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Abstract
A time-dependent graph is, informally speaking, a graph structure dynamically changes with time. In such graphs, the 
weights associated with edges dynamically change over time, that is, the edges in such graphs are activated by sequences of 
time-dependent elements. Many real-life scenarios can be better modeled by time-dependent graphs, such as bioinformatics 
networks, transportation networks, and social networks. In particular, the time-dependent graph is a very broad concept, 
which is reflected in the related research with many names, including temporal graphs, evolving graphs, time-varying graphs, 
historical graphs, and so on. Though static graphs have been extensively studied, for their time-dependent generalizations, 
we are still far from a complete and mature theory of models and algorithms. In this paper, we discuss the definition and 
topological structure of time-dependent graphs, as well as models for their relationship to dynamic systems. In addition, 
we review some classic problems on time-dependent graphs, e.g., route planning, social analysis, and subgraph problem 
(including matching and mining). We also introduce existing time-dependent systems and summarize their advantages and 
limitations. We try to keep the descriptions consistent as much as possible and we hope the survey can help practitioners to 
understand existing time-dependent techniques.
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1  Introduction

A graph is a data structure which is widely used in net-
work modeling. Almost every scientific domains, including 
mathematics, computer science, chemistry, and biology, can 
be modeled and studied by graphs. Moreover, graphs are 
extensively applied in social networks, biological networks, 
transportation networks, distributed systems, and so on. A 
static graph (we use the “static graphs” to refer to classical 
graphs in this review to opposite it from time-dependent 
graphs) consists of two sets: vertices and edges. Here, each 
vertex represents an object. Each edge represents a relation 
between each pair of vertices. In practical applications, ver-
tices and edges of graphs often contain specific informa-
tion, such as labels or particular weights (such as length 
and cost). Generally, for example, when we model a road 

transportation network into a graph, each vertex represents 
an intersection and the associated coordinates (latitude and 
longitude) are a vertex weight. Each edge represents a road 
segment between two adjacent intersections and the distance 
of the edge is an edge weight.

However, many real-life scenarios can be better modeled 
by time-dependent graphs, such as bioinformatics networks 
[52, 60, 63], transportation networks [25, 38, 78], social net-
works [56, 62, 72]. In bioinformatics networks, graphs are 
used to reflect the similarity and regulatory of biomolecules, 
such as proteins, genes, and enzymes. The connections in 
biological functions are not always active but change over 
time [28, 45]. In social networks, the topological structure 
of a graph represents a social relationship. When a person 
leaves a group or a new group is established, the topological 
structure needs to be updated. While time is a main reason 
for these changes [11, 72]. In transportation networks, there 
is usually a set of fixed routes on which a group of transport 
units moves over time [20, 61, 71, 73]. The transportation 
network is one of the most suitable networks that can be 
modeled by a time-dependent graph, where the influence 
of time always needs to be considered. For example, when 
a user takes a transfer in flight transportation networks, the 
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departure time of the second flight must be later than the 
arrival time of the first flight. Generally, in such networks, 
the weights associated with edges dynamically change 
over time (time-dependency) [22]. In terms of modeling, 
a time-dependent graph can be thought as a special case of 
labeled graphs, in which labels capture some measure of 
time [55]. That is to say, edges in such graphs are activated 
by sequences of time-dependent elements.

An advantage of modeling a network as a time-depend-
ent graph is that we can study the dynamic effect of time 
on the graph instead of the impact of the actual dynamics. 
In general, when is a graph appropriate to be modeled and 
analyzed as a time-dependent graph? The system needs to 
be modeled as a time-dependent graph only when it con-
forms to the time-dependent framework and involves the 
time scale. And if the dynamic system changes much faster 
than the speed of the dynamic connection, or if the edges 
in the graph are actively changing, then there is no need to 
model the dynamic system into a time-dependent graph [33]. 
Allen divided time-dependent relationship into 13 categories 
which are shown in Table 1.

Though static graphs have been extensively studied, there 
is still far from having a concrete set of structures and algo-
rithm frameworks for time-dependent graphs [55]. Due to 
the influence of time, most query processing and mining 
problems are more complicated in time-dependent graphs 
than that in static graphs. For example, a time-dependent 
shortest path problem aims to find the optimal path from a 
source to a destination, when the starting time is selected 
from a user-given starting-time interval [22] instead of 
just finding the shortest path. It is still not clear how time 
affects the complexity of the optimization problem in 
time-dependent graphs. However, there is an evidence in 
[4] which shows that the concept of time can significantly 
increase the computational complexity. Many problems, 
which can be solved in a linear time or a polynomial time 
on static graphs, become NP-complete or NP-hard problems 

on time-dependent graphs, such as the connected compo-
nent problem. In recent works, one important problem is to 
understand the complexity of classical graph problems in 
time-dependent graphs and proposing algorithms for them 
[20, 24]. Other works focus on proposing practical applica-
tion problems and solving them [44, 61].

In this paper, we focus on prior works on time-depend-
ent graphs. The rest of the paper is organized as follows. 
Section 2 introduces the time-dependent graph framework 
including definitions and models. Section 3 introduces route 
planning problems and existing algorithms on time-depend-
ent graphs. Section 4 shows some special time-dependent 
queries in social analysis. Section 5 provides two kinds of 
time-dependent subgraph problems, including subgraph 
matching and mining. Section  6 shows existing time-
dependent graph systems and summarizes their advantages 
and limitations. Section 7 concludes this paper.

2 � Time‑Dependent Graph Framework

2.1 � Definition

The time-dependent graphs can be fundamentally divided 
into two types according to the time type of the active 
an edge: time instances and time intervals as illustrated 
in Fig. 1. In Fig. 1a, the weight on an edge represents a 
sequence of time instances. In this case, the interaction 
between each pair of vertices is activated at a sequence of 
time instances. The time-dependent graph is represented as 
a triple G = (V ,E, T) . V is a set of vertices and E ⊆ V × V  is 
a set of edges, and for each e ∈ E , there is a non-empty set 
of time Te = ⟨t1,… , tn⟩ as a weight. Such time-dependent 
graphs are commonly used to represent instant messaging 
networks where the duration does not need to be considered, 
such as mail networks, telephone networks, and information 
networks. For example, a public transportation network can 

Table 1   Presentation of 
ALLEN’s 13 time-dependent 
relations. Adapted from [77]
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be represented as this type of time-dependent graph. A vehi-
cle on the network is operated according to a specific set of 
discrete times on the timetable.

