
Vol.:(0123456789)1 3

Data Science and Engineering (2018) 3:323–340
https://doi.org/10.1007/s41019-018-0081-5

Collusion‑Resistant Processing of SQL Range Predicates

Manish Kesarwani1  · Akshar Kaul1 · Gagandeep Singh1 · Prasad M. Deshpande2 · Jayant R. Haritsa3

Received: 1 August 2018 / Revised: 29 October 2018 / Accepted: 10 November 2018 / Published online: 20 November 2018
© The Author(s) 2018

Abstract
Prior solutions for securely handling SQL range predicates in outsourced Cloud-resident databases have primarily focused on
passive attacks in the Honest-but-Curious adversarial model, where the server is only permitted to observe the encrypted query
processing. We consider here a significantly more powerful adversary, wherein the server can launch an active attack by clandes-
tinely issuing specific range queries via collusion with a few compromised clients. The security requirement in this environment
is that data values from a plaintext domain of size N should not be leaked to within an interval of size H . Unfortunately, all prior
encryption schemes for range predicate evaluation are easily breached with only O(log2 �) range queries, where � = N∕H . To
address this lacuna, we present SPLIT, a new encryption scheme where the adversary requires exponentially more—�(�)—
range queries to breach the interval constraint and can therefore be easily detected by standard auditing mechanisms. The novel
aspect of SPLIT is that each value appearing in a range-sensitive column is first segmented into two parts. These segmented
parts are then independently encrypted using a layered composition of a secure block cipher with the order-preserving encryp-
tion and prefix-preserving encryption schemes, and the resulting ciphertexts are stored in separate tables. At query processing
time, range predicates are rewritten into an equivalent set of table-specific sub-range predicates, and the disjoint union of their
results forms the query answer. A detailed evaluation of SPLIT on benchmark database queries indicates that its execution
times are well within a factor of two of the corresponding plaintext times, testifying its efficiency in resisting active adversaries.

Keywords  Security · SQL · Range · Cloud

1  Introduction

Cloud computing has led to the emergence of the “Data-
base-as-a-Service” (DBaaS) model for outsourcing data-
bases to third-party service providers (e.g., Amazon RDS,
IBM Cloudant). Accordingly, considerable efforts have been

made over the last decade to devise encryption mechanisms
that organically support query processing without materi-
ally compromising on data security. Here, we investigate
this issue specifically with regard to range predicates, the
core building blocks of decision support (OLAP) queries on
data warehouses.

Security Architecture
A typical DBaaS setup consists of the entities shown in

Fig. 1, including: (1) a service provider (SP), who main-
tains the Cloud infrastructure; (2) a data owner (DO), who
is the data source; (3) a set of query clients (QC), who are
authorized to issue queries over the data stored by DO on
SP’s platform, and (4) a security agent (SA), who acts as
the bridge connecting the DO and QC with the SP.

The SA is a trusted entity and could be a simple proxy
in the DO’s enterprise network. Alternatively, it could be
located at the SP, implemented using secure threads or
secure co-processors. Although all queries pass through the
SA, it is a lightweight component since it is responsible only
for query rewriting and decryption of the final results.

 *	 Manish Kesarwani
	 manishkesarwani@in.ibm.com

	 Akshar Kaul
	 akshar.kaul@in.ibm.com

	 Gagandeep Singh
	 gagandeep_singh@in.ibm.com

	 Prasad M. Deshpande
	 prasadmd@acm.org

	 Jayant R. Haritsa
	 haritsa@iisc.ac.in

1	 IBM Research, Bangalore, India
2	 Kena Labs, Bangalore, India
3	 Indian Institute of Science, Bangalore, India

http://orcid.org/0000-0003-0939-2621
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-018-0081-5&domain=pdf

324	 M. Kesarwani et al.

1 3

Adversary Model
The SP, on the other hand, is always untrusted and

treated as the primary adversary. We assume that the SP is
only interested in deciphering the encrypted data and not in
affecting the functionality of the database system. That is,
the query processing engine is in pristine condition, and all
client queries are answered correctly and completely. Fur-
ther, the SP maintains compliance with the standard access
control and auditing mechanisms.

The query clients (QC) can either be trusted or untrusted,
giving rise to the following alternative adversarial models:

(a)	 Honest-but-Curious (HBC), in which the clients are
trusted. Here, only passive attacks by the SP are pos-
sible—that is, the SP can try to breach the plaintext
values solely by observing the encrypted data, and the
computations executed by the database engine on these
data. This model has been widely considered in the
literature (e.g., [1, 5, 15, 16, 18, 21, 22]).

(b)	 Honest-but-Curious with Collusion (HCC), in which
the SP can unleash active attacks through collusion
with a few compromised clients—specifically, the
SP can inject range queries of its choice through the
compromised QC and then observe how these queries
are processed by the database engine hosted at its site.
Further, these injected queries can be constructed adap-

tively, using the results of previous queries. This power-
ful attack model was recently considered in [9], as an
adaptive semi-honest adversary.

1.1 � Example Security Breach under HCC

Consider a bank that has outsourced its relational database to
the Cloud. Let the schema include a table Loan (CustName,
LoanAmt, Collateral) capturing the loans taken by custom-
ers, and the collaterals furnished to obtain these loans, as
shown in Fig. 2a. In order to simultaneously maintain secu-
rity on the Cloud and support range query processing, the
current practice is to employ one of the contemporary range
encryption schemes—e.g., OPE [5]—on the sensitive Loan-
Amt and Collateral data columns, as shown in Fig. 2b.1

Assume that the bank provides a form-based interface
to third parties, such as auditors and analysts, to query the
encrypted data. For instance, a form to generate a report
that lists all the loans of a customer (say Alice) in a given
range—say [15,000:40,000], and the associated collaterals
in another range—say [13,000:33,000]. The corresponding

Fig. 1   System entities in DBaaS
model

Fig. 2   Plaintext and OPE bank-
ing database. a Plaintext Loan
table. b Encrypted Loan_OPE
table

Fig. 3   Form-based SQL query
with range predicates SELECT * FROM Loan WHERE

LoanAmt BETWEEN 15000 AND 40000 AND
Collateral BETWEEN 13000 AND 33000 AND CustName = ’Alice’;

1  The CustName column is encrypted with AES for additional secu-
rity.

325Collusion‑Resistant Processing of SQL Range Predicates﻿	

1 3

plaintext SQL query that is internally generated from the
Web form is shown in Fig. 3.

Now suppose the HCC adversary comprises of the SP
and the authorized auditors of customer Alice. In this set-
ting, the security goal is to protect the adversary from learn-
ing the plaintext values of LoanAmt (and Collateral) for an
unrelated customer from the encrypted Loan_OPE table.
However, the OPE-based encryption scheme can be easily
breached for any target cell with just a few injected queries
by Alice’s auditors on Loan_OPE. For instance, assume that
the adversary selects the shaded tuple in Loan_OPE as the
target cell—corresponding to customer Bob. Then, the attack
proceeds as follows:

•	 The adversary first injects a query Q1 , similar
to that of Fig. 3, with the LoanAmt range set to
[OPE(32,768):OPE(65,535)], Collateral range set to
[OPE(40,000):OPE(40,000)],2 and CustName set to
[AES(’Alice’)]. When Q1 is processed by the database
engine, the SP observes whether or not Bob’s encrypted
LoanAmt lies in this range (note that the SP has unre-
stricted read access over encrypted data).

•	 Since it happens to lie outside the range, the adversary
injects Q2 , which is identical to Q1 except that the Loan-
Amt range is now set to [OPE(16,384):OPE(32,767)].
When Q2 is executed, the SP finds that Bob’s encrypted
LoanAmt lies in the target range.

•	 The adversary then injects another similar query, Q3 , with
LoanAmt now set to [OPE(24,576):OPE(32,767)].

•	 Since OPE(24,576) is equal to Bob’s encrypted LoanAmt
value in Loan_OPE, the HCC adversary learns that Bob’s
loan amount is 24,576.

The above process is representative of an injection-based
binary search attack (BSA) that becomes feasible via collu-
sion. As proved in [14], if the data distribution is not known,
then no search algorithm that is based on comparison of data
items can exhibit better worst-case performance than binary
search. Therefore, BSA is also the strongest feasible attack
in the HCC environment—it is applicable to all security sys-
tems that store the encryption of a plaintext table in a single
ciphertext table and allow comparisons of ciphertexts in the
encrypted domain.

1.2 � Range Predicate Security (RPS)

Before we address the above weakness, it is necessary to
formalize the security definition in the HCC model. In this

scenario, a plausible security formulation for SQL range
predicates is that data values from a plaintext domain of
size N should not be leaked to within an interval of size H
on this domain. For instance, the bank may require that no
loan amount should be leaked to within an interval of size
15,000 from its actual value. Note that setting H to 1 cor-
responds to the special case where a security breach occurs
only if a plaintext is fully leaked—this typically applies to
identificatory attributes such as Social Security numbers.

