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Abstract
Ever since the social networks became the focus of a great number of researches, the privacy risks of published network 
data have also raised considerable concerns. To evaluate users’ privacy risks, researchers have developed methods to de-
anonymize the networks and identify the same person in the different networks. However, the existing solutions either require 
high-quality seed mappings for cold start, or exhibit low accuracy without fully exploiting the structural information, and 
entail high computation expense. In this paper, we propose a fast and effective seedless network de-anonymization approach 
simply relying on structural information, named RoleMatch. RoleMatch equips with a new pairwise node similarity meas-
ure and an efficient node matching algorithm. Through testing RoleMatch with both real and synthesized social networks, 
which are anonymized by several popular anonymization algorithms, we demonstrate that the RoleMatch receives superior 
performance compared with existing de-anonymization algorithms.

Keywords  Social network · De-anonymization · Privacy risk · Node similarity

1  Introduction

Online social networks have been a popular and important 
topic for many years, and a lot of successful companies (e.g., 
Facebook, Twitter and Tencent) emerge for providing the 
social network service. Users in such social networks are 
represented as nodes with multiple attributes, including 
name, gender, interests, location, etc., and the interactivities 
between users are abstracted as unidirectional or bidirec-
tional edges between the user nodes. In other words, online 

social networks can be modeled as a network (or graph) with 
the necessary information of user relations.

Considering the fact that social network truly represents 
the relationships in human society, it has drawn a lot of 
attentions from researchers and advertisers. In order to sat-
isfy the need of analysis, social network companies provide 
services for sharing the information of network. Neverthe-
less, user privacy can possibly be breached in the process of 
sharing more and more information for analysis. A popular 
problem is identity disclosure, where the real identities of 
nodes in the social networks are revealed [4, 14]. Therefore, 
the network to be published has to go through the anonymi-
zation processes. And many anonymization approaches have 
been developed, such as edge sparsification and edge pertur-
bation [3]. The sparsification approach deletes edges in the 
network randomly, and the perturbation approach randomly 
deletes and adds back the same number of edges.

In order to find the weakness of anonymization 
approaches, it is rather crucial to explore the inverse pro-
cess of anonymization, called de-anonymization. Let us 
explain the de-anonymization problem through an exam-
ple. Figure 1a shows a complete social network, which is 
maintained by a company. Figure 1c shows an anonymized 
network with location information, and it is published by the 
company. Attackers usually use crawler to get a crawled net-
work for de-anonymization. Here Fig. 1b shows an example 
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with name information. The de-anonymization process is 
to match nodes between Fig. 1b, c to identify each person 
in the anonymized network and obtain the corresponding 
location information. Specifically, the de-anonymization is 
to find node mapping pairs (u1, v1) , (u2, v2) , (u3, v3) , (u4, v4).

The existing solutions to the de-anonymization problem 
can be classified into two major types. The first one is to de-
anonymize the network based on seed mappings which are 
propagated across the network to match other nodes [10, 17]. 
This approach heavily depends on not only the quality of 
seed mappings, but the number of seed mappings. However, 
because the original networks are always highly private, it is 
difficult to collect a set of seed mappings with high quality. 
As a result, some researches aim to find satisfactory seed 
mappings [16]. The second one directly processes the net-
works without seed mappings and can still obtain satisfied 
matching results [4]. This approach makes use of node sig-
natures (e.g., degrees, subgraphs) or structural features (e.g., 
node similarities, descriptive information) to de-anonymize 
networks. Without involving the seed mappings, this type 
of solutions is more general and is easy to setup for de-
anonymization. However, because of the expensive compu-
tation cost of node similarity (or other descriptive features), 
they suffer from poor efficiency.

In this paper, we develop a fast seedless de-anonymi-
zation approach called RoleMatch. The RoleMatch con-
sists of two phases, node similarity computation and node 
matching. During the node similarity computation phase, 
we propose a new similarity measure, named RoleSim++, 
which is extended from RoleSim [9]. To improve the preci-
sion of similarity estimation, RoleSim++ fully exploits the 
structural information by aggregating both incoming and 
outgoing neighbors’ similarity. Furthermore, based on the 

observation that correct node mappings tend to have high 
node similarity, we develop an efficient iterative algorithm, 
�-RoleSim++, by pruning node pairs with low similarity. 
In the node matching phase, we introduce a new matching 
algorithm, named NeighborMatch, which takes advantage 
of both node similarities and the structural information of 
neighborhood matches, to efficiently obtain high-quality de-
anonymization results.

In addition, previous works only study global de-
anonymization, in which the anonymized network and the 
crawled network are of the similar size with some overlap 
sub-network. In this paper, we further study the local de-
anonymization. In this new situation, the crawled network 
has much smaller size than the one of the anonymized net-
works does, and it basically corresponds to a sub-network 
of the anonymized network. The local de-anonymization is 
much closer to the real-world applications because usually 
the crawled network with certain initial node sets is much 
smaller than the anonymized network. The detailed defini-
tions of the problems are presented in Sect. 2.

Finally, by conducting experiments on three real-world 
networks (i.e., LiveJournal, Twitter, Enron), the results dem-
onstrate that the precision of RoleMatch can be twice bet-
ter than the one of the existing solutions. In summary, our 
contributions are listed as below:

•	 We propose an efficient and seedless approach, Role-
Match, for de-anonymization.

•	 We propose a new node similarity measure, RoleSim++, 
which fully exploits the structural information and 
improve the de-anonymization performance.

•	 We develop an efficient iterative algorithm to compute 
RoleSim++, and introduce a fast node matching algo-

(a) (b) (c)

Fig. 1   Three small networks. The crawled network is obtained from 
the original network, and it has public information (name). The 
anonymized network is published with the disclosed information 

(locations). In addition, the blue vertices are the overlap between the 
crawled network and anonymized network
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rithm by utilizing both the node similarity and neighbor-
hood structural information. The two algorithms effec-
tively reduce the computation cost of RoleMatch.

•	 We study both global and local de-anonymizations and 
conduct comprehensive experiments to demonstrate the 
effectiveness and efficiency of the RoleMatch algorithm 
on real datasets.

The remains of this paper is organized as follows. In 
Sect. 2 we present the definition of general de-anonymi-
zation problem. Then we give an overview of RoleMatch 
algorithm in Sect. 3 followed by the elaboration of the node 
similarity and node matching algorithms used by RoleMatch 
in Sects. 4–6. The experimental results are presented in 
Sect. 7. Finally, in Sects. 8 and 9, we introduce the related 
works and conclude the paper.

2 � Preliminaries

We introduce the formal definition of de-anonymization 
problem and the related metrics of evaluating the complex-
ity of the problem. Then, we describe two variants of the de-
anonymization problem, and they are global de-anonymiza-
tion and local de-anonymization. Finally, we briefly review 
the two types of de-anonymization algorithms.

2.1 � The Definition of De‑anonymization Problem

We use G = (V ,E) to represent a directed network G where 
V is the node set and E is the edge set. A single node in the 
network is denoted by a small letter, such as v. Table 1 sum-
marizes the frequently used notations in this paper. Then the 
de-anonymization problem is defined as follows.

Definition 1  (De-anonymization problem) Given two 
directed networks G1 = (V1,E1) and G2 = (V2,E2) , where 
G1 is a crawled network from the original network and G2 is 
an anonymized network, and assuming that there exist sub-
networks Gc ⊂ G1 and G′

c
⊂ G2 such that Gc.V = G�

c
.V  , then 

the de-anonymization (G1,G2) is the process to match the 
nodes between Gc and G′

c
 as many as possible.