In the other case (Fig. 1b), the edges are activated in 
a sequence of time intervals. The weight on each edge e 
represents as Te = {[t1, t2],… , [tn−1, tn]} , where a period of 
activity is beginning at t1 and ending at t2 . In such graphs, 
the duration is very important. This type of time-dependent 
graph can naturally model the systems whose edges change 
in time intervals, such as proximity networks, seasonal food 
webs, and infrastructural systems [33]. For example, a road 
network can be modeled as such time-dependent graph 
because of the traffic control (i.e., the limit line) and traffic 
congestion (i.e., the morning–evening rush hours).

2.2 � Data Modeling

In the existing works, there are several ways of modeling 
a time-dependent graph with a sequence of time instances 
on each edge. These models are mainly divided into two 
categories: one is to model discrete time-dependent graphs 
and the other is to model continuous time-dependent graphs. 
Next, we introduce the two models separately.

2.2.1 � Models for Discrete Time‑Dependent Graphs

An edge on a discrete time-dependent graph is activated 
by disjoint time points. Formally, there are several ways of 
modeling discrete time-dependent graphs.

One is to build labels for the edges which has well-
defined attributes [15, 35, 73]. A time-dependent graph with 
a label � ∶ E → 2ℕ is denoted by G = (V ,E, �(G)) . The label 
set of �(G) is a collection of natural numbers on each edge, 
which can be denoted by �(E) where ��� = ∑

e∈E ��(e)� . This 
modeling method is widely available and can build unified 
searching schemes for time-dependent graphs.

Another is to build snapshots for the time-dependent 
graph, that is, the time-dependent graph is considered as 
an ordered pair of disjoint sets [9, 49, 80]. A time-depend-
ent graph is denoted by G = (V ,A) , where A is a set of 
time-dependent edges. A function A(t) = {e ∶ (e, t) ∈ A} 
contains all edges in G at time t which is also called the 
tth instance of G. Accordingly, a snapshot of G at t is 
denoted by G(t) = (V ,A(t)) . In this case, a time-dependant 
graph can be considered as a sequence of static graphs 
G = {G1,G2,… ,Gt} . This modeling method is most com-
monly used for modeling discrete time-dependent graphs, 
which is suitable for the time-dependent graph with a spe-
cific time structure, especially in real-time networks.

The third is to transfer the time-dependent graph into 
a static graph by building copies of vertices [35, 75, 76]. 
The reason for doing this is mainly because the technol-
ogy tends to be perfect on static graph. If a time-dependent 
graph can be transformed into a static graph without los-
ing any time-dependent information, it can provide a good 
foundation for future studies on time-dependent graphs. 
[75] provides a transfer method which has two steps to 
transform a time-dependent graph G = (V ,E) into a static 
graph Ĝ = (V̂ , Ê) as illustrated in Fig.  2. Firstly, create 
copies of each vertex v ∈ V  in V̂  , where V̂  composed of 

(a) (b)

Fig. 1   Two fundamental time-dependent graphs. Here, a shows 
a time-dependent graph on which the weight on each edge is a 
sequence of time instances. These instances are marked by black 
lines in the timelines (gray bars). b Shows a time-dependent graph on 

which the weight on each edge is a set of time intervals. These inter-
vals are marked by black bars in the timelines (gray bars). Note that 
these time intervals can be either continuous or discrete

(a) (b)

Fig. 2   Graph transformation from a time-dependent graph to a static 
graph
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two parts Tin(u, v) = {t + � ∶ (u, v, t, �) ∈
∏
(u, v)} and 

Tout(v, u) = {t ∶ (u, v, t, �) ∈
∏
(v, u)} . Here, Tin(u, v) main-

tains all vertices which are in-neighbors of v. Symmetrically, 
Tout(u, v) maintains all vertices which are out-neighbors of v. 
Secondly, create edges from (v, tin) to (v, tout) for each vertex 
v ∈ V  by order vertex in V̂in(v) according to time instances 
order, then create a directed edge from each v to its copes. 
This modeling method can transplant algorithms of static 
graphs to problems of time-dependant graphs. But the disad-
vantage is obvious that building multiple copies of the ver-
tices increase the scale of graphs. And [75] also shows that 
the results obtain directly from the time-dependent graph are 
quite different from the results obtained from the converted 
static graph for queries that need to consider time order.

2.2.2 � Models for Continuous Time‑Dependent Graphs

There are two drawbacks of the discrete time model. First, 
this model cannot represent the state of the graph between 
two discrete time points, which might yield inaccurate 
results. Second, the memory and processing requirements 
are high. A more precise way to describe a time-dependent 
network is to use the continuous time-dependent function. 
For a continuous time-dependent graph whose edges are 
activated in a sequence of time intervals, there are two mod-
eling methods.

One is to define an index function, called presence func-
tion, to determine whether a pair of vertices is connected at 
a given time interval [65]. If vertex u and v is connected at 
time t, then the presence function f (u, v, t) = 1 . Otherwise, 
f (u, v, t) = 0 . This modeling method applies to time-depend-
ent graphs where the time intervals are discrete and disjoint 
and the edges are only active and inactive.

The other is to treat a time-dependent graph as a flow-
dependent graph which means the weight it takes for flow 
to traverse an edge is different in different time intervals 
[19, 22, 24]. For e ∈ E , the flow function fe ∶ [0, T) → ℝ+ , 
where fe(t) defines the rate of flow entering edge e at time t. 
For example, a road network can be modeled as a continu-
ous time-dependent graph, where a non-negative travel time 
function �e determines the time it takes for flow to traverse 
an edge e [42]. The flow arrives at the end node of e at time 
t + �e(fe(t)) . Accordingly, this modeling method applies to 
time-dependent graphs where the time intervals are continu-
ous and the functions on edges change over time.

2.3 � Topological Structure

In static graphs, the topological structure can be character-
ized by measures. Some measures can be applied directly 
to time-dependent graphs, including adjacent point, degree, 
etc. For example, in a time-dependent graph, the degree cal-
culation is similar to that in a static graph. It only needs to 

calculate the number of active edges connected to vertices 
over a period of time. While other measures need rethinking 
and redefining to take time into account on time-dependent 
graphs.

2.3.1 � Time‑Respecting Paths

In the static graph, a path is simply a sequence of edges 
from origin vertex u to destination vertex v, such as 
p1 = ⟨D,A,B,C⟩ (red dotted line) and p2 = ⟨D,A,C⟩ (blue 
dotted line) in Fig. 3a. However, a time-respecting path [32, 
39] has to be redefined to take time into account. For exam-
ple, as shown in Fig. 3b, D and C are connected only through 
path p = ⟨(D,A, 4), (A,B, 5), (B,C, 6)⟩ (red dotted line), 
assuming edge delay is 1. Accordingly, the time-respecting 
path is a sequence of edges that follow a time order. If there 
are paths from A to B and B to C, it does not mean that there 
is a time-respecting path between A and C. Consequently, 
as seen in the example above, a time-respecting path from 
A to C is existing only if the contact between A and B takes 
place before the contact between B and C.

