
Vol:.(1234567890)

Data Science and Engineering (2019) 4:76–92
https://doi.org/10.1007/s41019-019-0086-8

1 3

Fast De‑anonymization of Social Networks with Structural Information

Yingxia Shao1  · Jialin Liu2 · Shuyang Shi2 · Yuemei Zhang2 · Bin Cui2

Received: 14 August 2018 / Revised: 11 March 2019 / Accepted: 16 March 2019 / Published online: 27 March 2019
© The Author(s) 2019

Abstract
Ever since the social networks became the focus of a great number of researches, the privacy risks of published network
data have also raised considerable concerns. To evaluate users’ privacy risks, researchers have developed methods to de-
anonymize the networks and identify the same person in the different networks. However, the existing solutions either require
high-quality seed mappings for cold start, or exhibit low accuracy without fully exploiting the structural information, and
entail high computation expense. In this paper, we propose a fast and effective seedless network de-anonymization approach
simply relying on structural information, named RoleMatch. RoleMatch equips with a new pairwise node similarity meas-
ure and an efficient node matching algorithm. Through testing RoleMatch with both real and synthesized social networks,
which are anonymized by several popular anonymization algorithms, we demonstrate that the RoleMatch receives superior
performance compared with existing de-anonymization algorithms.

Keywords  Social network · De-anonymization · Privacy risk · Node similarity

1  Introduction

Online social networks have been a popular and important
topic for many years, and a lot of successful companies (e.g.,
Facebook, Twitter and Tencent) emerge for providing the
social network service. Users in such social networks are
represented as nodes with multiple attributes, including
name, gender, interests, location, etc., and the interactivities
between users are abstracted as unidirectional or bidirec-
tional edges between the user nodes. In other words, online

social networks can be modeled as a network (or graph) with
the necessary information of user relations.

Considering the fact that social network truly represents
the relationships in human society, it has drawn a lot of
attentions from researchers and advertisers. In order to sat-
isfy the need of analysis, social network companies provide
services for sharing the information of network. Neverthe-
less, user privacy can possibly be breached in the process of
sharing more and more information for analysis. A popular
problem is identity disclosure, where the real identities of
nodes in the social networks are revealed [4, 14]. Therefore,
the network to be published has to go through the anonymi-
zation processes. And many anonymization approaches have
been developed, such as edge sparsification and edge pertur-
bation [3]. The sparsification approach deletes edges in the
network randomly, and the perturbation approach randomly
deletes and adds back the same number of edges.

In order to find the weakness of anonymization
approaches, it is rather crucial to explore the inverse pro-
cess of anonymization, called de-anonymization. Let us
explain the de-anonymization problem through an exam-
ple. Figure 1a shows a complete social network, which is
maintained by a company. Figure 1c shows an anonymized
network with location information, and it is published by the
company. Attackers usually use crawler to get a crawled net-
work for de-anonymization. Here Fig. 1b shows an example

 *	 Yingxia Shao
	 shaoyx@bupt.edu.cn

	 Jialin Liu
	 russellspurs@gmail.com

	 Shuyang Shi
	 shuyang790@gmail.com

	 Yuemei Zhang
	 zhangyuemei@pku.edu.cn

	 Bin Cui
	 bin.cui@pku.edu.cn

1	 School of Computer Science, Beijing University of Posts
and Telecommunications, Beijing, China

2	 Key Lab of High Confidence Software Technologies (MOE),
School of Electronics Engineering and Computer Science,
Peking University, Beijing, China

http://orcid.org/0000-0002-8559-2628
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-0086-8&domain=pdf

77Fast De‑anonymization of Social Networks with Structural Information﻿	

1 3

with name information. The de-anonymization process is
to match nodes between Fig. 1b, c to identify each person
in the anonymized network and obtain the corresponding
location information. Specifically, the de-anonymization is
to find node mapping pairs (u1, v1) , (u2, v2) , (u3, v3) , (u4, v4).

The existing solutions to the de-anonymization problem
can be classified into two major types. The first one is to de-
anonymize the network based on seed mappings which are
propagated across the network to match other nodes [10, 17].
This approach heavily depends on not only the quality of
seed mappings, but the number of seed mappings. However,
because the original networks are always highly private, it is
difficult to collect a set of seed mappings with high quality.
As a result, some researches aim to find satisfactory seed
mappings [16]. The second one directly processes the net-
works without seed mappings and can still obtain satisfied
matching results [4]. This approach makes use of node sig-
natures (e.g., degrees, subgraphs) or structural features (e.g.,
node similarities, descriptive information) to de-anonymize
networks. Without involving the seed mappings, this type
of solutions is more general and is easy to setup for de-
anonymization. However, because of the expensive compu-
tation cost of node similarity (or other descriptive features),
they suffer from poor efficiency.

In this paper, we develop a fast seedless de-anonymi-
zation approach called RoleMatch. The RoleMatch con-
sists of two phases, node similarity computation and node
matching. During the node similarity computation phase,
we propose a new similarity measure, named RoleSim++,
which is extended from RoleSim [9]. To improve the preci-
sion of similarity estimation, RoleSim++ fully exploits the
structural information by aggregating both incoming and
outgoing neighbors’ similarity. Furthermore, based on the

observation that correct node mappings tend to have high
node similarity, we develop an efficient iterative algorithm,
�-RoleSim++, by pruning node pairs with low similarity.
In the node matching phase, we introduce a new matching
algorithm, named NeighborMatch, which takes advantage
of both node similarities and the structural information of
neighborhood matches, to efficiently obtain high-quality de-
anonymization results.

In addition, previous works only study global de-
anonymization, in which the anonymized network and the
crawled network are of the similar size with some overlap
sub-network. In this paper, we further study the local de-
anonymization. In this new situation, the crawled network
has much smaller size than the one of the anonymized net-
works does, and it basically corresponds to a sub-network
of the anonymized network. The local de-anonymization is
much closer to the real-world applications because usually
the crawled network with certain initial node sets is much
smaller than the anonymized network. The detailed defini-
tions of the problems are presented in Sect. 2.

Finally, by conducting experiments on three real-world
networks (i.e., LiveJournal, Twitter, Enron), the results dem-
onstrate that the precision of RoleMatch can be twice bet-
ter than the one of the existing solutions. In summary, our
contributions are listed as below:

•	 We propose an efficient and seedless approach, Role-
Match, for de-anonymization.

•	 We propose a new node similarity measure, RoleSim++,
which fully exploits the structural information and
improve the de-anonymization performance.

•	 We develop an efficient iterative algorithm to compute
RoleSim++, and introduce a fast node matching algo-

(a) (b) (c)

Fig. 1   Three small networks. The crawled network is obtained from
the original network, and it has public information (name). The
anonymized network is published with the disclosed information

(locations). In addition, the blue vertices are the overlap between the
crawled network and anonymized network

78	 Y. Shao et al.

1 3

rithm by utilizing both the node similarity and neighbor-
hood structural information. The two algorithms effec-
tively reduce the computation cost of RoleMatch.

•	 We study both global and local de-anonymizations and
conduct comprehensive experiments to demonstrate the
effectiveness and efficiency of the RoleMatch algorithm
on real datasets.

The remains of this paper is organized as follows. In
Sect. 2 we present the definition of general de-anonymi-
zation problem. Then we give an overview of RoleMatch
algorithm in Sect. 3 followed by the elaboration of the node
similarity and node matching algorithms used by RoleMatch
in Sects. 4–6. The experimental results are presented in
Sect. 7. Finally, in Sects. 8 and 9, we introduce the related
works and conclude the paper.

2 � Preliminaries

We introduce the formal definition of de-anonymization
problem and the related metrics of evaluating the complex-
ity of the problem. Then, we describe two variants of the de-
anonymization problem, and they are global de-anonymiza-
tion and local de-anonymization. Finally, we briefly review
the two types of de-anonymization algorithms.

2.1 � The Definition of De‑anonymization Problem

We use G = (V ,E) to represent a directed network G where
V is the node set and E is the edge set. A single node in the
network is denoted by a small letter, such as v. Table 1 sum-
marizes the frequently used notations in this paper. Then the
de-anonymization problem is defined as follows.

Definition 1  (De-anonymization problem) Given two
directed networks G1 = (V1,E1) and G2 = (V2,E2) , where
G1 is a crawled network from the original network and G2 is
an anonymized network, and assuming that there exist sub-
networks Gc ⊂ G1 and G′

c
⊂ G2 such that Gc.V = G�

c
.V  , then

the de-anonymization (G1,G2) is the process to match the
nodes between Gc and G′

c
 as many as possible.

