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Abstract
Similarity queries, including range queries and k nearest neighbor (kNN) queries, in metric spaces have applications in many 
areas such as multimedia retrieval, computational biology and location-based services. With the growing volumes of data, a 
distributed method is required. In this paper, we propose an Asynchronous Metric Distributed System (AMDS), to support 
efficient metric similarity queries in the distributed environment. AMDS uniformly partitions the data with the pivot-mapping 
technique to ensure the load balancing, and employs publish/subscribe communication model to asynchronous process large 
scale of queries. The employment of asynchronous processing model also improves robustness and efficiency of AMDS. 
In addition, we develop efficient similarity search algorithms using AMDS. Extensive experiments using real and synthetic 
data demonstrate the performance of metric similarity queries using AMDS. Moreover, the AMDS scales sublinearly with 
the growing data size.

Keywords  Similarity query · Range query · kNN query · Metric space · Distributed processing · Algorithm

1  Introduction

Similarity queries in metric spaces find objects similar to a 
given query object under a certain criterion. This function-
ality has been widely used in real-life applications. This is 

because metric spaces can support various data types (e.g., 
images, words, DNA sequences) and flexible distance met-
rics (e.g., Lp-norm distance, edit distance). Here, we give 
two representative examples below.

Application 1 (Multimedia Retrieval) In an image 
retrieval system, the similarity between images can be meas-
ured using Lp-norm metric, earth mover’s distance or other 
distance metrics between their corresponding feature vec-
tors. Here, similarity queries in metric space can help users 
find similar figures for a given one.

Application 2 (Nature Language Processing) In the Word-
Net, a knowledge graph for better nature language under-
standing, the similarity between two words could be meas-
ured by the shortest path, maximum flow or other distance 
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metrics. Here, similarity search in metric space can help 
users find the words that are closely related to a given one.

With the development of Internet, especially the wide-
spread use of mobile devices, distributed data processing 
becomes a booming area in both the data management indus-
try and academia [1–5]. Nowadays, the volume, richness 
and diversity of data challenges traditional metric similarity 
query processing in both space and time. This calls for a 
scalable metric similarity query method to provide efficient 
query service. Hence, in this paper, we investigate the dis-
tributed similarity queries in metric spaces.

Existing works on distributed processing in metric spaces 
[6–17] aim to accelerate similarity queries in parallelism and 
try to build a suitable network topology to manage the large 
amount of data. However, these existing solutions are not 
sufficient due to two reasons below. First, the ability to pro-
cess a large quantity of similarity queries at the same time 
is in need nowadays. For example, an online image retrieval 
system (e.g., Google, Flickr) needs to provide the image 
search service to huge users at the same time. Second, the 
load balancing is also a basic need for distributed systems 
[18–20]. In particular, the load (e.g., the storage for data 
indexing and/or computational for query processing) across 
each node in the distributed system should be approximated 
the same. Motivated by these, we try to develop a distrib-
uted similarity query processing system in metric spaces 
that aims at efficient query processing in large scale and also 
taking the load balancing into consideration.

In order to design such a system, three challenges need 
to be addressed. The first challenge is how to ensure the 
load balancing of the distributed system? To ensure the load 
balancing, we uniformly divide the data into non-joint frag-
ments using the pivot-mapping technique, and then distrib-
ute each fragment to a computational node of the system. 
The second one is how to efficiently process metric similarity 
queries in large scale? We utilize publish/subscribe commu-
nication mode to support synchronous process large scale of 
queries. Hence, massive queries can be executed with little 
time loss in message passing and the system can receive the 
quick response. The third challenge is how to reduce the 
cost of a single similarity query? We develop several prun-
ing rules based on minimum bounding box (MBB) to avoid 
unnecessary calculations. In addition, the estimation-based 
kNN method is employed to further improve the efficiency of 
kNN queries. Based on these, we develop the Asynchronous 
Metric Distributed System (AMDS), to support efficient 
metric similarity queries in the distributed environment. To 
sum up, the key contributions of this paper are as follows:

–	 We present a pivot-mapping-based data partition method, 
which first uses a set of effective pivots to map the data 
from metric spaces to vector space, and then uniformly 
divides the mapped objects into disjoint fragments.

–	 We utilize the publish/subscribe communication model to 
asynchronously exchange messages without time wasting 
in network interactions, and thus to support large scale of 
similarity queries in metric spaces simultaneously.

–	 We propose a unified method to handle distributed simi-
larity queries in metric spaces, where MBB is used to 
avoid redundant calculations.

–	 Extensive experiments using real and synthetic data 
evaluate the efficiency of AMDS and the performance 
of distributed similarity queries in metric spaces using 
AMDS.

The paper extends a preliminary study [21]. The extensions 
include support for the efficient processing of (i) one addi-
tional interesting query, i.e., metric range queries (Sect. 5.1); 
(ii) an enhanced experimental evaluation that incorporates 
the new class of queries and the flexibility of the system 
(Sect. 6); and (iii) more comprehensive coverage of related 
work (Sect. 2). Also, we have revised the introduction and 
have contained additional theoretical analysis.

The rest of this paper is organized as follows. Section 2 
reviews related works. Section 3 introduces the definitions 
of metric similarity queries and the publish/subscribe com-
munication mode. Section 4 elaborates the system archi-
tecture. Section 5 presents efficient metric similarity search 
algorithms. Experimental results and findings are reported 
in Sect. 6. Finally, Sect. 7 concludes the paper with some 
directions for future work.

2 � Related Work

In this section, we review briefly related work on distributed 
metric similarity queries in Euclidean space and in metric 
spaces.

2.1 � Euclidean Distributed Similarity Queries

Distributed similarity queries in Euclidean space have 
attracted a lot of attention since they are introduced. CAN 
[22] and Chord [16] build on top of DHT overlay network. 
LSH forest [23] uses locality-sensitive hash function to 
index data and perform (approximate) similarity queries 
on an overlay network. SWAM [24] consists of a family 
of distributed access methods for efficient similarity que-
ries, which achieves the efficiency by bringing nodes with 
similar content together. DESENT [12, 25] is an unsuper-
vised approach for decentralized and distributed genera-
tion of semantic overlay networks (SON). BATON [26] is 
a balanced tree structure on a peer-to-peer network and is 
capable of supporting both exact queries and range queries 
efficiently. VBI-Tree [27] is an abstract tree structure on top 
of an overlay network, which utilizes extensible centralized 
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mapping methods. Mercury [28] is proposed to support 
multiple attributes as well as explicit load balancing. P-Tree 
[10] is proposed to support range queries in addition to 
equality queries. NR-Tree [29] is a P2P adaption of R*-Tree 
[19], which supports range and kNN queries. In [30, 31], 
Skip Graphs [32] based system deals with load balancing 
for range queries. Range Guard Ring is used to optimize 
range queries by taking peer heterogeneity into consideration 
[33]. P-Ring [34], supporting equality and range queries, is 
fault-tolerant and skew data tolerant. FuzzyPeer [35] uses 
“frozen” technique to optimize query execution. A general 
and extensible framework in P2P network builds on the con-
cept of Hierarchical Summary Structure [20]. Range query 
in tree-structured DHT is studied in [36]. More recently, 
VITAL [37] employs super-peer structure to exploit peer 
heterogeneity. However, all these above solutions focus on 
the vector space, which are unsuitable for metric distributed 
similarity queries. This is because, they utilize the geometric 
properties (e.g., locality-sensitive function [23], minimum 
bounding box [19]), to distribute the data on the underly-
ing overlay network and to accelerate the query processing, 
which are unavailable in metric spaces.