In the static graph, the most basic problem associated 
with the path is the shortest path problem that computes the 
shortest distance between two reachable vertices. In [16], the 
time-dependent shortest path problem is refined into three 
types:

Earliest Arrival Path Problem. The earliest arrival path 
problem asks for the corresponding route with the earliest 
arrival time at B from A at departure time ta.

Latest Departure Path Problem. The latest departure path 
problem asks for the corresponding route with the latest 
departure time from A and arrives at B no later than tb.

Shortest Duration Path Problem. The shortest duration path 
problem asks for the corresponding route with shortest dura-
tion time that departs from A no sooner than ta and arrives 
B no later than tb.

Due to the complexity of time-dependent information, 
each of the above problems can not be solved in a greedy 
strategy which is often used to compute the shortest path 
problems in a static graph. Cooke et al. [16] proposed a 

(a) (b)

Fig. 3   Paths from D to C in a static graph and a time-dependent graph
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modified version of Bellman’s iteration scheme [3] to com-
pute the shortest path with time-dependent information. 
Afterward, many algorithms [59, 70, 73, 75] are proposed 
to solve Cooke et al.’s three problems on the time-dependent 
graph. Since the path problem is the most foundational prob-
lem on graphs, most of these algorithms are discussed in 
Sect. 3.1.

2.3.2 � Connectivity, Components, and Menger’s Theorem

Connectivity is a fundamental concept for both static net-
works and time-dependent networks. We said a graph is con-
nectivity if there are paths between every pair of vertices. 
A connected component is defined as a set of vertices with 
paths between each pair of them. In directed static graphs, 
connected components can be classified into weakly and 
strongly connected components. In particular, a graph is said 
to be strongly connected, if there is a path from i to j and a 
path from j to i, for each pair of vertices i and j. Correspond-
ingly, a graph is said to be weakly connected, if the corre-
sponding undirected graph which is obtained by removing 
all directions in the edges is a connected graph, i.e., replace 
all directed edges with undirected edges. In time-dependent 
graphs, the order of time naturally introduces a directional-
ity of the graph. For instance, in the time-dependent graph 
G (shown as Fig. 4a), there exists a time-respecting path 
between vertex A and vertex E (i.e., edge eAB at time 1 and 
edge eBE at time 8 in Fig. 4b), but there is no path between E 
and A. Hence, the connectivity of the time-dependent graph 
is more similar to that of the static directed graph [58]. How-
ever, the concepts of weakly and strongly connected can 
not be generalized for time-dependent graphs if we only 
hold time-respecting paths instead of paths. Nicosia et al. 
proposed the definition of strong and weak connectivity on 
time-dependent graphs (called time-varying graphs in their 
paper [58]) as follows.

Definition 1  (Strong Connectedness [58]) Two nodes i and 
j of a time-varying graph are strongly connected, if i is tem-
porally connected to j and also j is temporally connected to i.

Definition 2  (Weak Connectedness [58]) Two nodes i and 
j of a time-varying graph are weakly connected if i is tem-
porally connected to j and also j is temporally connected to 
i in the underlying undirected time-varying graph.

According to above two definitions, the strongly con-
nected component and the weakly connected component 
can be easily defined, that is, the vertices sets where each 
pair of vertices fulfills the criteria. And Nicosia et al. also 
showed that finding the strongly connected components of 
a time-dependent graph is equivalent to finding the maximal 
cliques of an affine graph that is an undirected static graph 
with the same vertices as the time-dependent graph.

Menger’s theorem [53] is one of the most basic theo-
rems in the theory of graph connectivity. It states that the 
maximum number of node-disjoint s-v paths is equal to the 
minimum number of nodes that must be removed in order 
to separate s from v [8]. However, Kempe et al. [39] proved 
that the Menger’s theorem of static graphs does not apply 
to time-dependent graphs. In particular, they also proved 
that there is no natural analogue of Menger’s Theorem for 
the single-label time-dependent graph and it is NP-hard to 
compute the number of node-disjoint time-respecting paths. 
Over Kempe et al.’s work, Mertzios et al. [54] provided a 
natural time-dependent (called temporal in their paper) ana-
logue of Menger’s theorem for all (both single-label and 
multi-label) time-dependent graphs.

Theorem 1  (Menger’s Temporal Analogue [54]) Take any 
temporal graph �(G) , where G = (V ,E) , with two distin-
guished nodes s and v. The maximum number of out-disjoint 
journeys from s to v is equal to the minimum number of node 
departure times needed to separate s from v.

By symmetry, they have that the maximum number of in-
disjoint journeys from s to v is equal to the minimum number 
of node arrival times needed to separate s from v.

2.3.3 � Spanning Tree

The spanning tree is an important concept related to paths 
in static graphs. In particular, the minimum spanning tree 
problem refers to the minimal connected subgraph generated 

Fig. 4   A time-dependent 
undirected graph and the time-
dependent reachability

(a) (b)
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for the original graph. The connected subgraph contains all 
the vertices of the original graph, whose number of edges 
connecting the subgraphs is the smallest. The minimum 
spanning tree problem can be solved in polynomial time 
and has widely used in graphs. Many complex queries are 
based on the minimum spanning tree problem [5, 31, 46, 
68], and many efficient graph algorithms are based on build-
ing a minimum spanning tree, such as min-cut max-flow 
algorithm.1

Gunturi et al. [27] proposed a related concept in time-
dependent graph called time-sub-interval minimum span-
ning tree (TSMST). TSMST refers to a collection of mini-
mum spanning trees in an interval with minimum total cost. 
Further in [35], Huang et al. defined two kinds of minimum 
spanning trees ( MSTs ) in a time-dependent graph: (1) MSTa 
which is the MSTs with earliest arrival times and (2) MSTw 
which is the MSTs with the smallest total weight. Huang 
et al. proved that MSTa can be computed in linear time, but 
MSTw is a MAX-SNP hard. Consequently, they transformed 
the MSTw problem to the minimum Directed Steiner Tree 
problem.