For simplicity, we use G1 to represent the crawled network 
and G2 to represent the anonymized network in the rest of 
this paper. Furthermore, Gc implies the overlap between the 
crawled network and anonymized network, and we called it 
as overlap network.

To measure the difficulty of de-anonymization, we define 
the noise of a anonymized networks.

Definition 2  (Noise) In a problem (G1,G2) , noise is the 
set of nodes in the networks that do not belong to the overlap 
network Gc , i.e., V1 ∪ V2⧵Vc. To quantify the noise, we intro-
duce an overlap rate � =

|Vc|
|V1∪V2| ; then, the noise ratio is 

1 − �.

2.2 � Global and Local De‑anonymization

According to the different situations of real-world activi-
ties of de-anonymization, there are two variants of de-
anonymization, which are global de-anonymization and local 
de-anonymization.

To improve the precision of de-anonymization, we would 
like to get a crawled network from the original network as 
large as the anonymized one. This is because, in such case, 
the noise is relatively low, and it has almost no negative 
impact on de-anonymization. Then the de-anonymization 

Table 1   Frequently used notations

Notation Description

G = (V ,E) A network G with node set V and edge set E
We use G1 to represent the crawled network with real topology and G2 to represent the anonymized network

N
out

i
(u) Outgoing neighbor set of node u in network G

i

N
in

i
(u) Incoming neighbor set of node u in network G

i

Sim(u, v) Similarity score of the two nodes u and v
Sim

k(u, v) Similarity score of the two nodes u and v after the kth iteration

�out(u, v) ( �in(u, v)) The larger one between the number of u’s outgoing (incoming) neighbors and the number of v’s outgoing 
(incoming) neighbors

M
out(u, v) ( Min(u, v)) Node matching between u’s outgoing (incoming) neighbors and v’s outgoing (incoming) neighbors

� out(u, v) ( � in(u, v)) Then the maximum outgoing (incoming) similarity scores of all possible matchings between N1(u) and N2(v)

� Parameter to prune unnecessary computations in node similarity computation
� Decay factor for node similarity RoleSim++
� Parameter for the degree of anonymization
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becomes easy. We define this kind of de-anonymization as 
global de-anonymization below.

Definition 3  (Global De-anonymization) Global de-
anonymization is the de-anonymization situation where the 
crawled network and anonymized network are similar in 
size, i.e., |G1| ≈ |G2|.

Next considering that there are a lot of applications (e.g., 
community leader detection, influential person identifica-
tion.), where we are only interested in the information of 
a part of nodes in the network, this leads to attackers only 
de-anonymizing the sub-network containing our interested 
nodes. In such case, we only crawl nodes that are near our 
targets and build a sub-network as the crawled network 
for de-anonymization. We define this problem as local de-
anonymization as below.

Definition 4  (Local De-anonymization) Local de-anonymi-
zation is the de-anonymization situation where the crawled 
network is far smaller than the anonymized one, i.e., 
|G1| ≪ |G2|.

The local de-anonymization brings the benefit of saving 
considerable time and space for attackers, but also brings 
some challenges for de-anonymization algorithms because 
of the high noise ratio. To be more specific, since in this 
case the overlapped nodes take up only a small percentage 
of the anonymized network, all the remaining nodes in the 
anonymized network become noise which makes it diffi-
cult to figure out nodes that are actually matched. Previ-
ous researches rarely focused on sub-network attack, and 
therefore, the state-of-the-art de-anonymization algorithms 
cannot perform well for the local de-anonymization problem. 
Our solution will address this drawback.

2.3 � Seed‑Based and Seedless De‑anonymization 
Algorithm

As briefly mentioned in Introduction, existing de-anonymi-
zation algorithms can be divided into two categories: seed-
based de-anonymization algorithm and seedless one. The 
seed-based algorithm requires seed mappings with high 
quality and extends them to find more mappings. The per-
formance of seed-based algorithms is sensitive to the amount 
of accurate seed mappings [10]. And the seedless one just 
uses the properties of network to de-anonymize. Considering 
the difficulty of obtaining a set of seed mappings, the seed-
less algorithm has its advantage of simplicity. However, as 
far as we know, there is no single algorithm that can handle 
both the situations with/without seed mappings.

In this paper, we mainly discuss the seedless situation and 
propose a de-anonymization algorithm only replying on the 

structural information of networks. But we will show that 
our new solution is able to handle the cases with seed map-
pings as well, and the performance is improved compared 
to other classical seed-based algorithms.

3 � Overview of RoleMatch

RoleMatch is a fast de-anonymization algorithm, and it sup-
ports de-anonymization both with and without initial seed 
mappings. RoleMatch de-anonymizes the node mappings 
only based on the structural information of the crawled net-
work and anonymized network.

RoleMatch mainly takes two networks G1 and G2 as 
inputs, and it can accept initial seed mappings if provided. 
After initializing a similarity matrix score, it iteratively 
computes the all pairs of node similarity according to the 
structural information. Higher similarity score indicates 
the higher probability of being a correct node mapping. To 
improve the effectiveness of de-anonymization algorithm, 
we propose a new similarity measure, called RoleSim++, 
which will be introduced in Sect. 4. The new measure cap-
tures the information of both outgoing and incoming neigh-
bors, reflecting the structural similarity between a pair of 
nodes. RoleSim++ is computed iteratively. During each 
iteration, the score of a pair of nodes is aggregated from the 
similarities of maximum matching between their neighbor-
ing pairs. To reduce the computation cost of RoleSim++, we 
also develop a threshold-based variant, called �-RoleSim++.

Then, based on the similarity scores calculated in the pre-
vious stage, RoleMatch calls function findNodeMatching to 
generate final node mappings. In this function, we apply a 
matching algorithm called NeighborMatch, which syntheti-
cally combines the node similarity and neighborhood feed-
backs. Refer to Sect. 6 for the details of NeighborMatch 
approach.

Furthermore, it is easy for RoleMatch to accept initial 
seed mappings. This is because RoleMatch computes simi-
larity purely based on the structural information, and seed 
mappings just provides explicit structural information. The 
only difference between seedless and seed-based for Role-
Match is that, during the computation of node similarity, 
if seed mappings are provided, the similarity scores of all 
the seed pairs remain as one throughout the iterations, and 
during the node matching phase, the seed pairs are matched 
ahead of other nodes.

In summary, RoleMatch is a de-anonymization approach 
based on network structure and works correctly no matter 
whether high-quality seed mappings are provided or not. 
Due to the minor influence of the seed, in the following 
discussions, we mainly focus on the seedless version of 
RoleMatch.
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4 � RoleSim++: A New Node Similarity 
Measure

In this section, we introduce the details of the new node 
similarity metric, RoleSim++. First, we give the definition 
of RoleSim++ and its properties. Then we propose an effi-
cient algorithm to compute the new measure.

4.1 � Definition of RoleSim++

Many similarity measures of node pairs have been proposed; 
however, they cannot be applied to the de-anonymization 
problem directly. For instance, SimRank [7] is a popular simi-
larity measure based on network structure, but it is designed 
for single network only. Another popular measure [4] is com-
puted based on neighborhood similarity. It uses unnormalized 
values for iteration so that there is a skew between similarity 
scores of small-degree nodes and large-degree nodes. After 
several iterations, the scores of node pairs with small degree 
drop to almost zero and have no contributions for de-anonymi-
zation. In addition, most of the previous similarity measures 
between two networks mainly discuss about undirected net-
works, and the directed ones are neglected.