2.2 � Metric Distributed Similarity Queries

Existing methods for distributed similarity queries in met-
ric spaces can be partitioned into two categories. The first 
category utilizes basic metric partitioning principles to 
distribute the data over the underlying network. GHT* and 
VPT* [7] use ball and generalized hyperplane partitioning 
principles, respectively. Besides GHT* and VPT*, efficient 
peer splits based on ball and generalized hyperplane parti-
tioning techniques are also investigated in [11]. The second 
category utilizes the pivot-mapping technique to distribute 
the data. MCAN [38], relying on an underlying structured 

P2P network named CAN [22], maps metric data to vectors 
in an multi-dimensional space. M-Chord [39], relying on 
another underlying structured P2P network named Chord 
[16], uses iDistance [40] to map data into one-dimension 
values. M-Index [15] also generalizes iDistance technique 
to provide distributed metric data management. SIMPEER 
[41] works in autonomous manner, and uses the generated 
clusters by the iDistance method to further summarize peer 
data at supper peer level. An extension of SIMPEER is pre-
sented in [42], which focuses on recall-based range queries. 
In this paper, we adopt the pivot-mapping-based method due 
to two reasons below. First, pivot-mapping-based methods 
outperform metric partitioning based ones in terms of the 
number of distance computations [18, 43], one important 
criterion in metric spaces. Second, MCAN and M-Chord 
utilizing the pivot-mapping perform better than GHT* and 
VPT* using metric partitioning techniques [8, 9].

Apart from these, two general frameworks for metric dis-
tributed similarity search are proposed. One, called MES-
SIF, is an implementation framework with code reusing of 
GHT*, VPT*, MCAN, M-Chord, Chord and Skip Graphs 
[44]. Another framework utilizes a super-peer architecture 
and can support any underlying metric index in each peer, 
where super peers are responsible for query routing [17].

However, all these above methods are not enough due to 
two reasons below. First, they cannot support synchronous 
process large scale of metric similarity queries simultane-
ously, which is our focus. To address it, we utilize publish-
subscribe communication model. Second, they do not take 
the load balancing into consideration, which is also impor-
tant for distributed environment. To ensure the load balanc-
ing, we develop a pivot-mapping-based method to distribute 
data uniformly among the computational nodes.

Table 1   Frequently used 
notation

Notation Description

O or P A set of objects or pivots
o or p An object or a pivot
�(o) The vector for o mapped using P
MBB.lower(i) Lower bound of MBB in dimension i
MBB.upper(i) Upper bound of MBB in dimension i
MRQ(q, r) A metric range query with query object q and query radius r
MkNNQ(q, k) A metric kNN query with query object q and k
RR(q, r) The query region of range query MRQ(q, r)

NDk The distance from the query object to its k-th nearest neighbor
lNDk The estimation distance from the query object to its local k-th nearest neighbor
degwp Degree of worker peers, the number of worker peers that master peer connects to
degmp Degree of master peers, the number of master peers that root peer connects to
nummp Number of master peers
numwp Number of worker peers
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3 � Preliminaries

In this section, we review the metric space, similarity que-
ries in metric spaces and publish-subscribe system. Table 1 
summarizes the symbols frequently used throughout this 
paper.

3.1 � Metric Similarity Queries

A metric space is denoted by a tuple (M, d), in which M is an 
object domain and d is a distance function to measure “simi-
larity” between objects in M. In particular, the distance func-
tion d has four properties: (1) symmetry: d(q, o) = d(o, q) ; 
(2) nonnegativity: d(q, o) ≥ 0 ; (3) identity: d(q, o) = 0 iff 
q = o ; and (4) triangle inequality: d(q, o) ≤ d(q, p) + d(p, o) . 
Based on the properties of the metric space, we define two 
classes of similarity queries, i.e., range queries and k nearest 
neighbor (kNN) queries, in metric spaces, below.

Definition 1  (Metric range query) Given an object set 
O, a query object q, and a search radius r in M, a metric 
range query finds objects from O with their distances to q 
are bounded by r, i.e., MRQ(q, r) = {o|o ∈ O ∧ d(q, o) ≤ r}.

Definition 2  (Metric KNN query) Given an object set O, a 
query object q, and an integer k in M, a metric kNN query 
finds k most similar objects from O for q, i.e., 

MkNNQ(q, k) = {R|R ⊆ O ∧ |R| = k ∧ ∀oi ∈ R,∀oj
∈ O − R ∶ d(q, oj) ≥ d(q, oi)}

.

Consider an English word set O = {“defoliates,” “defo-
liated,” “defoliating,” “defoliation,” “citrate”} , where the 
edit distance is used to measure the similarity between two 
words. An example of range query is that finding the words 
from O with their (edit) distances to “defoliate” bounded by 
1. The query result set MRQ(“defoliate,” 1) = {“defoliates,” 
“defoliated”} ; and an example of kNN query is that finding 
2 most similar words for “defoliate,” and the query result set 
MkNNQ(“defoliate,” 2) = {“defoliates,” “defoliated”} . Note 
that, MkNNQ(q, k) may be not unique, due to the distance 
tie. Nonetheless, the target of our proposed algorithms is to 
find one possible instance.

3.2 � Publish/Subscribe

Publish-subscribe systems, also called as distributed event-
bases systems [14], are systems where publishers publish 
structured events to an event service and subscribers express 
interest in particular events through subscriptions [45]. 
Here, the interest can be arbitrary patterns over the struc-
tured events. Publish-subscribe systems are used in a wide 
variety of application domains, particularly in those related 

to the large-scale dissemination of events, such as financial 
information systems, monitoring systems and so on.

Publish-subscribe systems have two main character-
istics: heterogeneity and asynchronicity. Heterogeneity 
means that components in a distributed system can work 
together as long as correct message is published and sub-
scribed. Asynchronicity means publishers and subscribers 
are time-decoupled, message publishing and subscribing are 
performed independently. To sum up, the asynchronicity, the 
heterogeneity and the high degree of loose coupling suggest 
publish-subscribe systems perform well in dealing with large 
scale of messages simultaneously.