Unfortunately, as highlighted in the BSA example, all
previous schemes for range security can be breached under
HCC with a sequence of only �(���

�
�) range queries, where

� = N∕H . To address this lacuna, we present here a new
encryption scheme, called SPLIT, in which the HCC adver-
sary requires exponentially more—i.e., �(�)—range queries
to breach the interval constraint. Such extended query pat-
terns require impractically long durations to achieve covertly
or can be easily detected by standard auditing mechanisms.
Therefore, the interval security requirement is effectively
satisfied in either case.

We present a detailed evaluation of SPLIT on bench-
mark databases and demonstrate that its execution times
are always within twice the corresponding plaintext times,
thus providing an attractive security performance trade-
off against an extremely strong adversary. Further, while
SPLIT does incur large storage overheads, the extremely
low resource costs on the Cloud allow it to retain viability.
Finally, SPLIT is attractive from a deployment perspective
also since it can be implemented as a security layer over
existing database engines, without necessitating internal
changes.

Organization
The rest of the paper is organized as follows: We begin

with the formal problem framework in Sect. 2. The new
SPLIT encryption scheme and its associated range query
processing technique are described in Sects. 3 and 4, respec-
tively. The security of SPLIT is analyzed in Sect. 5, and
the formal proofs are derived in Sect. 6. The experimen-
tal results are presented in Sect. 7, while deployment and
integration issues are discussed in Sect. 8. Related work is
reviewed in Sect. 9, and our conclusions are summarized
in Sect. 10.

2 � Problem Framework

As mentioned previously, the OPE and PPE schemes are
currently in vogue for the secure handling of range queries
and are defined as follows:

Order-Preserving Encryption [5] An order-preserving
encryption function Eo is a one-to-one function from A ⊆ ℕ

2  The Collateral range is fixed to a single value since the objective is
to breach LoanAmt. A similar exercise can be carried out to break the
Collateral column.

326	 M. Kesarwani et al.

1 3

to B ⊆ ℕ with |A| ≤ |B| , such that, for any two plaintext num-
bers i, j ∈ A , Eo(i) > Eo(j) iff i > j.

Prefix-Preserving Encryption [22] A prefix-preserving
encryption function Ep is a one-to-one function from {0, 1}n
to {0, 1}n such that, given two plaintext numbers a and b
sharing a k-bit prefix, their corresponding ciphertexts Ep(a)
and Ep(b) also share a k-bit prefix.

2.1 � Notations

The following notations are used in the remainder of this
paper:

•	 xpxp+1 ⋯ xq denotes extraction of bits p through q from
the (big-endian) binary representation of x.

•	 x1||⋯ ||xk denotes the concatenation of bits x1,⋯ , xk ,
from which each xi is uniquely recoverable.

•	  denotes the plaintext domain. Further, given a plaintext
value x, its encrypted version is denoted by x∗.

•	 N denotes the size of the plaintext domain, and H repre-
sents the size of the RPS interval constraint specified by
the data owner. The normalized plaintext domain size is
denoted by � =

N

H
.

•	 [x]m
$
←− denotes a set of m plaintexts selected uniformly

at random from the domain .
•	 The security parameter is denoted by �—for our purposes

here, it corresponds to the bit lengths, denoted by n, of
the plaintext values.

Negligible Success Probability (Definition 3.5 of [17]) Any
encryption scheme is said to be secure if for any probabilistic
polynomial-time adversary,3 there exists an integer N such
that for all integers 𝜆 > N the probability that the adversary
succeeds in breaking the scheme is f (𝜆) < 1∕p(𝜆) , where
p() is any polynomial in � . That is, for every constant c, the
adversary’s success probability is smaller than �−c for large
enough values of � . A function that grows smaller than any
inverse polynomial is called negligible and f (�) denotes this
negligible success probability of the adversary.

2.2 � Data and Query Model

We assume that the encrypted information stored on the
Cloud corresponds to a data warehouse, and the underlying
plaintext values in the range-sensitive columns are from high
cardinality domains. The queries issued against this database
are OLAP-style decision support queries submitted through
form interfaces.

2.3 � Adversary Model

As highlighted in Sect. 1, the data owner (DO) and the
security agent (SA) are trusted entities in the HCC model,
whereas the service provider (SP) is the untrusted entity who
can collude with a few compromised query clients (QCs) to
breach data security.

We assume that the adversary can observe all the
encrypted data hosted at the SP site, and monitor the com-
putations carried out by the database engine. He is also privy
to the choice of encryption schemes, with only the specific
keys being kept secret. Further, the adversary can issue a
sequence of range queries (via the set of compromised QC).
In formulating each query in the sequence, the adversary is
given the power to observe the results of previous queries
in the sequence—it is this ability to issue adaptive queries
which makes HCC a very powerful adversary. Specifically,
using the form-based interface, the adversary can issue
range queries with varying parameters and observe the cor-
responding computations on the SP site.

Adversary’s Objective In accordance with the DBaaS
model, the DO gives access to portions of the data stored on
the Cloud to QCs, using an access control mechanism and
fixed query form templates. Further, the DO also defines
the interval constraint size H . Given this environment, the
adversary’s objective is to breach the range predicate secu-
rity (RPS) interval constraint. As an aside, we note that
RPS is a variant of Message Recovery (MR) under an adap-
tive adversary, a commonly used security requirement in
practice [4].

We assume that the adversary chooses a target cell of
an encrypted tuple and desires to gain more information on
its plaintext value.4 The adversary’s quantitative goal is to
identify an interval (a, b) in which the plaintext value of
this encrypted cell lies such that |b − a| < H . Note that, in
the HCC model, each query will compulsorily leak some
information about the cells, since the adversary knows the
plaintext values of the range limits through collusion with
the client. Therefore, the goal of our scheme is not to com-
pletely prevent leakage; rather, we aim to minimize the leak-
age bandwidth, measured in terms of the number of queries
required to breach the security constraint for the target cell.

2.4 � Adversary Attack Model

We now move on to describing the Chosen Range Attack
model (CRA) unleashed by a HCC adversary. For ease of

3  Adversaries running for polynomial number of steps in the security
parameter �.

4  While the specific mechanism to choose a target cell is outside the
scope of this paper, it is possible that the HCC adversary may use
secondary sources such as metadata information and access frequen-
cies to make this identification.

327Collusion‑Resistant Processing of SQL Range Predicates﻿	

1 3

presentation, we use  to represent the adversary against the
deterministic encryption scheme  = (KeyGen,Enc,Dec).

The CRA attack model is applicable only to encryption
schemes that allow range predicates to be evaluated in the
encrypted domain. In this model, the adversary  has access
to a Range Check Algorithm, RCA​(x∗,RI). RCA​ takes two
inputs, x∗ being a ciphertext and RI being the encrypted Range
Information corresponding to a plaintext range. RCA​ outputs
1 if the plaintext value of x∗ belongs to the underlying range
specified by RI, else it outputs 0. RCA​ corresponds to the SP
observing the query processing at the Cloud server.  also has
access to a Transformation Oracle (   ). The   , on input of
a plaintext pair (lvalue, hvalue), returns the encrypted range
information RI such that RCA​(x∗,RI) outputs 1 if and only if
x ∈ [lvalue, hvalue] , where x∗ ← Enc(x) .   corresponds to
the SA rewriting the plaintext query into the equivalent query
over the encrypted database. The adversary  is given a set M∗
consisting of m ciphertexts and the interval constraint size H .
 selects a challenge ciphertext x∗ ∈ M∗ and his objective is to
identify a plaintext interval (a, b) for x∗ such that |b − a| < H .
Also,  is allowed to issue a polynomial (in � , the security
parameter) number of range queries to the   and observe
their computations and results.

The above attack model can be formalized in the form of
a game between the challenger  and the adversary  for the
deterministic encryption scheme :

The Chosen Range Attack Game ExpCRA


(�)

1.	  computes key K ← KeyGen(� ), chooses a set
M = {x1,⋯ , xm} , where [x]m

$
←− from plaintext domain

 , and computes the corresponding ciphertext set
M∗ = {x∗

1
,⋯ , x∗

m
} , where x∗

i
← EncK(xi)∀i ∈ {1,m}.

2.	  is given RCA​, H and M∗ as input and selects a cipher-
text x∗ ∈ {x∗

1
,⋯ , x∗

m
} as its challenge ciphertext.

3.	 Now  adaptively asks the encryption of polynomial
number of ranges from   and obtains the correspond-
ing encrypted range information RI.  uses RCA​ any
number of times and finally outputs a plaintext range
(a, b).

4.	 The output of the experiment is defined to be 1 if
x ∈ (a, b) and |b − a| < H , where x is the plaintext cor-
responding to the challenge ciphertext x∗ , and 0 other-
wise.

