
Vol:.(1234567890)

Data Science and Engineering (2019) 4:352–366
https://doi.org/10.1007/s41019-019-00105-0

1 3

Time‑Dependent Graphs: Definitions, Applications, and Algorithms

Yishu Wang1  · Ye Yuan1 · Yuliang Ma1 · Guoren Wang2

Received: 1 June 2019 / Revised: 6 September 2019 / Accepted: 16 September 2019 / Published online: 25 September 2019
© The Author(s) 2019

Abstract
A time-dependent graph is, informally speaking, a graph structure dynamically changes with time. In such graphs, the
weights associated with edges dynamically change over time, that is, the edges in such graphs are activated by sequences of
time-dependent elements. Many real-life scenarios can be better modeled by time-dependent graphs, such as bioinformatics
networks, transportation networks, and social networks. In particular, the time-dependent graph is a very broad concept,
which is reflected in the related research with many names, including temporal graphs, evolving graphs, time-varying graphs,
historical graphs, and so on. Though static graphs have been extensively studied, for their time-dependent generalizations,
we are still far from a complete and mature theory of models and algorithms. In this paper, we discuss the definition and
topological structure of time-dependent graphs, as well as models for their relationship to dynamic systems. In addition,
we review some classic problems on time-dependent graphs, e.g., route planning, social analysis, and subgraph problem
(including matching and mining). We also introduce existing time-dependent systems and summarize their advantages and
limitations. We try to keep the descriptions consistent as much as possible and we hope the survey can help practitioners to
understand existing time-dependent techniques.

Keywords  Time-dependent network · Graph data management · Network analysis · Graph system

1  Introduction

A graph is a data structure which is widely used in net-
work modeling. Almost every scientific domains, including
mathematics, computer science, chemistry, and biology, can
be modeled and studied by graphs. Moreover, graphs are
extensively applied in social networks, biological networks,
transportation networks, distributed systems, and so on. A
static graph (we use the “static graphs” to refer to classical
graphs in this review to opposite it from time-dependent
graphs) consists of two sets: vertices and edges. Here, each
vertex represents an object. Each edge represents a relation
between each pair of vertices. In practical applications, ver-
tices and edges of graphs often contain specific informa-
tion, such as labels or particular weights (such as length
and cost). Generally, for example, when we model a road

transportation network into a graph, each vertex represents
an intersection and the associated coordinates (latitude and
longitude) are a vertex weight. Each edge represents a road
segment between two adjacent intersections and the distance
of the edge is an edge weight.

However, many real-life scenarios can be better modeled
by time-dependent graphs, such as bioinformatics networks
[52, 60, 63], transportation networks [25, 38, 78], social net-
works [56, 62, 72]. In bioinformatics networks, graphs are
used to reflect the similarity and regulatory of biomolecules,
such as proteins, genes, and enzymes. The connections in
biological functions are not always active but change over
time [28, 45]. In social networks, the topological structure
of a graph represents a social relationship. When a person
leaves a group or a new group is established, the topological
structure needs to be updated. While time is a main reason
for these changes [11, 72]. In transportation networks, there
is usually a set of fixed routes on which a group of transport
units moves over time [20, 61, 71, 73]. The transportation
network is one of the most suitable networks that can be
modeled by a time-dependent graph, where the influence
of time always needs to be considered. For example, when
a user takes a transfer in flight transportation networks, the

 *	 Yishu Wang
	 yishu_w0124@163.com

1	 School of Computer Science and Engineering, Northeastern
University, Shenyang, China

2	 School of Computer Science and Technology, Beijing
Institute of Technology, Beijing, China

http://orcid.org/0000-0003-3373-7060
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-00105-0&domain=pdf

353Time‑Dependent Graphs: Definitions, Applications, and Algorithms﻿	

1 3

departure time of the second flight must be later than the
arrival time of the first flight. Generally, in such networks,
the weights associated with edges dynamically change
over time (time-dependency) [22]. In terms of modeling,
a time-dependent graph can be thought as a special case of
labeled graphs, in which labels capture some measure of
time [55]. That is to say, edges in such graphs are activated
by sequences of time-dependent elements.

An advantage of modeling a network as a time-depend-
ent graph is that we can study the dynamic effect of time
on the graph instead of the impact of the actual dynamics.
In general, when is a graph appropriate to be modeled and
analyzed as a time-dependent graph? The system needs to
be modeled as a time-dependent graph only when it con-
forms to the time-dependent framework and involves the
time scale. And if the dynamic system changes much faster
than the speed of the dynamic connection, or if the edges
in the graph are actively changing, then there is no need to
model the dynamic system into a time-dependent graph [33].
Allen divided time-dependent relationship into 13 categories
which are shown in Table 1.

Though static graphs have been extensively studied, there
is still far from having a concrete set of structures and algo-
rithm frameworks for time-dependent graphs [55]. Due to
the influence of time, most query processing and mining
problems are more complicated in time-dependent graphs
than that in static graphs. For example, a time-dependent
shortest path problem aims to find the optimal path from a
source to a destination, when the starting time is selected
from a user-given starting-time interval [22] instead of
just finding the shortest path. It is still not clear how time
affects the complexity of the optimization problem in
time-dependent graphs. However, there is an evidence in
[4] which shows that the concept of time can significantly
increase the computational complexity. Many problems,
which can be solved in a linear time or a polynomial time
on static graphs, become NP-complete or NP-hard problems

on time-dependent graphs, such as the connected compo-
nent problem. In recent works, one important problem is to
understand the complexity of classical graph problems in
time-dependent graphs and proposing algorithms for them
[20, 24]. Other works focus on proposing practical applica-
tion problems and solving them [44, 61].

In this paper, we focus on prior works on time-depend-
ent graphs. The rest of the paper is organized as follows.
Section 2 introduces the time-dependent graph framework
including definitions and models. Section 3 introduces route
planning problems and existing algorithms on time-depend-
ent graphs. Section 4 shows some special time-dependent
queries in social analysis. Section 5 provides two kinds of
time-dependent subgraph problems, including subgraph
matching and mining. Section 6 shows existing time-
dependent graph systems and summarizes their advantages
and limitations. Section 7 concludes this paper.

2 � Time‑Dependent Graph Framework

2.1 � Definition

The time-dependent graphs can be fundamentally divided
into two types according to the time type of the active
an edge: time instances and time intervals as illustrated
in Fig. 1. In Fig. 1a, the weight on an edge represents a
sequence of time instances. In this case, the interaction
between each pair of vertices is activated at a sequence of
time instances. The time-dependent graph is represented as
a triple G = (V ,E, T) . V is a set of vertices and E ⊆ V × V is
a set of edges, and for each e ∈ E , there is a non-empty set
of time Te = ⟨t1,… , tn⟩ as a weight. Such time-dependent
graphs are commonly used to represent instant messaging
networks where the duration does not need to be considered,
such as mail networks, telephone networks, and information
networks. For example, a public transportation network can

Table 1   Presentation of
ALLEN’s 13 time-dependent
relations. Adapted from [77]

354	 Y. Wang et al.

1 3

be represented as this type of time-dependent graph. A vehi-
cle on the network is operated according to a specific set of
discrete times on the timetable.

In the other case (Fig. 1b), the edges are activated in
a sequence of time intervals. The weight on each edge e
represents as Te = {[t1, t2],… , [tn−1, tn]} , where a period of
activity is beginning at t1 and ending at t2 . In such graphs,
the duration is very important. This type of time-dependent
graph can naturally model the systems whose edges change
in time intervals, such as proximity networks, seasonal food
webs, and infrastructural systems [33]. For example, a road
network can be modeled as such time-dependent graph
because of the traffic control (i.e., the limit line) and traffic
congestion (i.e., the morning–evening rush hours).

2.2 � Data Modeling

In the existing works, there are several ways of modeling
a time-dependent graph with a sequence of time instances
on each edge. These models are mainly divided into two
categories: one is to model discrete time-dependent graphs
and the other is to model continuous time-dependent graphs.
Next, we introduce the two models separately.

2.2.1 � Models for Discrete Time‑Dependent Graphs

An edge on a discrete time-dependent graph is activated
by disjoint time points. Formally, there are several ways of
modeling discrete time-dependent graphs.

One is to build labels for the edges which has well-
defined attributes [15, 35, 73]. A time-dependent graph with
a label � ∶ E → 2ℕ is denoted by G = (V ,E, �(G)) . The label
set of �(G) is a collection of natural numbers on each edge,
which can be denoted by �(E) where ��� = ∑

e∈E ��(e)� . This
modeling method is widely available and can build unified
searching schemes for time-dependent graphs.