For simplicity, we use G1 to represent the crawled network
and G2 to represent the anonymized network in the rest of
this paper. Furthermore, Gc implies the overlap between the
crawled network and anonymized network, and we called it
as overlap network.

To measure the difficulty of de-anonymization, we define
the noise of a anonymized networks.

Definition 2  (Noise) In a problem (G1,G2) , noise is the
set of nodes in the networks that do not belong to the overlap
network Gc , i.e., V1 ∪ V2⧵Vc. To quantify the noise, we intro-
duce an overlap rate � =

|Vc|
|V1∪V2| ; then, the noise ratio is

1 − �.

2.2 � Global and Local De‑anonymization

According to the different situations of real-world activi-
ties of de-anonymization, there are two variants of de-
anonymization, which are global de-anonymization and local
de-anonymization.

To improve the precision of de-anonymization, we would
like to get a crawled network from the original network as
large as the anonymized one. This is because, in such case,
the noise is relatively low, and it has almost no negative
impact on de-anonymization. Then the de-anonymization

Table 1   Frequently used notations

Notation Description

G = (V ,E) A network G with node set V and edge set E
We use G1 to represent the crawled network with real topology and G2 to represent the anonymized network

N
out

i
(u) Outgoing neighbor set of node u in network G

i

N
in

i
(u) Incoming neighbor set of node u in network G

i

Sim(u, v) Similarity score of the two nodes u and v
Sim

k(u, v) Similarity score of the two nodes u and v after the kth iteration

�out(u, v) ( �in(u, v)) The larger one between the number of u’s outgoing (incoming) neighbors and the number of v’s outgoing
(incoming) neighbors

M
out(u, v) ( Min(u, v)) Node matching between u’s outgoing (incoming) neighbors and v’s outgoing (incoming) neighbors

� out(u, v) ( � in(u, v)) Then the maximum outgoing (incoming) similarity scores of all possible matchings between N1(u) and N2(v)

� Parameter to prune unnecessary computations in node similarity computation
� Decay factor for node similarity RoleSim++
� Parameter for the degree of anonymization

79Fast De‑anonymization of Social Networks with Structural Information﻿	

1 3

becomes easy. We define this kind of de-anonymization as
global de-anonymization below.

Definition 3  (Global De-anonymization) Global de-
anonymization is the de-anonymization situation where the
crawled network and anonymized network are similar in
size, i.e., |G1| ≈ |G2|.

Next considering that there are a lot of applications (e.g.,
community leader detection, influential person identifica-
tion.), where we are only interested in the information of
a part of nodes in the network, this leads to attackers only
de-anonymizing the sub-network containing our interested
nodes. In such case, we only crawl nodes that are near our
targets and build a sub-network as the crawled network
for de-anonymization. We define this problem as local de-
anonymization as below.

Definition 4  (Local De-anonymization) Local de-anonymi-
zation is the de-anonymization situation where the crawled
network is far smaller than the anonymized one, i.e.,
|G1| ≪ |G2|.

The local de-anonymization brings the benefit of saving
considerable time and space for attackers, but also brings
some challenges for de-anonymization algorithms because
of the high noise ratio. To be more specific, since in this
case the overlapped nodes take up only a small percentage
of the anonymized network, all the remaining nodes in the
anonymized network become noise which makes it diffi-
cult to figure out nodes that are actually matched. Previ-
ous researches rarely focused on sub-network attack, and
therefore, the state-of-the-art de-anonymization algorithms
cannot perform well for the local de-anonymization problem.
Our solution will address this drawback.

2.3 � Seed‑Based and Seedless De‑anonymization
Algorithm

As briefly mentioned in Introduction, existing de-anonymi-
zation algorithms can be divided into two categories: seed-
based de-anonymization algorithm and seedless one. The
seed-based algorithm requires seed mappings with high
quality and extends them to find more mappings. The per-
formance of seed-based algorithms is sensitive to the amount
of accurate seed mappings [10]. And the seedless one just
uses the properties of network to de-anonymize. Considering
the difficulty of obtaining a set of seed mappings, the seed-
less algorithm has its advantage of simplicity. However, as
far as we know, there is no single algorithm that can handle
both the situations with/without seed mappings.

In this paper, we mainly discuss the seedless situation and
propose a de-anonymization algorithm only replying on the

structural information of networks. But we will show that
our new solution is able to handle the cases with seed map-
pings as well, and the performance is improved compared
to other classical seed-based algorithms.

3 � Overview of RoleMatch

RoleMatch is a fast de-anonymization algorithm, and it sup-
ports de-anonymization both with and without initial seed
mappings. RoleMatch de-anonymizes the node mappings
only based on the structural information of the crawled net-
work and anonymized network.

RoleMatch mainly takes two networks G1 and G2 as
inputs, and it can accept initial seed mappings if provided.
After initializing a similarity matrix score, it iteratively
computes the all pairs of node similarity according to the
structural information. Higher similarity score indicates
the higher probability of being a correct node mapping. To
improve the effectiveness of de-anonymization algorithm,
we propose a new similarity measure, called RoleSim++,
which will be introduced in Sect. 4. The new measure cap-
tures the information of both outgoing and incoming neigh-
bors, reflecting the structural similarity between a pair of
nodes. RoleSim++ is computed iteratively. During each
iteration, the score of a pair of nodes is aggregated from the
similarities of maximum matching between their neighbor-
ing pairs. To reduce the computation cost of RoleSim++, we
also develop a threshold-based variant, called �-RoleSim++.

Then, based on the similarity scores calculated in the pre-
vious stage, RoleMatch calls function findNodeMatching to
generate final node mappings. In this function, we apply a
matching algorithm called NeighborMatch, which syntheti-
cally combines the node similarity and neighborhood feed-
backs. Refer to Sect. 6 for the details of NeighborMatch
approach.

Furthermore, it is easy for RoleMatch to accept initial
seed mappings. This is because RoleMatch computes simi-
larity purely based on the structural information, and seed
mappings just provides explicit structural information. The
only difference between seedless and seed-based for Role-
Match is that, during the computation of node similarity,
if seed mappings are provided, the similarity scores of all
the seed pairs remain as one throughout the iterations, and
during the node matching phase, the seed pairs are matched
ahead of other nodes.

In summary, RoleMatch is a de-anonymization approach
based on network structure and works correctly no matter
whether high-quality seed mappings are provided or not.
Due to the minor influence of the seed, in the following
discussions, we mainly focus on the seedless version of
RoleMatch.

80	 Y. Shao et al.

1 3

4 � RoleSim++: A New Node Similarity
Measure

In this section, we introduce the details of the new node
similarity metric, RoleSim++. First, we give the definition
of RoleSim++ and its properties. Then we propose an effi-
cient algorithm to compute the new measure.

4.1 � Definition of RoleSim++

Many similarity measures of node pairs have been proposed;
however, they cannot be applied to the de-anonymization
problem directly. For instance, SimRank [7] is a popular simi-
larity measure based on network structure, but it is designed
for single network only. Another popular measure [4] is com-
puted based on neighborhood similarity. It uses unnormalized
values for iteration so that there is a skew between similarity
scores of small-degree nodes and large-degree nodes. After
several iterations, the scores of node pairs with small degree
drop to almost zero and have no contributions for de-anonymi-
zation. In addition, most of the previous similarity measures
between two networks mainly discuss about undirected net-
works, and the directed ones are neglected.

To improve the effectiveness of de-anonymization algorithm,
we pay much attention on the structural information including
the direction. As a result, we propose a new similarity measure
called RoleSim++. RoleSim++ is extended from RoleSim [9]
in two aspects: (1) RoleSim++ can model the similarity between
two networks and (2) RoleSim++ utilizes the direction informa-
tion of both incoming edges and outgoing edges.

Before introducing the formal definition of RoleSim++,
we clarify some basic notations. Given two vertices u ∈ G1
and v ∈ G2 , we use Nout

1
(u) and N in

1
(u) ( Nout

2
(v) and N in

2
(v) ) to

denote u’s (v’s) outgoing and incoming neighbors, respec-
tively. The corresponding degrees are |Nout

1
(u)| , |N in

1
(u)|

( |Nout
2

(v)| , |N in
2
(v)| ). Then the maximal outgoing and incom-

ing degrees between u and v are

Assume Mout(u, v) is a matching between Nout
1

(u) and
Nout
2

(v) , i.e., Mout(u, v) = {(x, y)|x ∈ Nout
1

(u), y ∈ Nout
2

(v) ,
and no other (x�, y�) ∈ Mout(u, v), s.t., x = x�or y = y�} . Sim-
ilarly, Min(u, v) is a matching between N in

1
(u) and N in

2
(v) .

