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Abstract
Prior solutions for securely handling SQL range predicates in outsourced Cloud-resident databases have primarily focused on 
passive attacks in the Honest-but-Curious adversarial model, where the server is only permitted to observe the encrypted query 
processing. We consider here a significantly more powerful adversary, wherein the server can launch an active attack by clandes-
tinely issuing specific range queries via collusion with a few compromised clients. The security requirement in this environment 
is that data values from a plaintext domain of size N should not be leaked to within an interval of size H . Unfortunately, all prior 
encryption schemes for range predicate evaluation are easily breached with only O(log2 �) range queries, where � = N∕H . To 
address this lacuna, we present SPLIT, a new encryption scheme where the adversary requires exponentially more—�(�)—
range queries to breach the interval constraint and can therefore be easily detected by standard auditing mechanisms. The novel 
aspect of SPLIT is that each value appearing in a range-sensitive column is first segmented into two parts. These segmented 
parts are then independently encrypted using a layered composition of a secure block cipher with the order-preserving encryp-
tion and prefix-preserving encryption schemes, and the resulting ciphertexts are stored in separate tables. At query processing 
time, range predicates are rewritten into an equivalent set of table-specific sub-range predicates, and the disjoint union of their 
results forms the query answer. A detailed evaluation of SPLIT on benchmark database queries indicates that its execution 
times are well within a factor of two of the corresponding plaintext times, testifying its efficiency in resisting active adversaries.
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1  Introduction

Cloud computing has led to the emergence of the “Data-
base-as-a-Service” (DBaaS) model for outsourcing data-
bases to third-party service providers (e.g., Amazon RDS, 
IBM Cloudant). Accordingly, considerable efforts have been 

made over the last decade to devise encryption mechanisms 
that organically support query processing without materi-
ally compromising on data security. Here, we investigate 
this issue specifically with regard to range predicates, the 
core building blocks of decision support (OLAP) queries on 
data warehouses.

Security Architecture
A typical DBaaS setup consists of the entities shown in 

Fig. 1, including: (1) a service provider (SP), who main-
tains the Cloud infrastructure; (2) a data owner (DO), who 
is the data source; (3) a set of query clients (QC), who are 
authorized to issue queries over the data stored by DO on 
SP’s platform, and (4) a security agent (SA), who acts as 
the bridge connecting the DO and QC with the SP.

The SA is a trusted entity and could be a simple proxy 
in the DO’s enterprise network. Alternatively, it could be 
located at the SP, implemented using secure threads or 
secure co-processors. Although all queries pass through the 
SA, it is a lightweight component since it is responsible only 
for query rewriting and decryption of the final results.

 *	 Manish Kesarwani 
	 manishkesarwani@in.ibm.com

	 Akshar Kaul 
	 akshar.kaul@in.ibm.com

	 Gagandeep Singh 
	 gagandeep_singh@in.ibm.com

	 Prasad M. Deshpande 
	 prasadmd@acm.org

	 Jayant R. Haritsa 
	 haritsa@iisc.ac.in

1	 IBM Research, Bangalore, India
2	 Kena Labs, Bangalore, India
3	 Indian Institute of Science, Bangalore, India

http://orcid.org/0000-0003-0939-2621
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-018-0081-5&domain=pdf


324	 M. Kesarwani et al.

1 3

Adversary Model
The SP, on the other hand, is always untrusted and 

treated as the primary adversary. We assume that the SP is 
only interested in deciphering the encrypted data and not in 
affecting the functionality of the database system. That is, 
the query processing engine is in pristine condition, and all 
client queries are answered correctly and completely. Fur-
ther, the SP maintains compliance with the standard access 
control and auditing mechanisms.

The query clients (QC) can either be trusted or untrusted, 
giving rise to the following alternative adversarial models:

(a)	 Honest-but-Curious (HBC), in which the clients are 
trusted. Here, only passive attacks by the SP are pos-
sible—that is, the SP can try to breach the plaintext 
values solely by observing the encrypted data, and the 
computations executed by the database engine on these 
data. This model has been widely considered in the 
literature (e.g., [1, 5, 15, 16, 18, 21, 22]).

(b)	 Honest-but-Curious with Collusion (HCC), in which 
the SP can unleash active attacks through collusion 
with a few compromised clients—specifically, the 
SP can inject range queries of its choice through the 
compromised QC and then observe how these queries 
are processed by the database engine hosted at its site. 
Further, these injected queries can be constructed adap-

tively, using the results of previous queries. This power-
ful attack model was recently considered in [9], as an 
adaptive semi-honest adversary.