3 � Time‑Dependent Route Planning

The time-dependent route planning is an important problem 
with application in routing on road networks [22, 24], travel 
planning on public transportation networks [14, 73], vehicle 
dispatching on vehicle networks [37, 50], as well as in some 
robotic and navigation systems [12, 43]. To the best of our 
knowledge, the time-dependent shortest path problem, as 
the most basic route planning problem, is first proposed by 
Cooke and Halsey in [16].

Before we discuss the algorithms of routing problems 
on the time-dependent graph, we first introduce an impor-
tant property of the time-dependent graph, namely first-in-
first-out (FIFO) property. The FIFO property means that, 
on every link, an earlier departure will lead to an earlier 
arrival and a later departure will result in a later arrival. It 
renders that every edge has a non-decreasing arrival time 
function in a time-dependent network. We called a network 
is a FIFO network if every link in the network has the FIFO 
property. The facts of the FIFO property can be referred in 
[44]. Notice that the FIFO property is a special property on 
time-dependent graphs, but not all time-dependent graphs 
are FIFO networks. For example, a source s and a destina-
tion d are reachable by two vehicles, one is faster and the 
other is slower. Assume that a traveler A chooses the slower 
vehicle to depart in advance from s, then he may arrive later 
than the traveler B who chooses to depart late but takes the 

faster vehicle. Obviously, this travel does not satisfy the 
FIFO property. The other example of not satisfying the 
FIFO property is a path that allows waiting time at vertices. 
The FIFO property is relevant to time-dependent routing 
and many routing problems are based on the FIFO attribute.

In this section, we first discuss the single-criteria time-
dependent routing problem which only focuses on finding 
minimum travel time in time-dependent graphs. Then, we 
introduce the multi-criteria time-dependent routing prob-
lem which optimizes the travel time and multiple time-inde-
pendent costs. Since the methods in this section are all used 
to solve the route planning problem on the time-dependent 
graph in principle, we try to keep the descriptions consistent 
as much as possible.

3.1 � Single‑Criteria Route Planning

As already noted, broadly speaking, time-dependent graphs 
can be divided into discrete and continuous. So, we intro-
duce single-criteria routing algorithms on the two types of 
time-dependent graphs, respectively.

3.1.1 � Models Based on Discrete Travel Time

In the time-dependent network with discrete travel time, 
certain segments can only be traversed at specific discrete 
time instances based on a timetable. Therefore, the cost 
of an edge, varying as a travel time function, represents a 
succinctly periodic, discrete, piecewise linear (PWL) func-
tion. The public transportation network is representative of 
discrete time-dependent networks. According to real traffic 
conditions, it is always necessary to wait for a vehicle at a 
station. And when transfer from one vehicle to another, the 
vehicle schedule must be strictly followed.

As we maintained before, Cooke and Halsey [16] pro-
posed the most basic route planning problem. Cooke and 
Halsey proved that these queries could be solved with a mod-
ified version of Dijkstra’s algorithm. However, it does not 
scale well with the size of the graph and several techniques, 
such as indexing have therefore been proposed to improve 
efficiency. Pyrga et al. [61] proposed realistic time-expanded 
and time-dependent models and extended their methods for 
a series of realistic requirements of time-dependent shortest 
path (TDSP) problem on discrete time-dependent graphs. 
Chabini [14] extended the A* algorithm to compute the min-
imum travel time path for one as well as for multiple depar-
ture times. They improved a lower bound on minimum travel 
time which is used to design an effective adaptive A*-based 
algorithm. To speed up the A* algorithm, Nannicini et al. 
[57] and Demiryurek et al. [21] presented methods based 
on the bidirectional A* search algorithm. Notice that the 
time-dependent paths must be in time order. But we cannot 
know the arrival time in advance during backward search. 1  https​://brill​iant.org/wiki/spann​ing-trees​/.

https://brilliant.org/wiki/spanning-trees/
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Hence, both Nannicini et al. and Demiryurek et al. run the 
backward search by the idea of lower bound function. Wu 
et al. [75] proposed efficient algorithms, named as one-pass 
algorithms. The one-pass algorithm is based on Dijkstra’s 
algorithm and solves the route planning queries by enumer-
ation. For each vertex v, the one-pass algorithm builds a 
store list L(v) = (s[v], a[v]) , where s[v] is the departure time 
from source x to v, and a[v] is the arrival time at v. Then, it 
updates the L(v) until finding the earliest arrival time from 
the source vertex x to v at different starting time. In order 
to provide an alternative approach, they proposed a method 
of transferring a time-dependent graph into a static graph. 
Notice that Wu et al. proved that the results obtained directly 
from the time-dependent graph are quite different from the 
results obtained from the converted static graph. This calls 
the need for studying the time-dependent problem directly 
on time-dependent graphs. After that Wang et al. [73] pre-
sented an efficient indexing technique, named as Timeta-
ble Labeling (TTL), for time-dependent routing problem in 
public transportation networks. The TTL index is defined 
based on the concept of canonical paths. It builds two label 
sets Lin(v) and Lout(v) for each node v in the time-dependent 
graph, which contains the information about the canonical 
paths between v and the nodes that rank higher than v. Wang 
et al. showed that the TTL index enables to support three 
common route planning queries (described in Sect. 2.3.1).

3.1.2 � Models Based on Continuous Travel Time

Route planning on a continuous time-dependent network is 
drastically different from that on a discrete time-dependent 
network. Routing in continuous time-dependent networks is 
to calculate the optimal path from a source s to a destination 
d on road network without changing vehicle. It is a key com-
ponent in road network, self-driving technology, navigation 
systems as well as in some robotics. In a continuous time-
dependent network, the cost of the edge varies as a travel 
time function which is always a continuous and PWL func-
tion. Notice that we are not simply calculating the optimal 
path with a certain departure time, which is easily calculated 
by Dijkstra’s algorithm, but calculating the minimum travel 
time under certain conditions, such as the expected arrival 
time or the departure time interval.

Ordal and Rom [59] presented a Ford-type algorithm to 
solve the TDSP problem when no constraints are imposed 
on waiting times at the nodes. On the basis of Ordal and 
Rom’s work, Dehne et  al. [18] presented an improved 
method that can solve the TDSP problem in FIFO networks. 
They proved that the algorithm can run in polynomial time, 
while other methods require super-polynomial time. And 
they also presented an approximation method with possibly 
super-polynomial size output in time O(Δ

�
(|E| + |V|log|V|)) . 