4 � AMDS Architecture

In this section, we first give an overview of AMDS, and 
then present system organization and data deployment, 
respectively.

4.1 � Overview

We develop AMDS, a three-layer tree structure on top of 
the overlay network, consisting three types of peers, root 
peer, master peers and worker peers, as depicted in Fig. 1. 
AMDS aims to answer a large-scale metric similarity que-
ries in a distributed environment simultaneously. In the data 
deployment, AMDS divides the source data uniformly and 
distributes to worker peers, in order to achieve the load bal-
ancing. Here, any metric index can be used to index data in 
each worker peer. After the data deployment, AMDS can 
process two types of metric similarity queries, including 
metric range queries and metric kNN queries. During the 
query processing, metric similarity queries are published 
by worker peers in a bottom-up pattern, and subscribed by 
other worker peers in a top-down pattern.

4.2 � System Organization

AMDS has three types of peers, root peers, master peers 
and worker peers, as depicted in Fig. 1. Peers are physi-
cal entities that have calculating and communication abili-
ties. They are organized to index objects and accomplish 

Fig. 1   Structure of AMDS
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metric similarity queries. Peers can be partitioned into two 
classes in general: (i) worker peers, which directly index 
data objects and perform metric similarity queries, (ii) root 
peers and master peers, which manage children peers and 
distribute metric similarity queries over the system.

In AMDS, degw and degm are used to represent the num-
ber of worker peers (or master peers) that a master peer (or a 
root peer) connects to. The values of degw and degm depend 
on several factors including the network environment and 
the storage ability. Here, for simplify, one root peer is used 
and each master peer maintains equaled number of mas-
ter peers in this paper. Hence, the value of degm equals to 
the number of master peers, and the value of degm × degw 
equals to the total number of worker peers. For example, as 
depicted in Fig. 1, degm = 5 and degw = 2 . Usually the total 
number of worker peers is fixed. If degm becomes larger, 
more peer clusters will be managed by AMDS because all 
worker peers managed by a master peer form a peer cluster, 
and vice versa. Given a certain total number of peers, how 
the peers are organized into clusters will affect the overall 
performance of AMDS. In fact, the choice of cluster size is 
a trade-off, which a smaller clusters means less inner cluster 
communication cost and more inter cluster communication 
cost, and vice versa. Experiments are performed to verify 
the effect of cluster size setting.

In order to communicate between peers, we introduce the 
concept of missions. Missions are text messages exchanged 
among peers. Each metric similarity query can be packed 
into a mission. The mission issued by the worker peer is 
published to the corresponding master and then to the root 
peer. Every master peer (root peer) uses a mission list to 
maintain missions published by its children worker peers 
(master peers). Then, master peers (worker peers) subscribe 
the missions from the corresponding root peer (master peer).

In general, when a mission published, we do not know 
which worker peer will subscribe the mission. Hence, a mis-
sion usually contains (i) the mission ID, (ii) the mission 
type, (iii) the mission parameters, and (iv) the IP address 
of mission raiser, where the mission parameters include the 
query object q and query parameters R or k for metric range 
query or metric kNN query. For example, given a metric 
range query MRQ(q, 5) issued by the worker peer whose IP 
address is 10.214.51.100, it can be packed into a mission as 
“100, MRQ, q, 5, 10.214.51.100”. Note that, the mission ID 
is a local identifier for a particular master peer (root peer), 
to avoid reprocessing missions.

4.3 � Data Deployment

Assuming that worker peers have the same calculation 
ability and storage ability, we try to divide the source data 
equally among worker peers, to achieve the load balanc-
ing. After that, each worker peer can have its own objects 

fragment. The framework of our data deployment is based 
on three phases, (i) the pivot-mapping of source data by root 
peers, (ii) the uniformly partitioning of data by master peers 
and (iii) the built of local index by worker peers.

Pivot Mapping In the first stage, we map the objects in 
a metric space to data points in a vector space using well-
chosen pivots. The vector space offers more freedom than 
the metric space when performing data partitioning and 
designing search approaches, since it is possible to utilize 
the geometric and coordinate information that is unavailable 
in the metric space. Given a pivot set P = {p1, p2,… , pn} , 
a general metric space (M, d) can be mapped to a vector 
space (Rn, L∞) . Specifically, an object o in a metric space is 
represented as a point �(o) = ⟨d(o, p1), d(o, p2),… , d(o, pn)⟩ 
in the vector space. For instance, consider the example in 
Fig. 2, where O = {oi|1 ≤ i ≤ 20} and L2-norm is used. If 
P = {p1, p2} , O can be mapped to a two-dimensional vector 
space, in which the x-axis represents d(oi, p1) and the y-axis 
represents d(oi, p2), 1 ≤ i ≤ 20.

The selected pivots can drastically affect the performance 
of the search. It is shown that good pivots are always outli-
ers, but outliers are not always good pivots [46]. Based on 
this observation, we develop our pivot selection algorithm. 
Our algorithm aims at finding out pivots far away from each 
other and from the rest of the objects in the database. In 
other words, the chosen pivots have to satisfy (i) they are 
outliers, and (ii) the distances between each other are as 
large as possible. Hence, our pivot selection algorithm is a 
two-stage based method. First, we use HF algorithm [13] 
to find a set of outliers, i.e., the pivot candidates. Then, the 
pivots are selected from the outlier set have the maximum 
sum of distances from each other. Here, the number of pivots 
to be selected is given and we fix the number of outliers at 
40 (as in reference [37]), which is enough to find all outliers 
in our experiments. Note that, the HF algorithm does not 
need to take the whole object set as an input, and it works 
well using only a sampled object set. Moreover, theoreti-
cally, pivots do not need to be part of the object set. Conse-
quently, objects can be inserted or deleted without changing 
the pivot set.

(a) (b)

Fig. 2   Pivot mapping
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Data Partitioning Given a set of vectors after the pivot 
mapping, we first recursively partition the data objects into 
degm disjoined parts Pi(1 ≤ i ≤ degm) with equaled sizes, 
then further divide each Pi into degw disjoined equaled parts 
in a similar way. In particular, each time, we sort objects 
according to their values on a random selected dimension 
and then divided them into two non-intersected pieces in 
proportion ⌈m∕2⌉/⌊m∕2⌋ . Here, m denotes the number of 
master peers (or worker peers) to maintain these objects. 
Note that, the objects are partitioned into unequaled two 
parts when m is odd. For example, as depicted in Fig. 3, we 
sort objects o(∈ O) in the mapped vector space according 
to their values on dimension y. In the first partition itera-
tion, the whole object set O can be partitioned into two 
parts A and B, where |A| = 12, |B| = 8 , and |A|∕|B| = 3∕2 
as m = degm = 5 . Here, |A| and |B| denote the number of 
objects in parts A and B, respectively.