To improve the effectiveness of de-anonymization algorithm, 
we pay much attention on the structural information including 
the direction. As a result, we propose a new similarity measure 
called RoleSim++. RoleSim++ is extended from RoleSim [9] 
in two aspects: (1) RoleSim++ can model the similarity between 
two networks and (2) RoleSim++ utilizes the direction informa-
tion of both incoming edges and outgoing edges.

Before introducing the formal definition of RoleSim++, 
we clarify some basic notations. Given two vertices u ∈ G1 
and v ∈ G2 , we use Nout

1
(u) and N in

1
(u) ( Nout

2
(v) and N in

2
(v) ) to 

denote u’s (v’s) outgoing and incoming neighbors, respec-
tively. The corresponding degrees are |Nout

1
(u)| , |N in

1
(u)| 

( |Nout
2

(v)| , |N in
2
(v)| ). Then the maximal outgoing and incom-

ing degrees between u and v are

Assume Mout(u, v) is a matching between Nout
1

(u) and 
Nout
2

(v) , i.e., Mout(u, v) = {(x, y)|x ∈ Nout
1

(u), y ∈ Nout
2

(v) , 
and no other (x�, y�) ∈ Mout(u, v), s.t., x = x�or y = y�} . Sim-
ilarly, Min(u, v) is a matching between N in

1
(u) and N in

2
(v) . 

Then the maximum outgoing and incoming similarity 
scores of all possible matchings between N1(u) and N2(v) 
are, respectively,

�out(u, v) =max{|Nout
1

(u)|, |Nout
2

(v)|},
�in(u, v) =max{|N in

1
(u)|, |N in

2
(v)|}.

� out(u, v) = max
{Mout(u,v)}

∑

(x,y)∈Mout(u,v)

Sim(x, y),

� in(u, v) = max
{Min(u,v)}

∑

(x,y)∈Min(u,v)

Sim(x, y),

where Sim(x, y) is the similarity between nodes x and y.
Now the formal definition of RoleSim++ is described 

as below.

Definition 5  (RoleSim++) For a node pair (u, v), its simi-
larity score is computed as

where the parameter � is a decay factor with the boundary 
0 < 𝛽 < 1.

According to the definition of � out(u, v) and � in(u, v) , 
we can easily infer that the RoleSim++ can be calculated 
iteratively. In this paper, we initialize the score matrix as an 
all-one matrix, i.e., Sim(u, v) = 1 for all node pairs.

4.2 � Properties of RoleSim++

To show that RoleSim++ is a valid similarity measure, we 
prove that RoleSim++ is converged and its tolerance to the 
noise of anonymization is bounded.

First, the following lemma shows that

Lemma 1  (Non-Increasing) Let Simk(u, v) be the 
similarity score of (u,  v) after k iterations. Then 
Simk−1(u, v) ≥ Simk(u, v) for all k and all node pairs (u, v).

Proof  See “The Proof of Lemma 1” of Appendix. □

With the non-increasing property and Simk(u, v) ≥ � , the 
following convergence property can be derived immediately. 
We have:

Proposition 1  (Convergence) The similarity measure in 
Definition 5 converges for every pair of nodes (u, v), i.e., 
limk→∞ Simk(u, v) = Sim(u, v).

Next we show the impact of � on the convergence rate of 
the RoleSim++ score, and the result is that the difference 
between Simk(u, v) and Sim(u, v) decreases exponentially 
with (1 − �).

Proposition 2  For every pair of nodes (u, v), let �k(u, v) be 
Simk(u, v) − Sim(u, v) , then

Proof  See “The Proof of Proposition 2” of Appendix. � □

(1)
Sim(u, v) = (1 − �)

� out(u, v) + � in(u, v)

�out(u, v) + �in(u, v)
+ �,

�k(u, v) ≤ (1 − �)k+1.
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When computing similarity scores on real-world net-
works, because of the small diameter of social networks, 
it shows that 5 rounds of iteration will be enough for de-
anonymization accuracy. We will discuss this further in 
Sect. 7.

The Tolerance of RoleSim++ to the Noise of Anonymiza-
tion When applying RoleSim++ to de-anonymize networks, 
there is a lower bound for expected similarity scores of cor-
rect matches, which shows its effectiveness for network de-
anonymization. The lower bound is influenced by the com-
plexity of how the network is anonymized. In other words, 
the lower bound is related to the noise in an anonymized 
network.

First, we introduce a parameter � to describe the com-
plexity of anonymization algorithms on the network. Two 
networks G1 and G2 are �-anonymized if the following three 
conditions are satisfied:

1.	 for each node u in G1 , there exists exactly one node v in 
G2 such that u and v are originally the same,

2.	 u and v have at least a proportion (1 − �) of common 
n e i g h b o r s , 1  i . e . ,  |Nout(u)∩Nout(v)|

�out(u,v)
≥ 1 − �  a n d 

|N in(u)∩N in(v)|
�in(u,v)}

≥ 1 − �,
3.	 the ratio of incoming neighbors of u and v, and the ratio 

of outgoing ones are both between (1 − �) and 1∕(1 − �).

Through studying the previous anonymization algo-
rithms, we found that most of the commonly used network 
anonymization algorithms have the above three properties. 
For example, Sparsify anonymizes a network by deleting p% 
of the edges, and therefore, � equals p% . Perturb and Switch 
also have these properties.

Then the following proposition gives the estimation of the 
lower bound of Simk(u, v) with parameter �.

Proposition 3  Let u and v be a correct match where G1 
and G2 are �-anonymized, then Simk(u, v) ≥ ck , where 
ck = ak + �

1−ak

1−a
, and a = (1 − �)(1 − �).

Proof  See “The Proof of Proposition 3” of Appendix. □

For example, when � is set to 0.15, and the parameter � 
in anonymization algorithms is set to 10%, after five itera-
tions, the similarity score of each correct matched node pair 
satisfies that Simk(u, v) > 0.73 . In particular, when G1 and G2 
are isomorphic, which means that � = 0 and a = 1 − � , then 
1 − (1 − �)k = �

∑k−1

i=0
(1 − �)i.

Consequently, for each k  we have ck = 1 and 
Simk(u, v) = 1 . This is consistent with the fact that two net-
works are isomorphic.

5 � Solutions of Computing RoleSim++

5.1 � Basic Solution for RoleSim++

To compute the similarity score of RoleSim++, the basic 
solution calculates all pairwise score iteratively in brute-
force way. Algorithm 1 describes the procedure of the solu-
tion. First, the similarity matrix score is initialized as an all-
one matrix (Line 1). In each iteration, the similarity scores 
of node pairs are updated according to Eq. (1). The function 
�(N(u),N(v)) (Line 4) computes the maximum matching 
between neighboring pairs of u and v (i.e., � out and � in ). 
Considering that the exact maximum matching for bipartite 
network is computationally expensive, we adopt a greedy 
approximation algorithm in our implementation, just as Fu 
et al. [4] and Jing et al. [9] did. However, the basic solution 
is expensive, and the computation complexity for each round 
is at least �(|V1||V2|d2), where d is the average degree of 
the nodes. The algorithm can only handle networks with 
thousands of nodes.

Algorithm 1 Naive RoleSim++ Computation
Input: G1 = (V1, E1), G2 = (V2, E2)
Output: score[][]
1: score[][] ←MatrixAllOne
2: for i = 1 → nRounds do
3: for each (u, v) ∈ V1 × V2 do

4: r ← γ(Nout
1 (u),Nout

2 (v))+γ(Nin
1 (u),Nin

2 (v))
∆out(u,v)+∆in(u,v)

5: score′(u, v) ← (1− β) · r + β
6: end for
7: score[][] ← score′[][]
8: end for
9: return score[][]

Here we illustrate the computation of Algorithm 1 through 
a simple example. Consider a specific node u1 in Fig. 1, and 
set � to be 0.15. In the first iteration, we have

It is clear that even if the first round uses only the one-hop 
neighbors, the similarity between node u1 and v1 still domi-
nates all other possible pairs related to u1 . The change in 
similarity scores related to node u1 over iterations is shown 
in Table 2. After five iterations, similarity scores of correct 
matchings stand out, as is shown in Table 3.