Afterward, Foschini et al. [24] presented a method that can 

solve TDSP problem in super-polynomial time. The main 
idea of their method is to calculate primitive and mini-
mized breakpoints and build acyclic layered graph repre-
sentation of the time-dependent graph. They presented an 
output-sensitive algorithm whose running time depends on 
the number of breakpoints at the nodes and edges in the 
time-dependent graph. In order to speed up the technique for 
TDSP problem, Foschini et al. proposed (1 + �)-approxima-
tion schemes to compute the arrival time functions in time 
O(K

1

�
log(

MaxTravelTime

MinTravelTime
)) . Ding et al. [22] presented a query 

as LTT(vs, ve, T) to ask the minimum-travel-time path from 
a source s to a destination d with the best departure time 
selected in a given time interval. They showed that their 
approach, named as Two-Step-LTT, adapts both on FIFO 
and NON-FIFO time-dependent networks. The first step is 
Dijkstra-based Time-refinement in which they compute the 
earliest arrival time function for each node. The second step 
is Fast Path-selection in which they compute the optimal 
path. To adapt Two-Step-LTT in non-FIFO networks, they 
showed how to transform a non-FIFO time-dependent graph 
into a FIFO one. They also proved the time complexity of 
their algorithm is O((n logn + m)�(T)).

3.2 � Multi‑criteria Route Planning

Multi-criteria routing problem is more complicated than 
the single-criteria shortest path problem. Given two paths 
pi and pj , we say that pi dominates pj if and only if there 
are no criteria for which pi has a worse value than pj , with 
at least on strict equality. A path is called Pareto-optimal 
if it is not dominated by any other path. Therefore, multi-
criteria routing problems aim to find Pareto-optimal path 
sets from a source s to a destination d. The most common 
multi-criteria (or bi-criteria) time-dependent routing opti-
mization problems consider the optimization between travel 
time and multiple (or a) time-independent costs (expressed 
as the weights on each edge) including an approximation of 
energy consumption, distance, tolls, or other penalties [1].

Pyrga et al. [61] considered a bi-criteria search to opti-
mize the travel time and the number of transfers in discrete 
time-dependent graphs. In order to solve the bi-criteria opti-
mization problem, they set a bounded number of transfers 
which constraints that the total number of transfers is not 
greater than k. Based on Pyrga et al.’s work, Khoa et al. [40] 
also optimized the arrival time and the number of transfers, 
but they allowed walking during a transfer in a bus network. 
They presented three speed up techniques to accelerate the 
multi-criteria searching algorithm. Disser et al. [23] pre-
sented a multi-criteria searching algorithm by introducing 
the reliability of the transfer and gave the probability of tak-
ing the train. Different from Pyrga et al.’s work, Disser et al. 
focused on a many-source shortest path on train networks 
and they considered foot-path and special transfer rules 
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during transfers. In the multi-criteria searching algorithm, 
they used multi-dimensional labels to record all the prom-
ising path that the node can reach and found the shortest 
path based on the Dijkstra’s algorithm. And they proposed 
four speed up techniques to improve the performance of the 
searching algorithm.

Batz and Sanders [1] considered the optimization of travel 
time and costs in continuous time-dependent graphs. They 
proved that this problem is NP-hard and it can be computed 
by Dijkstra-like algorithms as prefix optimality is violated. 
Therefore, they presented a multi-label A* searching algo-
rithm. However, the efficiency of the algorithm is too low in 
practical applications. They used the generalized heuristic 
time-dependent contraction hierarchies (TCHs) during pre-
processing and contracted the least important nodes. The 
heuristic minimum cost queries with TCHs are divided into 
two phases. Firstly, it is a bidirectional upward search which 
only takes little running time. Then, it only uses the edge 
touched in bidirectional upward search to do a downward 
search. Experiments show that heuristic TCHs are very fast.

4 � Time‑Dependent Social Analysis

In real scenarios, time is a common and necessary dimen-
sion on online social networks (OSNs). For example, when 
a user logs in or logs out of an account, the background 
database will have a timestamp to record such operations. 
Many complex dynamic time-dependent interactions can be 
abstracted into time-dependent information. Compared with 
traditional static social queries that only reflect the relation-
ship between users, time-dependent social queries can dis-
tinguish between new and old, active and inactive relation-
ships, and so on. Additionally, query and mining problems 
on time-dependent social networks are more focused on the 
evolution over time [29, 36]. For example, the time-depend-
ent shortest path queries in a social network can discover 
how close between two given users have been and how the 
closeness has evolved over time. Consequently, queries on 
time-series social networks are more complicated, and due 
to the concept of the time dimension, there are many query 
problems that are unique to time-dependent social networks.

Most of the works on time-dependent social networks are 
based on snapshots and time windows. Wang et al. [74] pro-
posed a time-dependent social network advertising and they 
designed a learning algorithm to obtain the optimal poli-
cies between users and advertisers. Wang et al. [72] dem-
onstrated that the influence of a user on another depends on 
their interactions in previous time windows. Therefore, they 
presented a dynamic factor graph (DFG) model to tackle 
the dynamic social influence analysis with time information. 
They modeled networks as a sequence of time-dependent 
graph snapshots (which called factor graph in [72]), and each 

graph snapshot belongs to a time window. In particular, each 
graph snapshot depends on the factor graph in the previous 
time window. This technique is optimal to time-dependent 
social network, but it has huge storage overhead. To efficient 
the queries, Huo and Tsotras [36] presented the temporal 
partitioning. They divided the time instance in the time-
dependent graph into multiple partitions, and each partition 
has a time window with a fixed length.

Furthermore, Chen et al. [15] introduced primitive que-
ries on time-dependent social networks. They divided the 
primitive queries into three aspects, which are aimed to find 
and check the user’s online status, the relationships between 
users, and the status of the user participating in the activ-
ity during a time interval [ts, te] . Based on three primitive 
queries, they also presented three special queries that are 
shown as follows.

Friends of Interesting Activities (FIA) query The FIA query 
aims to find out user’s friends who are interested in some-
thing or people over a period of time.

Users of Time Filter (UTF) query The UTF query is used 
to find a user who is active within a certain time threshold, 
and the user’s friends are interested in a given event. UTF 
queries can be used in the social network advertising and 
social influence analysis in practice.

Group of Users with Relationship Duration (GURD) query 
The GURD query is used to find a group of users that satisfy 
a certain time condition, and the average intimacy between 
users satisfies a given value within a certain period of time.