First, the root peer publishes an initial data distributing 
mission. Then, master peers subscribe the data distribution 
mission. When recruiting mission is got, the requester will 
ask the mission publisher for data distribution. The pub-
lisher starts to distribute the objects by dividing them into 
two non-intersections and sending one intersection to the 
requester. New data distributing missions are published by 
master peers if the object fragments are still too large. This 
process will continue until all master peers get object frag-
ments with suitable size according to their calculating and 
storage ability. For those master peers who have had finished 
the data distributing, they will continue to divide their own 
object fragments into equaled pieces and distribute to their 
children worker peers.

After the data partitioning, we build the local metric 
index on each worker peer. In this paper, we use M-Tree as 
default to index the objects distributed to the worker peer 
in the mapped vector space. Note that, any metric index is 
suitable to AMDS. In addition, a minimum bounding box 
(MBB) Mi(= {[ai, bi]|i ∈ [1, |P|]}) can be built for each 
worker peer. Specifically, a MBB Mi denotes the axis aligned 
minimum bounding box to contain all the mapped objects 
in the worker peer. Then, each master peer summarizes the 
MBB information from its children worker peers and formal-
izes a high-level MBB, to contain all the MBB of its children 

worker peers. Finally, the root peer summarizes all the MBB 
information from its children master peers.

Example 1  We give a running example of data distribution 
depicted in Fig. 3, where 20 objects are to be distributed in 
AMDS with 5 master peers and 10 worker peers. It is clear 
that, in this example, after the data partitioning, each worker 
peer will keep an index of 2 objects. First, the root peer pub-
lishes an initial data distribution mission. Master peer 1 gets 
the distribution mission, and then establishes a connection to 
root peer to get all the 20 objects. Since 20 is larger than 4 (= 
20/5), the master peer 1 divides the 20 objects into two par-
titions A and B (as depicted in Fig. 3a), and then publishes 
a new data distribution mission. After that, master peer 4 
gets the newly published distribution mission, establishes 
connection to master peer 1 to obtain 8 objects in area B. 
Since |A| and |B| are both larger than 4, master peers 1 and 
4 continue to partition A and B, and two new distribution 
missions are published. This progress goes on until 5 master 
peers each obtain 4 objects. After the master peer obtains 
4 objects, its children worker peers (e.g., a and b of m1 ) are 
started and told connecting to master peer 1 to receive two 
objects from m1 and builds local index on these two objects. 
Finally, MBB of each worker peer and master peer is built 
in bottom-up way.

5 � Distributed Query Processing

In this section, we will introduce how to solve metric simi-
larity queries in AMDS, range query and kNN query. First, 
the distribution of queries is introduced, and then the range 
query is introduced. Range query is the basic similarity 
query type processed by AMDS, and kNN query is intro-
duced at last as an extended query based on range query.

5.1 � Metric Range Query Processing

Metric Range queries can be regarded as a basic query 
type, in other words, other types of query (e.g., kNN que-
ries) can be transformed into a range query. A metric range 
query retrieves the objects enclosed in the range region 

(a) (b) (c)

Fig. 3   Data partitioning

(a) (b)

Fig. 4   Metric range query
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that is an area centered at q with a radius r. Consider, for 
example, Fig. 4a, where a circle denotes a range region, 
and MRQ(q, r) = {o2} . As discussed in Sect. 4, the objects 
are mapped into the vector space using a pivot set P to be 
indexed. Hence, the range region of MRQ(q, r) can also be 
mapped into the vector space [10]. For instance, the red rec-
tangle in Fig. 4b represents the mapped range region using 
P = {p1, p2} . To obtain MRQ(q, r) , we only need to verify 
the objects o whose �(o) are contained in the mapped range 
region, as stated below.

Lemma 1  Given a pivot set P, if an object o is enclosed  
in MRQ(q, r) , then �(o) is certainly contained in the mapped 
range region RR(r), where RR(r) = {⟨s

1

, s
2

,… , s∣p∣⟩ ∣

1 ≤ i ≤∣ P ∣ ∧si ≥ 0 ∧ si ∈ [d(q, pi) − r, d(q, pi) + r]}.

Proof  Assume, to the contrary, that there exists an 
object o ∈ MRQ(q, r) but �(o) ∉ RR(r) , i.e., ∃pi ∈ P , 
d(o, pi) > d(q, pi) + r  or d(o, pi) < d(q, pi) − r  . Accord-
ing to the triangle inequality, d(q, o) ≥ |d(q, pi) − d(o, pi)| . 
If d(o, pi) > d(q, pi) + r  or d(o, pi) < d(q, pi) − r  , then 
d(q, o) ≥ |d(o, pi) − d(q, pi)| − r , which contradicts with our 
assumption. Consequently, the proof completes. 	�  ◻

According to Lemma 1, if the MBB of a worker peer wpi 
or a master peer mpi does not intersect with RR(r) , we can 
avoid performing MRQ(q, r) on wpi or mpi . Considering the 
MRQ(q, r) example depicted in Fig. 4, the master peer mp4 
does not need to perform MRQ(q, r) as M4 ∩ RR(r) = �.

However, an important issue to be addressed is that how 
does the metric range query raiser know all the query results 
are returned. Multiple but not all the worker peers may have 
objects contained in the result of a metric range query, and 
it is impossible to known exact number in advance. In super-
peer systems [41], all answers are collected by super peers 
and finally returned to query raiser by super peer. However, 
this pattern cannot work well in AMDS because super peers 
(e.g., the root peer) will be overloaded when tons of queries 
are needed to be processed. Hence, in AMDS, collecting 
answers is divided into two independent phases, counting 
the number of contributors and receiving answers from con-
tributors. Here, a contributor denotes a worker peer whose 
MBB intersected with the mapped range region according 
to Lemma 1. The parent master peer of the worker peer that 
issues a metric range query is chosen to count the number of 
contributors. In particular, when a master peer mp receives a 
range query mission from its child worker peer wp, it counts 
the number of contributors, as mp maintains all the MBBs 
of its children worker peers. Then, the master peer publishes 
the mission to the root peer and receives the number of con-
tributors returned by other master peers. When all the other 
master peers return the numbers, we sent the sum of these 

numbers to wp. Note that, the query raiser always knows 
the exact number of contributors of its raised query before it 
gets all returned answers, because in the distributing process, 
the counting step is performed by master peers that always 
earlier than local query processing step by worker peers.