The CRA advantage of the adversary  against  is defined
as

 is said to be secure against a CRA adversary running in
polynomial time if the advantage is negligible. The goal of
the SPLIT scheme is to provide security against the CRA

(1)AdvCRA
 ,

(�) = |Pr[ExpCRA
 ,

(�) = 1]|

by the HCC adversary, if the plaintext domain is sufficiently
large.

3 � Database Encryption with SPLIT

In this section, we present the design of the SPLIT encryp-
tion scheme, which is conceptually based on two main
ideas of splitting and layered encryption. The motivation
for splitting stems from the limitation of current security
systems (like OPE) that allow range query processing
directly over encrypted data. Such systems are easily sus-
ceptible to a CRA attack in the HCC model, as shown in
Sect. 1.1. Specifically, the adversary is able to perform a
simple binary search as it is able to refine its search range
with every subsequent query. Hence, to stop the adversary
from continuing its binary search, we divide the search-
able data in separately encrypted data tables. Secondly, the
motivation for layered encryption is to prevent linkages of
tuples across these various encrypted tables.

The above concepts are elaborated in Sects. 3.1
and 3.2, respectively. Subsequently, we describe how a
plaintext database is converted to an encrypted database,
followed by a rationale for the design choices.

3.1 � Splitting of Data

If we consider plaintexts sourced from an n-bit integer
domain, the entire set of these plaintexts can be repre-
sented by a complete binary tree of height n, referred to
as the Plaintext Tree (PT). The leaf level containing 2n
nodes is denoted as L0 , the level above it is denoted as
L1 , and so on. For example, consider the plaintext tree for
4-bit integers shown in Fig. 4a. In this case, n is 4 and PT
contains nodes at 5 different levels, L0 through L4 . Every
node at the leaf level of PT is associated with n-bits of
information characterizing its path from the root to level
L0.

SPLIT partitions the levels of the PT into two contigu-
ous groups, referred to as Range Safe (RS) and Brute-
force Safe (BS), respectively. Based on this partitioning,
associated encrypted tables RS and BS are created. Spe-
cifically, the RS partition consists of the top levels of PT.
For example, in Fig. 4a, levels L2 through L4 belong to the
RS partition, and the bits corresponding to these levels are
encrypted for range query processing. (This procedure is
explained later in Sect. 3.2.) Thus, in the encrypted RS
table, for each plaintext value, the upper bits are encrypted
for range query processing and the remaining bits are
blinded using a secure block cipher (SBC). Hence, in this
example, nodes at level L2 effectively serve as leaf nodes,

328	 M. Kesarwani et al.

1 3

and the associated range for every such node is of granu-
larity 22 integers, as shown in Fig. 4b.

The BS partition, on the other hand, is comprised of
the remaining PT levels from level L0 up to the level
where the RS partition ends. In the current example, lev-
els L0 through L2 are assigned to the BS partition, and the
bits corresponding to these levels are encrypted for range
query processing. Thus, in the encrypted BS table, the
lower bits are encrypted for range query processing while
the upper bits are blinded using SBC. This represents a
set of trees, with the prefixes blinded, as shown in Fig. 4c.

In general, the number of bits in the BS or RS parti-
tions is a configurable parameter for every column and
can be set based on the application requirements. For
example, if the DO has defined the RPS constraint to be
H , then the number of bits in the BS partition are set to
be l = ⌈log2(H)⌉ , and in the RS partition to be u = n − l .
Now, a binary search over the RS table reveals values at
granularities of size 2l ≥ H . So, to decrypt a value from
the BS table, the adversary has to make O(2n−l) = O(�)
brute-force queries.

Note that there is a trade-off between the H constraint
and number of queries required to breach the constraint.
For example, if the DO is comfortable in revealing data to
a granularity of H = 224 , then considering n = 32 results
in u = 8 and l = 24 . Thus, 28 = 256 queries are sufficient
to breach this interval constraint. On the other hand, if
H was 220 , then 212 = 1024 queries would be needed to
breach the constraint. In the coming sections, we will
assume, without loss of generality, that the number of bits
in the RS partition is equal to the number of bits in the

BS partition, i.e., the PT is divided into two equal halves
( u = l =

n

2
 ). This leads to a balance between the RPS con-

straint and the number of queries needed to breach the
constraint.

3.2 � Layered Encryption

SPLIT uses three encryption schemes as black boxes,
namely secure block cipher ( SBC ), order-preserving encryp-
tion ( OPE ), and prefix-preserving encryption ( PPE ). The
SPLIT encryption scheme for plaintext domain  is con-
structed as a tuple of polynomial-time algorithms SPLIT =
(KeyGen, BS, RS, SBC,BS,RS,SBC) , where KeyGen is
probabilistic and the rest are deterministic.

Key Generation [ sk ← KeyGen(�,w, d)]
KeyGen is a probabilistic algorithm that takes the follow-

ing as input: The security parameter � , the total number of
table columns w, and the number of columns on which range
predicates can be simultaneously applied d. It then outputs
the secret key sk, which consists of d ∗ 2d equi-length secret
keys (K1

O
,K2

O
, ...,Kd∗2d

O
) of the OPE encryption algorithm

( OPE ), d ∗ 2d equi-length secret keys (K1
P
,K2

P
, ...,Kd∗2d

P
) of

the PPE encryption algorithm ( PPE ) and w ∗ 2d equi-length
secret keys (K1

S
,K2

S
, ...,Kw∗2d

S
) of a secure block cipher ( SBC).

Encryption Algorithms
SPLIT incorporates two encryption algorithms BS and

RS . Both the algorithms are deterministic and take the
following as input: the plaintext data item m, key for OPE
encryption KO , key for PPE encryption KP , key for SBC

Fig. 4   Basic SPLIT scheme. a Plaintext tree (PT). b Range safe partition (RS). C Brute-force safe partition (BS)

329Collusion‑Resistant Processing of SQL Range Predicates﻿	

1 3

KS and number of bits u in the RS partition. The BS algo-
rithm outputs the BS ciphertext ( c∗

BS
 ), while RS outputs the

RS ciphertext ( c∗
RS

 ) corresponding to message m encrypted
under the given keys. Let l = n − u , m� = mn−1mn−2 ⋯ml and
m�� = ml−1ml−2 ⋯m0 , and thus, m = m�||m�� . Then,

•	 Encryption for BS [ 
��
(�,�

�
,�

�
,�

�
, �) ]

•	 Encryption for RS [ 
��
(�,�

�
,�

�
,�

�
, �) ]

The entire set of data encryption steps for a given plaintext
value, as described above, is pictorially shown in Fig. 5.

(2)c∗
BS

← 
KO

OPE
(

KP

PPE
(

KS

SBC
(m�)||m��))

(3)c∗
RS

← 
KO

OPE
(

KP

PPE
(m�||

KS

SBC
(m��)))

Decryption Algorithms
SPLIT incorporates two decryption algorithms BS and

RS . Both the algorithms are deterministic and take as input
the BS and RS ciphertexts, respectively, along with the key
for OPE encryption KO , key for PPE encryption KP , key for
SBC KS , and the number of bits u in the RS partition. Let
l = n − u . Then,

•	 Decryption of BS [ 
��
(�∗

��
,�

�
,�

�
,�

�
, �) ]

•	 Decryption of RS [ 
��
(�∗

��
,�

�
,�

�
,�

�
, �) ]

3.3 � Data Transformation

Consider a plaintext table with w columns, from which we
wish to support range predicates on d columns. The plain-
text values for each of the d columns are independently
encrypted 2d−1 times using BS and RS each, thus creating 2d
ciphertext columns. Further, 2d encrypted tables are created
by capturing all BS and RS combinations of these columns.
The remaining columns in the plaintext table—on which
range queries will not be issued—are simply encrypted using
an SBC.

We illustrate these data transformation process with
the help of an example. Assume the plaintext table is

(4)m∗
←

KP

PPE
(

KO

OPE
(c∗

BS
))

(5)m ←
KS

SBC
(m∗

n−1
⋯m∗

l
)||m∗

l−1
⋯m∗

0

(6)m∗
←

KP

PPE
(

KO

OPE
(c∗

RS
))

(7)m ←m∗
n−1

⋯m∗
l
||

KS

SBC
(m∗

l−1
⋯m∗

0
)

Fig. 5   SPLIT ciphertext construction

Fig. 6   SPLIT banking
database. a Loan_BS_BS. b
Loan_BS_RS. c Loan_RS_BS.
d Loan_RS_RS

330	 M. Kesarwani et al.

1 3

Loan with schema as enumerated in Fig. 2a—then, w = 3 .
Assume that range predicates can only be asked on the
LoanAmt and Collateral columns, i.e., d = 2 . First, we
call KeyGen(�, 3, 2) , which returns secret keys consisting
of eight (2 ∗ 22) OPE keys (K1

O
,K2

O
,… ,K8

O
) , eight (2 ∗ 22)

PPE keys (K1
P
,K2

P
,… ,K8

P
) , and twelve (3 ∗ 22) SBC keys

(K1
S
,K2

S
,… ,K12

S
) . Next, we create four encrypted tables, as

shown in Fig. 6, which contain all combinations of the BS
and RS partitions of LoanAmt and Collateral. Further, the
physical row orderings of the tables are randomized to pre-
vent position-based linkages across their tuples.