Another is to build snapshots for the time-dependent
graph, that is, the time-dependent graph is considered as
an ordered pair of disjoint sets [9, 49, 80]. A time-depend-
ent graph is denoted by G = (V ,A) , where A is a set of
time-dependent edges. A function A(t) = {e ∶ (e, t) ∈ A}
contains all edges in G at time t which is also called the
tth instance of G. Accordingly, a snapshot of G at t is
denoted by G(t) = (V ,A(t)) . In this case, a time-dependant
graph can be considered as a sequence of static graphs
G = {G1,G2,… ,Gt} . This modeling method is most com-
monly used for modeling discrete time-dependent graphs,
which is suitable for the time-dependent graph with a spe-
cific time structure, especially in real-time networks.

The third is to transfer the time-dependent graph into
a static graph by building copies of vertices [35, 75, 76].
The reason for doing this is mainly because the technol-
ogy tends to be perfect on static graph. If a time-dependent
graph can be transformed into a static graph without los-
ing any time-dependent information, it can provide a good
foundation for future studies on time-dependent graphs.
[75] provides a transfer method which has two steps to
transform a time-dependent graph G = (V ,E) into a static
graph Ĝ = (V̂ , Ê) as illustrated in Fig. 2. Firstly, create
copies of each vertex v ∈ V in V̂ , where V̂ composed of

(a) (b)

Fig. 1   Two fundamental time-dependent graphs. Here, a shows
a time-dependent graph on which the weight on each edge is a
sequence of time instances. These instances are marked by black
lines in the timelines (gray bars). b Shows a time-dependent graph on

which the weight on each edge is a set of time intervals. These inter-
vals are marked by black bars in the timelines (gray bars). Note that
these time intervals can be either continuous or discrete

(a) (b)

Fig. 2   Graph transformation from a time-dependent graph to a static
graph

355Time‑Dependent Graphs: Definitions, Applications, and Algorithms﻿	

1 3

two parts Tin(u, v) = {t + � ∶ (u, v, t, �) ∈
∏
(u, v)} and

Tout(v, u) = {t ∶ (u, v, t, �) ∈
∏
(v, u)} . Here, Tin(u, v) main-

tains all vertices which are in-neighbors of v. Symmetrically,
Tout(u, v) maintains all vertices which are out-neighbors of v.
Secondly, create edges from (v, tin) to (v, tout) for each vertex
v ∈ V by order vertex in V̂in(v) according to time instances
order, then create a directed edge from each v to its copes.
This modeling method can transplant algorithms of static
graphs to problems of time-dependant graphs. But the disad-
vantage is obvious that building multiple copies of the ver-
tices increase the scale of graphs. And [75] also shows that
the results obtain directly from the time-dependent graph are
quite different from the results obtained from the converted
static graph for queries that need to consider time order.

2.2.2 � Models for Continuous Time‑Dependent Graphs

There are two drawbacks of the discrete time model. First,
this model cannot represent the state of the graph between
two discrete time points, which might yield inaccurate
results. Second, the memory and processing requirements
are high. A more precise way to describe a time-dependent
network is to use the continuous time-dependent function.
For a continuous time-dependent graph whose edges are
activated in a sequence of time intervals, there are two mod-
eling methods.

One is to define an index function, called presence func-
tion, to determine whether a pair of vertices is connected at
a given time interval [65]. If vertex u and v is connected at
time t, then the presence function f (u, v, t) = 1 . Otherwise,
f (u, v, t) = 0 . This modeling method applies to time-depend-
ent graphs where the time intervals are discrete and disjoint
and the edges are only active and inactive.

The other is to treat a time-dependent graph as a flow-
dependent graph which means the weight it takes for flow
to traverse an edge is different in different time intervals
[19, 22, 24]. For e ∈ E , the flow function fe ∶ [0, T) → ℝ+ ,
where fe(t) defines the rate of flow entering edge e at time t.
For example, a road network can be modeled as a continu-
ous time-dependent graph, where a non-negative travel time
function �e determines the time it takes for flow to traverse
an edge e [42]. The flow arrives at the end node of e at time
t + �e(fe(t)) . Accordingly, this modeling method applies to
time-dependent graphs where the time intervals are continu-
ous and the functions on edges change over time.

2.3 � Topological Structure

In static graphs, the topological structure can be character-
ized by measures. Some measures can be applied directly
to time-dependent graphs, including adjacent point, degree,
etc. For example, in a time-dependent graph, the degree cal-
culation is similar to that in a static graph. It only needs to

calculate the number of active edges connected to vertices
over a period of time. While other measures need rethinking
and redefining to take time into account on time-dependent
graphs.

2.3.1 � Time‑Respecting Paths

In the static graph, a path is simply a sequence of edges
from origin vertex u to destination vertex v, such as
p1 = ⟨D,A,B,C⟩ (red dotted line) and p2 = ⟨D,A,C⟩ (blue
dotted line) in Fig. 3a. However, a time-respecting path [32,
39] has to be redefined to take time into account. For exam-
ple, as shown in Fig. 3b, D and C are connected only through
path p = ⟨(D,A, 4), (A,B, 5), (B,C, 6)⟩ (red dotted line),
assuming edge delay is 1. Accordingly, the time-respecting
path is a sequence of edges that follow a time order. If there
are paths from A to B and B to C, it does not mean that there
is a time-respecting path between A and C. Consequently,
as seen in the example above, a time-respecting path from
A to C is existing only if the contact between A and B takes
place before the contact between B and C.

In the static graph, the most basic problem associated
with the path is the shortest path problem that computes the
shortest distance between two reachable vertices. In [16], the
time-dependent shortest path problem is refined into three
types:

Earliest Arrival Path Problem. The earliest arrival path
problem asks for the corresponding route with the earliest
arrival time at B from A at departure time ta.

Latest Departure Path Problem. The latest departure path
problem asks for the corresponding route with the latest
departure time from A and arrives at B no later than tb.

Shortest Duration Path Problem. The shortest duration path
problem asks for the corresponding route with shortest dura-
tion time that departs from A no sooner than ta and arrives
B no later than tb.

Due to the complexity of time-dependent information,
each of the above problems can not be solved in a greedy
strategy which is often used to compute the shortest path
problems in a static graph. Cooke et al. [16] proposed a

(a) (b)

Fig. 3   Paths from D to C in a static graph and a time-dependent graph

356	 Y. Wang et al.

1 3

modified version of Bellman’s iteration scheme [3] to com-
pute the shortest path with time-dependent information.
Afterward, many algorithms [59, 70, 73, 75] are proposed
to solve Cooke et al.’s three problems on the time-dependent
graph. Since the path problem is the most foundational prob-
lem on graphs, most of these algorithms are discussed in
Sect. 3.1.

2.3.2 � Connectivity, Components, and Menger’s Theorem

Connectivity is a fundamental concept for both static net-
works and time-dependent networks. We said a graph is con-
nectivity if there are paths between every pair of vertices.
A connected component is defined as a set of vertices with
paths between each pair of them. In directed static graphs,
connected components can be classified into weakly and
strongly connected components. In particular, a graph is said
to be strongly connected, if there is a path from i to j and a
path from j to i, for each pair of vertices i and j. Correspond-
ingly, a graph is said to be weakly connected, if the corre-
sponding undirected graph which is obtained by removing
all directions in the edges is a connected graph, i.e., replace
all directed edges with undirected edges. In time-dependent
graphs, the order of time naturally introduces a directional-
ity of the graph. For instance, in the time-dependent graph
G (shown as Fig. 4a), there exists a time-respecting path
between vertex A and vertex E (i.e., edge eAB at time 1 and
edge eBE at time 8 in Fig. 4b), but there is no path between E
and A. Hence, the connectivity of the time-dependent graph
is more similar to that of the static directed graph [58]. How-
ever, the concepts of weakly and strongly connected can
not be generalized for time-dependent graphs if we only
hold time-respecting paths instead of paths. Nicosia et al.
proposed the definition of strong and weak connectivity on
time-dependent graphs (called time-varying graphs in their
paper [58]) as follows.

Definition 1  (Strong Connectedness [58]) Two nodes i and
j of a time-varying graph are strongly connected, if i is tem-
porally connected to j and also j is temporally connected to i.

Definition 2  (Weak Connectedness [58]) Two nodes i and
j of a time-varying graph are weakly connected if i is tem-
porally connected to j and also j is temporally connected to
i in the underlying undirected time-varying graph.

According to above two definitions, the strongly con-
nected component and the weakly connected component
can be easily defined, that is, the vertices sets where each
pair of vertices fulfills the criteria. And Nicosia et al. also
showed that finding the strongly connected components of
a time-dependent graph is equivalent to finding the maximal
cliques of an affine graph that is an undirected static graph
with the same vertices as the time-dependent graph.