Algorithm 1 MRQ Publishing WP Algorithm
Input: a metric range query MRQ(q, r)
1: if RR(r) MBB then
2: PublishMission(m) // compact MRQ(q, r) as a mission
3: push m into the mission list L
4: else
5: perform MRQ(q, r) on local worker peer
6: end if

We develop a MRQ_Publishing_WP Algorithm to pub-
lish a mission when a metric range query MRQ(q, r) issued 
at worker peer wpi , with the pseudocode depicted in Algo-
rithm 1. The algorithm takes MRQ(q, r) as an input. If MBB 
of wpi does not contain RR(r) , which means other worker 
peers may have query result of MRQ(q, r) due to Lemma 1, 
then the algorithm publishes a metric range query mission m 
to its parent master peer, and pushes m into the mission list 
L of wpi (lines 1–3). Otherwise, the algorithm only needs to 
perform MRQ(q, r) on wpi.

Algorithm 2 Receiving MP Algorithm
1: loop
2: m = receiveMessage()
3: if m is a metric range query mission then
4: assignQuery(m, NULL) // push m into the mission list L
5: if MBB ∩m.RR(r) = ∅ then
6: m.answerCount = determineAnswers(m, childrenMBBList)
7: end if
8: if m.RR(r) MBB then
9: submitMission(m)
10: end if
11: else if m is an answer count message then
12: mission = findMission(L, m.id)
13: mission.answerCount += m.answers
14: if all the master peers return the answer count message then
15: send message(mission.answerCount,mission.poster)
16: mission.markAsFinished()
17: end if
18: end if
19: end loop

The master peer can receive messages from its children 
worker peers and other master peers. We develop Receiv-
ing_MP Algorithm to process such messages, with the 
pseudocode depicted in Algorithm 2. When the algorithm 
receives a message m, if m is a metric range query mission, 
according to Lemma 1, the algorithm calls assignQuery 
function to insert m into the mission list L and computes 
m.answerCount (i.e., counts the number of contributors) 
if MBB of the maser peer intersects with the range region 
RR(r) of the mission m, (line 3). Note that, NULL repre-
sents the destination of m is not known in advance. After 
that, if the range region RR(r) is not contained in MBB, i.e., 
other worker peers not belonged to this master peer can also 
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contain the query result, then the algorithm calls publishTo-
Parent function to publish mission m to the root peer (lines 
5–6). Otherwise, if m is an answer count message, then the 
algorithm calls findMission to find its corresponding mis-
sion, and adds m.answers to mission.answerCount. If all the 
master peers return the answer count messages, then it calls 
sentMessage to send mission.answerCount to mission.poster 
and mark mission as finished.

Algorithm 3 Subscribing MP Algorithm
1: loop
2: m = acquireMission()
3: if MBB ∩m.RR(r) = ∅ then
4: assignQuery(m, NULL)
5: end if
6: numOfAnswers = determineAnswers(m, childrenMBBList)
7: sendMessage(numOfAnswer, m.submitter)
8: end loop

In addition, the master peer subscribes the root peer, and 
we develop a Subscribing_MP Algorithm, with its pseudoc-
ode depicted in Algorithm 3. When the algorithm receives 
a mission m, if m.target is itself or MBB intersects with the 
range region RR(r) , then it calls assignQuery function to 
insert m into the corresponding mission list. After that, the 
algorithm counts the number of contributors (i.e., numO-
fAnswer) by calling determindeAnswers, and then sends 
numOfAnswer to m.submitter.

Algorithm 4 Receiving WP Algorithm
1: loop
2: m = receiveMessage()
3: if m is an answer count messenger then
4: mission = findMission(L, m.id)
5: mission.numOfAnswer = m.numOfAnswer
6: else if message is an result message then
7: mission = findMission(L, m.id)
8: Rs = Rs ∪m.Rs

9: if mission.numOfAnswer result messages received then
10: mission.markAsFinished()
11: end if
12: end if
13: end loop

For any worker peer, it can receive messages from other 
worker peers. We develop a Receiving_WP Algorithm, with 
its pseudocode depicted in Algorithm 4. When the algo-
rithm receives a message m, if m is an answer count mes-
sage, it finds the corresponding mission mission in L, and 
sets the total number of contributors mission.numOfAnswer. 
If m is the result message, it finds the corresponding mis-
sion mission in L, and appends m.Rs to the final result 
set Rs . If the number of the returned results reaches 
mission.numOfAnswer, it marks mission as finished.

Algorithm 5 Subscribing WP Algorithm
1: loop
2: m = requireQuery()
3: if m is a MRQ(q, r) mission then
4: if MBB ∩ RR(r) = ∅ then
5: Rs = MBB(q, r) on local worker peer
6: sendMessage(Rs ,m.poster)
7: end if
8: end if
9: end loop

In addition, each work peer subscribes its parent master 
peer, and we develop a Subscribing_WP Algorithm, with its 
pseudocode depicted in Algorithm 5. When the algorithm 
receives a mission m, if m is a metric range query mission 
and MBB intersects with the range region RR(r) , the algo-
rithm performs local MRQ(q, r) on local worker peer and 
sends the result set Rs to m.poster.

Example 2  We illustrate distributed metric range query pro-
cessing using the metric range query MRQ(q, r) depicted 
in Fig. 4. MRQ(q, r) is raised by worker peer wpe , thus wpe 
runs MRQ_Publishing_WP Algorithm. As RR(r) ⊄ Me , 
wpe publishes a mission m to its maser peer mp3 , and pushes 
m into the mission list L of wpe . After that, Receiving_MP 
Algorithm running on master peer mp3 receives the mis-
sion m. As m is a metric range query mission, and MBB 
M3 intersects with RR(r) , mp3 pushes m into the mission 
List L of mp3 and counts the number of contributors, i.e., 
m.answerCount = 2 . In the sequel, as RR(r) ⊄ Me , mp3 
publishes m onto the root peer. Master peers run Subscrib-
ing_MP Algorithm to subscribe the root peer. For example, 
mp1 acquires the mission m from the root peer. As M1 does 
not intersect RR(r) , mp1 returns the number of contributors 
(i.e., 0) to mp3 . At the same time, worker peers wpe and wpf  
run Subscribing_WP Algorithm to subscribe the master peer 
mp3 . Take wpf  as an example, it acquires the mission m from 
mp3 . Since MBB Mf  intersects with RR(r) , it performs the 
local MRQ(q, r) on wpf  and returns ∅ to wpe . Finally, wppe 
runs Receiving_WP Algorithm to receive the result set sent 
by wpf  , and the mission terminates with the result set {o2} 
as all the worker peers have returned the result set.