Then the maximum outgoing and incoming similarity
scores of all possible matchings between N1(u) and N2(v)
are, respectively,

�out(u, v) =max{|Nout
1

(u)|, |Nout
2

(v)|},
�in(u, v) =max{|N in

1
(u)|, |N in

2
(v)|}.

� out(u, v) = max
{Mout(u,v)}

∑

(x,y)∈Mout(u,v)

Sim(x, y),

� in(u, v) = max
{Min(u,v)}

∑

(x,y)∈Min(u,v)

Sim(x, y),

where Sim(x, y) is the similarity between nodes x and y.
Now the formal definition of RoleSim++ is described

as below.

Definition 5  (RoleSim++) For a node pair (u, v), its simi-
larity score is computed as

where the parameter � is a decay factor with the boundary
0 < 𝛽 < 1.

According to the definition of � out(u, v) and � in(u, v) ,
we can easily infer that the RoleSim++ can be calculated
iteratively. In this paper, we initialize the score matrix as an
all-one matrix, i.e., Sim(u, v) = 1 for all node pairs.

4.2 � Properties of RoleSim++

To show that RoleSim++ is a valid similarity measure, we
prove that RoleSim++ is converged and its tolerance to the
noise of anonymization is bounded.

First, the following lemma shows that

Lemma 1  (Non-Increasing) Let Simk(u, v) be the
similarity score of (u, v) after k iterations. Then
Simk−1(u, v) ≥ Simk(u, v) for all k and all node pairs (u, v).

Proof  See “The Proof of Lemma 1” of Appendix. □

With the non-increasing property and Simk(u, v) ≥ � , the
following convergence property can be derived immediately.
We have:

Proposition 1  (Convergence) The similarity measure in
Definition 5 converges for every pair of nodes (u, v), i.e.,
limk→∞ Simk(u, v) = Sim(u, v).

Next we show the impact of � on the convergence rate of
the RoleSim++ score, and the result is that the difference
between Simk(u, v) and Sim(u, v) decreases exponentially
with (1 − �).

Proposition 2  For every pair of nodes (u, v), let �k(u, v) be
Simk(u, v) − Sim(u, v) , then

Proof  See “The Proof of Proposition 2” of Appendix. � □

(1)
Sim(u, v) = (1 − �)

� out(u, v) + � in(u, v)

�out(u, v) + �in(u, v)
+ �,

�k(u, v) ≤ (1 − �)k+1.

81Fast De‑anonymization of Social Networks with Structural Information﻿	

1 3

When computing similarity scores on real-world net-
works, because of the small diameter of social networks,
it shows that 5 rounds of iteration will be enough for de-
anonymization accuracy. We will discuss this further in
Sect. 7.

The Tolerance of RoleSim++ to the Noise of Anonymiza-
tion When applying RoleSim++ to de-anonymize networks,
there is a lower bound for expected similarity scores of cor-
rect matches, which shows its effectiveness for network de-
anonymization. The lower bound is influenced by the com-
plexity of how the network is anonymized. In other words,
the lower bound is related to the noise in an anonymized
network.

First, we introduce a parameter � to describe the com-
plexity of anonymization algorithms on the network. Two
networks G1 and G2 are �-anonymized if the following three
conditions are satisfied:

1.	 for each node u in G1 , there exists exactly one node v in
G2 such that u and v are originally the same,

2.	 u and v have at least a proportion (1 − �) of common
n e i g h b o r s , 1 i . e . , |Nout(u)∩Nout(v)|

�out(u,v)
≥ 1 − � a n d

|N in(u)∩N in(v)|
�in(u,v)}

≥ 1 − �,
3.	 the ratio of incoming neighbors of u and v, and the ratio

of outgoing ones are both between (1 − �) and 1∕(1 − �).

Through studying the previous anonymization algo-
rithms, we found that most of the commonly used network
anonymization algorithms have the above three properties.
For example, Sparsify anonymizes a network by deleting p%
of the edges, and therefore, � equals p% . Perturb and Switch
also have these properties.

Then the following proposition gives the estimation of the
lower bound of Simk(u, v) with parameter �.

Proposition 3  Let u and v be a correct match where G1
and G2 are �-anonymized, then Simk(u, v) ≥ ck , where
ck = ak + �

1−ak

1−a
, and a = (1 − �)(1 − �).

Proof  See “The Proof of Proposition 3” of Appendix. □

For example, when � is set to 0.15, and the parameter �
in anonymization algorithms is set to 10%, after five itera-
tions, the similarity score of each correct matched node pair
satisfies that Simk(u, v) > 0.73 . In particular, when G1 and G2
are isomorphic, which means that � = 0 and a = 1 − � , then
1 − (1 − �)k = �

∑k−1

i=0
(1 − �)i.

Consequently, for each k we have ck = 1 and
Simk(u, v) = 1 . This is consistent with the fact that two net-
works are isomorphic.

5 � Solutions of Computing RoleSim++

5.1 � Basic Solution for RoleSim++

To compute the similarity score of RoleSim++, the basic
solution calculates all pairwise score iteratively in brute-
force way. Algorithm 1 describes the procedure of the solu-
tion. First, the similarity matrix score is initialized as an all-
one matrix (Line 1). In each iteration, the similarity scores
of node pairs are updated according to Eq. (1). The function
�(N(u),N(v)) (Line 4) computes the maximum matching
between neighboring pairs of u and v (i.e., � out and � in ).
Considering that the exact maximum matching for bipartite
network is computationally expensive, we adopt a greedy
approximation algorithm in our implementation, just as Fu
et al. [4] and Jing et al. [9] did. However, the basic solution
is expensive, and the computation complexity for each round
is at least �(|V1||V2|d2), where d is the average degree of
the nodes. The algorithm can only handle networks with
thousands of nodes.

Algorithm 1 Naive RoleSim++ Computation
Input: G1 = (V1, E1), G2 = (V2, E2)
Output: score[][]
1: score[][] ←MatrixAllOne
2: for i = 1 → nRounds do
3: for each (u, v) ∈ V1 × V2 do

4: r ← γ(Nout
1 (u),Nout

2 (v))+γ(Nin
1 (u),Nin

2 (v))
∆out(u,v)+∆in(u,v)

5: score′(u, v) ← (1− β) · r + β
6: end for
7: score[][] ← score′[][]
8: end for
9: return score[][]

Here we illustrate the computation of Algorithm 1 through
a simple example. Consider a specific node u1 in Fig. 1, and
set � to be 0.15. In the first iteration, we have

It is clear that even if the first round uses only the one-hop
neighbors, the similarity between node u1 and v1 still domi-
nates all other possible pairs related to u1 . The change in
similarity scores related to node u1 over iterations is shown
in Table 2. After five iterations, similarity scores of correct
matchings stand out, as is shown in Table 3.

Sim(u1, v1) = (1 − �)
0 + 2

0 + 3
+ � = 0.72,

Sim(u1, v2) = (1 − �)
0 + 1

2 + 3
+ � = 0.32,

Sim(u1, v3) = (1 − �)
0 + 1

2 + 3
+ � = 0.32,

Sim(u1, v4) = (1 − �)
0 + 0

1 + 3
+ � = 0.15,

Sim(u1, v5) = (1 − �)
0 + 1

0 + 3
+ � = 0.43.

1  The case of no incoming or outgoing neighbors is omitted.

82	 Y. Shao et al.

1 3

5.2 � ‑RoleSim++: A Fast Solution

To scale our de-anonymization approach to large networks,
we design a fast solution of computing RoleSim++, called �
-RoleSim++. For de-anonymization, each node in G1 has at
most one correspondence (correct match) in G2 . This means
that our main concerns are those node pairs with higher simi-
larity scores, which are more likely to be correct matches.

Based on this observation, we propose a heuristic rule to
speed up the computation.

Heuristic 1  In each iteration, only the similar node
pairs with high similarity are reserved and others can be
discarded.

Following the heuristic rule, we propose a new efficient
computation method, �-RoleSim++. The �-RoleSim++ can
substantially reduce the computational cost but still retain
the accuracy. In �-RoleSim++, the similarity formula is
revised as follows. Let Sim�

k
(u, v) denote the threshold-

sieved similarity score of (u, v) on the kth iteration, where
the threshold � = �(u, �) relies on parameter � and node u,
and 0 < 𝛼, 𝜃 < 1.

The iterative version of Sim�

k
(u, v) is given as follows:

Sim�

0
(u, v) = 1;

Sim�

k+1
(u, v) = (1 − �)

� out(u,v)+� in(u,v)

�out(u,v)+�in(u,v)
+ �, if Sim�

k
(u, v) ≥ �(u, �);

Sim�

k+1
(u, v) = �, otherwise.