Menger’s theorem [53] is one of the most basic theo-
rems in the theory of graph connectivity. It states that the
maximum number of node-disjoint s-v paths is equal to the
minimum number of nodes that must be removed in order
to separate s from v [8]. However, Kempe et al. [39] proved
that the Menger’s theorem of static graphs does not apply
to time-dependent graphs. In particular, they also proved
that there is no natural analogue of Menger’s Theorem for
the single-label time-dependent graph and it is NP-hard to
compute the number of node-disjoint time-respecting paths.
Over Kempe et al.’s work, Mertzios et al. [54] provided a
natural time-dependent (called temporal in their paper) ana-
logue of Menger’s theorem for all (both single-label and
multi-label) time-dependent graphs.

Theorem 1  (Menger’s Temporal Analogue [54]) Take any
temporal graph �(G) , where G = (V ,E) , with two distin-
guished nodes s and v. The maximum number of out-disjoint
journeys from s to v is equal to the minimum number of node
departure times needed to separate s from v.

By symmetry, they have that the maximum number of in-
disjoint journeys from s to v is equal to the minimum number
of node arrival times needed to separate s from v.

2.3.3 � Spanning Tree

The spanning tree is an important concept related to paths
in static graphs. In particular, the minimum spanning tree
problem refers to the minimal connected subgraph generated

Fig. 4   A time-dependent
undirected graph and the time-
dependent reachability

(a) (b)

357Time‑Dependent Graphs: Definitions, Applications, and Algorithms﻿	

1 3

for the original graph. The connected subgraph contains all
the vertices of the original graph, whose number of edges
connecting the subgraphs is the smallest. The minimum
spanning tree problem can be solved in polynomial time
and has widely used in graphs. Many complex queries are
based on the minimum spanning tree problem [5, 31, 46,
68], and many efficient graph algorithms are based on build-
ing a minimum spanning tree, such as min-cut max-flow
algorithm.1

Gunturi et al. [27] proposed a related concept in time-
dependent graph called time-sub-interval minimum span-
ning tree (TSMST). TSMST refers to a collection of mini-
mum spanning trees in an interval with minimum total cost.
Further in [35], Huang et al. defined two kinds of minimum
spanning trees ( MSTs ) in a time-dependent graph: (1) MSTa
which is the MSTs with earliest arrival times and (2) MSTw
which is the MSTs with the smallest total weight. Huang
et al. proved that MSTa can be computed in linear time, but
MSTw is a MAX-SNP hard. Consequently, they transformed
the MSTw problem to the minimum Directed Steiner Tree
problem.

3 � Time‑Dependent Route Planning

The time-dependent route planning is an important problem
with application in routing on road networks [22, 24], travel
planning on public transportation networks [14, 73], vehicle
dispatching on vehicle networks [37, 50], as well as in some
robotic and navigation systems [12, 43]. To the best of our
knowledge, the time-dependent shortest path problem, as
the most basic route planning problem, is first proposed by
Cooke and Halsey in [16].

Before we discuss the algorithms of routing problems
on the time-dependent graph, we first introduce an impor-
tant property of the time-dependent graph, namely first-in-
first-out (FIFO) property. The FIFO property means that,
on every link, an earlier departure will lead to an earlier
arrival and a later departure will result in a later arrival. It
renders that every edge has a non-decreasing arrival time
function in a time-dependent network. We called a network
is a FIFO network if every link in the network has the FIFO
property. The facts of the FIFO property can be referred in
[44]. Notice that the FIFO property is a special property on
time-dependent graphs, but not all time-dependent graphs
are FIFO networks. For example, a source s and a destina-
tion d are reachable by two vehicles, one is faster and the
other is slower. Assume that a traveler A chooses the slower
vehicle to depart in advance from s, then he may arrive later
than the traveler B who chooses to depart late but takes the

faster vehicle. Obviously, this travel does not satisfy the
FIFO property. The other example of not satisfying the
FIFO property is a path that allows waiting time at vertices.
The FIFO property is relevant to time-dependent routing
and many routing problems are based on the FIFO attribute.

In this section, we first discuss the single-criteria time-
dependent routing problem which only focuses on finding
minimum travel time in time-dependent graphs. Then, we
introduce the multi-criteria time-dependent routing prob-
lem which optimizes the travel time and multiple time-inde-
pendent costs. Since the methods in this section are all used
to solve the route planning problem on the time-dependent
graph in principle, we try to keep the descriptions consistent
as much as possible.

3.1 � Single‑Criteria Route Planning

As already noted, broadly speaking, time-dependent graphs
can be divided into discrete and continuous. So, we intro-
duce single-criteria routing algorithms on the two types of
time-dependent graphs, respectively.

3.1.1 � Models Based on Discrete Travel Time

In the time-dependent network with discrete travel time,
certain segments can only be traversed at specific discrete
time instances based on a timetable. Therefore, the cost
of an edge, varying as a travel time function, represents a
succinctly periodic, discrete, piecewise linear (PWL) func-
tion. The public transportation network is representative of
discrete time-dependent networks. According to real traffic
conditions, it is always necessary to wait for a vehicle at a
station. And when transfer from one vehicle to another, the
vehicle schedule must be strictly followed.

As we maintained before, Cooke and Halsey [16] pro-
posed the most basic route planning problem. Cooke and
Halsey proved that these queries could be solved with a mod-
ified version of Dijkstra’s algorithm. However, it does not
scale well with the size of the graph and several techniques,
such as indexing have therefore been proposed to improve
efficiency. Pyrga et al. [61] proposed realistic time-expanded
and time-dependent models and extended their methods for
a series of realistic requirements of time-dependent shortest
path (TDSP) problem on discrete time-dependent graphs.
Chabini [14] extended the A* algorithm to compute the min-
imum travel time path for one as well as for multiple depar-
ture times. They improved a lower bound on minimum travel
time which is used to design an effective adaptive A*-based
algorithm. To speed up the A* algorithm, Nannicini et al.
[57] and Demiryurek et al. [21] presented methods based
on the bidirectional A* search algorithm. Notice that the
time-dependent paths must be in time order. But we cannot
know the arrival time in advance during backward search. 1  https​://brill​iant.org/wiki/spann​ing-trees​/.

https://brilliant.org/wiki/spanning-trees/

358	 Y. Wang et al.

1 3

Hence, both Nannicini et al. and Demiryurek et al. run the
backward search by the idea of lower bound function. Wu
et al. [75] proposed efficient algorithms, named as one-pass
algorithms. The one-pass algorithm is based on Dijkstra’s
algorithm and solves the route planning queries by enumer-
ation. For each vertex v, the one-pass algorithm builds a
store list L(v) = (s[v], a[v]) , where s[v] is the departure time
from source x to v, and a[v] is the arrival time at v. Then, it
updates the L(v) until finding the earliest arrival time from
the source vertex x to v at different starting time. In order
to provide an alternative approach, they proposed a method
of transferring a time-dependent graph into a static graph.
Notice that Wu et al. proved that the results obtained directly
from the time-dependent graph are quite different from the
results obtained from the converted static graph. This calls
the need for studying the time-dependent problem directly
on time-dependent graphs. After that Wang et al. [73] pre-
sented an efficient indexing technique, named as Timeta-
ble Labeling (TTL), for time-dependent routing problem in
public transportation networks. The TTL index is defined
based on the concept of canonical paths. It builds two label
sets Lin(v) and Lout(v) for each node v in the time-dependent
graph, which contains the information about the canonical
paths between v and the nodes that rank higher than v. Wang
et al. showed that the TTL index enables to support three
common route planning queries (described in Sect. 2.3.1).

3.1.2 � Models Based on Continuous Travel Time

Route planning on a continuous time-dependent network is
drastically different from that on a discrete time-dependent
network. Routing in continuous time-dependent networks is
to calculate the optimal path from a source s to a destination
d on road network without changing vehicle. It is a key com-
ponent in road network, self-driving technology, navigation
systems as well as in some robotics. In a continuous time-
dependent network, the cost of the edge varies as a travel
time function which is always a continuous and PWL func-
tion. Notice that we are not simply calculating the optimal
path with a certain departure time, which is easily calculated
by Dijkstra’s algorithm, but calculating the minimum travel
time under certain conditions, such as the expected arrival
time or the departure time interval.

Ordal and Rom [59] presented a Ford-type algorithm to
solve the TDSP problem when no constraints are imposed
on waiting times at the nodes. On the basis of Ordal and
Rom’s work, Dehne et al. [18] presented an improved
method that can solve the TDSP problem in FIFO networks.
They proved that the algorithm can run in polynomial time,
while other methods require super-polynomial time. And
they also presented an approximation method with possibly
super-polynomial size output in time O(Δ

�
(|E| + |V|log|V|)) .