3.4 � Design Rationale

The motivation for row randomization and layered encryp-
tion in SPLIT is to prevent linkages of tuples across the
various encrypted tables. For example, there should be no
linkage between tuples in Loan_RS_RS and Loan_BS_RS,
both of which correspond to the RS partition of Collateral.
If such a linkage exists, it can be used to connect the tuples
on the Collateral column in the two tables, thereby enabling
a binary search attack by keeping this column fixed, and
searching on the other LoanAmt column.

Further, the Collateral values are encoded using the same
RS Encrypt function, but with different keys in Loan_RS_
RS and Loan_BS_RS, respectively. This is where the layered
encryption, using OPE and PPE, plays a role. In both these
columns, the lower l bits are blinded using an SBC with dif-
ferent keys, so it is not possible to link tuples based on the
lower bits. However, if no further encryption is used, i.e., the
upper u bits are kept as plaintext, it would be possible to link
the tuples based on the upper bits. So, further encryption that
enables range queries based on the upper u bits is necessary.
Clearly, OPE and PPE are possible schemes that can be used.
However, OPE by itself is not sufficient: Consider a set of
values  encrypted using OPE with two different keys giv-
ing sets 1 and 2 . Since OPE preserves order, the order of
encrypted values in 1 and 2 is identical. Thus, by sorting
these sets, their values can be linked.

Similarly, PPE by itself is not secure since it preserves the
structure of the tree corresponding to the binary representa-
tion. That is, in some cases, it may be possible to map nodes
across two PPE trees by using the structure. For example, if
in the plaintext domain, there is a single value with bit n − 1
as 1, and all others have bit n − 1 as 0, then this value can be
linked across different PPE trees, irrespective of whether or
not bit n − 1 gets flipped.

In a nutshell, the advantage of OPE is that it destroys
the structure of the tree and the advantage of PPE is that it
destroys the order information. Thus, by combining OPE
with PPE, we remove both order- and structure-based
linkages.

4 � Range Query Processing

In this section, we explain how a range query is executed
over a SPLIT encrypted database. The main idea is to
transform the query range into a disjoint set of prefix
ranges of the form bn−1bn−2 ⋯ bj ∗ , where each bi is a bit
taking value 0 or 1, and ∗ can match any value. Smaller
ranges, corresponding to j < l , are answered from the
BS tables, while larger ranges are answered from the RS
tables. Functionally, the range query processing consists
of two main steps—range query mapping and range query
execution, which are described below.

4.1 � Range Query Mapping

The steps to map range predicates from the plaintext
domain to the RS and BS partitions are shown in RQM
Algorithm 1. The mapping process starts by converting
the input range r into a set of ranges  represented by
prefixes (Line 1). The maximum number of such ranges
is 2 ∗ (n − 1) , where n is the number of bits used for rep-
resenting the attribute values [22]. For each prefix in  , a
value with that prefix is chosen—the remaining unspeci-
fied bits are set to 0 (Line 4). Then, depending on the
size of the range represented by the prefix, it is mapped
to either the RS or the BS partition. For a BS range, the
higher-order bits are encrypted with the SBC (Line 7).
Then the value is encrypted with PPE (Lines 8, 10). The
lower and upper bounds of the range in the PPE encrypted
domain are computed by replacing all the remaining lower
j bits with 0 and 1, respectively (Lines 12–13). Finally,
these lower and upper bits are further encrypted using
OPE encryption with the appropriate keys and the range
is added to RBS or RRS , depending on the size of the range
(Lines 14–20). It can be seen that due to the prefix-pre-
serving property of PPE, and the order-preserving prop-
erty of OPE, this mapping produces the correct range on
the encrypted domain. The ranges in RRS are answered
from the RS partition, and those from RBS are answered
from the BS partition.

The above walkthrough shows the range mapping for
a single column. If there are ranges on multiple columns,
each range is split into prefixes and the set of all combina-
tions of prefixes together represents the full range of the
original query. Each combination is answered from the
table corresponding to the range types. For example, a BS
range on the LoanAmt column combined with a BS range
on the Collateral column is answered from the Loan_BS_
BS table.

331Collusion‑Resistant Processing of SQL Range Predicates﻿	

1 3

Algorithm 1 Range Query Mapping (RQM)
Input: Range r on plaintext attribute. OPE keys K1

O and K2
O, PPE keys K1

P and K2
P ,

SBC keys K1
S and K2

S for RS and BS partition respectively. The number of bits in RS
partition ‘u’

Output: Set of ranges on RS partition RRS , set of ranges on BS partition RBS

1: Convert r into a set of ranges R of form bn−1bn−2 · · · bj∗ {using technique in [22]}
2: Let l = n− u
3: for all (ri = bn−1bn−2 · · · bj∗) in R do
4: v ← bn−1bn−2 · · · bj0 · · · 0 {set lower bits to 0}
5: vU ← vn−1vn−2 · · · vl ; vL ← vl−1vl−2 · · · v0
6: if (j < l) then {BS range}
7: v∗ ← EK2

S
(vU)||vL

8: e∗v ← EK2
P
(v∗)

9: else {RS range}
10: e∗v ← EK1

P
(v)

11: end if
12: Let cncn−1 · · · c0 be the bit representation of e∗v
13: rL ← cn−1cn−2 · · · cj0 · · · 0; rU ← cncn−1 · · · cj1 · · · 1
14: if (j < l) then
15: r∗L ← EK2

O
(rL) ; r∗U ← EK2

O
(rU)

16: Add (r∗L, r
∗
U) to RBS

17: else
18: r∗L ← EK1

O
(rL) ; r∗U ← EK1

O
(rU)

19: Add (r∗L, r
∗
U) to RRS

20: end if
21: end for
22: return RRS , RBS

5 � Security Analysis of SPLIT

In this section, we evaluate the range predicate security
offered by the SPLIT scheme against a Honest-but-Curious
with Collusion adversary mounting a Chosen Range Attack.
Specifically, in a binary search attack, as the range is refined,
the table from which the query is answered is switched from
RS to BS according to the RQM Algorithm 1. So, a target
RS cell cannot be guessed to a range of size less than 2l .
And there is no way to reach the corresponding target cell
in the BS table in log(�) steps unless the rows in the tables
can be linked. Without linkage, binary searches over all the
� sub-trees in the BS partition will be needed. We formally
prove that the table rows cannot be correlated in the follow-
ing discussion.

For ease of understanding, a diagrammatic view of the
layered SPLIT encryption scheme is shown in Fig. 7.5 The
various ways in which RPS for the LoanAmt column can be
breached are highlighted through the numbered dotted lines,
which are explained below—a similar reasoning holds for
the Collateral column. The SPLIT scheme protects against

5  For visual clarity, CustName is not shown in the figure, but its
encrypted form, CustName_Enc , is present in all four tables.

4.2 � Range Query Execution

The next step is to execute the ciphertext queries at SP. We
illustrate this process through the example plaintext query
specified in Fig. 3. The following steps are performed to
evaluate this query in SPLIT:

1.	 QC sends the plaintext query to the SA.
2.	 SA calls RQM Algorithm 1 and identifies sub-ranges

over ciphertext tables.
3.	 Using the output of Step 2, SA creates ciphertext sub-

queries and sends them to SP.
4.	 SP executes the sub-queries and sends the (encrypted)

result tuples to SA.
5.	 SA computes the union of the tuples returned from

each sub-query, and then decrypts the result tuples.
(The union is efficiently computable because it is apri-
ori known that the sub-queries access disjoint sets of
tuples.)

332	 M. Kesarwani et al.

1 3

all these breaches, as explained in the remainder of this
section.

To begin with, the HCC adversary is unable to inde-
pendently break the BS and RS ciphertexts (dotted lines 1
and 2, respectively) because these were generated by SBC-
encrypting the upper and lower half bits of the plaintext
value, respectively. Secondly, the BS and RS ciphertexts
(dotted lines 3 and 4) corresponding to a given LoanAmt
plaintext value cannot be associated, because there is no
value linkage between these ciphertexts—again due to the
blinding of the lower half bits in the RS table and the upper
half bits in the BS table using a SBC. Further, the linkages
of row locations between these tables have been removed
due to the randomization (denoted by R in the figure) of the
physical row orderings of the tables. Preventing this associa-
tion ensures a break in the chain of attack queries.