5.2 � Metric kNN Query Processing

A metric kNN query can be regarded as a metric range query 
with the search radius NDk , where NDk represents the dis-
tance from q to its k-th NN. However, NDk is not known in 
advance, which makes metric kNN search is a little trickier 
than metric range retrieval. The metric kNN query can be 
solved using incremental metric range queries. More spe-
cifically, the search radius increases until k nearest neighbor 
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objects are retrieved [40, 47]. But in distributed network 
environment, this method is quite costly due to too many 
round-trips over the network. Hence, in this paper, we first 
estimate the value of NDk and then perform a metric range 
query with at most two round-trips. However, it is difficult 
to obtain a good estimation of NDk . An underestimation will 
cause extra round-trips, because the search radius needs to 
be enlarged to find kNN objects; an overestimation will 
cause extra filtering cost due to too much unnecessary veri-
fication of answers. Since one more round-trip will result in 
large communication cost, which is more costly, we need 
to obtain an overestimation and the estimation approaches 
the original value as much as possible. In order to obtain a 
good estimation of NDk , we perform a local MkNNQ(q, k) on 
the worker peer wpi with minimum MIND(MBB(wpi),�(q)) 
and use lNDk (i.e., the k-th nearest neighbor distance to q 
returned by local MkNNQ(q, k)) to estimate NDk . This is 
because, the smaller MIND(MBB(wpi),�(q)) , the larger pos-
sibility that k NNs of q locates on wpi.

Lemma 2  Given a pivot set P, if an object o is enclosed in 
MkNNQ(q, k) , then �(o) is certainly contained in the mapped 
range region RR(lNDk).

Proof  Assume, to the contrary, that there exists an object 
o ∈ MkNNQ(q, k) but �(o) ∉ RR(lNDk) , i.e., d(q, o) > lNDk 
due to the triangle inequality. However, according to the 
definition of lNDk , lNDk ≥ NDk , then d(q, o) > NDk , which 
contradicts with our assumption. Consequently, the proof 
completes. 	�  ◻

Considering the example of Lemma 2 in Fig. 5, suppose 
that a local 2NN query is performed on worker peer wpg 
and lNDk = d(q, o13) . According to Lemma 2, the result of 
2NN query located in the mapped range region RR(lNDk) , 
as depicted in Fig. 5b.

Based on Lemma 2, the basic idea to perform metric 
kNN query processing in AMDS is depicted below. First, 
worker peer wpi with the minimum MIND(MBB(wpi),�(q)) 
is selected to perform a local kNN query and obtain lNDk , 
an estimation of NDk . Then, MkNNQ(q, k) is transformed 
into a metric range query MRQ(q, lNDk) , and published as a 

kNN mission (}}ID,MkNNQ, q, k, lNDk, poster
��) . Here, k is 

still needed because at most k objects will be sent back to the 
kNN query poster to reduce network volumes. Worker peers 
that receive such kNN missions will perform local range 
queries MRQ(q, lNDk) , and send at most k nearest objects 
of q to poster. When all contributors returned their results, 
the poster will find k NN objects in global as the final result.

Algorithm 6 kNN Publishing WP
Input: a metric kNN query MkNNQ(q, k)
1: if φ(q) ⊂ MBB then
2: SR = MkNNQ(q, k) and obtain lNDk

3: submitMission(m) //m is a kNN query mission
4: else
5: submitMission(m) //m is a local kNN query mission
6: end if
7: push m into the mission list

We develop a MkNN_Publishing_WP Algorithm to 
publish a mission when a metric kNN query MkNNQ(q, r) 
issued at worker peer wpi , with the pseudocode depicted in 
Algorithm 6. The algorithm takes MkNNQ(q, r) as an input. 
If MBB of wpi contains �(q) , then the algorithm performs 
a local kNN query on wpi , obtains lNDk , and publishes a 
metric kNN query mission m to its parent master peer (lines 
1–3). Otherwise, the algorithm submits a metric local kNN 
query mission m (lines 4–5). Finally, the algorithm pushes 
m into the mission list L of wpi (lines 7).

Algorithm 7 kNN Receiving MP
1: loop
2: m = receiveMessage()
3: if m is a kNN request then
4: lines 4-17 of Algorithm 2
5: else if m is a local kNN request then
6: if φ(q) ⊂ MBB then
7: wpi = findNearestChildren(m)
8: assignQuery(m,wpi)
9: else
10: submitQuery(m)
11: end if
12: end if
13: end loop

The master peer can receive messages from its children 
worker peers and other master peers. We develop Receiving_
MP Algorithm to process such messages, with the pseudoc-
ode depicted in Algorithm 7. When the algorithm receives a 
message m, if m is a metric kNN query mission, the process-
ing is similar as lines 4–17 of Algorithm 2. Otherwise, if m 
is a local kNN query mission and MBB contains �(q) , the 
algorithm calls findNearestChildren to find the worker peer 
wpi with the minimum MIND(MBB(wpi),�(q)) and push m 
into the mission list with m.target set to wpi (lines 5–8). If 

(a) (b)

Fig. 5   Metric kNN query
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MBB does not contain �(q) , then the algorithm submits the 
mission m to the root peer.

Algorithm 8 kNN Subscribing MP (kSM)
1: loop
2: m = acquireMission()
3: if m is a local kNN mission then
4: wpi = findNearestChildren(m)
5: assignQuery(m,wpi)
6: else if MBB ∩ RR(lNDk) = ∅ then
7: assignQuery(m, NULL)
8: numOfAnswers = determineAnswers(m, childrenMBBList)
9: sendAnswersTo(m.submitter, numOfAnswers)
10: end if
11: end loop

In addition, the master peer subscribes the root peer, and 
we develop a kNN_Subscribing_MP Algorithm, with its 
pseudocode depicted in Algorithm 8. When the algorithm 
receives a mission m, if m is a local kNN mission, then it 
calls findNearestChildren to find the worker peer wpi with 
the minimum MIND(MBB(wpi),�(q)) and push m into the 
mission list with m.target set to wpi (lines 2–5). Otherwise, 
if MBB intersects with RR(lNDk) , then it pushes m into the 
mission list (lines 6–7). After that, the algorithm counts 
the number of contributors (i.e., numOfAnswer) by call-
ing determindeAnswers, and then sends numOfAnswer to 
m.submitter.

Algorithm 9 kNN Subscribing WP
1: loop
2: m = acquireMission()
3: if m.target() is itself and m is a local kNN mission then
4: SR = MkNNQ(q, k) and obtain lNDk

5: submitMission(mission, kNN)
6: else if MBB ∩ RR(lNDk) = ∅ then
7: SR = MkNNQ(q, k)
8: end if
9: send SR to m.poster
10: end loop

For each worker peer, it can receive messages from 
other worker peers, and kNN_Receiving_WP Algorithm 
is the same as RQ_Receiving_WP Algorithm. In addition, 
each worker peer subscribes its parent master peer, and 
we develop a kNN_Subscribing_WP Algorithm (kSWA), 
with its pseudocode depicted in Algorithm 9. When kSMA 
receives a mission m, if m.target is itself and m is a local 
kNN mission, then it performs a local MkNN query to obtain 
lNDk , and submit a kNN mission (lines 3–5). Otherwise, 
if MBB intersects with RR(lNDk) , then it performs a local 
MkNN (lines 6–7). After that, the algorithm sends the result 
set SR to m.poster (line 9).