Afterward, Foschini et al. [24] presented a method that can

solve TDSP problem in super-polynomial time. The main
idea of their method is to calculate primitive and mini-
mized breakpoints and build acyclic layered graph repre-
sentation of the time-dependent graph. They presented an
output-sensitive algorithm whose running time depends on
the number of breakpoints at the nodes and edges in the
time-dependent graph. In order to speed up the technique for
TDSP problem, Foschini et al. proposed (1 + �)-approxima-
tion schemes to compute the arrival time functions in time
O(K

1

�
log(

MaxTravelTime

MinTravelTime
)) . Ding et al. [22] presented a query

as LTT(vs, ve, T) to ask the minimum-travel-time path from
a source s to a destination d with the best departure time
selected in a given time interval. They showed that their
approach, named as Two-Step-LTT, adapts both on FIFO
and NON-FIFO time-dependent networks. The first step is
Dijkstra-based Time-refinement in which they compute the
earliest arrival time function for each node. The second step
is Fast Path-selection in which they compute the optimal
path. To adapt Two-Step-LTT in non-FIFO networks, they
showed how to transform a non-FIFO time-dependent graph
into a FIFO one. They also proved the time complexity of
their algorithm is O((n logn + m)�(T)).

3.2 � Multi‑criteria Route Planning

Multi-criteria routing problem is more complicated than
the single-criteria shortest path problem. Given two paths
pi and pj , we say that pi dominates pj if and only if there
are no criteria for which pi has a worse value than pj , with
at least on strict equality. A path is called Pareto-optimal
if it is not dominated by any other path. Therefore, multi-
criteria routing problems aim to find Pareto-optimal path
sets from a source s to a destination d. The most common
multi-criteria (or bi-criteria) time-dependent routing opti-
mization problems consider the optimization between travel
time and multiple (or a) time-independent costs (expressed
as the weights on each edge) including an approximation of
energy consumption, distance, tolls, or other penalties [1].

Pyrga et al. [61] considered a bi-criteria search to opti-
mize the travel time and the number of transfers in discrete
time-dependent graphs. In order to solve the bi-criteria opti-
mization problem, they set a bounded number of transfers
which constraints that the total number of transfers is not
greater than k. Based on Pyrga et al.’s work, Khoa et al. [40]
also optimized the arrival time and the number of transfers,
but they allowed walking during a transfer in a bus network.
They presented three speed up techniques to accelerate the
multi-criteria searching algorithm. Disser et al. [23] pre-
sented a multi-criteria searching algorithm by introducing
the reliability of the transfer and gave the probability of tak-
ing the train. Different from Pyrga et al.’s work, Disser et al.
focused on a many-source shortest path on train networks
and they considered foot-path and special transfer rules

359Time‑Dependent Graphs: Definitions, Applications, and Algorithms﻿	

1 3

during transfers. In the multi-criteria searching algorithm,
they used multi-dimensional labels to record all the prom-
ising path that the node can reach and found the shortest
path based on the Dijkstra’s algorithm. And they proposed
four speed up techniques to improve the performance of the
searching algorithm.

Batz and Sanders [1] considered the optimization of travel
time and costs in continuous time-dependent graphs. They
proved that this problem is NP-hard and it can be computed
by Dijkstra-like algorithms as prefix optimality is violated.
Therefore, they presented a multi-label A* searching algo-
rithm. However, the efficiency of the algorithm is too low in
practical applications. They used the generalized heuristic
time-dependent contraction hierarchies (TCHs) during pre-
processing and contracted the least important nodes. The
heuristic minimum cost queries with TCHs are divided into
two phases. Firstly, it is a bidirectional upward search which
only takes little running time. Then, it only uses the edge
touched in bidirectional upward search to do a downward
search. Experiments show that heuristic TCHs are very fast.

4 � Time‑Dependent Social Analysis

In real scenarios, time is a common and necessary dimen-
sion on online social networks (OSNs). For example, when
a user logs in or logs out of an account, the background
database will have a timestamp to record such operations.
Many complex dynamic time-dependent interactions can be
abstracted into time-dependent information. Compared with
traditional static social queries that only reflect the relation-
ship between users, time-dependent social queries can dis-
tinguish between new and old, active and inactive relation-
ships, and so on. Additionally, query and mining problems
on time-dependent social networks are more focused on the
evolution over time [29, 36]. For example, the time-depend-
ent shortest path queries in a social network can discover
how close between two given users have been and how the
closeness has evolved over time. Consequently, queries on
time-series social networks are more complicated, and due
to the concept of the time dimension, there are many query
problems that are unique to time-dependent social networks.

Most of the works on time-dependent social networks are
based on snapshots and time windows. Wang et al. [74] pro-
posed a time-dependent social network advertising and they
designed a learning algorithm to obtain the optimal poli-
cies between users and advertisers. Wang et al. [72] dem-
onstrated that the influence of a user on another depends on
their interactions in previous time windows. Therefore, they
presented a dynamic factor graph (DFG) model to tackle
the dynamic social influence analysis with time information.
They modeled networks as a sequence of time-dependent
graph snapshots (which called factor graph in [72]), and each

graph snapshot belongs to a time window. In particular, each
graph snapshot depends on the factor graph in the previous
time window. This technique is optimal to time-dependent
social network, but it has huge storage overhead. To efficient
the queries, Huo and Tsotras [36] presented the temporal
partitioning. They divided the time instance in the time-
dependent graph into multiple partitions, and each partition
has a time window with a fixed length.

Furthermore, Chen et al. [15] introduced primitive que-
ries on time-dependent social networks. They divided the
primitive queries into three aspects, which are aimed to find
and check the user’s online status, the relationships between
users, and the status of the user participating in the activ-
ity during a time interval [ts, te] . Based on three primitive
queries, they also presented three special queries that are
shown as follows.

Friends of Interesting Activities (FIA) query The FIA query
aims to find out user’s friends who are interested in some-
thing or people over a period of time.

Users of Time Filter (UTF) query The UTF query is used
to find a user who is active within a certain time threshold,
and the user’s friends are interested in a given event. UTF
queries can be used in the social network advertising and
social influence analysis in practice.

Group of Users with Relationship Duration (GURD) query
The GURD query is used to find a group of users that satisfy
a certain time condition, and the average intimacy between
users satisfies a given value within a certain period of time.

To solve three problems on time-dependent social net-
works, Chen et al. designed two tree structures: Temporal
Users and Relationships tree (TUR-tree) and Temporal Users
and Activities tree (TUA-tree). The TUR-tree is extended
by MVB tree [2] to index user relationships. The TUR-tree
generates keys by string concatenating. For a user vi identi-
fied by uidi , the key is expressed as 0|uidi , and the relation-
ship between uidi and uidj is expressed as 1|uidi|uidj . The
TUA-tree is a hybrid structure of B+-tree and Bloom Filter to
represent the communication between user identifiers, time
information, and keywords. For a TUA-tree, the entry of
leaf node is formatted as < key, ptr > , where ptr points to
an activity, and key is concatenation of user identifier and
time associated with the activity the user is participating in.
The TUA-tree splits, merges, and redistributes nodes by key.

360	 Y. Wang et al.

1 3

5 � Time‑Dependent Subgraph Problems

5.1 � Time‑Dependent Subgraph Matching

The graph pattern matching is a fundamental problem in
the graph data mining and has been applied in many fields.
The graph pattern matching (a.k.a. subgraph isomorphism)
problem is known to be NP-complete even in a static graph
[30]. The existing graph pattern matching problems can be
roughly divided into two types according to the pattern of
query graph on time-dependent graphs.

Querying static graph pattern (SGP) in time-dependent
graphs The querying static graph pattern problem is to find
isomorphism subgraphs, when the query graph is a static
graph (see Fig. 5c) with some time constraints (i.e., the inter-
action occurring time interval or the relation order) and the
data graph is a time-dependent graph (see Fig. 5a).

Querying time-dependent graph pattern (TGP) in time-
dependent graphs The querying time-dependent graph pat-
tern problem is to find isomorphism subgraphs, when the
query graph is a time-dependent graph (see Fig. 5b) and the
data graph is a time-dependent graph (see Fig. 5a).

For the same time-dependent graph, the difference in the
query graph will result in different query results, as shown
in Fig. 5.

5.1.1 � Querying Static Graph Pattern

Redmond and Cunningham [64] proposed three methods for
subgraph matching algorithms by considering time-depend-
ent and topological information at different stages.

Time before Topology (Ti-To) The Ti-To first abstracts all
possible time-respecting subgraphs as a candidate subgraph
set from the data graph by breadth-first algorithm on edges.
Then, find extracted subgraphs that satisfy the conditions of
the query graph from the candidate set by the VF2 [17] sub-
graph isomorphism algorithm. Experiments show that the
candidate set may have a large overlap and time consuming.