Sim(u1, v1) = (1 − �)
0 + 2

0 + 3
+ � = 0.72,

Sim(u1, v2) = (1 − �)
0 + 1

2 + 3
+ � = 0.32,

Sim(u1, v3) = (1 − �)
0 + 1

2 + 3
+ � = 0.32,

Sim(u1, v4) = (1 − �)
0 + 0

1 + 3
+ � = 0.15,

Sim(u1, v5) = (1 − �)
0 + 1

0 + 3
+ � = 0.43.

1  The case of no incoming or outgoing neighbors is omitted.
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5.2 �  ‑RoleSim++: A Fast Solution

To scale our de-anonymization approach to large networks, 
we design a fast solution of computing RoleSim++, called �
-RoleSim++. For de-anonymization, each node in G1 has at 
most one correspondence (correct match) in G2 . This means 
that our main concerns are those node pairs with higher simi-
larity scores, which are more likely to be correct matches.

Based on this observation, we propose a heuristic rule to 
speed up the computation.

Heuristic 1  In each iteration, only the similar node 
pairs with high similarity are reserved and others can be 
discarded.

Following the heuristic rule, we propose a new efficient 
computation method, �-RoleSim++. The �-RoleSim++ can 
substantially reduce the computational cost but still retain 
the accuracy. In �-RoleSim++, the similarity formula is 
revised as follows. Let Sim�

k
(u, v) denote the threshold-

sieved similarity score of (u, v) on the kth iteration, where 
the threshold � = �(u, �) relies on parameter � and node u, 
and 0 < 𝛼, 𝜃 < 1.

The iterative version of Sim�

k
(u, v) is given as follows:

Sim�

0
(u, v) = 1;

Sim�

k+1
(u, v) = (1 − �)

� out(u,v)+� in(u,v)

�out(u,v)+�in(u,v)
+ �, if Sim�

k
(u, v) ≥ �(u, �);

Sim�

k+1
(u, v) = �, otherwise.

More specifically, to reduce space and time consumption, in 
each iteration we keep the node pairs with similarity above 
� and discard other node pairs. In this way, we only need to 
maintain a relatively small set of similarity scores, while 
dissimilar pairs are gradually filtered out.

Since the goal of de-anonymization is to identify each 
node in G1 , we need to keep a portion of candidates (nodes 
from G2 ) for each node u in G1 . Consequently, the thresh-
old � should be related to the node u in each iteration for 
dynamically maintaining a proper list of candidates. We 
define � as �(u, �) = � ⋅ top(u) , where top(u) is the high-
est similarity score related to u in the last round, and it is 
easy to figure out that � is dynamically determined by the 
similarities with respect to node u.

Algorithm  2 describes the details of �-RoleSim++ 
computation. The main framework still remains the same 
as Algorithm 1. The differences are below. At Line 6, the 
threshold � is decided by both parameter � and the simi-
larity scores related to node u. Later when visiting candi-
date pairs (Line 7), those with similarity score below the 
threshold are filtered out and others are updated for the 
iteration (Lines 8–11).

Algorithm 2 A fast solution, α-RoleSim++

Input: G1 = (V1, E1), G2 = (V2, E2)
Output: score[][]
1: score[][] ← the similarity scores of 1st iteration in the basic solution.
2: for i = 1 → nRounds do
3: score′ ← EmptyHashMap
4: for each u ∈ V1 do
5: top(u) ← highest score related to u
6: θ ← αtop(u)
7: for each v ∈ V2 s.t. (u, v) ∈ score[][] do
8: if score(u, v) ≥ θ then

9: r ← γ(N+
1 (u),N+

2 (v))+γ(N−
1 (u),N−

2 (v))
∆+(u,v)+∆−(u,v)

10: score′(u, v) ← (1− β) · r + β
11: end if
12: end for
13: end for
14: score[][] ← score′[][]
15: end for
16: return score[][]

Properties of �-RoleSim++ We study the property 
through analyzing the threshold-sieved similarity measure. 
First, by induction on the number of iterations, we have:

Property 1  The threshold-sieved similarity score 
of each pair of nodes (u,  v) is non-increasing, i.e., 
Sim�

k
(u, v) ≥ Sim�

k+1
(u, v) for each k.

Property 2  The value of threshold-sieved similarity 
scores is lower than the standard RoleSim++ scores, i.e., 
Sim�

k
(u, v) ≤ Simk+1(u, v) holds for all pairs of nodes.

Table 2   Change in similarity scores related to node u
1
 in Fig. 1 over 

five iterations

(u
1
 , v

1
) (u

1
 , v

2
) (u

1
 , v

3
) (u

1
 , v

4
) (u

1
 , v

5
)

First 0.72 0.32 0.32 0.15 0.43
Second 0.56 0.32 0.27 0.15 0.35
Third 0.47 0.23 0.24 0.15 0.30
Fourth 0.41 0.22 0.23 0.15 0.28
Fifth 0.38 0.21 0.22 0.15 0.27

Table 3   Similarity scores of each node pair in Fig. 1 after five itera-
tions

v
1

v
2

v
3

v
4

v
5

u1 0.38 0.20 0.22 0.15 0.26
u2 0.15 0.38 0.36 0.31 0.15
u3 0.27 0.36 0.38 0.24 0.31
u4 0.15 0.26 0.26 0.34 0.15
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From Property 1 we know that the iterative computation 
of �-RoleSim++ converges. The convergent similarity score 
of (u, v) is denoted as Sim�(u, v).

In addition, to choose the value of parameter � , there is a 
trade-off between the accuracy of similarity scores and the 
computational cost. If � is set to a relatively low value, fewer 
node pairs will be filtered out in each iteration, resulting 
in higher computational cost, while the de-anonymization 
accuracy will be closer to that of standard RoleSim++. In 
particular, if � is set to zero then it will be exactly the same 
as the standard RoleSim++. We will study the influence of 
� on accuracy in Sect. 7.

6 � NeighborMatch: An Effective Node 
Matching Algorithm

In this part, we introduce our method to find a good mapping 
between the anonymized network and the crawled one, based 
on the pre-computed similarity scores.

Intuitively, in order to find the mapping based on node 
similarity, the maximum weighted matching for bipartite 
network is a good option. By using Karnik–Mendel (KM) 
algorithm [12], the maximum matching can be computed 
in O(n3) , where n is the number of nodes. Since the maxi-
mum matching is computationally expensive, it can hardly 
be applied to large networks. Another solution proposed by 
Fu et al. [4] is a greedy algorithm, which offers an approxi-
mation of the globally optimal matching in O(n2logn) , with 
less accuracy than KM algorithm.

However, both above approaches simply maximize the 
sum of similarity scores, and the structural information of 
the network is neglected during the matching phase. Actually 
the links between a pair of nodes and their neighbors con-
tain valuable information that can help us de-anonymizing 
a network with higher accuracy. We propose a new match-
ing algorithm, NeighborMatch, based on two observations: 
First, correct mappings tend to have higher similarity scores 
and second, a pair of nodes is more likely to be a correct 
mapping if their neighbors are correct mappings. More spe-
cifically, NeighborMatch assigns a priority for each pair of 
nodes, and it follows the priority to generate matchings.