Example 3  An example of kNN query is shown in Fig. 5. 
Worker peer h raises a metric kNN query MkNNQ(q, 2) , 
but the query object q locates outside its MBB region, so h 

publishes a hostedkNN mission to master peer 4. Then, peer 
g is assigned to host this query by master peer 4 because 
q locates inside master peer 4 and g is nearest to q among 
children of master peer 4. Worker peer g performs an initial 
MkNN query and uses lND2 , the distance from q to its sec-
ond nearest object o5 , marked as r in Fig. 5, to raise a kNN 
query mission like this, “ID, MkNNQ, q, 2, r, h.address”. 
It can be seen that the query region intersects with master 
peer 3 and 4, and worker peer e, f, h besides g. These peers 
perform local range query locally, and 5 objects are sent to 
h as the result, o2 , o3 , o5 , o6 and o7 . After filtering step per-
formed by query raiser h, the nearest two objects o6 and o7 
are as the final answers.

5.3 � Asynchronous Execution of Missions

In the network environment, the cost of network commu-
nication dominates in normal case. In order to achieve the 
query efficiency in the distributed environment, two rules 
should be considered: (i) the number of network communi-
cations should be decreased; and (ii) peers should not wait 
for communications with other peers. For the first philoso-
phy, we develop Lemmas 1–2, to avoid unnecessary network 
communications for peers whose MBBs not intersected with 
the mapped range region. In addition, we develop a two-
round MkNNQ algorithm to reduce the number of network 
communications. For the second philosophy, AMDS adopts 
the publish/subscribe model, which can support asynchro-
nous execution of queries and thus can avoid waiting for 
communications with other peers. Based on these, AMDS 
can support efficient query processing in a large scale.

In AMDS, there are three types of characters during the 
query processing, i.e., the query raiser, the query broker and 
the query answerer. In particular, a query raiser is a peer 
which raises the query, a query answerer is a peer which 
performs the query and return the query answer to the query 
raiser, and a query broker is a peer that distribute the query 
to correct answerer. As discussed in Sects. 5.1 and 5.2, a 
query can be divided into four main phases, query raising, 
query distributing, query processing and result collecting. 
Each of these phases is processed by these characters inde-
pendently, done by the query raiser, the query brokers, the 
query answerers and the query raiser, respectively. Obvi-
ously, four phases are loosely coupled, i.e., no strong rela-
tions between these phases exist, which is the premise of 
asynchronous execution.

Consider the example of asynchronous execution shown 
as Fig. 6, AMDS consists of two worker peers ( i.e., x and 
y) and one master peer m. Each of the worker peers raises 
a query (i.e., q1 and q2 ) that both x and y related with the 
query. If two queries are processed in manner of asynchro-
nous fashion, q1 and q2 are raised at the same time, and q1 
is distributed by m first, x will processes q2 before y returns 
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its answer to q1 . Although q1 is finished earlier in Fig. 6a 
than that in Fig. 6b, it is obvious that asynchronous fashion 
is more efficient overall. Note that, the performance of syn-
chronous fashion will get worse as the number of queries 
increases.

The asynchronous mode not only improves the query effi-
ciency by reducing waiting time, but also brings enhance-
ment in robustness. Consider, if a peer is down because of 
unpredictable error, and cannot provide results to all the 
queries it relates to. In synchronous pattern, the query pro-
cessing is blocked by the first uncompleted query and the 
rest queries will remain unprocessed, but in asynchronous 
pattern, the query processing still keeps going, those que-
ries affected by the down peer remain partial completed, 
but other queries will be processed normally. Hence, the 
influence of the down peers will be restricted only to their 
related queries, which enhances the robustness of AMDS.

6 � Experimental Evaluation

In this section, we evaluate the effectiveness and efficiency 
of AMDS and metric similarity queries via extensive experi-
ments, using both real and synthetic datasets. AMDS and 
corresponding metric similarity query algorithms are imple-
mented in C++ with raw socket API. All the experiments 
are conducted on Intel E5 2620 processor and 64G RAM.

We employ two real datasets Title1 and CoPHIR.2 Title 
contains 800K PubMed paper titles, with strings whose 
length ranges from 8 to 666, resulting in an average length 
equaling to 71. Here, the similarity between two strings is 
measured using edit distance. CoPHIR consists of 1000K 
standard MPEG-7 image features extracted from Flickr, 
where the similarity between two features is measured as the 
L2-norm. In addition, synthetic datasets VECTOR are gen-
erated with the cardinality range from 250K to 4M. Every 
dimension of VECTOR datasets is mapped to [0, 10,000]. 
Each VECTOR dataset has 10 clusters, and each cluster 

follows Gaussian distribution. Table 2 lists the statistics of 
the datasets used in our experiments.

We investigate the performance of AMDS and met-
ric similarity search algorithms under various parameters 
as summarized in Table 3. In each experiment, only one 
factor varies, whereas the others are fixed to their default 
values. For a fix number of worker peers, the number of 
master peers will affect the efficiency of AMDS and metric 
similarity queries. Hence, in the following experiments, the 
number of master peers is set as 32, 64 and 128 to evaluate 
the impact of the number of master peers, and 64 is set as 
default for synthetic datasets. The main performance metrics 
include (i) the CPU time and (ii) the network communica-
tion volume. Note that, in this paper, the number of pivots 
is set to 5.

6.1 � Construction Cost

The first set of experiments verifies the AMDS construction 
cost, i.e., the cost of data deployment in AMDS. Here, the 
network communication volume is used as the performance 
metric. The result is demonstrated in Table 4. We collected 
the construction cost using both real and synthetic datasets. 
The number of worker peers is set to 4K as default, and 
three different sets of number of master peers are used. The 
first observation is that the data deployment in AMDS can 
achieve the efficiency in the network communication vol-
ume. This is because, as discussed in Sect. 4, the content 
of source dataset only copied twice in the data deployment 
process. It is first copied by root peer when passing data to 
master peers, and then copied by master peers when passing 
objects to worker peers. The second observation is that, the 
more master peers are, the higher construction cost is, and, 

(a) (b)

Fig. 6   Comparisons between execution modes

Table 2   Statistics of three real-life datasets

Dataset Cardinality Dimension Measurement

Title 800 K 36−666 (71 aver.) Edit distance
CoPHIR 1000 K 40 L2-norm
VECTOR 250K−4M 8 L∞-norm

Table 3   Parameter Settings

Parameters Value

Cardinality 250K, 500K, 1M, 2M, 4M
The number of worker peers 1K, 2K, 4K, 8K, 16K
Query radius r(% of the maximum 

distance)
1%, 3%, 5%, 7%, 9%

k 1, 3, 9, 27, 81
The number of queries 4K, 12K, 20K, 28K, 36K

1  http://www.ncbi.nlm.nib.gov/pubme​d.
2  http://cophi​r.isti.cnr.it/get.html.

http://www.ncbi.nlm.nib.gov/pubmed
http://cophir.isti.cnr.it/get.html
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the larger dataset is, the higher construction cost is. Because 
the network communication volume depends on the carnal-
ity of dataset and the topology of overlying network. In par-
ticular, with more master peer, more negotiations between 
master peers are needed, resulting in more network com-
munication volume.