Topology before Time (To-Ti) The To-Ti performs the VF2
subgraph isomorphism algorithm on the entire data graph
and build a candidate subgraph set. At this stage, it does
not pay attention to any time-dependent information. Then,
To-Ti checks the time-dependent information between the
query graph and the candidate subgraph set and retains the
matching result.

Time and Topology Together (Ti&To) The Ti&To considers
subgraph isomorphism and time constraints at same time.
The isomorphic processing is described by a state space,
each state s in the state space describes a local map. In a
state s, the Ti&To first determines whether a candidate pair,
consisting of vertices in query graph and data graph, is iso-
morphic and then Ti&To determines whether the candidate
pair contents the time constraint. If the candidate pair satis-
fies both conditions, the neighbor vertices of the candidate
pair are expanded downward to become new candidate pair.
Loop until all the subgraphs that satisfy the conditions are
found.

To solve the SGP problem with time-dependent relation
order, a Hasse diagram based algorithm is proposed by Sun
et al. [69]. They used Hasse diagram to express the time-
dependent partial order of the edges in the query graph. Each
edge corresponds to a Hasse node, and a time-dependent
relationship in the query graph is represented as a directed

(a)

(b) (c)

(d) (e)

Fig. 5   Two kinds of graph pattern matching problems on the time-
dependent graph. a Shows a data graph. d Shows the query result of
TGP query from (b). The edge (D, C) only can be activated at time
t = 3 , thus there is only one matching result. c Shows the query result

of SGP query from c with a limitation that the interaction occurring
time interval d ≤ 4 . The edge (D, C) only can be activated at time
t = 5 , because t

CB
− t

DC
= 3 < d at t = 5 and t

CB
− t

DC
= 5 > d at

t = 3 . Only when t = 5 (D, C) contents the time constraint

361Time‑Dependent Graphs: Definitions, Applications, and Algorithms﻿	

1 3

Hasse edge. Then, they built the Hasse-cache structure to
implement the continuous time-dependent subgraph query
algorithm. The algorithm uses the probability of the time-
dependent graph to reduce intermediate results, while
achieving topology matching and time relationship verifi-
cation. Compared with searching the entire query graph, the
algorithm searches whether the time-dependent relationships
of the data edges match the relationship of query edges and
improves the performance of the algorithm by using the
Hasse-cache structure.

5.1.2 � Querying Time‑Dependent Graph Pattern

TCGPM-V [77] is a pattern matching method based on ver-
tex matching. Firstly, it uses the depth-first search tree to find
all matching vertex sets and then enumerates all possible
time-dependent subgraphs until finding the prospective time-
dependent subgraph. Unlike TCGPM-V, TCGPM-E [77] is a
pattern matching method based on edge matching. TCGPM-
E first selects the edge with the smallest calculation result
in the query graph according to the sorting function. Then,
calculate the maximum number of edges in the query graph
that can be linked around by the edge. Next, find an edge set
in which all edges match with this edge in the data graph
and decompose the data graph into multiple subgraphs. Each
subgraph contains an edge in the edge set and the number of
subgraphs is equal to the size of the edge set. Finally, sub-
graph isomorphism is performed on each subgraph, and the
prospective time-dependent subgraph is enumerated.

In addition to the basic time-dependent graph pattern
query problem, there are some more complex isomorphic
problems exist in the time-dependent graph. Semertzidis
and Pitoura [66] presented a durable graph pattern queries
that aim to find persistent matches (the top-k longest period
of time) of input patterns in node-labeled time-dependent
graph. The evolution of graph is expressed as a sequence of
snapshots which is corresponding to graphs with different
time instances. A straightforward algorithm for the top-k
most durable graph pattern queries is to perform a subgraph
isomorphism algorithm on each snapshot then aggregates
the results. But the straightforward algorithm does not adapt
to the large-scale time-dependent graphs. They merged the
snapshots into a labeled version graph (LVG) which records
the time interval of nodes, edges, and labels as lifespan.
Then, they calculated and filtered the candidate set by neigh-
borhood and path time indexes based on Bloom filters [6],
and then they presented an algorithm to find the top-k most
durable graph. The algorithm first checks if there are isomor-
phic matches of the query graph in the candidate sets and
deletes the candidates without an isomorphic match. Then
the algorithm checks if the lifespan of edges and vertices in
the candidate graph is conformed to the lifespan of the query

graph. The top-k most durable graphs are gotten by ordering
the duration of the results.

5.2 � Time‑Dependent Subgraph Mining

Subgraph discovery and analysis problems are widely used
in static graphs. In practice, subgraph mining is a very broad
concept and essentially can be seen as a clustering problem.
The problem of finding a set of vertices with certain features
and closely interacting with each other in graphs is called
a subgraph mining problem. A time-dependent graph min-
ing problem seeks to mine subgraph structures with time-
dependent information, such as relaxed moving object clus-
ters [47], heavy subgraphs [7], diversified subgraphs [79],
and dense subgraphs [49].

The moving object cluster is a loosely defined and gen-
eral task to find a group of moving objects that are traveling
together sporadically [47], which can be widely used in the
studies of animal behaviors, routes planning, and vehicle
control. There are two elements which are geographically
close to each other when moving together in a certain time
interval. To record the moving object cluster, swarm was
proposed to contain a number of objects who are in the same
cluster in a time interval. For a group of moving objects as
O and a set of timestamps as T, a swarm is a pair (O, T) con-
taining at least mino individuals who are in the same cluster
at least mint timestamp snapshots, that is, |O| ⩾ mino and
|T| ⩾ mint . The search space of moving an object cluster is
very huge, because the size of all the possible combinations
is exponential (i.e., 2ODB × 2OTB ). And since the discovery of
the moving object cluster is based on multiple timestamps,
it has a polynomial solution. Therefore, the efficient method
called ObjectGrowth [47] was proposed to remove redundant
and hopeless candidates through two pruning rules.

The heaviest dynamic subgraph (HDS) seeks to find the
highest-scoring time-dependent subgraph in a weighted
dynamic network whose edge weights evolve over time. The
score of a subgraph is defined by calculating the sum of the
edge weights and the score has to be maximized over all
possible subgraphs and all possible sub-intervals. For each
time snapshot, if the edge exists, the score gets 1 or the score
gets − 1. Given a time-dependent graph with T timestamps,
there are T ⋅ (T + 1)∕2 time intervals to consider. Bogdanov
et al. [7] proved that the HDS problem is NP-hard even if the
score is 1 or − 1 and they gave a filter-and-verify algorithm
to solve the HDS problem, named as MEDEM. To prune
the irrelevant sub-interval space and quickly verifying can-
didate sub-intervals, MEDEM calculates the upper bound
of the solution. A simple upper bound can be obtained by
summing all the positive edges. And a tighter upper bound
is calculated by score of a connected component of positive
edges P and the lowest score among negative edges N. The
tighter upper bound is calculated as follows:

362	 Y. Wang et al.

1 3

To avoid the quadratic enumeration, MEDEM gives an
efficient and effective group filtering phase with time
complexity in O(t ⋅ log2(t) ⋅ |E|) . MEDEM is based on a
filter-and-verification framework, but it not adapted to the
time-dependent graph with large number of vertices, edges,
and timestamps. Because there are a large number of time
intervals that need to be filtered and verified, Ma et al. [49]
proposed a highly efficient data-driven approach named as
FIDES. They showed that all the edges evolve in a conver-
gent manner and defined a cohesive density curve to find
the dense subgraph. Accordingly, the dense subgraphs only
exist in time intervals in which the cohesive density curve
has a local maximum. They also proved that finding dense
graphs problem is equivalent to the net worth maximiza-
tion problem, a variant of the Prize Collecting Steiner Tree
problem. FIDES first computes k time intervals and then
finds and returns dense subgraphs with the largest possible
cohesive density. The experiments show that both quality of
the dense subgraphs and the running time of the FIDES are
better than MEDEM.

Since it is important to find dense subgraph patterns with
close vertices interacting, many definitions of dense sub-
graph patterns have been proposed, such k-core, k-truss, �
-dense subgraph, and �-quasi-clique [79] . Most dense sub-
graph pattern problems are NP-hard problems. A diversified
subgraph is a dense graph based on the definition of �-quasi-
clique to calculate the �-quasi-clique during a time interval
in a time-dependent graph.