To automatically assign the priority online, we use the 
idea of the percolation network matching method proposed 
by Kazemi et al. [10]. Percolation network matching (PGM) 
generates the results based on seeds. The seed pairs are 
marked as matched at the beginning. Then, node pairs whose 
number of matched neighbors is higher than the threshold r 
are matched repeatedly, until there are no more unmatched 
pairs with at least r neighbors being matched. Neighbor-
Match uses the pair with highest score as the “seed” at the 
beginning, and in the following iterations, it always picks the 
pair with highest score when there are multiple candidates.

Algorithm  3 illustrates the procedure of Neighbor-
Match finding the node mappings. First, from Lines 4 to 
9, it matches node pairs with highest similarity score and 
increases the scores of their neighbors by one, until there 
are some candidate pairs with at least r neighbors being 
matched. Then it matches all the candidates in sequence 
of their scores from the highest to the lowest and spreads 
score to their neighbors (Lines 10–13). These two steps are 
repeated until each node in G1 is matched with some node 
in G2 . Taking the similarity scores in Table 3 as an exam-
ple, in the first iteration, NeighborMatch first selects a 
matching pair (u1, v1) , then increases the scores of (u2, v2) , 
(u2, v3) , (u3, v2) , (u3, v3) , (u4, v2) , (u4, v3) by 0.38, respec-
tively, and adds them into set A. After another four itera-
tions, all node matchings will be correctly generated.

Since NeighborMatch is a variant of percolation network 
matching by using different seeds, the theoretical results 
[10] still hold and guarantee the performance of Neighbor-
Match. For instance, assuming that at the beginning, m pairs 
of nodes with highest similarity scores are matched, and m 
reaches the critical value according to Theorem 1 from the 
work [10], then with high probability, at least n − o(n) nodes 
can be de-anonymized successfully, where n = ||V1 ∩ V2

||.
Moreover, NeighborMatch has several advantages over 

the original percolation network matching. Network percola-
tion requires all the candidate pairs to have at least r neigh-
bors matched previously, so the matching process gets stuck 
when there are no valid candidates. Our algorithm avoids 
getting stuck because the similarity scores provide a natural 
and reasonable choice of candidate pairs, i.e., picking out 
the one with highest score among all the unmatched pairs. 
Thus, our matching algorithm is capable to match more node 
pairs, even those whose degrees are less than the threshold r.

7 � Experimental Studies

In this section, we evaluate the performance of RoleMatch 
through extensive experiments. First, we conduct experi-
ments of tuning parameters for the RoleMatch. Then we 

Algorithm 3 NeighborMatch: an efficient node matching algorithm
Input: G1 = (V1, E1), G2 = (V2, E2), score
Output: nodeMapping
1: candidate set A ← ∅
2: nodeMapping ← ∅
3: while there exists an unmatched pair do
4: while A is empty do
5: match the pair (u, v) with highest score
6: add (u, v) to nodeMapping
7: increase the score of neighboring pairs of u and v by score(u, v)
8: A ← all unmatched pairs with score ≥ r
9: end while
10: pick a pair (u, v) with highest score in A
11: add (u, v) to nodeMapping
12: remove (u, v) from A
13: increase the score of neighboring pairs of u and v by score(u, v)
14: end while
15: return nodeMapping
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compare the performance of RoleSim++ measure and 
NeighborMatch algorithm to the existing solutions [4, 
10], respectively. Afterward we describe the performance 
of RoleMatch as a whole for the global de-anonymization 
and local de-anonymization. Finally, we also compare 
RoleMatch with existing seed-based de-anonymization 
algorithms.

7.1 � Experiment Settings

All the algorithms are implemented in C++ and compiled 
with -O3 options. The experiments were run on a Linux 
server, which is equipped with an Intel Xeon E5620 CPU (16 
cores, 2.4 GHz) and 64 GB memory. Furthermore, we used 
16 threads to parallelize the computation of each iteration.

Datasets In the experiments, three real-world datasets 
are used. They are LiveJournal,2 Twitter3 and Enron.4 The 
statistics of datasets are described in Table 4.

In addition, we follow the approach proposed in [4] to 
generate small networks, called synthesized datasets. The 
basic idea is that, given a large network G, we first randomly 
extract a sub-network from G as a seed network, denoted as 
Gs = (Vs,Es) , and use the nodes in Gs to generate a crawled 
network G1 = (V1,E1) and an anonymized network 
G2 = (V2,E2) with satisfying Vs = V1 ∪ V2 . Recall the defini-

tion of � ; the overlap rate is � =
|V1∩V2|
|Vs| .

Then, we use breadth first search (BFS) algorithm to gen-
erate synthesized networks with arbitrary � . More specifi-
cally, we use BFS to create an overlap network Gc = (Vc,Ec) 
from Gs where |Vc| = � × |Vs| . The overlap network Gc is 
treated as a sub-network to both G1 and G2 . And then the 
remaining node set Vs⧵Vc is split into two parts of same size, 
V
,

1
 and V ,

2
 . Finally, V1 is V ,

1
∪ Vc , and V2 is V ,

2
∪ Vc . Further-

more, we apply a selected anonymization algorithm on net-
work G2 to build the anonymized network. In the following 
experiments, we use Syn(|Vs|,� ) to represent a synthesized 
dataset generated from LiveJournal dataset. For example, 
Syn(10,000, 50%) means a synthesized dataset created by 
setting ||Vs

|| to 10,000 and overlap � to 50%.

Anonymization Algorithms Here we list all the anonymi-
zation algorithms used in the experiments. As introduced 
in Sect. 2, we use parameter � to represent the degree of 
anonymization by an algorithm. The larger the � is, the more 
edges in the anonymized network are changed. Following 
the previous work [4], we set � = 0.1 for each anonymization 
algorithm, i.e., about 10% of the edges are modified.

1.	 Naive Anonymization The naive approach simply shuf-
fles the identifiers of nodes and leaves the structure as it 
is.

2.	 Sparsify(� ) The Sparsify approach removes �|E| edges 
randomly, where the parameter � controls the number of 
deleted edges.

3.	 Perturb(� ) The Perturb approach [3] first removes edges 
in exactly the same way as the Sparsify does and then 
adds false edges randomly until the number of edges 
of the anonymized network is the same as the origi-
nal network. This approach can be viewed as a kind of 
simulation of social network evolution or “unintended” 
anonymization.

4.	 Switch(� ) The switch approach randomly selects two 
edges ( i1 , j1 ) and ( i2 , j2 ), where ( i1 , j2 ) and ( i2 , j1 ) are not 
in the network. The selected edges are then “switched,” 
i.e., ( i1 , j1 ) and ( i2 , j2 ) are deleted, and ( i1 , j2 ) and ( i2 , 
j1 ) are added to the network. The procedure is repeated 
�|E|∕2 times, and �|E| edges are added and �|E| edges 
are deleted.

De-anonymization Algorithms The de-anonymization algo-
rithms we compared are described as follows.

1.	 Baseline (BaseSim and BaseMatch) We use the de-
anonymization algorithm [4] as our baseline algorithm. 
The baseline algorithm consists of two parts: similarity 
computation phase and the node matching phase. The 
similarity measure in the baseline algorithm is referred 
as BaseSim, and the node matching algorithm is referred 
as BaseMatch.

2.	 Seed Baseline We use the seed-based mapping algorithm 
proposed by Kazemi et al. [10] as our seed-based map-
ping baseline.