To solve three problems on time-dependent social net-
works, Chen et al. designed two tree structures: Temporal 
Users and Relationships tree (TUR-tree) and Temporal Users 
and Activities tree (TUA-tree). The TUR-tree is extended 
by MVB tree [2] to index user relationships. The TUR-tree 
generates keys by string concatenating. For a user vi identi-
fied by uidi , the key is expressed as 0|uidi , and the relation-
ship between uidi and uidj is expressed as 1|uidi|uidj . The 
TUA-tree is a hybrid structure of B+-tree and Bloom Filter to 
represent the communication between user identifiers, time 
information, and keywords. For a TUA-tree, the entry of 
leaf node is formatted as < key, ptr > , where ptr points to 
an activity, and key is concatenation of user identifier and 
time associated with the activity the user is participating in. 
The TUA-tree splits, merges, and redistributes nodes by key.
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5 � Time‑Dependent Subgraph Problems

5.1 � Time‑Dependent Subgraph Matching

The graph pattern matching is a fundamental problem in 
the graph data mining and has been applied in many fields. 
The graph pattern matching (a.k.a. subgraph isomorphism) 
problem is known to be NP-complete even in a static graph 
[30]. The existing graph pattern matching problems can be 
roughly divided into two types according to the pattern of 
query graph on time-dependent graphs.

Querying static graph pattern (SGP) in time-dependent 
graphs The querying static graph pattern problem is to find 
isomorphism subgraphs, when the query graph is a static 
graph (see Fig. 5c) with some time constraints (i.e., the inter-
action occurring time interval or the relation order) and the 
data graph is a time-dependent graph (see Fig. 5a).

Querying time-dependent graph pattern (TGP) in time-
dependent graphs The querying time-dependent graph pat-
tern problem is to find isomorphism subgraphs, when the 
query graph is a time-dependent graph (see Fig. 5b) and the 
data graph is a time-dependent graph (see Fig. 5a).

For the same time-dependent graph, the difference in the 
query graph will result in different query results, as shown 
in Fig. 5.

5.1.1 � Querying Static Graph Pattern

Redmond and Cunningham [64] proposed three methods for 
subgraph matching algorithms by considering time-depend-
ent and topological information at different stages.

Time before Topology (Ti-To) The Ti-To first abstracts all 
possible time-respecting subgraphs as a candidate subgraph 
set from the data graph by breadth-first algorithm on edges. 
Then, find extracted subgraphs that satisfy the conditions of 
the query graph from the candidate set by the VF2 [17] sub-
graph isomorphism algorithm. Experiments show that the 
candidate set may have a large overlap and time consuming.

Topology before Time (To-Ti) The To-Ti performs the VF2 
subgraph isomorphism algorithm on the entire data graph 
and build a candidate subgraph set. At this stage, it does 
not pay attention to any time-dependent information. Then, 
To-Ti checks the time-dependent information between the 
query graph and the candidate subgraph set and retains the 
matching result.

Time and Topology Together (Ti&To) The Ti&To considers 
subgraph isomorphism and time constraints at same time. 
The isomorphic processing is described by a state space, 
each state s in the state space describes a local map. In a 
state s, the Ti&To first determines whether a candidate pair, 
consisting of vertices in query graph and data graph, is iso-
morphic and then Ti&To determines whether the candidate 
pair contents the time constraint. If the candidate pair satis-
fies both conditions, the neighbor vertices of the candidate 
pair are expanded downward to become new candidate pair. 
Loop until all the subgraphs that satisfy the conditions are 
found.

To solve the SGP problem with time-dependent relation 
order, a Hasse diagram based algorithm is proposed by Sun 
et al. [69]. They used Hasse diagram to express the time-
dependent partial order of the edges in the query graph. Each 
edge corresponds to a Hasse node, and a time-dependent 
relationship in the query graph is represented as a directed 

(a)

(b) (c)

(d) (e)

Fig. 5   Two kinds of graph pattern matching problems on the time-
dependent graph. a Shows a data graph. d Shows the query result of 
TGP query from (b). The edge (D, C) only can be activated at time 
t = 3 , thus there is only one matching result. c Shows the query result 

of SGP query from c with a limitation that the interaction occurring 
time interval d ≤ 4 . The edge (D,  C) only can be activated at time 
t = 5 , because t

CB
− t

DC
= 3 < d at t = 5 and t

CB
− t

DC
= 5 > d at 

t = 3 . Only when t = 5 (D, C) contents the time constraint
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Hasse edge. Then, they built the Hasse-cache structure to 
implement the continuous time-dependent subgraph query 
algorithm. The algorithm uses the probability of the time-
dependent graph to reduce intermediate results, while 
achieving topology matching and time relationship verifi-
cation. Compared with searching the entire query graph, the 
algorithm searches whether the time-dependent relationships 
of the data edges match the relationship of query edges and 
improves the performance of the algorithm by using the 
Hasse-cache structure.

5.1.2 � Querying Time‑Dependent Graph Pattern

TCGPM-V [77] is a pattern matching method based on ver-
tex matching. Firstly, it uses the depth-first search tree to find 
all matching vertex sets and then enumerates all possible 
time-dependent subgraphs until finding the prospective time-
dependent subgraph. Unlike TCGPM-V, TCGPM-E [77] is a 
pattern matching method based on edge matching. TCGPM-
E first selects the edge with the smallest calculation result 
in the query graph according to the sorting function. Then, 
calculate the maximum number of edges in the query graph 
that can be linked around by the edge. Next, find an edge set 
in which all edges match with this edge in the data graph 
and decompose the data graph into multiple subgraphs. Each 
subgraph contains an edge in the edge set and the number of 
subgraphs is equal to the size of the edge set. Finally, sub-
graph isomorphism is performed on each subgraph, and the 
prospective time-dependent subgraph is enumerated.

In addition to the basic time-dependent graph pattern 
query problem, there are some more complex isomorphic 
problems exist in the time-dependent graph. Semertzidis 
and Pitoura [66] presented a durable graph pattern queries 
that aim to find persistent matches (the top-k longest period 
of time) of input patterns in node-labeled time-dependent 
graph. The evolution of graph is expressed as a sequence of 
snapshots which is corresponding to graphs with different 
time instances. A straightforward algorithm for the top-k 
most durable graph pattern queries is to perform a subgraph 
isomorphism algorithm on each snapshot then aggregates 
the results. But the straightforward algorithm does not adapt 
to the large-scale time-dependent graphs. They merged the 
snapshots into a labeled version graph (LVG) which records 
the time interval of nodes, edges, and labels as lifespan. 
Then, they calculated and filtered the candidate set by neigh-
borhood and path time indexes based on Bloom filters [6], 
and then they presented an algorithm to find the top-k most 
durable graph. The algorithm first checks if there are isomor-
phic matches of the query graph in the candidate sets and 
deletes the candidates without an isomorphic match. Then 
the algorithm checks if the lifespan of edges and vertices in 
the candidate graph is conformed to the lifespan of the query 

graph. The top-k most durable graphs are gotten by ordering 
the duration of the results.