Definition 3  (�-Quasi-Clique [79]) Given a time-dependent
graph G = (V ,E) and a parameter � , for all v ∈ V and t ∈ I ,
we say that G is a �-quasi-clique during the time interval I iff

According to Difinition 3, a diverseifed time-depend-
ent graph mining problem is to find k dense time-pen-
dent subgraphs in a time-dependent graph, that the k is
large and diversified (i.e., maximizing the coverage).
Here the coverage set of a time-dependent graph G′ is
denoted as C(G�) = {(v, t) | v ∈ V �, t ∈ I�} , whose size is
|C(G�)| = |V �| ⋅ |I�| . For finding qualified patterns, effective
pruning rules are required. Yang et al. presented five prun-
ing rules for time-dependent subgraph mining, to prune the
vertices with low degree and short duration, the vertices far
away form selected vertex, the snapshot graphs over bound,
the vertices over bound, and the remaining snapshot graphs
with a consecutive interval, respectively.

∑
max(0,P + N) −min (N) ⩾ score.

dv(t) ⩾ � ⋅ (|V| − 1).

6 � Time‑Dependent Graph Systems

At present, a large number of graph management systems
have been proposed, including Neo4j2 and Titan3 as well
as large graph processing frameworks such as Pregel [51],
GraphLab [48], and GraphX [26]. But these graph systems
are all designed for static graphs and they can be extended
to process time-dependent graphs.

6.1 � Snapshot‑Based System

Existing works of the time-dependent graph system are
mainly based on snapshot-based approaches. These sys-
tems use snapshot-based approaches to solve problems on
time-dependent graphs, so they are called snapshot-based
approach systems. The snapshot-based approach is to con-
vert the time-dependent graph into a sequence of static
graphs over time and each static graph is called a snapshot.
The snapshot-based approach faces a huge challenge of gen-
erating a large number of snapshots even if there is only
one time-dependent graph, which consumes a lot of storage
space and query time. Therefore, many corresponding tech-
niques have been proposed for efficient snapshot processing.

Cattuto et al. [13] proposed a time-dependent social net-
work management system with a multi-layer index structure
based on Neo4j. They used wearable sensors to collect time-
dependent data and built a time-resolved behavioral social
network. Then, they defined a frame to contain the status of
the social network during each time interval. For each frame,
they built a proximity graph whose nodes represent individu-
als and edges represent proximity relations between indi-
viduals recorded in the corresponding frame. The TGraph
[34] is also a time-dependent network management system
based on Neo4j. The TGraph uses Neo4j storage nodes, rela-
tionships and static properties of nodes/relationships, while
the time-dependent properties of nodes/relationships are
stored by a dynamic properties storage (DPS) component.
The TGraph first writes the time-dependent properties to
the memory data structure MemTable. Then, DPS stores the
data in the MemTable into the disk files UnStableFile and
StableFile. Each UnStableFile and StableFile holds the data
within a time interval. Finally, DPS uses MetaFile to record
the filename and the corresponding time interval of each
file. The TGraph records all time-dependent information in
memory, which causes many data to be logged repeatedly.

To support the large-scale graph, distributed time-
dependent graph management systems with low-cost stor-
age and efficient query time-dependent information are
proposed. DynamoGraph [67] exploits graph partitioning
to store each individual vertex as a map containing key-
value pairs tagged with time or JSON document. The edges
are stored within vertex documents in a list that contains 2  http://neo4j​.com/.

3  http://think​aurel​ius.githu​b.io/titan​/.

http://neo4j.com/
http://thinkaurelius.github.io/titan/

363Time‑Dependent Graphs: Definitions, Applications, and Algorithms﻿	

1 3

the edges alongside with their attributes. DeltaGraph [41]
performs snapshot retrieval queries in parallel by recording
graph data over time through a hierarchical index structure.
In DeltaGraph, the leaf nodes correspond to equispaced
snapshots, and the edges between the nodes preserve the
difference between the corresponding snapshots. Snapshots
and edges can be distributed to a group of computers in
parallel by using horizontal partitions for distributed stor-
age. DeltaGraph records an atomic activity in the network
by an event. An event can be used for creation, deletion,
and changing attributes of vertices and edges. Moreover, an
event represents the occurrence of an edge or vertex at a time
instance. Hence, an event always corresponds to a single
timepoint. Therefore, for the snapshot St and St+1 at time t
and t + 1 , respectively, we have that

where E is the set of all events at time t + 1 . Khurana and
Deshpande showed that the DeltaGraph can solve both sin-
gle-point queries as well as multi-point snapshot queries,
that is, to retrieve a graph structure/a subset of vertex or
edge attributed/all attributed in a time instance and a time
interval, respectively.

6.2 � Traversal‑Based System

Snapshot-based systems are useful for analyzing the evolu-
tion of networks. However, as pointed out in [75], the query
results obtained by converting the time-dependent graph
into a static graph are completely different from the results
directly obtained from time-dependent graph. Therefore,
these snapshot-based systems only adapt to settle snapshot-
based queries, but not suitable for traversal-based queries
such as information diffusion analysis [10]. Compared to
snapshot-based systems, traversal-based systems are suit-
able for analyzing information dissemination that follows
time limits.

The ChronoGraph [10] is a novel system enabling time-
dependent graph traversals. The ChronoGraph supports
three types of graphs, including static property graphs, time-
instant property graphs, and time-period property graphs. It
splits time-dependent graph into a collection of events that
are instances of graph elements that are valid for a specific
time-instant or a non-negligible period of time. In a cita-
tion network, the time-instant property graph consists of ⋃

id1,id2,t
e(id1�isCitedBy�id2)t , representing v(id1) cites v(id2)

at time t. And in a phone call network, the time-period prop-
erty graph consists of

⋃
id1,id2,(t1,t2)

e(id1�isCalling�id2)(t1,t2) ,
representing v(id1) has a phone call with v(id2) starting at t1
and ending at t2 . The ChronoGraph divides the time period
from the time instances into a time period by a property
filter, a property skip parameter, a singular constraint fil-
ter, and a singular constraint skip parameter, and converts

St+1 = St + E, St = St+1 − E.

all time-instant events into time-period events. Then, the
ChronoGraph uses a path management scheme, formed as
Map < Object, Set < Lsit < Object >>> , to manage a pair
of current graph elements and their relevant path set (i.e.,
lists of objects). The ChronoGraph allows convenient and
efficient time-dependent graph traversal and has a good
effect on time-dependent breadth-first search, depth-first
search, and single source shortest path.

7 � Conclusions and Open Questions

In this paper, we reviewed extensive studies on time-depend-
ent graphs. We showed how dynamic systems benefit from
the modeling of time-dependent graphs and discussed
methods for discovering and analyzing dynamic network
structures in the time domain. Meanwhile, we explained
the great significance of the time-dependent graph struc-
ture in network researches, which has a good application in
many fields. Therefore, the studies of the time-dependent
graph have great theoretical significance and broad applica-
tion prospects for studying the query processing and min-
ing problems. As the data scale continues to expand and
the data structure becomes more and more complex, these
bring more challenges to the query processing and data min-
ing problems on time-dependent graphs, which also bring
more opportunities for researchers.

The study of the time-dependent graph is still a rather
young field with many open questions and unexplored direc-
tions. We will list some of these issues as follows:

Generative models for time-dependent networks. There are
very few models building for time-dependent networks. At
the same time, existing models also have shortcomings,
especially the snapshot-based model which ignores the
impact of time information between snapshots. Therefore, an
important open issue is to clearly construct and study param-
eterized, generative models for time-dependent networks.

Measures for time-dependent networks. Although a large
number of measures of time-dependent graphs have been
discussed in this review, we believe there is much room
for improvement in this measure. The existing studies of
time-dependent graphs are mostly based on time instances
which are discrete. However, the discrete time-dependent
graph is rarely used in practical applications, and more is
the time-dependent graph with continuous time. Therefore,
how to extend the existing time-dependent algorithms to
not only discrete time-dependent graphs but also continu-
ous time-dependent graphs is one of the focuses of future
research works. At the same time, there are many unique
time-dependent queries but most of the existing measures
are generalizations of static network measures. Accordingly,

364	 Y. Wang et al.

1 3

other important open issues are quantifying and character-
izing the structural features of real-time-dependent systems.

Dynamical systems for time-dependent networks As we men-
tioned in Sect. 6, most of the time-dependent systems are
snapshot based which only adapt to snapshot-based queries.
These systems are less sensitive to time-dependent effects
and only focus on the structure changes over time. How-
ever, a maturity and integrity time-dependent system does
not only benefit to the questions about structure contacts,
but also about the nature of acting over contacts. Conse-
quently, there should be more systems that are sensitive to
time-dependent effects like the order of events.

Acknowledgements  This work is supported by the National Natu-
ral Science Foundation of China for Excellent Young Scientists
(61622202), the National Natural Science Foundation of China
(61732003, 61572119), and the Fundamental Research Funds for the
Central Universities (N150402005).