3.	 RoleMatch The RoleMatch refers to the proposed algo-
rithm, where two new similarity measures, RoleSim++ 
and �-RoleSim++, are used. Moreover, NeighborMatch 

Table 4   Dataset statistics Dataset #V #E Avg. degree Diameter Avg. clustering 
coefficient

Type

LiveJournal 4,847,571 68,993,773 14.23 16 0.2742 Directed
Twitter 81,306 1,768,149 21.75 7 0.5653 Directed
Enron 36,692 367,662 10.02 11 0.4970 Undirected

2  http://snap.stanf​ord.edu/data/soc-LiveJ​ourna​l1.html.
3  http://snap.stanf​ord.edu/data/egone​ts-Twitt​er.html.
4  https​://snap.stanf​ord.edu/data/email​-Enron​.html.

http://snap.stanford.edu/data/soc-LiveJournal1.html
http://snap.stanford.edu/data/egonets-Twitter.html
https://snap.stanford.edu/data/email-Enron.html
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is used as the node matching algorithm, where the 
threshold r is set to 2 in the experiments.

Evaluation Criteria In order to evaluate the overall perfor-
mance of de-anonymization algorithm comprehensively, we 
introduce three different metrics.

Precision Score This is a metric for evaluating effective-
ness of de-anonymization algorithms. Assume M(u, v) is the 
set of correct matching pairs; then, the precision score is 
|M(u,v)|
|V1∩V2| . The higher the precision score is, the more of correct 
mappings an algorithm generates.

Top-k Precision To compare the effectiveness of differ-
ent similarity measures, we introduce another two precision 
metrics, top-1 precision and top-m% precision. The two met-
rics are defined according to the different criterions of the 
ranking positions of nodes in correct matching pairs. Given 
a pair (u, v) ∈ M(u, v) , and u ∈ V1 and v ∈ V2 , we sort every 
vi ∈ V2 in decreasing order based on Sim(u, vi) , the rank of 
vertex v, denoted as r(v), is the position of v in the sorted 
vertex list. 

 

Execution Time This is a metric for evaluating efficiency. 
It is the time cost of running algorithms in the experiments.

7.2 � Parameter Tuning

Before evaluating the RoleMatch algorithm, two parameters 
need to be tuned, and they are the number of iterations and 
the threshold αin α-RoleSim++. To showcase the param-
eter tuning processing, we conducted the tuning experiments 

Top-1 precision is
|(u, v)|(u, v) ∈ M(u, v) ∧ r(v) = 1|

||V1 ∩ V2
||

.

Top-m%precision is
|(u, v)|(u, v) ∈ M(u, v) ∧ r(v) ≤

m×|V2|
100

|
||V1 ∩ V2

||
.

on Syn(10,000, 100%), and the network is anonymized by 
Naive Anonymization. Other anonymization algorithms can 
be tuned in the same way.

The Number of Iterations Figure 2a shows the precision 
of running RoleMatch in 10 iterations. In this experiment, 
RoleSim++ is used as the similarity measure and Neigh-
borMatch is used to generate the node matching. It is clear 
that the precision remains almost the same after five rounds 
of iterations, so we set the number of iterations to 5 in the 
following experiments.

Threshold Parameter α For computing α-RoleSim++, 
we use threshold parameter α to limit the number of nodes 
involved in the computation. The lower the parameter α is, 
the more the node pairs each iteration computes, resulting 
in higher time consumption. We set α from 0.95 to 0.50, 
decreasing by 0.05 in the tuning process. Figure 2b, c shows 
the precision ratio and time cost ratio between the two algo-
rithms, respectively. The precision ratio is defined as the 
ratio between the precision of α-RoleSim++ and the preci-
sion of RoleSim++. Similarly, the time ratio is the ratio 
between the execution time of α-RoleSim++ and the execu-
tion time of RoleSim++ in the experiment result. From the 
figures, we clearly see that when α increases, the time con-
sumption reduces almost linearly, and the precision is well 
retained when alpha ≤ 0.85 . Therefore, we set α to 0.85 in 
the following experiments.

7.3 � The Performance of RoleSim++

Effectiveness To demonstrate the effectiveness of 
RoleSim++ and α-RoleSim++, we compare the new simi-
larity measures with BaseSim and RoleSim. In the experi-
ment, we use the Syn(10,000, 50%) and Syn(10,000, 100%). 
The original networks are anonymized by four previously 
mentioned anonymization algorithms. And we use top-1 
precision and top-m% precision to evaluate the effectiveness.

Figure  3a, b shows that both RoleSim++ and 
α-RoleSim++ have much higher top-1 precision than 

(a) (b) (c)

Fig. 2   Results of parameter tuning on Syn(10,000, 100%)
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BaseSim under all four anonymization algorithms, espe-
cially for the situation of lower overlap rate (� = 50% ). 
RoleSim is in between but not so good as RoleSim++ 
and α-RoleSim++. This is because that RoleSim++ 
takes two directions into consideration, while RoleSim 
treats all edges as undirected. Besides, the gap between 
Baseline and RoleSim++ becomes larger when the over-
lap rate is lower. Figure 3c shows that even when the 
comparison condition is relaxed from top-1 to top m%, 
both RoleSim++ and α-RoleSim++ still outperform the 
BaseSim. RoleSim++ and α-RoleSim++ achieve more 
than 80% precision in the top-1% precision measure, while 
the BaseSim can only achieve nearly 40% even in the top-
10% precision measure.

In summary, because RoleSim++ fully exploits the struc-
tural information of a network, it improves the precision of 
estimating the node similarity.

Efficiency We compare the execution time of BaseSim, 
RoleSim++ and α-RoleSim++ to verify the efficiency of �
-RoleSim++. Two aspects are taken into consideration: the 
average edge density d in the network and the number of 
nodes |V| in the network. We generate synthesized datasets 

from LiveJournal. When varying d , |V| is 10,000, and edges 
are randomly selected from the V. When varying |V|, the 
induced subgraph of V is used.

Figure  4 shows the variation in execution time with 
the increase in d and |V| , respectively. As the edge den-
sity and the number of nodes increase, the execution time 
of RoleSim++ and BaseSim increases rapidly, while �
-RoleSim++ is always faster and its execution time increases 
far slower. This is because �-RoleSim++ can prune many 
unqualified node pairs to speed up the computation. Moreo-
ver, the �-RoleSim++ can de-anonymize Twitter dataset in 
less than 30 minutes. Both the BaseSim and the RoleSim++ 
similarity are unable to finish 5 iterations in 24 h.

7.4 � The Performance of NeighborMatch

To verify that the NeighborMatch can lead to a better 
de-anonymization precision in different situations, we 
compare our new algorithm with BaseMatch based on 
RoleSim++ and BaseSim. First, we compare these two 
matching algorithms on RoleSim++ similarity measure 

(a) (b) (c)

Fig. 3   Results of evaluating the performance of RoleSim++

Fig. 4   Execution time over |V| and d
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in order to show that NeighborMatch can utilize the well-
measured similarity information to match more nodes 
correctly. Then we compare these two algorithms on 
BaseSim to show that even when the similarity measure 
has its deficiency, NeighborMatch can still generate much 
more correct node mapping pairs by using the structural 
information (Sect. 6). The experiments are conducted on 
Syn(10,000, 100%). The results are shown in Fig. 5.

It is clear to see that NeighborMatch can reach a 
better average precision score against BaseMatch on 
RoleSim++ similarity when anonymization methods 
(Sparsify and Perturb) are used. The BaseMatch outper-
forms the NeighborMatch in Switch anonymization, but 
in that case both algorithms can de-anonymize more than 
90% of nodes and the difference is subtle. When running 
on BaseSim, NeighborMatch has a much better perfor-
mance than BaseMatch. NeighborMatch can achieve at 
least 75% de-anonymization precision when different 
anonymization algorithms are applied, while the Base-
Match performs poorly when non-trivial anonymization 
algorithms are applied, resulting in less than 50% preci-
sion in Sparsify, Switch and Perturb, respectively. The 

advantage of NeighborMatch is gained from making use 
of neighborhood structural information.