Apart from these direct attacks on LoanAmt, there could
also be indirect attacks launched via the sibling Collateral
attribute. Specifically, the linkage between a pair of BS
ciphertexts corresponding to a Collateral plaintext value
(dotted line 5), or a pair of RS ciphertexts corresponding
to a Collateral plaintext value (dotted line 6), could be used
to launch a BSA on LoanAmt. This is prevented because
physical randomization ensures the absence of row link-
ages between the encrypted Collateral columns, while value
linkages are eliminated by the three-layered SBC-PPE-OPE
encryption, using different keys for each table, as described
in Sect. 3.

In a nutshell, the security of the SPLIT encryption
scheme is established based on the following points:

1.	 The BS and RS encryptions are independently secure
(dotted lines 1 and 2 in Fig. 7). The associated security
proofs are presented in Sect. 6.

2.	 For any plaintext table, there is no linkage between the
corresponding BS and RS ciphertext tables (dotted lines
3 and 4 in Fig. 7).

3.	 For any plaintext table, there is no linkage between a
pair of corresponding BS (or two RS) ciphertext tables
(dotted lines 5 and 6 in Fig. 7).

6 � Security Guarantees

In this section we present the formal proofs for the secu-
rity of the BS and RS encryption schemes. The full suite of
proofs for the security of SPLIT are available in the technical
report [24].

6.1 � Formal Security Proof For BS Encryption

Claim  If SBC is a secure block cipher, then any probabilistic
polynomial-time adversary BS will have negligible advan-
tage in the Chosen Range Attack experiment ExpCRA

BS ,BS
(�)

against the BS encryption scheme.

Fig. 7   Ensuring security of
LoanAmt values

333Collusion‑Resistant Processing of SQL Range Predicates﻿	

1 3

Proof  We will prove the claim by contradiction. Specifically
assume that there exists a CRA adversary BS against the
BS scheme with some non-negligible advantage � . Then we
can show that there exists an adversary SBC against the SBC
scheme with a non-negligible advantage �′ . This contradicts
the assumption that SBC is a secure block cipher, and there-
fore, the adversaries SBC and BS cannot exist. The nihility
of SBC and BS is shown in the remainder of this section.

Let SBC be a challenger for the SBC scheme. Given a set
of SBC ciphertexts, the objective of SBC is to learn some
plaintext bits of a target SBC ciphertext. Further SBC is
allowed to ask the encryption of plaintexts (polynomial in � )
from SBC . In the BS security game shown below, SBC acts
as the challenger ( BS ) of the BS scheme and uses BS to
achieve its objective. Further, BS makes at most 2 SBC que-
ries for every query from its adversary, since the ranges that
map to the BS table using Algorithm 1 can have at most two
different u bit prefixes. Let BS be able to breach the interval
constraint H, and guess the target ciphertext to a plaintext
range H′ ≤ H . It can be seen that the u bit prefix of all the
points in the interval H′ can take at most two values, since
H� ≤ H = 2l . SBC will randomly pick one of these u bit pre-
fixes (by choosing one of the two endpoints of the range and
taking its prefix) as its guess for the target SBC ciphertext.
If BS makes q queries and succeeds with non-negligible
probability � , SBC will make 2 ∗ q queries and succeed
with the non-negligible probability �

2
 , which contradicts the

assumption that SBC is a secure block cipher. Hence, the
adversary BS with non-negligible advantage against the BS
encryption scheme cannot exist, and BS is secure against
CRA (proof for dotted Line 1 in Fig. 7).

The security game between SBC , SBC , and BS has fol-
lowing steps:

1.	 The challenger SBC has a set  of n
2
bit integers. SBC

first generates the key K1
S
← KeyGenSBC for the SBC and

encrypts each number in set  to compute the set
∗ = {s∗|∃s ∈  ∶ s∗ ← K1

S
(s)} . SBC forwards ∗ to the

SBC adversary SBC.
2.	 The SBC adversary SBC also acts as the challenger BS

for the BS encryption scheme. It receives the set ∗ and
performs below steps to generate BS ciphertexts:

•	 It generates the key K1
O
← KeyGenOPE for OPE and

key K1
P
← KeyGenPPE for PPE.

•	 It generates a set of all the n
2
bit numbers  . It

then picks every number in set ∗ one by one and
appends it with all the numbers in set  to compute
the set  � = {s�|∃s∗ ∈ ∗,∃u∗ ∈  ∶ s� ← s∗||u∗)}

•	 It further computes a set  �� = {s��|∃s� ∈  � ∶

(s�� ← 
K

1

O

(
K

1

P

(s�))}

	  If we denote the set created by appending numbers
to the elements in set  as  , it can be seen that the ele-
ments in set  ′′ are the BS ciphertexts that would have
been produced by BS on  . BS stores the values in the
set  ′′ as a single column BS table (say D_BS ) at the
SP’s site which also acts as the CRA adversary ( BS )
against the BS encryption scheme.

3.	 Next, the adversary BS selects a tuple from the BS table
D_BS and declares it as its target ciphertext (say c∗ ) for
decryption. Further, SBC declares the SBC ciphertext
(say c′ ) used to form c∗ as its target. BS can now issue
range predicate queries over D_BS.

4.	 BS sends its plaintext range predicate query to BS.
5.	 BS identifies the prefix based sub-ranges as specified in

Line 1 of Algorithm 1. The ranges represented by larger
prefixes (more than n

2
bits ) are answered from the D_BS

table by BS.
6.	 For each BS range, BS needs to perform the steps cor-

responding to BS in Algorithm 1 (Lines 7, 8, 15 and
16) to map the input range to a range on the encrypted
domain. While the PPE and OPE encryptions can be
directly performed by it, this is not the case for the SBC
encryption in Line 6 since it does not have the secret key
of SBC . Instead, it sends these higher-order n

2
bits to SBC

to obtain their SBC encryptions.
	  The rewritten query with the mapped ranges is exe-

cuted over D_BS , and the received tuples are decrypted
and forwarded to BS . The tuples can be decrypted by
BS since it knows the OPE and PPE keys and all result
tuples corresponding to a range have the same n

2
bits

prefix, whose SBC decryption corresponds to the n
2
bits

prefix of the input range on the plaintext domain.
7.	 The adversary BS can ask for more range predicate que-

ries (polynomial in the security parameter). For each of
these, BS constructs a response as shown in the steps
above.

8.	 At the end, BS outputs an interval H′ as its guess of the
interval in which the plaintext for its target ciphertext c∗
belongs.

9.	 BS forwards to the SBC challenger SBC , the n
2
bits of the

prefix of one of the two endpoints (randomly chosen) in
H′ as the plaintext corresponding to the target ciphertext
c′.

Further in Step 6 above, the ranges that map to the BS
table using Algorithm 1 can have at most two different
n

2
bit prefixes. This is because if the granularity of any

sub-range for the BS table overlaps more than 2 sub-trees,
then that sub-range can be further divided into 1 sub-range
for the RS tables and 2 sub-ranges for the BS table. For
example, consider the BS and RS divisions of the plaintext
tree shown in Fig. 4—here, the sub-range [7, 12] which
touches three sub-trees from the BS table can be rewritten

334	 M. Kesarwani et al.

1 3

into sub-ranges {[8, 11]} for the RS table and {[7, 7], [12,
12]} for the BS table. 	� □

6.2 � Formal Security Proof For RS Encryption

Claim  If SBC is a secure block cipher, then any probabilistic
polynomial-time adversary RS will have negligible advan-
tage in the Chosen Range Attack experiment ExpCRA

RS ,RS
(�)

against the RS encryption scheme.

Proof  The proof for this claim is similar to that of Claim 6.1.
One difference in the RS game is that RS does not need to
perform any SBC encryption queries from SBC . Further, the
adversary SBC can only guess some of the l plaintext bits,
depending on the granularity of the range guessed by the
adversary RS . Further, as in the BS game, the advantage is
�

2
 , since SBC has to pick one of two possible prefixes, which

contradicts the assumption that SBC is a secure block cipher.
Hence, the adversary RS with non-negligible advantage
against RS cannot exist, and therefore, RS is secure against
CRA (proof for dotted Line 2).

The security game between SBC , SBC and RS has fol-
lowing steps:

1.	 The challenger SBC has a set  consisting of all n
2
bit

integers. SBC first generates a key K1
S
← KeyGenSBC for

the SBC and then encrypts each number in the set —
this results in the set ∗ = {s∗|∃s ∈  ∶ s∗ ← K1

S
(s)} .

SBC forwards ∗ to the SBC adversary SBC.
2.	 The SBC adversary SBC also acts as the challenger RS

for the RS encryption scheme. It receives the set ∗ and
performs the following actions to generate RS cipher-
texts:

•	 It generates key K1
O
← KeyGenOPE for OPE and key

K1
P
← KeyGenPPE for PPE.

•	 It generates a set of all the n
2
bit numbers  . It

then picks every number in set  , one by one, and
appends it with all the numbers in set ∗ to compute
the set  � = {s�|∃s∗ ∈ ∗,∃u∗ ∈  ∶ s� ← u∗||s∗)}.