Compliance with Ethical Standards 

Conflict of interest  The authors declare that they have no conflict of
interest.

Informed consent  Informed consent was obtained from all individual
participants.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Batz GV, Sanders P (2012) Time-dependent route planning with
generalized objective functions. In: European symposium on
algorithms. Springer, pp 169–180

	 2.	 Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1996)
An asymptotically optimal multiversion B-tree. VLDB J Int J
Very Large Data Bases 5(4):264–275

	 3.	 Bellman R (1958) On a routing problem. Q Appl Math
16(1):87–90

	 4.	 Bhadra S, Ferreira A (2003) Complexity of connected compo-
nents in evolving graphs and the computation of multicast trees
in dynamic networks. In: International conference on ad-hoc
networks and wireless. Springer, pp 259–270

	 5.	 Bhavsar SP, Splinter RJ (1996) The superiority of the minimal
spanning tree in percolation analyses of cosmological data sets.
Mon Not R Astron Soc 282(4):1461–1466

	 6.	 Bloom BH (1970) Space/time trade-offs in hash coding with
allowable errors. Commun ACM 13(7):422–426

	 7.	 Bogdanov P, Mongiovì M, Singh AK (2011) Mining heavy sub-
graphs in time-evolving networks. In: 2011 IEEE 11th interna-
tional conference on data mining. IEEE, pp 81–90

	 8.	 Bollobás B (2013) Modern graph theory, vol 184. Springer,
Berlin

	 9.	 Braha D, Bar-Yam Y (2009) Time-dependent complex networks:
dynamic centrality, dynamic motifs, and cycles of social interac-
tions. In: Adaptive networks. Springer, pp 39–50

	10.	 Byun J, Woo S, Kim D (2019) ChronoGraph: enabling tempo-
ral graph traversals for efficient information diffusion analysis
over time. IEEE Trans Knowl Data Eng. https​://doi.org/10.1109/
TKDE.2019.28915​65

	11.	 Carrasco B, Lu Y, da Trindade JM (2011) Partitioning social
networks for time-dependent queries. In: Proceedings of the 4th
workshop on social network systems. ACM, p 2

	12.	 Carroll KP, McClaran SR, Nelson EL, Barnett DM, Friesen DK,
William GN (1992) AUV path planning: an A* approach to path
planning with consideration of variable vehicle speeds and mul-
tiple, overlapping, time-dependent exclusion zones. In: Proceed-
ings of the 1992 symposium on autonomous underwater vehicle
technology. IEEE, pp 79–84

	13.	 Cattuto C, Quaggiotto M, Panisson A, Averbuch A (2013) Time-
varying social networks in a graph database: a Neo4j use case. In:
First international workshop on graph data management experi-
ences and systems. ACM, p 11

	14.	 Chabini I, Lan S (2002) Adaptations of the A* algorithm for
the computation of fastest paths in deterministic discrete-time
dynamic networks. IEEE Trans Intell Transp Syst 3(1):60–74

	15.	 Chen X, Zhang C, Ge B, Xiao W (2017) Temporal query process-
ing in social network. J Intell Inf Syst 49(2):147–166

	16.	 Cooke KL, Halsey E (1966) The shortest route through a network
with time-dependent internodal transit times. J Math Anal Appl
14(3):493–498

	17.	 Cordella LP, Foggia P, Sansone C, Vento M (1999) Performance
evaluation of the VF graph matching algorithm. In: Proceedings
10th international conference on image analysis and processing.
IEEE, pp 1172–1177

	18.	 Dehne F, Omran MT, Sack JR (2009) Shortest paths in time-
dependent FIFO networks using edge load forecasts. In: Proceed-
ings of the second international workshop on computational trans-
portation science. ACM, pp 1–6

	19.	 Dehne F, Omran MT, Sack JR (2012) Shortest paths in time-
dependent FIFO networks. Algorithmica 62(1–2):416–435

	20.	 Delling D, Wagner D (2009) Time-dependent route planning. In:
Robust and online large-scale optimization. Springer, pp 207–230

	21.	 Demiryurek U, Banaei-Kashani F, Shahabi C, Ranganathan A
(2011) Online computation of fastest path in time-dependent spa-
tial networks. In: International symposium on spatial and temporal
databases. Springer, pp 92–111

	22.	 Ding B, Yu JX, Qin L (2008) Finding time-dependent shortest
paths over large graphs. In: Proceedings of the 11th international
conference on extending database technology: advances in data-
base technology. ACM, pp 205–216

	23.	 Disser Y, Müller-Hannemann M, Schnee M (2008) Multi-criteria
shortest paths in time-dependent train networks. In: International
workshop on experimental and efficient algorithms. Springer, pp
347–361

	24.	 Foschini L, Hershberger J, Suri S (2011) On the complexity of
time-dependent shortest paths. In: Proceedings of the twenty-
second annual ACM-SIAM symposium on discrete algorithms.
SIAM, pp 327–341

	25.	 Gendreau M, Ghiani G, Guerriero E (2015) Time-dependent rout-
ing problems: a review. Comput Oper Res 64:189–197

	26.	 Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Sto-
ica I (2014) GraphX: graph processing in a distributed dataflow
framework. In: 11th USENIX symposium on operating systems
design and implementation (OSDI 14), pp 599–613

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TKDE.2019.2891565
https://doi.org/10.1109/TKDE.2019.2891565

365Time‑Dependent Graphs: Definitions, Applications, and Algorithms﻿	

1 3

	27.	 Gunturi V, Shekhar S, Bhattacharya A (2010) Minimum spanning
tree on spatio-temporal networks. In: International conference on
database and expert systems applications. Springer, pp 149–158

	28.	 Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV,
Dupuy D, Walhout AJ, Cusick ME, Roth FP et al (2004) Evidence
for dynamically organized modularity in the yeast protein–protein
interaction network. Nature 430(6995):88

	29.	 Hanneke S, Fu W, Xing EP et al (2010) Discrete temporal models
of social networks. Electron J Stat 4:585–605

	30.	 Hartmanis J (1982) Computers and intractability: a guide to the
theory of NP-completeness. SIAM Rev 24(1):90

	31.	 Held M, Karp RM (1970) The traveling-salesman problem and
minimum spanning trees. Oper Res 18(6):1138–1162

	32.	 Holme P, Edling CR, Liljeros F (2004) Structure and time evolu-
tion of an internet dating community. Soc Netw 26(2):155–174

	33.	 Holme P, Saramäki J (2012) Temporal networks. Phys Rep
519(3):97–125

	34.	 Huang H, Song J, Lin X, Ma S, Huai J (2016) TGraph: a tempo-
ral graph data management system. In: Proceedings of the 25th
ACM international on conference on information and knowl-
edge management. ACM, pp 2469–2472

	35.	 Huang S, Fu AWC, Liu R (2015) Minimum spanning trees in
temporal graphs. In: Proceedings of the 2015 ACM SIGMOD
international conference on management of data. ACM, pp
419–430

	36.	 Huo W, Tsotras VJ (2014) Efficient temporal shortest path queries
on evolving social graphs. In: Proceedings of the 26th interna-
tional conference on scientific and statistical database manage-
ment. ACM, p 38

	37.	 Ichoua S, Gendreau M, Potvin JY (2003) Vehicle dispatching with
time-dependent travel times. Eur J Oper Res 144(2):379–396

	38.	 Idri A, Oukarfi M, Boulmakoul A, Zeitouni K, Masri A (2017)
A new time-dependent shortest path algorithm for multimodal
transportation network. Procedia Comput Sci 109:692–697

	39.	 Kempe D, Kleinberg J, Kumar A (2002) Connectivity and
inference problems for temporal networks. J Comput Syst Sci
64(4):820–842

	40.	 Khoa VD, Pham TV, Nguyen HT, Van Hoai T (2015) Multi–cri-
teria route planning in bus network. In: IFIP international confer-
ence on computer information systems and industrial manage-
ment. Springer, pp 535–546

	41.	 Khurana U, Deshpande A (2013) Efficient snapshot retrieval over
historical graph data. In: 2013 IEEE 29th international conference
on data engineering (ICDE). IEEE, pp 997–1008

	42.	 Köhler E, Langkau K, Skutella M (2002) Time-expanded graphs
for flow-dependent transit times. In: European symposium on
algorithms. Springer, pp 599–611

	43.	 Kollmitz M, Hsiao K, Gaa J, Burgard W (2015) Time dependent
planning on a layered social cost map for human-aware robot navi-
gation. In: 2015 European conference on mobile robots (ECMR).
IEEE, pp 1–6