More specifically, to reduce space and time consumption, in
each iteration we keep the node pairs with similarity above
� and discard other node pairs. In this way, we only need to
maintain a relatively small set of similarity scores, while
dissimilar pairs are gradually filtered out.

Since the goal of de-anonymization is to identify each
node in G1 , we need to keep a portion of candidates (nodes
from G2 ) for each node u in G1 . Consequently, the thresh-
old � should be related to the node u in each iteration for
dynamically maintaining a proper list of candidates. We
define � as �(u, �) = � ⋅ top(u) , where top(u) is the high-
est similarity score related to u in the last round, and it is
easy to figure out that � is dynamically determined by the
similarities with respect to node u.

Algorithm 2 describes the details of �-RoleSim++
computation. The main framework still remains the same
as Algorithm 1. The differences are below. At Line 6, the
threshold � is decided by both parameter � and the simi-
larity scores related to node u. Later when visiting candi-
date pairs (Line 7), those with similarity score below the
threshold are filtered out and others are updated for the
iteration (Lines 8–11).

Algorithm 2 A fast solution, α-RoleSim++

Input: G1 = (V1, E1), G2 = (V2, E2)
Output: score[][]
1: score[][] ← the similarity scores of 1st iteration in the basic solution.
2: for i = 1 → nRounds do
3: score′ ← EmptyHashMap
4: for each u ∈ V1 do
5: top(u) ← highest score related to u
6: θ ← αtop(u)
7: for each v ∈ V2 s.t. (u, v) ∈ score[][] do
8: if score(u, v) ≥ θ then

9: r ← γ(N+
1 (u),N+

2 (v))+γ(N−
1 (u),N−

2 (v))
∆+(u,v)+∆−(u,v)

10: score′(u, v) ← (1− β) · r + β
11: end if
12: end for
13: end for
14: score[][] ← score′[][]
15: end for
16: return score[][]

Properties of �-RoleSim++ We study the property
through analyzing the threshold-sieved similarity measure.
First, by induction on the number of iterations, we have:

Property 1  The threshold-sieved similarity score
of each pair of nodes (u, v) is non-increasing, i.e.,
Sim�

k
(u, v) ≥ Sim�

k+1
(u, v) for each k.

Property 2  The value of threshold-sieved similarity
scores is lower than the standard RoleSim++ scores, i.e.,
Sim�

k
(u, v) ≤ Simk+1(u, v) holds for all pairs of nodes.

Table 2   Change in similarity scores related to node u
1
 in Fig. 1 over

five iterations

(u
1
 , v

1
) (u

1
 , v

2
) (u

1
 , v

3
) (u

1
 , v

4
) (u

1
 , v

5
)

First 0.72 0.32 0.32 0.15 0.43
Second 0.56 0.32 0.27 0.15 0.35
Third 0.47 0.23 0.24 0.15 0.30
Fourth 0.41 0.22 0.23 0.15 0.28
Fifth 0.38 0.21 0.22 0.15 0.27

Table 3   Similarity scores of each node pair in Fig. 1 after five itera-
tions

v
1

v
2

v
3

v
4

v
5

u1 0.38 0.20 0.22 0.15 0.26
u2 0.15 0.38 0.36 0.31 0.15
u3 0.27 0.36 0.38 0.24 0.31
u4 0.15 0.26 0.26 0.34 0.15

83Fast De‑anonymization of Social Networks with Structural Information﻿	

1 3

From Property 1 we know that the iterative computation
of �-RoleSim++ converges. The convergent similarity score
of (u, v) is denoted as Sim�(u, v).

In addition, to choose the value of parameter � , there is a
trade-off between the accuracy of similarity scores and the
computational cost. If � is set to a relatively low value, fewer
node pairs will be filtered out in each iteration, resulting
in higher computational cost, while the de-anonymization
accuracy will be closer to that of standard RoleSim++. In
particular, if � is set to zero then it will be exactly the same
as the standard RoleSim++. We will study the influence of
� on accuracy in Sect. 7.

6 � NeighborMatch: An Effective Node
Matching Algorithm

In this part, we introduce our method to find a good mapping
between the anonymized network and the crawled one, based
on the pre-computed similarity scores.

Intuitively, in order to find the mapping based on node
similarity, the maximum weighted matching for bipartite
network is a good option. By using Karnik–Mendel (KM)
algorithm [12], the maximum matching can be computed
in O(n3) , where n is the number of nodes. Since the maxi-
mum matching is computationally expensive, it can hardly
be applied to large networks. Another solution proposed by
Fu et al. [4] is a greedy algorithm, which offers an approxi-
mation of the globally optimal matching in O(n2logn) , with
less accuracy than KM algorithm.

However, both above approaches simply maximize the
sum of similarity scores, and the structural information of
the network is neglected during the matching phase. Actually
the links between a pair of nodes and their neighbors con-
tain valuable information that can help us de-anonymizing
a network with higher accuracy. We propose a new match-
ing algorithm, NeighborMatch, based on two observations:
First, correct mappings tend to have higher similarity scores
and second, a pair of nodes is more likely to be a correct
mapping if their neighbors are correct mappings. More spe-
cifically, NeighborMatch assigns a priority for each pair of
nodes, and it follows the priority to generate matchings.

To automatically assign the priority online, we use the
idea of the percolation network matching method proposed
by Kazemi et al. [10]. Percolation network matching (PGM)
generates the results based on seeds. The seed pairs are
marked as matched at the beginning. Then, node pairs whose
number of matched neighbors is higher than the threshold r
are matched repeatedly, until there are no more unmatched
pairs with at least r neighbors being matched. Neighbor-
Match uses the pair with highest score as the “seed” at the
beginning, and in the following iterations, it always picks the
pair with highest score when there are multiple candidates.

Algorithm 3 illustrates the procedure of Neighbor-
Match finding the node mappings. First, from Lines 4 to
9, it matches node pairs with highest similarity score and
increases the scores of their neighbors by one, until there
are some candidate pairs with at least r neighbors being
matched. Then it matches all the candidates in sequence
of their scores from the highest to the lowest and spreads
score to their neighbors (Lines 10–13). These two steps are
repeated until each node in G1 is matched with some node
in G2 . Taking the similarity scores in Table 3 as an exam-
ple, in the first iteration, NeighborMatch first selects a
matching pair (u1, v1) , then increases the scores of (u2, v2) ,
(u2, v3) , (u3, v2) , (u3, v3) , (u4, v2) , (u4, v3) by 0.38, respec-
tively, and adds them into set A. After another four itera-
tions, all node matchings will be correctly generated.

Since NeighborMatch is a variant of percolation network
matching by using different seeds, the theoretical results
[10] still hold and guarantee the performance of Neighbor-
Match. For instance, assuming that at the beginning, m pairs
of nodes with highest similarity scores are matched, and m
reaches the critical value according to Theorem 1 from the
work [10], then with high probability, at least n − o(n) nodes
can be de-anonymized successfully, where n = ||V1 ∩ V2

||.
Moreover, NeighborMatch has several advantages over

the original percolation network matching. Network percola-
tion requires all the candidate pairs to have at least r neigh-
bors matched previously, so the matching process gets stuck
when there are no valid candidates. Our algorithm avoids
getting stuck because the similarity scores provide a natural
and reasonable choice of candidate pairs, i.e., picking out
the one with highest score among all the unmatched pairs.
Thus, our matching algorithm is capable to match more node
pairs, even those whose degrees are less than the threshold r.

7 � Experimental Studies

In this section, we evaluate the performance of RoleMatch
through extensive experiments. First, we conduct experi-
ments of tuning parameters for the RoleMatch. Then we

Algorithm 3 NeighborMatch: an efficient node matching algorithm
Input: G1 = (V1, E1), G2 = (V2, E2), score
Output: nodeMapping
1: candidate set A ← ∅
2: nodeMapping ← ∅
3: while there exists an unmatched pair do
4: while A is empty do
5: match the pair (u, v) with highest score
6: add (u, v) to nodeMapping
7: increase the score of neighboring pairs of u and v by score(u, v)
8: A ← all unmatched pairs with score ≥ r
9: end while
10: pick a pair (u, v) with highest score in A
11: add (u, v) to nodeMapping
12: remove (u, v) from A
13: increase the score of neighboring pairs of u and v by score(u, v)
14: end while
15: return nodeMapping

84	 Y. Shao et al.

1 3

compare the performance of RoleSim++ measure and
NeighborMatch algorithm to the existing solutions [4,
10], respectively. Afterward we describe the performance
of RoleMatch as a whole for the global de-anonymization
and local de-anonymization. Finally, we also compare
RoleMatch with existing seed-based de-anonymization
algorithms.