7.5 � Precision Comparison of Global 
De‑anonymization

To demonstrate the effectiveness of RoleMatch for pro-
cessing global de-anonymization, we compare all three de-
anonymization algorithms (the baseline algorithm, Role-
Match with RoleSim++ and RoleMatch with �-RoleSim 
++) on both real datasets, Enron, Twitter and synthesized 
datasets, and use Naive, Sparsify, Switch and Perturb 
anonymization algorithms to generate anonymized networks. 
Each experiment is ran five times and the average precision 
score is reported.

Figure  6 presents the results on synthesized data-
sets. For each anonymization algorithm, we create ten 
Syn(10,000, � ), where � is in the range of [0.1, 1]. First, it 
is easy to figure out that RoleMatch outperforms the base-
line across different overlap rates, and RoleMatch with 
RoleSim++ and RoleMatch with �-RoleSim++ have the 
similar precision scores. But the improvements between 

Fig. 5   Precision comparison of NeighborMatch and BaseMatch algorithm based on different similarity measures
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Fig. 6   Precision on synthesized datasets with different overlap rates
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RoleMatch and the baseline vary regard to the anonymi-
zation algorithms. When the network is anonymized by 
Naive method, all three de-anonymization algorithms 
perform almost equally. This is because that with the 
naive anonymization, the overlap network remains the 
same between the crawled network and the anonymized 
network. Except when the overlap is extremely low, the 
baseline suffers from the noise. For example the overlap 
rate is 10% when using Naive anonymization, the pre-
cision score of baseline algorithm is about 60%, while 
the other two can still achieve around 86% and 88 %. 
When different anonymization algorithms are applied, 
RoleMatch algorithms have much better performance on 
precision than the baseline algorithm. For anonymization 
method Switch, RoleMatch algorithms have almost twice 
the precision of the baseline, and for Sparsify and Per-
turb anonymization, the advantage is about 10%. Second, 
with the increasing of overlap rate, the precision score 
goes up generally among different anonymization algo-
rithms. This is because the lower overlap brings higher 
data noise.

Figure 7 describes the results on real datasets: Enron 
and Twitter. In these two datasets, we set overlap rate to 
100%. The performance results are similar to the one on 
synthesized datasets, and that is, RoleMatch performs the 
best. For the Twitter dataset, only the result of RoleMatch 
with �-RoleSim++ is presented. The baseline algorithm 
and RoleMatch with RoleSim++ need to store an n × n 
matrix for node similarity, they cannot process the dataset 
successfully because of the limited memory. However, 

RoleMatch with �-RoleSim++ is efficient in memory 
usage and it can produce a satisfying result on this data-
set, de-anonymizing over 85% nodes.

7.6 � Precision Comparison of Local 
De‑anonymization

In this subsection, we consider the local de-anonymization 
case. To generated G1 and G2 satisfying |G1| ≪ |G2| , we first 
extract a sub-network G1 with 10,000 nodes from LiveJour-
nal and then randomly crawl a sub-network G0 from G1 with 
a given size. We anonymize the sub-network G0 to generate 
an anonymized network G2 . Here Sparsify is used as the 
anonymization algorithm with the probability of deleting an 
edge set to 0.1. Furthermore, we set the overlap rate of G1 
and G0 from 10 to 50%, and the overlap part is exactly G0 . 
The results are presented in Fig. 8a.

From the figure, we can see that generally the preci-
sions of these three algorithms increase as the overlap rate 
increases. In spite of the general tendency, there is sharp 
difference between the precisions of the baseline algorithm 
and the RoleMatch algorithms. The precision of the baseline 
algorithm basically is always below 0.1 in the experiment; 
however, when the overlap rate is above 20%, both the Role-
Match with RoleSim++ and RoleMatch with �-RoleSim++ 
can de-anonymize 80% of the overlapped nodes. The dif-
ference in precision reveals that the RoleMatch algorithms 
are far more effective in local de-anonymization situations, 
especially when the overlap rate is not too low. And they can 
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Fig. 7   Precision over different anonymization algorithms on Enron and Twitter 
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easily de-anonymize most of the overlapped nodes with no 
need to crawl the whole network.

Furthermore, compared with results of global de-
anonymization, we can see that the improvement in Role-
Match is much larger in local de-anonymization case. This is 
because there is much more noise in local de-anonymization 
case, and RoleMatch is robustness to the noise as analyzed 
in Sect. 4.2.

7.7 � Seed‑Based De‑anonymization

Finally, we conduct experiments to demonstrate that the 
RoleMatch can be adapted to situations where seed map-
pings are provided for de-anonymization.

The seed version RoleMatch was ran on the Enron data-
set, with the correct seed ratio from 1 to 10%. The anonymi-
zation algorithm applied here is Sparsify, and we compared 
this seed version RoleMatch with �-RoleSim++ and the 
seed mapping de-anonymization from the work [10].

The experiment result is shown in Fig. 8b. Basically the 
precision goes up with the seed ratio increasing, but there is 
a distinct gap between the two algorithms. The precision of 
RoleMatch is higher than that of the seed baseline algorithm 
by about 0.2, which reveals the effectiveness of seed version 
RoleMatch.

8 � Related Works

The work of de-anonymizing networks is highly related to 
three topics. They are (1) anonymization algorithms, (2) de-
anonymization algorithms and (3) node similarity measures. 
In the following subsections, we describe the related work 
of each topic separately.

8.1 � Anonymization Algorithms

According to a previous survey [18] on social network 
anonymization, anonymization algorithms are classified 
into three categories: K-anonymity, edge randomization and 
clustering-based generalization.

K-anonymity [15, 21] modifies network structure by 
edge deletions and additions, so that each node in the modi-
fied network is indistinguishable with at least K − 1 other 
nodes, in terms of some structural patterns like degree. This 
approach have good performance in anonymity but (1) is 
relatively complex to implement and (2) may have modi-
fications to network structure to a too large extent. Edge 
randomization modifies the network via random deletions, 
additions or switches of edges. It protects user privacy in a 
probabilistic manner with simple yet effective approaches. 
Clustering-based generalization [20] firstly clusters nodes 
into groups and next anonymizes a sub-network into a super-
node without individual node’s specific information. This 
approach can be effective against de-anonymization. How-
ever, it has the loss of individual information as well as scale 
information, which may dramatically change the results in 
social network analysis.

8.2 � De‑anonymization Algorithms

De-anonymization is the reverse process of anonymization, 
and researchers have been studying it in different methods 
[1, 5, 10, 11, 13, 16, 17, 19]. It often appears in reality as 
part of an attack to leak user privacy [8].

Backstrom et al. [1] proposed a family of de-anonymiza-
tions so that it is possible for an adversary to learn whether 
edges exist or not between specific targeted pairs of nodes. 
The weakness is that the algorithm is vulnerable when the 
networks are modified before publishing, although it works 
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fine for naive anonymization where node numbers are 
switched.