	44.	 Kontogiannis S, Zaroliagis C (2016) Distance oracles for time-
dependent networks. Algorithmica 74(4):1404–1434

	45.	 Lebre S, Becq J, Devaux F, Stumpf MP, Lelandais G (2010) Sta-
tistical inference of the time-varying structure of gene-regulation
networks. BMC Syst Biol 4(1):130

	46.	 Li D, Jia X, Liu H (2004) Energy efficient broadcast routing
in static ad hoc wireless networks. IEEE Trans Mob Comput
3(2):144–151

	47.	 Li Z, Ding B, Han J, Kays R (2010) Swarm: mining relaxed tem-
poral moving object clusters. Proc VLDB Endow 3(1–2):723–734

	48.	 Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Heller-
stein JM (2012) Distributed GraphLab: a framework for machine
learning and data mining in the cloud. Proc VLDB Endow
5(8):716–727

	49.	 Ma S, Hu R, Wang L, Lin X, Huai J (2017) Fast computation
of dense temporal subgraphs. In: 2017 IEEE 33rd international
conference on data engineering (ICDE). IEEE, pp 361–372

	50.	 Malandraki C, Daskin MS (1992) Time dependent vehicle rout-
ing problems: formulations, properties and heuristic algorithms.
Transp Sci 26(3):185–200

	51.	 Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N,
Czajkowski G (2010) Pregel: a system for large-scale graph pro-
cessing. In: Proceedings of the 2010 ACM SIGMOD international
conference on management of data. ACM pp 135–146

	52.	 Marchetti-Bowick M, Yin J, Howrylak JA, Xing EP (2016) A
time-varying group sparse additive model for genome-wide
association studies of dynamic complex traits. Bioinformatics
32(19):2903–2910

	53.	 Menger K (1927) Zur allgemeinen kurventheorie. Fundam Math
10(1):96–115

	54.	 Mertzios GB, Michail O, Spirakis PG (2019) Temporal network
optimization subject to connectivity constraints. Algorithmica
81(4):1416–1449

	55.	 Michail O (2016) An introduction to temporal graphs: an algo-
rithmic perspective. Internet Math 12(4):239–280

	56.	 Moinet A, Starnini M, Pastor-Satorras R (2015) Burstiness and
aging in social temporal networks. Phys Rev Lett 114(10):108701

	57.	 Nannicini G, Delling D, Liberti L, Schultes D (2008) Bidirec-
tional A* search for time-dependent fast paths. In: International
workshop on experimental and efficient algorithms. Springer, pp
334–346

	58.	 Nicosia V, Tang J, Musolesi M, Russo G, Mascolo C, Latora V
(2012) Components in time-varying graphs. Chaos Interdiscip J
Nonlinear Sci 22(2):023101

	59.	 Orda A, Rom R (1990) Shortest-path and minimum-delay algo-
rithms in networks with time-dependent edge-length. J ACM
(JACM) 37(3):607–625

	60.	 Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic
interactome: it’s about time. Brief Bioinform 11(1):15–29

	61.	 Pyrga E, Schulz F, Wagner D, Zaroliagis C (2008) Efficient mod-
els for timetable information in public transportation systems. J
Exp Algorithmics (JEA) 12:2–4

	62.	 Qiu X, Zhao L, Wang J, Wang X, Wang Q (2016) Effects of time-
dependent diffusion behaviors on the rumor spreading in social
networks. Phys Lett A 380(24):2054–2063

	63.	 Rao A, Hero AO III, Engel JD et al (2007) Inferring time-varying
network topologies from gene expression data. EURASIP J Bio-
inform Syst Biol 2007:7

	64.	 Redmond U, Cunningham P (2016) Subgraph isomorphism in
temporal networks. arXiv preprint arXiv​:1605.02174​

	65.	 Riolo CS, Koopman JS, Chick SE (2001) Methods and measures
for the description of epidemiologic contact networks. J Urban
Health 78(3):446–457

	66.	 Semertzidis K, Pitoura E (2019) Top-k durable graph pat-
tern queries on temporal graphs. IEEE Trans Knowl Data Eng
31(1):181–194

	67.	 Steinbauer M, Anderst-Kotsis G (2016) Dynamograph: a distrib-
uted system for large-scale, temporal graph processing, its imple-
mentation and first observations. In: Proceedings of the 25th inter-
national conference companion on world wide web. International
World Wide Web Conferences Steering Committee, pp 861–866

	68.	 Subramaniam S, Pope S (1998) A mixing model for turbulent
reactive flows based on euclidean minimum spanning trees. Com-
bust Flame 115(4):487–514

	69.	 Sun X, Tan Y, Wu Q, Wang J (2017) Hasse diagram based algo-
rithm for continuous temporal subgraph query in graph stream.
In: 2017 6th international conference on computer science and
network technology (ICCSNT). IEEE, pp 241–246

http://arxiv.org/abs/1605.02174

366	 Y. Wang et al.

1 3

	70.	 Tang J, Musolesi M, Mascolo C, Latora V (2009) Temporal dis-
tance metrics for social network analysis. In: Proceedings of the
2nd ACM workshop on online social networks. ACM, pp 31–36

	71.	 van der Tuin MS, de Weerdt M, Batz GV (2018) Route planning
with breaks and truck driving bans using time-dependent contrac-
tion hierarchies. In: Proceedings of the twenty-eighth international
conference on automated planning and scheduling, ICAPS 2018,
Delft, The Netherlands, June 24–29, 2018, pp 356–365

	72.	 Wang C, Tang J, Sun J, Han J (2011) Dynamic social influence
analysis through time-dependent factor graphs. In: 2011 Inter-
national conference on advances in social networks analysis and
mining. IEEE, pp 239–246

	73.	 Wang S, Lin W, Yang Y, Xiao X, Zhou S (2015) Efficient route
planning on public transportation networks: a labelling approach.
In: Proceedings of the 2015 ACM SIGMOD international confer-
ence on management of data. ACM, pp 967–982

	74.	 Wang W, Yang L, Liao Q, Zhu X, Zhang Q (2015) TiSA: time-
dependent social network advertising. In: 2015 IEEE international
conference on communications (ICC). IEEE, pp 1188–1193

	75.	 Wu H, Cheng J, Huang S, Ke Y, Lu Y, Xu Y (2014) Path problems
in temporal graphs. Proc VLDB Endow 7(9):721–732

	76.	 Wu H, Cheng J, Ke Y, Huang S, Huang Y, Wu H (2016) Efficient
algorithms for temporal path computation. IEEE Trans Knowl
Data Eng 28(11):2927–2942

	77.	 Xu Y, Huang J, Liu A, Li Z, Yin H, Zhao L (2017) Time-con-
strained graph pattern matching in a large temporal graph. In:
Asia-Pacific web (APWeb) and web-age information manage-
ment (WAIM) joint conference on web and big data. Springer, pp
100–115

	78.	 Yang L, Zhou X (2017) Optimizing on-time arrival probability
and percentile travel time for elementary path finding in time-
dependent transportation networks: linear mixed integer program-
ming reformulations. Transp Res Part B Methodol 96:68–91

	79.	 Yang Y, Yan D, Wu H, Cheng J, Zhou S, Lui J (2016) Diversified
temporal subgraph pattern mining. In: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery
and data mining. ACM, pp 1965–1974

	80.	 Zhao Q, Tian Y, He Q, Oliver N, Jin R, Lee WC (2010) Commu-
nication motifs: a tool to characterize social communications. In:
Proceedings of the 19th ACM international conference on Infor-
mation and knowledge management. ACM, pp 1645–1648

	Time-Dependent Graphs: Definitions, Applications, and Algorithms
	Abstract
	1 Introduction
	2 Time-Dependent Graph Framework
	2.1 Definition
	2.2 Data Modeling
	2.2.1 Models for Discrete Time-Dependent Graphs
	2.2.2 Models for Continuous Time-Dependent Graphs

	2.3 Topological Structure
	2.3.1 Time-Respecting Paths
	2.3.2 Connectivity, Components, and Menger’s Theorem
	2.3.3 Spanning Tree

	3 Time-Dependent Route Planning
	3.1 Single-Criteria Route Planning
	3.1.1 Models Based on Discrete Travel Time
	3.1.2 Models Based on Continuous Travel Time

	3.2 Multi-criteria Route Planning

	4 Time-Dependent Social Analysis
	5 Time-Dependent Subgraph Problems
	5.1 Time-Dependent Subgraph Matching
	5.1.1 Querying Static Graph Pattern
	5.1.2 Querying Time-Dependent Graph Pattern

	5.2 Time-Dependent Subgraph Mining

	6 Time-Dependent Graph Systems
	6.1 Snapshot-Based System
	6.2 Traversal-Based System

	7 Conclusions and Open Questions
	Acknowledgements
	References