•	 It further computes a set  �� = {s��|∃s� ∈  � ∶

(s�� ← 
K

1

O
(

K
1

P

(s�))}.

	  If we denote the set of all n bit numbers as  , it can
be seen that the elements in the set  ′′ are the RS cipher-
texts that would have been produced by RS on  . RS
stores the values in the set  ′′ as a single column RS
table (say D_RS ) and host this table at SP’s site, which
also acts as the CRA adversary ( RS ) against the RS
encryption scheme.

3.	 Next, the adversary RS selects a tuple from the RS table
D_RS and declares it as the target ciphertext (say c∗ ) for

decryption. Further, SBC declares the SBC ciphertext
(say c′ ) used to form c∗ as its target. RS can now issue
range predicate queries over D_RS.

4.	 RS sends its plaintext range predicate query to RS , and
let the result tuples be from the range [a, b].

5.	 RS identifies the prefix based sub-ranges as specified
in Line 1 of Algorithm 1. The ranges represented by
smaller prefixes (less than n

2
bits ) are answered from the

D_RS table by RS.
6.	 For each RS range, RS needs to perform the steps cor-

responding to RS in Algorithm 1 (specifically Lines 10,
18 and 19) to map the input range to a range on the
encrypted domain. All these steps can be directly per-
formed since it has the keys for OPE and PPE and no
block cipher encryptions are needed.

	  The rewritten query with the mapped ranges is exe-
cuted over D_RS to obtain the encrypted result tuples.
The decrypted results correspond to all integers between
a and b (the query range), since  consists of all the
n bit integers. The encrypted result tuples, along with
the decrypted set, are forwarded to RS.

7.	 The adversary RS can ask more range predicate queries
(polynomial in the security parameter). For each of these
queries, RS constructs a response as shown in steps 5-6
above.

8.	 At the end, RS outputs an interval H′ as its guess of the
interval in which the plaintext for its target ciphertext c∗
belongs.

9.	 RS computes the prefixes of the endpoints in H′ and
forwards to SBC challenger SBC the bits after the most
significant n

2
bits of the prefix, representing its guess of

some plaintext bits corresponding to its target ciphertext
c′ .

In the RS game, SPLITRS
 does not need to perform any AES

encryption queries from AES . Thus, if SPLITRS
 has a non-

negligible advantage � in the CRA experiment with SPLITRS
 ,

this advantage carries over and AES will win the AES chal-
lenge with the same non-negligible � probability, i.e.,

which contradicts the assumption that AES is a secure block
cipher. Hence, the adversary SPLITRS

 with non-negligible
advantage against SPLITRS cannot exist. 	� □

7 � Experimental Evaluation

The importance of range predicates in OLAP environments
can be gauged from the fact that more than half the queries
in the TPC-H and TPC-DS decision support benchmarks
feature such predicates. In this section, we move on to

(8)Pr[success of AES] = �

335Collusion‑Resistant Processing of SQL Range Predicates﻿	

1 3

empirically evaluating SPLIT ’s efficiency with regard to
handling range predicates in the encrypted domain.

Our experimental setup consisted of two identical server
machines, with one representing the SP hosting the DO’s
encrypted data, and the other representing the SA interfac-
ing with the QCs. PostgreSQL 9.4 was used as the database
engine on the SP server, and all queries were issued through
a Java program, which converted the plaintext queries to
their SPLIT ciphertext equivalents.

The experiments were carried out on 10 GB versions of
the TPC-H and TPC-DS benchmark databases. For TPC-H,
we constructed the queries on lineitem, the largest table in
the TPC-H schema (60 million rows). Each query had range
predicates on four attributes, with the predicates covering
the entire spectrum of selectivities. The reason we used syn-
thetically created queries is because the native queries were
either not rich in range predicates, or contained aggregate
operators which we currently do not handle. On the other
hand, for TPC-DS, we directly invoked three benchmark
queries (queries Q82, Q87, and Q96) which contained only
range predicates, and could therefore be fully executed on
a SPLIT encrypted version of the database. The listings of
these queries are provided in [24].

7.1 � SPLIT Encryption Time

A legitimate concern about SPLIT could be regarding the
time it takes to encrypt databases, especially in light of its
multiple splitting and layered encryption operations. How-
ever, our experiments have shown that encrypting the 10 GB
TPC-H database takes less than 12 h and for the 10 GB TPC-
DS database it took around 13 h using 8 concurrent threads.

From the above, it is evident that data encryption takes
only a few hours, which appears to be a reasonable one-time
overhead that is amortized over the stream of range queries
subsequently executed over the encrypted database. Further,
we have found that the final result set decryption times are
negligible in comparison with the data encryption or query
execution times, due to the small size of these results, and
hence, they are added to the query execution times reported
in Sect. 7.2.

7.2 � Query Execution Time

The execution times for range query processing by the
SPLIT and plaintext algorithms are captured in Fig. 8a, b
for the above-mentioned TPC-H and TPC-DS databases,
respectively. The results in these figures consistently show
that the performance of SPLIT is within a factor of two of
the plaintext query execution. For instance, in Fig. 8b at
50% lineitem selectivity, the plaintext query takes around 30
seconds while SPLIT completes in 52 seconds. Similarly, in
Fig. 8b, Query 82 takes 32 seconds in the plaintext environ-
ment and is computed in 45 seconds with SPLIT encryption.

At first glance, it may seem that SPLIT may incur a
performance slowdown commensurate with the storage
blowup. However, such worst-case scenarios require a
query containing multi-dimensional range predicates,
where each predicate has a sufficiently coarse selectivity to
result in a full table scan. In general, if indexes are present
and are chosen by the optimizer, then the number of tuples
fetched from the disk will be proportional to the size of the
final result set. In these cases the performance overhead
will be within two times since the ciphertext size is twice
the size of the plaintext. Further note that since the query
rewriting leads to multiple queries, each with predicates
having smaller selectivities, there is a higher likelihood
that the optimizer decides to use indexes.

Note that the good performance of SPLIT is despite the
large number of sub-queries in the transformed query. This
is because each sub-query accesses a disjoint set of tuples,
meaning that the total work done is effectively equiva-
lent to that of the single query in the plaintext domain,

Fig. 8   Query execution time on benchmark databases. a 10GB
TPC-H database. b 10GB TPC-DS database

336	 M. Kesarwani et al.

1 3

particularly if indexes are used in the query plan. This
feature points to the practicality of the SPLIT scheme.

Another important observation here is that our SPLIT
implementation lacked any parallelization. However,
many sub-queries (one per encrypted table) in the trans-
formed query can, in principle, all be executed in parallel
on the encrypted database. If this optimization were to be
implemented, the time overheads will be further reduced.

7.3 � Storage Cost

The storage blowup factor of SPLIT depends only on the
number of attributes and is independent of the database
size. Also, since indexes are used by both the plaintext
and SPLIT algorithms, we expect their relative perfor-
mance to be similar for different database sizes. In the
above experiments, the size of the plaintext TPC-H data-
base with indexes was 21 GB, whereas the corresponding
SPLIT encrypted database is 335 GB. On the other hand,
for TPC-DS the plaintext database size with indexes is 22
GB, whereas the corresponding SPLIT encrypted database

is 359 GB. These values are an outcome of our incorporat-
ing four range predicates in the queries, resulting in the
encrypted database being roughly 16 times the size of the
plaintext database. Though the blowup is certainly large,
the overall impact on the system dollar cost is much lower,
since storage is relatively cheap. For instance, Table 1
shows the monthly costs for attaining similar throughputs
with the plaintext and SPLIT schemes, estimated using
the rates charged by Amazon’s AWS service [23] for
machines similar to our experimental configuration. Since
the execution time of SPLIT is within twice of the plain-
text execution time, and the resource cost is dominated by
the VM rental duration, the overall monetary investment
in the SPLIT scheme is also within a factor of two with
respect to the plaintext scheme. Finally, various workload-
dependent optimizations to reduce the storage overheads
are described later in Sect. 8.1.

7.4 � Scaling Experiment

In the previous experiments, we evaluated SPLIT using 10
GB versions of the benchmark databases. But in order to

Table 1   Monthly dollar cost of
Cloud platforms

Scheme Size (GB) $/VM $/GB $ (VM) $ (Storage) $
(Total)

Plaintext 21 288 0.045 288 0.945 288.945
SPLIT 335 288 0.045 576 15.075 591.075

Fig. 9   a Query execution time and b database size for 100 GB TPC-DS benchmark database

337Collusion‑Resistant Processing of SQL Range Predicates﻿	

1 3

better understand the overheads and strengthen our perfor-
mance claims, we now present results from scaleup experi-
ments. Specifically, we created a 100 GB TPC-DS data-
base and again executed queries Q82, Q87 and Q96. The
times taken for processing these queries over the plaintext
and SPLIT encrypted databases are shown in Fig. 9a, and
it is evident that SPLIT is within a factor of two of the
plaintext query execution even on these large databases.