Narayanan and Shmatikov [17] presented a framework 
for analyzing privacy and proposed a de-anonymizing algo-
rithm. The algorithm is based on the network topology 
only and is relatively robust to noise and most defenses. It 
requires a few seed mappings and propagates to the whole 
networks. However, the quality of seed mappings has sig-
nificant influence on whether the attack will succeed. Later 
Narayanan et al. [16] introduced a simulated annealing-
based weight network matching algorithm for finding good 
initial seed mappings for de-anonymization. Yartseva and 
Grossglauser [19] used network percolation to propose a 
seed-based network matching algorithm. Kazemi et al. [10] 
proposed a scalable network matching algorithm using 
smaller seed mappings to match a pair of networks, with a 
small increase in matching errors. Korula and Lattanzi [11] 
applied network percolation to power-distributed networks 
and had an improved performance for real-world social net-
work matching.

Fu et al. [4] proposed a seedless algorithm for social net-
work de-anonymization. The algorithm first computes each 
node pair’s similarity iteratively based on maximum match-
ing and then matches nodes according to the node pair simi-
larity scores from high to low. Our RoleMatch follows the 
same de-anonymization framework, but RoleMatch applies a 
new similarity measure and a new node matching algorithm.

8.3 � Node Similarity Measure

Node similarity is a basic metric for network analysis. So 
far, many different similarity measures have been proposed.

Henderson et al. [6] proposed an algorithm that recur-
sively combines local features with neighborhood features 
to produce regional features, and then used these regional 
features to compute node similarity for de-anonymization. 
These regional features can effectively narrow the range of 
possible corresponding nodes, but with no evidence of the 
ability to find the real identity with the most similar pairs.

The famous “SimRank” measure by Jeh and Widom [7] 
provides node similarity measure within one network, which 
is inapplicable in de-anonymization problems. Blondel et al. 
[2] proposed a cross-network node similarity measure by 
summing up similarity scores of neighbors of two nodes, 
which is much like the two-network version of “SimRank.” 
Fu et al. [4] proposed a two-network node similarity measure 
by iteratively matching neighbors with top similarity scores 
for two nodes, which is an improved measure compared to 
simple transplanting “SimRank” to cross-network compu-
tation. This approach works for nodes with large degrees 
but since it lacks normalization, for small-degree nodes the 
similarity scores are usually too small to be meaningful. Jing 

et al. [9] proposed a node similarity measure “RoleSim” 
with normalization for node within a single network. It can 
be a good depiction of nodes’ structural information, but 
the definition and computation method limits it to a single-
network measure. Our new cross-network node similarity 
measure is designed on the basis of all these measures.

9 � Conclusions

Social network de-anonymization is a popular approach to 
test the strength of anonymization algorithms. With the help 
of a good de-anonymization solution, we can guide com-
panies to design a much better anonymization approach to 
protect the user’s privacy. In this paper, we developed a fast 
seedless de-anonymization algorithm, named RoleMatch. 
RoleMatch de-anonymizes networks only based on the struc-
tural information. Thanks to the new similarity measure, 
RoleSim++, it can compute the node similarity in high pre-
cision. Moreover, during the node matching phase, besides 
the node similarity, RoleMatch also uses the neighborhood 
information to improve the mapping results. The compre-
hensive experimental results have demonstrated the advan-
tages of RoleMatch compared with previous works. Besides 
the algorithm itself, the performance of de-anonymization is 
also related to the properties of network. We will study such 
relationship in the future.
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Appendix

The Proof of Lemma 1

Proof  We prove the lemma by induction on the number of 
iterations.

1.	 Base Case Note that Sim0(u, v) = 1 , then Sim1(u, v) =

 Thus, Sim1(u, v) ≤ 1 = Sim0(u, v).
2.	 Induction Step Assume that in the kth iteration, the 

matching out(u, v) of Nout
1

(u),Nout
2

(v) is 

(1 − �)
min{|Nout

1
(u)|, |Nout

2
(v)|} +min{|N in

1
(u)|, |N in

2
(v)|}

�out(u, v) + �in(u, v)

+ �.
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 Similarly, 

Then,

The transition (4) is due to the induction, and the transi-
tion (5) is due to the definition of function � .

Thus, Simk−1(u, v) ≤ Simk(u, v) holds for all (u, v).
Conclusion Simk(u, v) ≥ Simk+1(u, v) is true for all 

k ∈ ℕ0. � □

The Proof of Proposition 2

Proof  First, when the similarity Sim(u, v) is converged, we 
use Mout(u, v) to denote the best matching with maximum 
similarity score between Nout

1
(u) and Nout

2
(v) . So does the 

Min(u, v) . Then let �out(u, v) = min{|Nout
1

(u)|, |Nout
2

(v)|} , and 
�in(u, v) = min{|N in

1
(u)|, |N in

2
(v)|} , it is easy to figure out 

�out(u,v)+�in(u,v)

�out(u,v)+�in(u,v)
≤ 1.

In the kth iteration, let Mout
k
(u, v) be the best matchings 

with maximum similarity score between Nout
1

(u) and Nout
2

(v) , 
then we have

� out
k

(u, v) =
∑

(x,y)∈out(u,v)

Simk−1(x, y).

� in
k
(u, v) =

∑

(x,y)∈in(u,v)

Simk−1(x, y).

(2)Simk(u, v) = (1 − �)
� out
k

(u, v) + � in
k
(u, v)

�out(u, v) + �in(u, v)
+ �

(3)

= (1 − �)

∑
(x,y)∈out(u,v) Sim

k−1(x, y) +
∑

(x,y)∈in(u,v) Sim
k−1(x, y)

�out(u, v) + �in(u, v)
+ �

(4)

≤ (1 − �)

∑
(x,y)∈out(u,v) Sim

k−2(x, y) +
∑

(x,y)∈in(u,v) Sim
k−2(x, y)

�out(u, v) + �in(u, v)
+ �

(5)≤ (1 − �)
� out
k−1

(u, v) + � in
k−1

(u, v)

�out(u, v) + �in(u, v)
+ �

(6)= Simk−1(u, v).

(7)

� out
k

(u, v) − � out(u, v)

=
∑

(x,y)∈Mout
k

(u,v)

Simk−1(x, y) −
∑

(x�,y�)∈Mout(u,v)

Sim(x�, y�)

≤
∑

(x,y)∈Mout
k

(u,v)

(Simk−1(x, y) − Sim(x, y))

∵When converged, Mout is better than Mout
k
.

≤ �out(u, v)max(x,y)∈Mout
k

(u,v){(Simk−1(x, y) − Sim(x, y))}.

Similarly, we have

Next we prove the proposition as follows,

Assuming that Simk−1(x
∗
k−1

, y∗
k−1

) − Sim(x∗
k−1

, y∗
k−1

) =

max{max(x,y)∈Mout

k
(u,v){(Simk−1(x, y) − Sim(x, y))}, max(x,y)

∈Min

k
(u,v){(Simk−1(x, y) − Sim(x, y))}} , then

Conclusion �k(u, v) ≤ (1 − �)k+1 holds for all k ∈ ℕ0. �  
� □

The Proof of Proposition 3

Proof  We prove this proposition by induction on number 
of iterations.

1.	 Base Case Initially we have Sim0(u, v) = 1 = c0.

(8)

� in
k
(u, v) − � in(u, v)

=
∑

(x,y)∈Min
k
(u,v)

Simk−1(x, y)

−
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Sim(x�, y�)
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k
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1
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k
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…
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0
) − Sim(x∗

0
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0
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0
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2.	 Induction Step In the kth iteration, it is obvi-
ous that u and v have a proportion (1 − �) of com-
mon neighbors, whose similarity score is no less 
than ck−1 . So there exist matchings Mout(u, v) 
and Min(u, v) between N1(u) and N2(v) , so that 
� out(u, v) + � in(u, v) ≥ ck−1(1 − �)(�out(u, v) + �in(u, v)).

Thus,

Conclusion Simk(u, v) ≥ ck is true for all k ∈ ℕ0 . � □
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