7.1 � Experiment Settings

All the algorithms are implemented in C++ and compiled
with -O3 options. The experiments were run on a Linux
server, which is equipped with an Intel Xeon E5620 CPU (16
cores, 2.4 GHz) and 64 GB memory. Furthermore, we used
16 threads to parallelize the computation of each iteration.

Datasets In the experiments, three real-world datasets
are used. They are LiveJournal,2 Twitter3 and Enron.4 The
statistics of datasets are described in Table 4.

In addition, we follow the approach proposed in [4] to
generate small networks, called synthesized datasets. The
basic idea is that, given a large network G, we first randomly
extract a sub-network from G as a seed network, denoted as
Gs = (Vs,Es) , and use the nodes in Gs to generate a crawled
network G1 = (V1,E1) and an anonymized network
G2 = (V2,E2) with satisfying Vs = V1 ∪ V2 . Recall the defini-

tion of � ; the overlap rate is � =
|V1∩V2|
|Vs| .

Then, we use breadth first search (BFS) algorithm to gen-
erate synthesized networks with arbitrary � . More specifi-
cally, we use BFS to create an overlap network Gc = (Vc,Ec)
from Gs where |Vc| = � × |Vs| . The overlap network Gc is
treated as a sub-network to both G1 and G2 . And then the
remaining node set Vs⧵Vc is split into two parts of same size,
V
,

1
 and V ,

2
 . Finally, V1 is V ,

1
∪ Vc , and V2 is V ,

2
∪ Vc . Further-

more, we apply a selected anonymization algorithm on net-
work G2 to build the anonymized network. In the following
experiments, we use Syn(|Vs|,� ) to represent a synthesized
dataset generated from LiveJournal dataset. For example,
Syn(10,000, 50%) means a synthesized dataset created by
setting ||Vs

|| to 10,000 and overlap � to 50%.

Anonymization Algorithms Here we list all the anonymi-
zation algorithms used in the experiments. As introduced
in Sect. 2, we use parameter � to represent the degree of
anonymization by an algorithm. The larger the � is, the more
edges in the anonymized network are changed. Following
the previous work [4], we set � = 0.1 for each anonymization
algorithm, i.e., about 10% of the edges are modified.

1.	 Naive Anonymization The naive approach simply shuf-
fles the identifiers of nodes and leaves the structure as it
is.

2.	 Sparsify(� ) The Sparsify approach removes �|E| edges
randomly, where the parameter � controls the number of
deleted edges.

3.	 Perturb(� ) The Perturb approach [3] first removes edges
in exactly the same way as the Sparsify does and then
adds false edges randomly until the number of edges
of the anonymized network is the same as the origi-
nal network. This approach can be viewed as a kind of
simulation of social network evolution or “unintended”
anonymization.

4.	 Switch(� ) The switch approach randomly selects two
edges ( i1 , j1 ) and ( i2 , j2 ), where ( i1 , j2 ) and ( i2 , j1 ) are not
in the network. The selected edges are then “switched,”
i.e., ( i1 , j1 ) and ( i2 , j2 ) are deleted, and ( i1 , j2 ) and ( i2 ,
j1 ) are added to the network. The procedure is repeated
�|E|∕2 times, and �|E| edges are added and �|E| edges
are deleted.

De-anonymization Algorithms The de-anonymization algo-
rithms we compared are described as follows.

1.	 Baseline (BaseSim and BaseMatch) We use the de-
anonymization algorithm [4] as our baseline algorithm.
The baseline algorithm consists of two parts: similarity
computation phase and the node matching phase. The
similarity measure in the baseline algorithm is referred
as BaseSim, and the node matching algorithm is referred
as BaseMatch.

2.	 Seed Baseline We use the seed-based mapping algorithm
proposed by Kazemi et al. [10] as our seed-based map-
ping baseline.

3.	 RoleMatch The RoleMatch refers to the proposed algo-
rithm, where two new similarity measures, RoleSim++
and �-RoleSim++, are used. Moreover, NeighborMatch

Table 4   Dataset statistics Dataset #V #E Avg. degree Diameter Avg. clustering
coefficient

Type

LiveJournal 4,847,571 68,993,773 14.23 16 0.2742 Directed
Twitter 81,306 1,768,149 21.75 7 0.5653 Directed
Enron 36,692 367,662 10.02 11 0.4970 Undirected

2  http://snap.stanf​ord.edu/data/soc-LiveJ​ourna​l1.html.
3  http://snap.stanf​ord.edu/data/egone​ts-Twitt​er.html.
4  https​://snap.stanf​ord.edu/data/email​-Enron​.html.

http://snap.stanford.edu/data/soc-LiveJournal1.html
http://snap.stanford.edu/data/egonets-Twitter.html
https://snap.stanford.edu/data/email-Enron.html

85Fast De‑anonymization of Social Networks with Structural Information﻿	

1 3

is used as the node matching algorithm, where the
threshold r is set to 2 in the experiments.

Evaluation Criteria In order to evaluate the overall perfor-
mance of de-anonymization algorithm comprehensively, we
introduce three different metrics.

Precision Score This is a metric for evaluating effective-
ness of de-anonymization algorithms. Assume M(u, v) is the
set of correct matching pairs; then, the precision score is
|M(u,v)|
|V1∩V2| . The higher the precision score is, the more of correct
mappings an algorithm generates.

Top-k Precision To compare the effectiveness of differ-
ent similarity measures, we introduce another two precision
metrics, top-1 precision and top-m% precision. The two met-
rics are defined according to the different criterions of the
ranking positions of nodes in correct matching pairs. Given
a pair (u, v) ∈ M(u, v) , and u ∈ V1 and v ∈ V2 , we sort every
vi ∈ V2 in decreasing order based on Sim(u, vi) , the rank of
vertex v, denoted as r(v), is the position of v in the sorted
vertex list.

Execution Time This is a metric for evaluating efficiency.
It is the time cost of running algorithms in the experiments.

7.2 � Parameter Tuning

Before evaluating the RoleMatch algorithm, two parameters
need to be tuned, and they are the number of iterations and
the threshold αin α-RoleSim++. To showcase the param-
eter tuning processing, we conducted the tuning experiments

Top-1 precision is
|(u, v)|(u, v) ∈ M(u, v) ∧ r(v) = 1|

||V1 ∩ V2
||

.

Top-m%precision is
|(u, v)|(u, v) ∈ M(u, v) ∧ r(v) ≤

m×|V2|
100

|
||V1 ∩ V2

||
.

on Syn(10,000, 100%), and the network is anonymized by
Naive Anonymization. Other anonymization algorithms can
be tuned in the same way.

The Number of Iterations Figure 2a shows the precision
of running RoleMatch in 10 iterations. In this experiment,
RoleSim++ is used as the similarity measure and Neigh-
borMatch is used to generate the node matching. It is clear
that the precision remains almost the same after five rounds
of iterations, so we set the number of iterations to 5 in the
following experiments.

Threshold Parameter α For computing α-RoleSim++,
we use threshold parameter α to limit the number of nodes
involved in the computation. The lower the parameter α is,
the more the node pairs each iteration computes, resulting
in higher time consumption. We set α from 0.95 to 0.50,
decreasing by 0.05 in the tuning process. Figure 2b, c shows
the precision ratio and time cost ratio between the two algo-
rithms, respectively. The precision ratio is defined as the
ratio between the precision of α-RoleSim++ and the preci-
sion of RoleSim++. Similarly, the time ratio is the ratio
between the execution time of α-RoleSim++ and the execu-
tion time of RoleSim++ in the experiment result. From the
figures, we clearly see that when α increases, the time con-
sumption reduces almost linearly, and the precision is well
retained when alpha ≤ 0.85 . Therefore, we set α to 0.85 in
the following experiments.

7.3 � The Performance of RoleSim++

Effectiveness To demonstrate the effectiveness of
RoleSim++ and α-RoleSim++, we compare the new simi-
larity measures with BaseSim and RoleSim. In the experi-
ment, we use the Syn(10,000, 50%) and Syn(10,000, 100%).
The original networks are anonymized by four previously
mentioned anonymization algorithms. And we use top-1
precision and top-m% precision to evaluate the effectiveness.

Figure 3a, b shows that both RoleSim++ and
α-RoleSim++ have much higher top-1 precision than

(a) (b) (c)

Fig. 2   Results of parameter tuning on Syn(10,000, 100%)

86	 Y. Shao et al.

1 3

BaseSim under all four anonymization algorithms, espe-
cially for the situation of lower overlap rate (� = 50% ).
RoleSim is in between but not so good as RoleSim++
and α-RoleSim++. This is because that RoleSim++
takes two directions into consideration, while RoleSim
treats all edges as undirected. Besides, the gap between
Baseline and RoleSim++ becomes larger when the over-
lap rate is lower. Figure 3c shows that even when the
comparison condition is relaxed from top-1 to top m%,
both RoleSim++ and α-RoleSim++ still outperform the
BaseSim. RoleSim++ and α-RoleSim++ achieve more
than 80% precision in the top-1% precision measure, while
the BaseSim can only achieve nearly 40% even in the top-
10% precision measure.