For the same environment, the storage costs of the
plaintext and SPLIT encrypted databases are shown (on
a log scale) in Fig. 9b. Again, since we are handling four
range predicates and have created indexes over both the
plaintext and SPLIT databases, the encrypted database size
turns out to be roughly 16 times the size of the plaintext
database.

8 � Deployment and Integration

We now turn our attention in this section to discuss deploy-
ment and integration issues of the SPLIT algorithm. Spe-
cifically, we first present a strategy for materially reducing
its space overheads. Then we describe the mechanisms
for deploying SPLIT as a component of secure database
systems that support a rich set of SQL primitives.

8.1 � Workload‑based Reductions of Storage
Requirement

The discussion of storage overheads in the experimental sec-
tion was from the financial perspective. We now consider
workload-based optimizations to reduce the space require-
ment of the SPLIT scheme.

Let C = {C1 ⋯Ct} represent the set comprising of all
the columns in the database. Firstly, if the DO can iden-
tify a subset of columns S that will not be used as range
predicates in any query, then they need not be considered
for the SPLIT scheme. Instead, these columns can sim-
ply be encrypted using a secure deterministic encryption
scheme, such as AES. Only the set C� = C − S needs to be
considered for SPLIT encryption. Let the size of C′ be d.
Further, suppose that the DO can partition C′ into a number
of disjoint classes based on the query workload, such that
columns in a class do not simultaneously occur in range
predicates of any query. Then, the columns in a class are
treated like a composite column while generating the BS
and RS combinations during encryption. Thus, if there are
e such disjoint classes the total blowup due to table replica-
tion reduces to 2e from 2d.

The identification of disjoint classes from the set C′
can be reduced to the minimum vertex coloring problem,
following the steps shown in Algorithm 2. The minimum
vertex coloring  represents the desired disjoint classes
since no two adjacent vertices in the graph  are given the
same color, which implies that none of the column pairs
corresponding to vertices in  with the same color appear
simultaneously in range predicates in a SQL query. Fur-
ther, the chromatic number of the minimum vertex color-
ing gives a bound on the size of the encrypted database.

Since the minimum vertex coloring problem is NP-
hard, we use the approximation algorithms presented
in [8, 10] for the efficient identification of the color
assignments.

Algorithm 2 Minimum Number of Disjoint Classes
Input: The set of columns C′ that needs to be considered for SPLIT encryption,

The query workload Q
Output: The e disjoint classes I
1: Initialize an empty graph G = (V, E)
2: Add a vertex vi in G for every column C′

i ∈ C′

3: for every query q ∈ Q do
4: for every pair of columns C′

i and C′
j that appear in range predicates in q do

5: Create an edge eij between the corresponding vertices vi and vj
6: E = E ∪ eij
7: end for
8: end for
9: Identify a minimum vertex coloring I for graph G [8,10]
10: return I

338	 M. Kesarwani et al.

1 3

We expect that the above optimization is likely to be
very effective in real deployments since Cloud databases
are typically accessed through standard form interfaces,
which restrict the types of queries issued to the underly-
ing warehouse. For example, in TPC-H, the total number
of columns in the database is 61 of which only 6 columns
appear in range predicates, hence d = 6 . Further, by ana-
lyzing the benchmark query set, we can partition these 6
columns into 3 disjoint classes, and therefore, e = 3 . Thus,
the SPLIT encrypted TPC-H database will be 8 times the
plaintext database.

Similarly, with TPC-DS, the total number of columns is
429, of which only 34 columns appear in range predicates,
hence d = 34 . By analyzing the benchmark query set, we can
partition these 34 columns into 4 disjoint classes, and there-
fore, e = 4 . Thus, the SPLIT encrypted TPC-DS database is
16 times the plaintext database.

The above discussion, which indicates that 4 classes
are sufficient for both TPC-H and TPC-DS, was the basis
for deploying queries with 4 range predicates in our
experiments.

8.2 � Handling Updates

In principle, a SPLIT encrypted database can handle
updates, insertions, and deletions to the original database.
All these operations require updating of all the ciphertext
tables corresponding to the plaintext table being updated.
However, if these operations are done one row at a time,
then they allow the adversary to correlate the corresponding
rows across the tables. To prevent this correlation leakage,
we resort to batch updates. That is, all pending updates are
kept at the security agent (SA) until a full batch is accumu-
lated. Then this batch update is applied at one go by making
random passes over the set of updates in the batch for each
encrypted table. Batch updates are common in databases
designed for analytical workloads, since they are populated
periodically using ETL scripts.

8.3 � Extending SPLIT to Other Operators

As mentioned earlier, SPLIT can also be extended to handle
additional operators that commonly occur in SQL queries
such as Equality predicates, Equi-joins, Group By, and Hav-
ing clauses.

The Equality and Equi-join predicates are handled by
treating these operators as range predicates with a range of
size 1. Further, since SPLIT is a deterministic encryption
scheme, it directly supports the Group By operator. How-
ever, there is a possibility that a particular group may appear
in the results of different sub-queries being executed on dif-
ferent tables. These groups can be easily merged by the SA
after decrypting the independent results. For example, for a
Group By with Count aggregate, the SA needs to simply add
the counts for a given group from different result sets before
returning the final answer to the QC. The Having clause can
also be supported similarly as a filter applied by the SA on
the Group By results.

8.4 � Integrating SPLIT in a Complete System

To support the full power of SQL, including sub-queries and
aggregates, SPLIT needs to be embedded in a complete data
processing system. For instance, we can substitute SPLIT in
place of OPE in systems such as Cipherbase [2] or Monomi
[20], thereby enhancing their security at the cost of a modest
increase in query execution times.

A collateral side benefit of incorporation in a full-fledged
system is that it also allows us to handle situations where the
DO has laid down a limit on the storage budget. For instance,
consider the case where the DO has fixed the encrypted stor-
age budget to be at most 8 times the size of the plaintext
database. This constraint implies that we need to divide the
potential range predicate columns into at most 3 equivalence
classes, hence e = 3 . In the event that this restriction cannot
be met, we can still handle the situation if SPLIT is part of
a larger system, such as Cipherbase. Specifically, we can
rewrite the query by choosing a subset of predicates such
that there is at most one column from each equivalence class.
This reduced query is executed over the encrypted database,
whereas the remaining predicates are applied in a post-filter-
ing step, in the trusted hardware of the Cipherbase system.

Performance of SPLIT Component
To study the effectiveness of SPLIT when part of a larger

system, we conducted sample experiments on the TPC-H
environment described earlier. In these experiments, the
complete benchmark queries were executed, not just the
range predicates. To facilitate this, the input query was
divided into two parts—the first part containing equi-joins,
equality and range filter predicates, which were executed
directly on the encrypted database, and the second part

Fig. 10   Query execution time (10GB TPC-H database)

339Collusion‑Resistant Processing of SQL Range Predicates﻿	

1 3

containing the remaining predicates which were processed
after decryption in a trusted hardware setup. A Java program
was used to simulate the trusted hardware processing.

Specifically, we built two secure trusted hardware sys-
tems, TH-OPE and TH-SPLIT, employing the OPE and
SPLIT encryption schemes, respectively, to evaluate range
predicates. All the columns not involved in range predicates
were encrypted using AES. The SPLIT encrypted database
was constructed so as to support the 3 disjoint classes (as
described in the previous subsection) of range predicates
arising in the TPC-H benchmark. Non-clustered indexes
were created on range predicate columns in both the plain-
text and ciphertext databases.

We executed TPC-H queries Q1 and Q10 to evaluate the
performance of SPLIT when used as a replacement for OPE,
and the resulting query execution times are shown in Fig. 10.
These results clearly indicate that for complex queries, the
performance differences between SPLIT and OPE are likely
to reduce due to the predominant processing in the trusted
hardware, which is identical for SPLIT and OPE. Overall,
it indicates that SPLIT maintains reasonably good perfor-
mance while delivering a much stronger security guarantee
than OPE.

9 � Related Work

Several schemes have been proposed over the last decade
for securely processing range predicates over outsourced
encrypted databases. The most prominent among them
have been OPE [1, 5, 6, 13, 18] and PPE [15, 22], which
inevitably leak order-based and structure-based character-
istics, respectively, of the plaintext data. More pertinently,
these solutions can be easily breached in the HCC model,
as shown in Sect. 1.1.