5.2 � Time‑Dependent Subgraph Mining

Subgraph discovery and analysis problems are widely used 
in static graphs. In practice, subgraph mining is a very broad 
concept and essentially can be seen as a clustering problem. 
The problem of finding a set of vertices with certain features 
and closely interacting with each other in graphs is called 
a subgraph mining problem. A time-dependent graph min-
ing problem seeks to mine subgraph structures with time-
dependent information, such as relaxed moving object clus-
ters [47], heavy subgraphs [7], diversified subgraphs [79], 
and dense subgraphs [49].

The moving object cluster is a loosely defined and gen-
eral task to find a group of moving objects that are traveling 
together sporadically [47], which can be widely used in the 
studies of animal behaviors, routes planning, and vehicle 
control. There are two elements which are geographically 
close to each other when moving together in a certain time 
interval. To record the moving object cluster, swarm was 
proposed to contain a number of objects who are in the same 
cluster in a time interval. For a group of moving objects as 
O and a set of timestamps as T, a swarm is a pair (O, T) con-
taining at least mino individuals who are in the same cluster 
at least mint timestamp snapshots, that is, |O| ⩾ mino and 
|T| ⩾ mint . The search space of moving an object cluster is 
very huge, because the size of all the possible combinations 
is exponential (i.e., 2ODB × 2OTB ). And since the discovery of 
the moving object cluster is based on multiple timestamps, 
it has a polynomial solution. Therefore, the efficient method 
called ObjectGrowth [47] was proposed to remove redundant 
and hopeless candidates through two pruning rules.

The heaviest dynamic subgraph (HDS) seeks to find the 
highest-scoring time-dependent subgraph in a weighted 
dynamic network whose edge weights evolve over time. The 
score of a subgraph is defined by calculating the sum of the 
edge weights and the score has to be maximized over all 
possible subgraphs and all possible sub-intervals. For each 
time snapshot, if the edge exists, the score gets 1 or the score 
gets − 1. Given a time-dependent graph with T timestamps, 
there are T ⋅ (T + 1)∕2 time intervals to consider. Bogdanov 
et al. [7] proved that the HDS problem is NP-hard even if the 
score is 1 or − 1 and they gave a filter-and-verify algorithm 
to solve the HDS problem, named as MEDEM. To prune 
the irrelevant sub-interval space and quickly verifying can-
didate sub-intervals, MEDEM calculates the upper bound 
of the solution. A simple upper bound can be obtained by 
summing all the positive edges. And a tighter upper bound 
is calculated by score of a connected component of positive 
edges P and the lowest score among negative edges N. The 
tighter upper bound is calculated as follows:
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To avoid the quadratic enumeration, MEDEM gives an 
efficient and effective group filtering phase with time 
complexity in O(t ⋅ log2(t) ⋅ |E|) . MEDEM is based on a 
filter-and-verification framework, but it not adapted to the 
time-dependent graph with large number of vertices, edges, 
and timestamps. Because there are a large number of time 
intervals that need to be filtered and verified, Ma et al. [49] 
proposed a highly efficient data-driven approach named as 
FIDES. They showed that all the edges evolve in a conver-
gent manner and defined a cohesive density curve to find 
the dense subgraph. Accordingly, the dense subgraphs only 
exist in time intervals in which the cohesive density curve 
has a local maximum. They also proved that finding dense 
graphs problem is equivalent to the net worth maximiza-
tion problem, a variant of the Prize Collecting Steiner Tree 
problem. FIDES first computes k time intervals and then 
finds and returns dense subgraphs with the largest possible 
cohesive density. The experiments show that both quality of 
the dense subgraphs and the running time of the FIDES are 
better than MEDEM.

Since it is important to find dense subgraph patterns with 
close vertices interacting, many definitions of dense sub-
graph patterns have been proposed, such k-core, k-truss, �
-dense subgraph, and �-quasi-clique [79] . Most dense sub-
graph pattern problems are NP-hard problems. A diversified 
subgraph is a dense graph based on the definition of �-quasi-
clique to calculate the �-quasi-clique during a time interval 
in a time-dependent graph.

Definition 3  (�-Quasi-Clique [79]) Given a time-dependent 
graph G = (V ,E) and a parameter � , for all v ∈ V  and t ∈ I , 
we say that G is a �-quasi-clique during the time interval I iff

According to Difinition 3, a diverseifed time-depend-
ent graph mining problem is to find k dense time-pen-
dent subgraphs in a time-dependent graph, that the k is 
large and diversified (i.e., maximizing the coverage). 
Here the coverage set of a time-dependent graph G′ is 
denoted as C(G�) = {(v, t) | v ∈ V �, t ∈ I�} , whose size is 
|C(G�)| = |V �| ⋅ |I�| . For finding qualified patterns, effective 
pruning rules are required. Yang et al. presented five prun-
ing rules for time-dependent subgraph mining, to prune the 
vertices with low degree and short duration, the vertices far 
away form selected vertex, the snapshot graphs over bound, 
the vertices over bound, and the remaining snapshot graphs 
with a consecutive interval, respectively.

∑
max(0,P + N) −min (N) ⩾ score.

dv(t) ⩾ � ⋅ (|V| − 1).

6 � Time‑Dependent Graph Systems

At present, a large number of graph management systems 
have been proposed, including Neo4j2 and Titan3 as well 
as large graph processing frameworks such as Pregel [51], 
GraphLab [48], and GraphX [26]. But these graph systems 
are all designed for static graphs and they can be extended 
to process time-dependent graphs.

6.1 � Snapshot‑Based System

Existing works of the time-dependent graph system are 
mainly based on snapshot-based approaches. These sys-
tems use snapshot-based approaches to solve problems on 
time-dependent graphs, so they are called snapshot-based 
approach systems. The snapshot-based approach is to con-
vert the time-dependent graph into a sequence of static 
graphs over time and each static graph is called a snapshot. 
The snapshot-based approach faces a huge challenge of gen-
erating a large number of snapshots even if there is only 
one time-dependent graph, which consumes a lot of storage 
space and query time. Therefore, many corresponding tech-
niques have been proposed for efficient snapshot processing.