In summary, because RoleSim++ fully exploits the struc-
tural information of a network, it improves the precision of
estimating the node similarity.

Efficiency We compare the execution time of BaseSim,
RoleSim++ and α-RoleSim++ to verify the efficiency of �
-RoleSim++. Two aspects are taken into consideration: the
average edge density d in the network and the number of
nodes |V| in the network. We generate synthesized datasets

from LiveJournal. When varying d , |V| is 10,000, and edges
are randomly selected from the V. When varying |V|, the
induced subgraph of V is used.

Figure 4 shows the variation in execution time with
the increase in d and |V| , respectively. As the edge den-
sity and the number of nodes increase, the execution time
of RoleSim++ and BaseSim increases rapidly, while �
-RoleSim++ is always faster and its execution time increases
far slower. This is because �-RoleSim++ can prune many
unqualified node pairs to speed up the computation. Moreo-
ver, the �-RoleSim++ can de-anonymize Twitter dataset in
less than 30 minutes. Both the BaseSim and the RoleSim++
similarity are unable to finish 5 iterations in 24 h.

7.4 � The Performance of NeighborMatch

To verify that the NeighborMatch can lead to a better
de-anonymization precision in different situations, we
compare our new algorithm with BaseMatch based on
RoleSim++ and BaseSim. First, we compare these two
matching algorithms on RoleSim++ similarity measure

(a) (b) (c)

Fig. 3   Results of evaluating the performance of RoleSim++

Fig. 4   Execution time over |V| and d

87Fast De‑anonymization of Social Networks with Structural Information﻿	

1 3

in order to show that NeighborMatch can utilize the well-
measured similarity information to match more nodes
correctly. Then we compare these two algorithms on
BaseSim to show that even when the similarity measure
has its deficiency, NeighborMatch can still generate much
more correct node mapping pairs by using the structural
information (Sect. 6). The experiments are conducted on
Syn(10,000, 100%). The results are shown in Fig. 5.

It is clear to see that NeighborMatch can reach a
better average precision score against BaseMatch on
RoleSim++ similarity when anonymization methods
(Sparsify and Perturb) are used. The BaseMatch outper-
forms the NeighborMatch in Switch anonymization, but
in that case both algorithms can de-anonymize more than
90% of nodes and the difference is subtle. When running
on BaseSim, NeighborMatch has a much better perfor-
mance than BaseMatch. NeighborMatch can achieve at
least 75% de-anonymization precision when different
anonymization algorithms are applied, while the Base-
Match performs poorly when non-trivial anonymization
algorithms are applied, resulting in less than 50% preci-
sion in Sparsify, Switch and Perturb, respectively. The

advantage of NeighborMatch is gained from making use
of neighborhood structural information.

7.5 � Precision Comparison of Global
De‑anonymization

To demonstrate the effectiveness of RoleMatch for pro-
cessing global de-anonymization, we compare all three de-
anonymization algorithms (the baseline algorithm, Role-
Match with RoleSim++ and RoleMatch with �-RoleSim
++) on both real datasets, Enron, Twitter and synthesized
datasets, and use Naive, Sparsify, Switch and Perturb
anonymization algorithms to generate anonymized networks.
Each experiment is ran five times and the average precision
score is reported.

Figure 6 presents the results on synthesized data-
sets. For each anonymization algorithm, we create ten
Syn(10,000, � ), where � is in the range of [0.1, 1]. First, it
is easy to figure out that RoleMatch outperforms the base-
line across different overlap rates, and RoleMatch with
RoleSim++ and RoleMatch with �-RoleSim++ have the
similar precision scores. But the improvements between

Fig. 5   Precision comparison of NeighborMatch and BaseMatch algorithm based on different similarity measures

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

Overlap ratio

P
re
ci
si
on

Sc
or
e

Baseline
RoleSim++

α-RoleSim++

(a) Naive

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

Overlap ratio

P
re
ci
si
on

Sc
or
e

Baseline
RoleSim++

α-RoleSim++

(b) Sparisty

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

Overlap ratio

P
re
ci
si
on

Sc
or
e

Baseline
RoleSim++

α-RoleSim++

(c) Switch

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

Overlap ratio

P
re
ci
si
on

Sc
or
e

Baseline
RoleSim++

α-RoleSim++

(d) Pertub

Fig. 6   Precision on synthesized datasets with different overlap rates

88	 Y. Shao et al.

1 3

RoleMatch and the baseline vary regard to the anonymi-
zation algorithms. When the network is anonymized by
Naive method, all three de-anonymization algorithms
perform almost equally. This is because that with the
naive anonymization, the overlap network remains the
same between the crawled network and the anonymized
network. Except when the overlap is extremely low, the
baseline suffers from the noise. For example the overlap
rate is 10% when using Naive anonymization, the pre-
cision score of baseline algorithm is about 60%, while
the other two can still achieve around 86% and 88 %.
When different anonymization algorithms are applied,
RoleMatch algorithms have much better performance on
precision than the baseline algorithm. For anonymization
method Switch, RoleMatch algorithms have almost twice
the precision of the baseline, and for Sparsify and Per-
turb anonymization, the advantage is about 10%. Second,
with the increasing of overlap rate, the precision score
goes up generally among different anonymization algo-
rithms. This is because the lower overlap brings higher
data noise.

Figure 7 describes the results on real datasets: Enron
and Twitter. In these two datasets, we set overlap rate to
100%. The performance results are similar to the one on
synthesized datasets, and that is, RoleMatch performs the
best. For the Twitter dataset, only the result of RoleMatch
with �-RoleSim++ is presented. The baseline algorithm
and RoleMatch with RoleSim++ need to store an n × n
matrix for node similarity, they cannot process the dataset
successfully because of the limited memory. However,

RoleMatch with �-RoleSim++ is efficient in memory
usage and it can produce a satisfying result on this data-
set, de-anonymizing over 85% nodes.

7.6 � Precision Comparison of Local
De‑anonymization

In this subsection, we consider the local de-anonymization
case. To generated G1 and G2 satisfying |G1| ≪ |G2| , we first
extract a sub-network G1 with 10,000 nodes from LiveJour-
nal and then randomly crawl a sub-network G0 from G1 with
a given size. We anonymize the sub-network G0 to generate
an anonymized network G2 . Here Sparsify is used as the
anonymization algorithm with the probability of deleting an
edge set to 0.1. Furthermore, we set the overlap rate of G1
and G0 from 10 to 50%, and the overlap part is exactly G0 .
The results are presented in Fig. 8a.

From the figure, we can see that generally the preci-
sions of these three algorithms increase as the overlap rate
increases. In spite of the general tendency, there is sharp
difference between the precisions of the baseline algorithm
and the RoleMatch algorithms. The precision of the baseline
algorithm basically is always below 0.1 in the experiment;
however, when the overlap rate is above 20%, both the Role-
Match with RoleSim++ and RoleMatch with �-RoleSim++
can de-anonymize 80% of the overlapped nodes. The dif-
ference in precision reveals that the RoleMatch algorithms
are far more effective in local de-anonymization situations,
especially when the overlap rate is not too low. And they can

Naive Sparsify Switch Perturb

0.2

0.4

0.6

0.8

1

P
re
ci
si
on

Sc
or
e

|V | = 36692, Overlap rate λ = 100%

Baseline RoleSim++ α-RoleSim++

(a) Enron dataset

Naive Sparsify Switch Perturb

0.2

0.4

0.6

0.8

1

P
re
ci
si
on

Sc
or
e

|V | = 81306, Overlap rate λ = 100%

α-RoleSim++

(b) Twitter dataset

Fig. 7   Precision over different anonymization algorithms on Enron and Twitter 

89Fast De‑anonymization of Social Networks with Structural Information﻿	

1 3

easily de-anonymize most of the overlapped nodes with no
need to crawl the whole network.

Furthermore, compared with results of global de-
anonymization, we can see that the improvement in Role-
Match is much larger in local de-anonymization case. This is
because there is much more noise in local de-anonymization
case, and RoleMatch is robustness to the noise as analyzed
in Sect. 4.2.

7.7 � Seed‑Based De‑anonymization

Finally, we conduct experiments to demonstrate that the
RoleMatch can be adapted to situations where seed map-
pings are provided for de-anonymization.

The seed version RoleMatch was ran on the Enron data-
set, with the correct seed ratio from 1 to 10%. The anonymi-
zation algorithm applied here is Sparsify, and we compared
this seed version RoleMatch with �-RoleSim++ and the
seed mapping de-anonymization from the work [10].