An encrypted tree-based index structure, called PBtree,
was proposed in [16], but it requires significant changes to
the underlying database engine which may hinder its adop-
tion by industry. In contrast, SPLIT can be noninvasively

deployed with currently relational systems. Subsequently,
alternative tree-based encryption schemes were presented in
[7, 9], while Bucketing Schemes were analyzed in [11, 12].
These schemes provide stronger security guarantees than
OPE schemes in the Honest-but-Curious model. However, a
fundamental problem is that they return false positives in the
query results. For instance in [11], the whole data domain
is partitioned into buckets, each having a unique ID that is
stored at the server along with the encrypted data. The input
range query is mapped to bucket IDs and all rows which fall
into these buckets are returned—this results in false posi-
tives if the bucket boundaries do not match exactly with the
range boundary. SPLIT, on the other hand, always returns
accurate results.

Another line of research [2, 3, 19–21] has focused on
building complete systems which support secure execu-
tion of entire SQL queries over encrypted databases. For
instance, in CryptDB [19], multiple encryption schemes
are used to encrypt the data in an “onion”-style layering.
At query processing time, the outer layers of the appropri-
ate onions are removed as dictated by the query predicates.
MONOMI [20] also uses multiple encryption schemes,
albeit without the onion-based layering. It assumes instead
that the clients also have a local database engine, and each
query is split into two parts—the first part is executed on the
encrypted data at the Cloud server, and its result is trans-
ferred to the client and decrypted and loaded into the local
database. The second part of the query is then run on this
local plaintext database. Since both CryptDB and MONOMI
incorporate the OPE encryption scheme for efficient query
processing, they also inherit its security limitations.

Another group of secure systems, such as TrustedDB [3]
and Cipherbase [2], assume the availability of trusted hard-
ware at the server for decrypting and processing the data in
a secure manner. In TrustedDB, the whole database engine
runs inside the trusted hardware and all data is brought to it
for processing. But this is a very expensive proposition in
terms of both infrastructure and processing overheads. On
the other hand, in Cipherbase, the database engine is aware
of the encryption requirements and integrates tightly with

Fig. 11   Comparison of SPLIT
with prior systems

340	 M. Kesarwani et al.

1 3

the trusted hardware. However, its use of OPE for efficient
query processing results in the attendant security limitations.

Again these systems use OPE encryption scheme to
enhance their performance and hence inherit its limitations
too.

Finally, the SDB system [21] is based on an asymmetric
secret-sharing scheme with a set of interoperable operators
over the encrypted data. This design facilitates processing
of a wide range of SQL queries at the SP, but is again sus-
ceptible to a CRA attack in the HCC model.

A summary comparison of the security properties of
SPLIT with respect to the prior literature is shown in Fig. 11.

10 � Conclusions

In this paper we considered a Honest-but-Curious with Col-
lusion adversary on Cloud-resident databases. This model
represents a significantly more powerful attack than the
traditional HBC adversary and is capable of easily launch-
ing Chosen Range Attack to breach the encrypted data. We
proposed the SPLIT encryption scheme to securely pro-
cess range predicates in the presence of such adversaries,
with the key features being splitting of data values and lay-
ered encryption. With this scheme the adversary requires
exponentially more queries to breach the data, making the
attack unviable in practice. SPLIT was implemented and
evaluated on benchmark environments, and the experimental
results demonstrate that its strong security guarantees can
be supported without incurring more than a doubling of the
plaintext response time, even under sequential execution.
When parallel execution is implemented, these performance
overheads are expected to be much smaller. Therefore, in an
overall sense, SPLIT promises to be a viable and desirable
component for securely handling OLAP queries.

In our future work, we plan to compare the efficiency of
our work with alternative solutions in the HBC model (e.g.,
PBtree [16]) and to design encryption schemes to securely
handle additional SQL operators (e.g., � join) against HCC
adversaries.

Open Access  This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creat​ivecom-
mons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Agrawal R, Kiernan J, Srikant R, Xu Y (2004) Order-preserving
encryption for numeric data. In: Proceedings of ACM SIGMOD
conference

	 2.	 Arasu A, Blanas S, Eguro K, Kaushik R, Kossmann D, Ramamur-
thy R, Venkatesan R (2013) Orthogonal security with cipherbase.
In: Proceedings of CIDR conference

	 3.	 Bajaj S, Sion R (2011) Trusteddb: a trusted hardware based out-
sourced database engine. In: PVLDB, vol 4, No. 12

	 4.	 Bellare M, Ristenpart T, Rogaway P, Stegers T (2009) Format-
preserving encryption. In: Proceedings of selected areas in cryp-
tography conference

	 5.	 Boldyreva A, Chenette N, Lee Y, ONeill A (2009) Order-pre-
serving symmetric encryption. In: Proceedings of EUROCRYPT
conference

	 6.	 Boldyreva A, Chenette N, O’Neill A (2011) Order-preserving
encryption revisited: improved security analysis and alternative
solutions. In: Proceedings of CRYPTO conference

	 7.	 Chi J, Hong C, Zhang M, Zhang Z (2017) Fast multi-dimensional
range queries on encrypted cloud databases. In: Proceedings of
DASFAA conference

	 8.	 Cutello V, Nicosia G, Pavone M (2003) A hybrid immune algo-
rithm with information gain for the graph coloring problem. In:
Proceedings of genetic and evolutionary computation conference

	 9.	 Demertzis I, Papadopoulos S, Papapetrou O, Deligiannakis A,
Garofalakis M (2016) Practical private range search revisited. In:
Proceedings of ACM SIGMOD conference

	10.	 Dowsland KA, Thompson JM (2008) An improved ant colony
optimisation heuristic for graph colouring. Proc Discrete Appl
Math 156(3):313–324

	11.	 Hacigümüs H, Iyer BR, Li C, Mehrotra S (2002) Executing SQL
over encrypted data in the database-service-provider model. In:
Proceedings of ACM SIGMOD conference

	12.	 Hore B, Mehrotra S, Tsudik G (2004) A privacy-preserving index
for range queries. In: Proceedings of VLDB conference

	13.	 Kerschbaum F (2015) Frequency-hiding order-preserving encryp-
tion. In: Proceedings of CCS conference

	14.	 Knuth DE (1998) Sorting and searching. The art of computer
programming, vol 3, 2nd edn. Addison-Wesley, Reading

	15.	 Li J, Omiecinski ER (2005) Efficiency and security trade-off in
supporting range queries on encrypted databases. In: Proceedings
of DBSec conference

	16.	 Li R, Liu AX, Wang AL, Bruhadeshwar B (2014) Fast range query
processing with strong privacy protection for cloud computing.
PVLDB 7(14):1953–1964

	17.	 Lindell Y, Katz J (2014) Introduction to modern cryptography.
Chapman and Hall/CRC, Boca Raton

	18.	 Popa RA, Li FH, Zeldovich N (2013) An ideal-security protocol
for order-preserving encoding. In: Proceedings of IEEE sympo-
sium on security and privacy

	19.	 Popa RA, Redfield CMS, Zeldovich N, Balakrishnan H (2012)
CryptDB: processing queries on an encrypted database. Commun
ACM 55(9):103–111

	20.	 Tu S, Kaashoek MF, Madden S, Zeldovich N (2013) Processing
analytical queries over encrypted data. PVLDB 6(5):289–300

	21.	 Wong WK, Kao B, Cheung DW, Li R, Yiu S (2014) Secure query
processing with data interoperability in a cloud database environ-
ment. In: Proceedings of ACM SIGMOD conference

	22.	 Xu J, Fan J, Ammar MH, Moon AB (2002) Prefix-preserving IP
address anonymization: measurement-based security evaluation
and a new cryptography-based scheme. In: Proceedings of ICNP
conference

	23.	 https​://aws.amazo​n.com/ec2/prici​ng/
	24.	 http://dsl.cds.iisc.ac.in/publi​catio​ns/repor​t/TR/TR-2016-01.pdf

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://aws.amazon.com/ec2/pricing/
http://dsl.cds.iisc.ac.in/publications/report/TR/TR-2016-01.pdf

	Collusion-Resistant Processing of SQL Range Predicates
	Abstract
	1 Introduction
	1.1 Example Security Breach under HCC
	1.2 Range Predicate Security (RPS)

	2 Problem Framework
	2.1 Notations
	2.2 Data and Query Model
	2.3 Adversary Model
	2.4 Adversary Attack Model

	3 Database Encryption with SPLIT
	3.1 Splitting of Data
	3.2 Layered Encryption
	3.3 Data Transformation
	3.4 Design Rationale

	4 Range Query Processing
	4.1 Range Query Mapping
	4.2 Range Query Execution

	5 Security Analysis of SPLIT
	6 Security Guarantees
	6.1 Formal Security Proof For BS Encryption
	6.2 Formal Security Proof For RS Encryption

	7 Experimental Evaluation
	7.1 SPLIT Encryption Time
	7.2 Query Execution Time
	7.3 Storage Cost
	7.4 Scaling Experiment

	8 Deployment and Integration
	8.1 Workload-based Reductions of Storage Requirement
	8.2 Handling Updates
	8.3 Extending SPLIT to Other Operators
	8.4 Integrating SPLIT in a Complete System

	9 Related Work
	10 Conclusions
	References