Cattuto et al. [13] proposed a time-dependent social net-
work management system with a multi-layer index structure 
based on Neo4j. They used wearable sensors to collect time-
dependent data and built a time-resolved behavioral social 
network. Then, they defined a frame to contain the status of 
the social network during each time interval. For each frame, 
they built a proximity graph whose nodes represent individu-
als and edges represent proximity relations between indi-
viduals recorded in the corresponding frame. The TGraph 
[34] is also a time-dependent network management system 
based on Neo4j. The TGraph uses Neo4j storage nodes, rela-
tionships and static properties of nodes/relationships, while 
the time-dependent properties of nodes/relationships are 
stored by a dynamic properties storage (DPS) component. 
The TGraph first writes the time-dependent properties to 
the memory data structure MemTable. Then, DPS stores the 
data in the MemTable into the disk files UnStableFile and 
StableFile. Each UnStableFile and StableFile holds the data 
within a time interval. Finally, DPS uses MetaFile to record 
the filename and the corresponding time interval of each 
file. The TGraph records all time-dependent information in 
memory, which causes many data to be logged repeatedly.

To support the large-scale graph, distributed time-
dependent graph management systems with low-cost stor-
age and efficient query time-dependent information are 
proposed. DynamoGraph [67] exploits graph partitioning 
to store each individual vertex as a map containing key-
value pairs tagged with time or JSON document. The edges 
are stored within vertex documents in a list that contains 2  http://neo4j​.com/.

3  http://think​aurel​ius.githu​b.io/titan​/.

http://neo4j.com/
http://thinkaurelius.github.io/titan/
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the edges alongside with their attributes. DeltaGraph [41] 
performs snapshot retrieval queries in parallel by recording 
graph data over time through a hierarchical index structure. 
In DeltaGraph, the leaf nodes correspond to equispaced 
snapshots, and the edges between the nodes preserve the 
difference between the corresponding snapshots. Snapshots 
and edges can be distributed to a group of computers in 
parallel by using horizontal partitions for distributed stor-
age. DeltaGraph records an atomic activity in the network 
by an event. An event can be used for creation, deletion, 
and changing attributes of vertices and edges. Moreover, an 
event represents the occurrence of an edge or vertex at a time 
instance. Hence, an event always corresponds to a single 
timepoint. Therefore, for the snapshot St and St+1 at time t 
and t + 1 , respectively, we have that

where E is the set of all events at time t + 1 . Khurana and 
Deshpande showed that the DeltaGraph can solve both sin-
gle-point queries as well as multi-point snapshot queries, 
that is, to retrieve a graph structure/a subset of vertex or 
edge attributed/all attributed in a time instance and a time 
interval, respectively.

6.2 � Traversal‑Based System

Snapshot-based systems are useful for analyzing the evolu-
tion of networks. However, as pointed out in [75], the query 
results obtained by converting the time-dependent graph 
into a static graph are completely different from the results 
directly obtained from time-dependent graph. Therefore, 
these snapshot-based systems only adapt to settle snapshot-
based queries, but not suitable for traversal-based queries 
such as information diffusion analysis [10]. Compared to 
snapshot-based systems, traversal-based systems are suit-
able for analyzing information dissemination that follows 
time limits.

The ChronoGraph [10] is a novel system enabling time-
dependent graph traversals. The ChronoGraph supports 
three types of graphs, including static property graphs, time-
instant property graphs, and time-period property graphs. It 
splits time-dependent graph into a collection of events that 
are instances of graph elements that are valid for a specific 
time-instant or a non-negligible period of time. In a cita-
tion network, the time-instant property graph consists of ⋃

id1,id2,t
e(id1�isCitedBy�id2)t , representing v(id1) cites v(id2) 

at time t. And in a phone call network, the time-period prop-
erty graph consists of 

⋃
id1,id2,(t1,t2)

e(id1�isCalling�id2)(t1,t2) , 
representing v(id1) has a phone call with v(id2) starting at t1 
and ending at t2 . The ChronoGraph divides the time period 
from the time instances into a time period by a property 
filter, a property skip parameter, a singular constraint fil-
ter, and a singular constraint skip parameter, and converts 

St+1 = St + E, St = St+1 − E.

all time-instant events into time-period events. Then, the 
ChronoGraph uses a path management scheme, formed as 
Map < Object, Set < Lsit < Object >>> , to manage a pair 
of current graph elements and their relevant path set (i.e., 
lists of objects). The ChronoGraph allows convenient and 
efficient time-dependent graph traversal and has a good 
effect on time-dependent breadth-first search, depth-first 
search, and single source shortest path.

7 � Conclusions and Open Questions

In this paper, we reviewed extensive studies on time-depend-
ent graphs. We showed how dynamic systems benefit from 
the modeling of time-dependent graphs and discussed 
methods for discovering and analyzing dynamic network 
structures in the time domain. Meanwhile, we explained 
the great significance of the time-dependent graph struc-
ture in network researches, which has a good application in 
many fields. Therefore, the studies of the time-dependent 
graph have great theoretical significance and broad applica-
tion prospects for studying the query processing and min-
ing problems. As the data scale continues to expand and 
the data structure becomes more and more complex, these 
bring more challenges to the query processing and data min-
ing problems on time-dependent graphs, which also bring 
more opportunities for researchers.

The study of the time-dependent graph is still a rather 
young field with many open questions and unexplored direc-
tions. We will list some of these issues as follows:

Generative models for time-dependent networks. There are 
very few models building for time-dependent networks. At 
the same time, existing models also have shortcomings, 
especially the snapshot-based model which ignores the 
impact of time information between snapshots. Therefore, an 
important open issue is to clearly construct and study param-
eterized, generative models for time-dependent networks.

Measures for time-dependent networks. Although a large 
number of measures of time-dependent graphs have been 
discussed in this review, we believe there is much room 
for improvement in this measure. The existing studies of 
time-dependent graphs are mostly based on time instances 
which are discrete. However, the discrete time-dependent 
graph is rarely used in practical applications, and more is 
the time-dependent graph with continuous time. Therefore, 
how to extend the existing time-dependent algorithms to 
not only discrete time-dependent graphs but also continu-
ous time-dependent graphs is one of the focuses of future 
research works. At the same time, there are many unique 
time-dependent queries but most of the existing measures 
are generalizations of static network measures. Accordingly, 
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other important open issues are quantifying and character-
izing the structural features of real-time-dependent systems.

Dynamical systems for time-dependent networks As we men-
tioned in Sect. 6, most of the time-dependent systems are 
snapshot based which only adapt to snapshot-based queries. 
These systems are less sensitive to time-dependent effects 
and only focus on the structure changes over time. How-
ever, a maturity and integrity time-dependent system does 
not only benefit to the questions about structure contacts, 
but also about the nature of acting over contacts. Conse-
quently, there should be more systems that are sensitive to 
time-dependent effects like the order of events.
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