The experiment result is shown in Fig. 8b. Basically the
precision goes up with the seed ratio increasing, but there is
a distinct gap between the two algorithms. The precision of
RoleMatch is higher than that of the seed baseline algorithm
by about 0.2, which reveals the effectiveness of seed version
RoleMatch.

8 � Related Works

The work of de-anonymizing networks is highly related to
three topics. They are (1) anonymization algorithms, (2) de-
anonymization algorithms and (3) node similarity measures.
In the following subsections, we describe the related work
of each topic separately.

8.1 � Anonymization Algorithms

According to a previous survey [18] on social network
anonymization, anonymization algorithms are classified
into three categories: K-anonymity, edge randomization and
clustering-based generalization.

K-anonymity [15, 21] modifies network structure by
edge deletions and additions, so that each node in the modi-
fied network is indistinguishable with at least K − 1 other
nodes, in terms of some structural patterns like degree. This
approach have good performance in anonymity but (1) is
relatively complex to implement and (2) may have modi-
fications to network structure to a too large extent. Edge
randomization modifies the network via random deletions,
additions or switches of edges. It protects user privacy in a
probabilistic manner with simple yet effective approaches.
Clustering-based generalization [20] firstly clusters nodes
into groups and next anonymizes a sub-network into a super-
node without individual node’s specific information. This
approach can be effective against de-anonymization. How-
ever, it has the loss of individual information as well as scale
information, which may dramatically change the results in
social network analysis.

8.2 � De‑anonymization Algorithms

De-anonymization is the reverse process of anonymization,
and researchers have been studying it in different methods
[1, 5, 10, 11, 13, 16, 17, 19]. It often appears in reality as
part of an attack to leak user privacy [8].

Backstrom et al. [1] proposed a family of de-anonymiza-
tions so that it is possible for an adversary to learn whether
edges exist or not between specific targeted pairs of nodes.
The weakness is that the algorithm is vulnerable when the
networks are modified before publishing, although it works

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Overlap ratio

P
re
ci
si
on

S
co

re

Baseline

RoleSim++

α-RoleSim++

(a) Local De-anonymization on Live-

Journal

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

Seed ratio (%)

P
re
ci
si
on

Sc
or
e

Seed Baseline

RoleMatch

(b) Seed-Based De-anonymization

on Enron

Fig. 8   Precision comparison with different settings

90	 Y. Shao et al.

1 3

fine for naive anonymization where node numbers are
switched.

Narayanan and Shmatikov [17] presented a framework
for analyzing privacy and proposed a de-anonymizing algo-
rithm. The algorithm is based on the network topology
only and is relatively robust to noise and most defenses. It
requires a few seed mappings and propagates to the whole
networks. However, the quality of seed mappings has sig-
nificant influence on whether the attack will succeed. Later
Narayanan et al. [16] introduced a simulated annealing-
based weight network matching algorithm for finding good
initial seed mappings for de-anonymization. Yartseva and
Grossglauser [19] used network percolation to propose a
seed-based network matching algorithm. Kazemi et al. [10]
proposed a scalable network matching algorithm using
smaller seed mappings to match a pair of networks, with a
small increase in matching errors. Korula and Lattanzi [11]
applied network percolation to power-distributed networks
and had an improved performance for real-world social net-
work matching.

Fu et al. [4] proposed a seedless algorithm for social net-
work de-anonymization. The algorithm first computes each
node pair’s similarity iteratively based on maximum match-
ing and then matches nodes according to the node pair simi-
larity scores from high to low. Our RoleMatch follows the
same de-anonymization framework, but RoleMatch applies a
new similarity measure and a new node matching algorithm.

8.3 � Node Similarity Measure

Node similarity is a basic metric for network analysis. So
far, many different similarity measures have been proposed.

Henderson et al. [6] proposed an algorithm that recur-
sively combines local features with neighborhood features
to produce regional features, and then used these regional
features to compute node similarity for de-anonymization.
These regional features can effectively narrow the range of
possible corresponding nodes, but with no evidence of the
ability to find the real identity with the most similar pairs.

The famous “SimRank” measure by Jeh and Widom [7]
provides node similarity measure within one network, which
is inapplicable in de-anonymization problems. Blondel et al.
[2] proposed a cross-network node similarity measure by
summing up similarity scores of neighbors of two nodes,
which is much like the two-network version of “SimRank.”
Fu et al. [4] proposed a two-network node similarity measure
by iteratively matching neighbors with top similarity scores
for two nodes, which is an improved measure compared to
simple transplanting “SimRank” to cross-network compu-
tation. This approach works for nodes with large degrees
but since it lacks normalization, for small-degree nodes the
similarity scores are usually too small to be meaningful. Jing

et al. [9] proposed a node similarity measure “RoleSim”
with normalization for node within a single network. It can
be a good depiction of nodes’ structural information, but
the definition and computation method limits it to a single-
network measure. Our new cross-network node similarity
measure is designed on the basis of all these measures.

9 � Conclusions

Social network de-anonymization is a popular approach to
test the strength of anonymization algorithms. With the help
of a good de-anonymization solution, we can guide com-
panies to design a much better anonymization approach to
protect the user’s privacy. In this paper, we developed a fast
seedless de-anonymization algorithm, named RoleMatch.
RoleMatch de-anonymizes networks only based on the struc-
tural information. Thanks to the new similarity measure,
RoleSim++, it can compute the node similarity in high pre-
cision. Moreover, during the node matching phase, besides
the node similarity, RoleMatch also uses the neighborhood
information to improve the mapping results. The compre-
hensive experimental results have demonstrated the advan-
tages of RoleMatch compared with previous works. Besides
the algorithm itself, the performance of de-anonymization is
also related to the properties of network. We will study such
relationship in the future.

Acknowledgements  This research is funded by the National Natural
Science Foundation of China (No. 61702015).

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

Appendix

The Proof of Lemma 1

Proof  We prove the lemma by induction on the number of
iterations.

1.	 Base Case Note that Sim0(u, v) = 1 , then Sim1(u, v) =

 Thus, Sim1(u, v) ≤ 1 = Sim0(u, v).
2.	 Induction Step Assume that in the kth iteration, the

matching out(u, v) of Nout
1

(u),Nout
2

(v) is

(1 − �)
min{|Nout

1
(u)|, |Nout

2
(v)|} +min{|N in

1
(u)|, |N in

2
(v)|}

�out(u, v) + �in(u, v)

+ �.

91Fast De‑anonymization of Social Networks with Structural Information﻿	

1 3

 Similarly,

Then,

The transition (4) is due to the induction, and the transi-
tion (5) is due to the definition of function � .

Thus, Simk−1(u, v) ≤ Simk(u, v) holds for all (u, v).
Conclusion Simk(u, v) ≥ Simk+1(u, v) is true for all

k ∈ ℕ0. � □

The Proof of Proposition 2

Proof  First, when the similarity Sim(u, v) is converged, we
use Mout(u, v) to denote the best matching with maximum
similarity score between Nout

1
(u) and Nout

2
(v) . So does the

Min(u, v) . Then let �out(u, v) = min{|Nout
1

(u)|, |Nout
2

(v)|} , and
�in(u, v) = min{|N in

1
(u)|, |N in

2
(v)|} , it is easy to figure out

�out(u,v)+�in(u,v)

�out(u,v)+�in(u,v)
≤ 1.

In the kth iteration, let Mout
k
(u, v) be the best matchings

with maximum similarity score between Nout
1

(u) and Nout
2

(v) ,
then we have

� out
k

(u, v) =
∑

(x,y)∈out(u,v)

Simk−1(x, y).

� in
k
(u, v) =

∑

(x,y)∈in(u,v)

Simk−1(x, y).

(2)Simk(u, v) = (1 − �)
� out
k

(u, v) + � in
k
(u, v)

�out(u, v) + �in(u, v)
+ �

(3)

= (1 − �)

∑
(x,y)∈out(u,v) Sim

k−1(x, y) +
∑

(x,y)∈in(u,v) Sim
k−1(x, y)

�out(u, v) + �in(u, v)
+ �

(4)

≤ (1 − �)

∑
(x,y)∈out(u,v) Sim

k−2(x, y) +
∑

(x,y)∈in(u,v) Sim
k−2(x, y)

�out(u, v) + �in(u, v)
+ �

(5)≤ (1 − �)
� out
k−1

(u, v) + � in
k−1

(u, v)

�out(u, v) + �in(u, v)
+ �

(6)= Simk−1(u, v).

