
other hybrid run-length compression schemes designed 
specifically for bitmap indices. One of the earliest was 
byte-aligned bitmap compression (BBC) [3]. The smaller 
alignment can achieve better compression but at the 
expense of query speed [45]. Other compression schemes 
have employed variable alignment length [12, 22]. These 
approaches try to balance the trade-offs between compress-
ing shorter runs and increasing query processing time. Oth-
ers use word alignment but embed metadata in fill atoms 
that improve compression or query speed [8, 9, 11, 15, 17, 
47]. These techniques were developed for execution on the 
CPU, though they could be ported to the GPU by altering 
the decompressor component of the GPU system described 
above. We believe that many, if not all, of these compression 
techniques on the GPU would benefit from a variation of our 
metadata and memory pool enhancements.

To the best of our knowledge, we are first to use meta-
data to efficiently decompress WAH bitmap indices on the 

Fig. 12  Shown are experiments done on the linkage data set where 
the GPU speedups are relative to the CPU implementation on System 
B: a with data reuse b storing Stage 2 as 64-bit c storing Stage 
2 as 32-bit d storing Stage 4 as 32-bit e using the memory pool f 

storing Stage 2 as 64-bit and using memory pool g storing Stage 
2 as 32-bit and using memory pool h storing Stage 4 as 32-bit and 
using memory pool. b–h all incorporate data reuse. The dashed hori-
zontal line indicates a speedup of 1

Fig. 13  Speedup provided by using decompressed bit vectors as 
“metadata” relative to the baseline GPU

Fig. 14  A representative (albeit 
approximate) view of execution 
profiles of six identical query 
executions on the linkage data-
base with varying enhancement 
strategy configurations. Query 
execution progresses from left 
to right. Longer bars correspond 
to longer execution times. 
While execution profiles for 
other databases exhibited slight 
variations, their interpretations 
remained consistent
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GPU. However, other work has used metadata to speed up 
the processing of bitmap queries on the CPU. Enhanced 
WAH (EWAH) [47] splits a fill word into two halves. The 
most-significant half encodes a run much like WAH, but 
the least significant half stores metadata that encodes the 
number of succeeding literals. When performing bitwise 
operations between two vectors, this encoded metadata can 
be exploited to “short-circuit” the operation. This short-
circuiting allows successive words to be skipped. Similarly, 
[39, 41] used externally stored metadata to enable query 
time short-circuiting for WAH and PLWAH, respectively.

There has been a generous body of work that has explored 
the benefits of memory pools on GPU in a variety of appli-
cations. For example, Hou et al. [24] used a specialized 
memory pool to create kd-trees in the GPU. Their approach 
allowed them to process larger scenes on the GPU than pre-
vious work. Wang et al. [42] used a preallocated memory 
pool to reduce the overhead of large tensor allocations/deal-
locations. Their approach produced speedups of 1.12× to 
1.77× over the use of cudaMalloc() and cudaFree(). 
The work of Simin et al. [48] is similar to our work in that 
they use a memory pool to increase the query processing 
of R-trees on GPU’s. We were unable to find any work that 
used a GPU memory pool specifically designed for use with 
bitmap indices.

As mentioned above, our work extends the works of 
Andrzejewski and Wrembel [1, 2], Nelson et al. [33, 34], 
and Tran et al. [40]. Andrzejewski and Wrembel introduced 
WAH and PLWAH [15] compression and decompression 
algorithms for GPUs as well as techniques to apply bitwise 
operations to pairs of bit vectors. Their decompression algo-
rithm details a parallel approach for a decompressing a sin-
gle WAH or PLWAH compressed bit vector. Nelson et al. 
modified Andrzejewski and Wrembel’s decompression algo-
rithm to apply it to multiple bit vectors in parallel. They then 
presented multiple algorithms for executing bitmap range 
queries on the GPU. At this time, Nelson et al. present the 
only other work to process WAH range queries on the GPU. 
Our experimental study used their most efficient range query 
implementation. As the work in this paper improves the effi-
ciency of WAH bitmap decompression on the GPU, it rep-
resents a significant enhancement to approaches presented 
by Andrzejewski and Wrembel’s and Nelson et al. The work 
presented in this paper is a direct extension of [40]. We have 
added an operation cost analysis of the GPU-WAH decom-
pression algorithm. This analysis provides context for the 
improvements realized by our enhancements. Another addi-
tion is a discussion and analysis of sources and potential 
impacts of warp divergence on CUDA capable GPUs. We 
also present a Poisson distribution model that can be used to 
estimate the size requirements of the memory pool used in 
our approach. Additionally, we outlined an parallel reduction 
algorithm for processing WAH range queries on the GPU. 

We also greatly expanded the experimental study of our 
approaches leading to new insights into the importance of 
architectural details when selecting a GPU to process WAH 
range queries.

10  Conclusion and Future Works

In this paper, we present multiple techniques for accelerating 
WAH range queries on GPUs: data structure reuse, storing 
metadata, and incorporating a memory pool. These methods 
focus on reducing memory operations or removing repeated 
decompression work. These techniques take advantage of the 
static nature of bitmap indexing schemes and the inherent 
parallelism of range queries.

We conducted an empirical study comparing these accel-
eration strategies to a the current state-of-the-art approach. 
The results of our study showed that the data reuse, meta-
data, and memory pool strategies provided average speedups 
of 13.9× , 16.7× , and 22.1× , respectively. Combining these 
techniques provided an average of 66.2× speedup. We also 
found that storing the entire bitmaps as accessible metadata 
on the GPU resulted in an average speedup of 411× by elimi-
nating the need for decompression altogether. This option 
is only feasible for configurations with small databases or 
GPUs with large storage space. When comparing our GPU-
WAH range query performance enhancement techniques 
against the high-end CPU, we were able to achieve a maxi-
mum speedup of 15.0× and an average speedup of 3.07×.

In future work, comparing energy consumption of the 
above approaches may prove interesting. We would also 
like to investigate executing WAH queries using multiple 
GPUs. Additional GPUs would enhance parallelism and 
storage capabilities. Furthermore, since WAH compression 
is designed for CPU style processing, future studies could 
investigate new compression schemes that are potentially 
better fit for GPU architectures.
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