6.2 � Evaluation of Metric Similarity Queries

The second set of experiments evaluates the performance of 
metric similarity queries using real and synthetic datasets. 
We study the influence of several parameters, including (i) 
the range radius r, (ii) the value k, (iii) the number of que-
ries, (iv) the number of worker peers and (v) the cardinality 
of dataset.

Effect of r First, we investigate the performance of metric 
range queries using real datasets. The CPU time and the 
network communication volume of metric range queries are 
shown in Fig. 7 under various r values ranging from 1 to 
9% of the maximum length. Note that, a default number of 
queries are set to 20K and each query object is generated 
randomly. Three lines presented in Fig. 7 represent 32, 64 
and 128 master peers, respectively, as the number of worker 
peers is fixed at 4K. As observed, the query cost, includ-
ing the CPU time and the network communication volume, 
increases with the growth of r. This is because, the search 
space grows as r increases, resulting in more related master 
peers and worker peers. In addition, AMDS using 32 master 
peers performs the best. Because the communication cost 
between master peers will reduce, the number of master 
peers decreases. However, the superiority of 32 master peers 
on CoPHIR is less distinct than that on Title. It is caused by 
the negative effects of reducing master peers. As the num-
ber of worker peers is fixed, the less master peers are, the 
more worker peers each master peer manage, resulting in 
more mission distribution cost among the cluster formed by 
a master peer. The dataset cardinality of CoPHIR is larger 
than Title, and the average length of each object is longer 
in CoPHIR. Hence, the negative effect counterbalanced the 
positive effect brought by reducing master peers, which 
makes the performance of 32 master peers not outstanding 
on Title.

Effect of k Second, we investigate the performance of 
metric kNN queries using real datasets. The CPU time and 
the network communication volume of metric range queries 
are shown in Fig. 8 under various k values ranging from 1 to 
81. The first observation is that the query cost increases with 
the growth of k. This is because, the search space grows as k 

Table 4   Construction cost of AMDS

Dataset num
mp

Network com-
municate volume 
(KB)

Title 32 354,324
64 397,376

128 431,299
CoPHIR 32 1,804,711

64 2,157,988
128 2,240,842

VECTOR(250K) 64 200,954
VECTOR(500K) 64 398,878
VECTOR(1M) 64 792,620
VECTOR(2M) 64 1,587,004
VECTOR(4M) 64 3,174,662

Fig. 7   Effect of query radius r 

(a) (b)

(c) (d)
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increases, resulting in more related master peers and worker 
peers. Note that, on CoPHIR, the CPU time and the network 
communication volume grow rapid when k exceeds 9 due to 
the distance distribution of the dataset.

Effect of Number of Queries Third, we explore the influ-
ence of number of queries on the efficiency of metric range 
queries using real datasets. Note that, we only use metric 
range queries to demonstrate the effect of number of queries 
due to space limitation and similar performance behavior on 
range queries. Figure 9 depicts the CPU time and the net-
work communication volume of metric similarity queries. 
It is observed that in most cases the query cost decreases 
with the growth of the number of queries. This is because, 

although the total query cost increases, the average CPU 
time and network communication volume decrease due to 
the asynchronous executing mode of queries. However, on 
CoPHIR, the average CPU time ascends as the number of 
queries enlarges. The reason behind it is that, as discussed in 
Sect. 5.3, the average CPU time of asynchronous execution 
depends on the waiting time for communications with other 
peers. Compared with Title, CoPHIR needs less similarity 
query time on a single worker peer due to the simpler dis-
tance function L2-norm used. But it needs more communica-
tion time because the average length of each object is longer 
than that of Title. Hence, CoPHIR has more waiting time for 
communication, resulting in a bad asynchronous execution 

Fig. 8   Effect of k 

(a) (b)

(c) (d)

Fig. 9   Effect of number of 
queries

(a) (b)

(c) (d)
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performance, and thus, an increment in the CPU time as the 
number of queries grows.

Effect of Number of Worker Peers Then, we evaluate the 
influence of number of worker peers. Figure 10 shows the 
results under various numbers of worker peers. The first 
observation is that the query cost first decreases from 0.5 
to 1 K and then increases from 1K to 16K. This is because, 
with more worker peers, the objects managed by each worker 
peers get smaller, and thus, the metric similarity query cost 
on each worker peer decreases. However, at the same time, 
more time is consumed on the managing of a larger number 
of peers and communications between peers. In this case, 
1K worker peers perform the best for VECOTOR on AMDS.

Effect of Cardinality After that, we study the impact 
of cardinality of using synthetic datasets, with the results 
depicted in Fig. 11. Here, we use 64 master peers as default. 
As expected, the query cost including CPU time and the 
network communication volume increases with the growth 
of cardinality.

Effect of Flexibility Finally, we verify that AMDS is flexi-
ble to support various overlying index structures. Here, three 
index structures are used, M-Tree, PM-Tree and linear scan-
ning. Table 5 depicts the CPU time on real datasets, whereas 
the network communication volume is omitted, because the 
network cost will not change for different index structures. 
As expected, AMDS using PM-Tree performs the best, fol-
lowed by AMDS using M-Tree and then linearly scanning, 
which keeps the consistency of the efficiency of the index 
structures. However, the index structures have little effect 

on the query efficiency in AMDS. The reason behind it is 
that the network communication cost is the dominate cost, 
as discussed in Sect. 5.3. In all the other experiments, we 
use M-Tree as the default index structure.

7 � Conclusions

In this paper, we present the Asynchronous Metric Distrib-
uted System (AMDS), which aims at dealing with a large 
scale of metric similarity queries. In the data deployment, 
AMDS uniformly partitions the data using the pivot-map-
ping technique for load balancing. Based on this, AMDS 
executes metric similarity queries in the form of missions 
and utilizes the publish/subscribe communication mode to 
support asynchronous processing and robustness. In addi-
tion, MBB technique is employed to further reduce the query 
cost, and each metric kNN query is solved using a local kNN 
query to estimate the k-th NN distance to avoid high network 
communication cost. Finally, extensive experiments on real 
and synthetic datasets show that the efficiency of AMDS 
and corresponding metric similarity search in both compu-
tational and communicational cost. In the future, we intend 
to use AMDS to support various metric queries, e.g., metric 
skyline queries.
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