(7)

� out
k

(u, v) − � out(u, v)

=
∑

(x,y)∈Mout
k

(u,v)

Simk−1(x, y) −
∑

(x�,y�)∈Mout(u,v)

Sim(x�, y�)

≤
∑

(x,y)∈Mout
k

(u,v)

(Simk−1(x, y) − Sim(x, y))

∵When converged, Mout is better than Mout
k
.

≤ �out(u, v)max(x,y)∈Mout
k

(u,v){(Simk−1(x, y) − Sim(x, y))}.

Similarly, we have

Next we prove the proposition as follows,

Assuming that Simk−1(x
∗
k−1

, y∗
k−1

) − Sim(x∗
k−1

, y∗
k−1

) =

max{max(x,y)∈Mout

k
(u,v){(Simk−1(x, y) − Sim(x, y))}, max(x,y)

∈Min

k
(u,v){(Simk−1(x, y) − Sim(x, y))}} , then

Conclusion �k(u, v) ≤ (1 − �)k+1 holds for all k ∈ ℕ0. �
� □

The Proof of Proposition 3

Proof  We prove this proposition by induction on number
of iterations.

1.	 Base Case Initially we have Sim0(u, v) = 1 = c0.

(8)

� in
k
(u, v) − � in(u, v)

=
∑

(x,y)∈Min
k
(u,v)

Simk−1(x, y)

−
∑

(x�,y�)∈Min(u,v)

Sim(x�, y�)

≤ �in(u, v)max(x,y)∈Min
k
(u,v)

{(Simk−1(x, y) − Sim(x, y))}.

�k(u, v) = Simk(u, v) − Sim(u, v)

= (1 − �)
(� out

k
(u, v) + � in

k
(u, v) − � out(u, v) − � in(u, v))

�out(u, v) + �in(u, v)

≤ (1 − �)
1

�out(u, v) + �in(u, v)

(�out(u, v)max(x,y)∈Mout
k

(u,v){(Simk−1(x, y) − Sim(x, y))}

+ �in(u, v)max(x,y)∈Min
k
(u,v){(Simk−1(x, y) − Sim(x, y))})

≤ (1 − �)
�out(u, v) + �in(u, v)

�out(u, v) + �in(u, v)

max{max(x,y)∈Mout
k

(u,v)(Simk−1(x, y) − Sim(x, y)),

max(x,y)∈Min
k
(u,v)(Simk−1(x, y) − Sim(x, y))}.

�k(u, v) = Simk(u, v) − Sim(u, v)

≤ (1 − �)
�out(u, v) + �in(u, v)

�out(u, v) + �in(u, v)

{(Simk−1(x
∗
k−1

, y∗
k−1

) − Sim(x∗
k−1

, y∗
k−1

))}

≤ (1 − �)(Simk−1(x
∗
k−1

, y∗
k−1

) − Sim(x∗
k−1

, y∗
k−1

))

…

≤ (1 − �)k(Sim0(x
∗
0
, y∗

0
) − Sim(x∗

0
, y∗

0
))

≤ (1 − �)k+1 ∵Sim(x∗
0
, y∗

0
) ≥ �.

92	 Y. Shao et al.

1 3

2.	 Induction Step In the kth iteration, it is obvi-
ous that u and v have a proportion (1 − �) of com-
mon neighbors, whose similarity score is no less
than ck−1 . So there exist matchings Mout(u, v)
and Min(u, v) between N1(u) and N2(v) , so that
� out(u, v) + � in(u, v) ≥ ck−1(1 − �)(�out(u, v) + �in(u, v)).

Thus,

Conclusion Simk(u, v) ≥ ck is true for all k ∈ ℕ0 . � □

References

	 1.	 Backstrom L, Dwork C, Kleinberg J (2007) Wherefore art thou
r3579x? Anonymized social networks, hidden patterns, and struc-
tural steganography. In: WWW, pp 181–190

	 2.	 Blondel VD, Gajardo A, Heymans M, Senellart P, Van Dooren
P (2004) A measure of similarity between graph vertices: appli-
cations to synonym extraction and web searching. SIAM Rev
46(4):647–666

	 3.	 Bonchi F, Gionis A, Tassa T (2014) Identity obfuscation in graphs
through the information theoretic lens. Inf Sci 275:232–256

	 4.	 Fu H, Zhang A, Xie X (2015) Effective social graph deanonymiza-
tion based on graph structure and descriptive information. ACM
Trans Intell Syst Technol 6(4):49

Simk(u, v) = (1 − �)
� out
k

(u, v) + � in
k
(u, v)

�out(u, v) + �in(u, v)
+ �

≥ (1 − �)(1 − �)ck−1 + �

= a

(
ak−1 + �

1 − ak−1

1 − a

)
+ �

= ak + �
1 − ak

1 − a

= ck.

	 5.	 Gulyás GG, Simon B, Imre S (2016) An efficient and robust social
network de-anonymization attack. In: Proceedings of workshop
on privacy in the electronic society, WPES ’16, pp 1–11

	 6.	 Henderson K, Gallagher B, Li L, Akoglu L, Eliassi-Rad T, Tong
H, Faloutsos C (2011) It’s who you know: graph mining using
recursive structural features. In: KDD, pp 663–671

	 7.	 Jeh G, Widom J (2002) SimRank: a measure of structural-context
similarity. In: KDD, pp 538–543

	 8.	 Ji S, Li W, Srivatsa M, He JS, Beyah R (2016) General graph data
de-anonymization: from mobility traces to social networks. ACM
Trans Inf Syst Secur 18(4):12:1–12:29

	 9.	 Jin R, Lee VE, Hong H (2011) Axiomatic ranking of network role
similarity. In: KDD, pp 922–930

	10.	 Kazemi E, Hassani SH, Grossglauser M (2015) Growing a
graph matching from a handful of seeds. Proc VLDB Endow
8(10):1010–1021

	11.	 Korula N, Lattanzi S (2014) An efficient reconciliation algorithm
for social networks. Proc VLDB Endow 7(5):377–388

	12.	 Kuhn HW (1955) The hungarian method for the assignment prob-
lem. Naval Res Logist Q 2(1–2):83–97

	13.	 Li H, Chen Q, Zhu H, Ma D (2017) Hybrid de-anonymization
across real-world heterogeneous social networks. In: Proceedings
of the ACM turing 50th celebration conference—China, ACM
TUR-C ’17, pp 33:1–33:7

	14.	 Li H, Zhu S, Du X, Liang X Shen (2018) Privacy leakage of loca-
tion sharing in mobile social networks: attacks and defense. IEEE
Trans Dependable Secur Comput 15(4):646–660

	15.	 Liu K, Terzi E (2008) Towards identity anonymization on graphs.
In: SIGMOD, pp 93–106

	16.	 Narayanan A, Shi E, Rubinstein BI (2011) Link prediction by de-
anonymization: how we won the kaggle social network challenge.
In: IJCNN, pp 1825–1834

	17.	 Narayanan A, Shmatikov V (2009) De-anonymizing social net-
works. In: ISSP, pp 173–187

	18.	 Wu X, Ying X, Liu K, Chen L (2010) A survey of privacy-pres-
ervation of graphs and social networks. In: Managing and mining
graph data, pp 421–453

	19.	 Yartseva L, Grossglauser M (2013) On the performance of perco-
lation graph matching. In: Proceedings of the first ACM confer-
ence on online social networks, pp 119–130

	20.	 Zheleva E, Getoor L (2008) Preserving the privacy of sensitive
relationships in graph data. In: KDD, pp 153–171

	21.	 Zhou B, Pei J (2008) Preserving privacy in social networks against
neighborhood attacks. In: ICDE, pp 506–515

	Fast De-anonymization of Social Networks with Structural Information
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Definition of De-anonymization Problem
	2.2 Global and Local De-anonymization
	2.3 Seed-Based and Seedless De-anonymization Algorithm

	3 Overview of RoleMatch
	4 RoleSim++: A New Node Similarity Measure
	4.1 Definition of RoleSim++
	4.2 Properties of RoleSim++

	5 Solutions of Computing RoleSim++
	5.1 Basic Solution for RoleSim++
	5.2 -RoleSim++: A Fast Solution

	6 NeighborMatch: An Effective Node Matching Algorithm
	7 Experimental Studies
	7.1 Experiment Settings
	7.2 Parameter Tuning
	7.3 The Performance of RoleSim++
	7.4 The Performance of NeighborMatch
	7.5 Precision Comparison of Global De-anonymization
	7.6 Precision Comparison of Local De-anonymization
	7.7 Seed-Based De-anonymization

	8 Related Works
	8.1 Anonymization Algorithms
	8.2 De-anonymization Algorithms
	8.3 Node Similarity Measure

	9 Conclusions
	Acknowledgements
	References