1.1 � Example Security Breach under HCC

Consider a bank that has outsourced its relational database to 
the Cloud. Let the schema include a table Loan (CustName, 
LoanAmt, Collateral) capturing the loans taken by custom-
ers, and the collaterals furnished to obtain these loans, as 
shown in Fig. 2a. In order to simultaneously maintain secu-
rity on the Cloud and support range query processing, the 
current practice is to employ one of the contemporary range 
encryption schemes—e.g., OPE [5]—on the sensitive Loan-
Amt and Collateral data columns, as shown in Fig. 2b.1

Assume that the bank provides a form-based interface 
to third parties, such as auditors and analysts, to query the 
encrypted data. For instance, a form to generate a report 
that lists all the loans of a customer (say Alice) in a given 
range—say [15,000:40,000], and the associated collaterals 
in another range—say [13,000:33,000]. The corresponding 

Fig. 1   System entities in DBaaS 
model

Fig. 2   Plaintext and OPE bank-
ing database. a Plaintext Loan 
table. b Encrypted Loan_OPE 
table

Fig. 3   Form-based SQL query 
with range predicates SELECT * FROM Loan WHERE

LoanAmt BETWEEN 15000 AND 40000 AND
Collateral BETWEEN 13000 AND 33000 AND CustName = ’Alice’;

1  The CustName column is encrypted with AES for additional secu-
rity.
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plaintext SQL query that is internally generated from the 
Web form is shown in Fig. 3.

Now suppose the HCC adversary comprises of the SP 
and the authorized auditors of customer Alice. In this set-
ting, the security goal is to protect the adversary from learn-
ing the plaintext values of LoanAmt (and Collateral) for an 
unrelated customer from the encrypted Loan_OPE table. 
However, the OPE-based encryption scheme can be easily 
breached for any target cell with just a few injected queries 
by Alice’s auditors on Loan_OPE. For instance, assume that 
the adversary selects the shaded tuple in Loan_OPE as the 
target cell—corresponding to customer Bob. Then, the attack 
proceeds as follows:

•	 The adversary first injects a query Q1 , similar 
to that of Fig.  3, with the LoanAmt range set to 
[OPE(32,768):OPE(65,535)], Collateral range set to 
[OPE(40,000):OPE(40,000)],2 and CustName set to 
[AES(’Alice’)]. When Q1 is processed by the database 
engine, the SP observes whether or not Bob’s encrypted 
LoanAmt lies in this range (note that the SP has unre-
stricted read access over encrypted data).

•	 Since it happens to lie outside the range, the adversary 
injects Q2 , which is identical to Q1 except that the Loan-
Amt range is now set to [OPE(16,384):OPE(32,767)]. 
When Q2 is executed, the SP finds that Bob’s encrypted 
LoanAmt lies in the target range.

•	 The adversary then injects another similar query, Q3 , with 
LoanAmt now set to [OPE(24,576):OPE(32,767)].

•	 Since OPE(24,576) is equal to Bob’s encrypted LoanAmt 
value in Loan_OPE, the HCC adversary learns that Bob’s 
loan amount is 24,576.

The above process is representative of an injection-based 
binary search attack (BSA) that becomes feasible via collu-
sion. As proved in [14], if the data distribution is not known, 
then no search algorithm that is based on comparison of data 
items can exhibit better worst-case performance than binary 
search. Therefore, BSA is also the strongest feasible attack 
in the HCC environment—it is applicable to all security sys-
tems that store the encryption of a plaintext table in a single 
ciphertext table and allow comparisons of ciphertexts in the 
encrypted domain.

1.2 � Range Predicate Security (RPS)

Before we address the above weakness, it is necessary to 
formalize the security definition in the HCC model. In this 

scenario, a plausible security formulation for SQL range 
predicates is that data values from a plaintext domain of 
size N should not be leaked to within an interval of size H 
on this domain. For instance, the bank may require that no 
loan amount should be leaked to within an interval of size 
15,000 from its actual value. Note that setting H to 1 cor-
responds to the special case where a security breach occurs 
only if a plaintext is fully leaked—this typically applies to 
identificatory attributes such as Social Security numbers.

Unfortunately, as highlighted in the BSA example, all 
previous schemes for range security can be breached under 
HCC with a sequence of only �(���

�
�) range queries, where 

� = N∕H . To address this lacuna, we present here a new 
encryption scheme, called SPLIT, in which the HCC adver-
sary requires exponentially more—i.e., �(�)—range queries 
to breach the interval constraint. Such extended query pat-
terns require impractically long durations to achieve covertly 
or can be easily detected by standard auditing mechanisms. 
Therefore, the interval security requirement is effectively 
satisfied in either case.

We present a detailed evaluation of SPLIT on bench-
mark databases and demonstrate that its execution times 
are always within twice the corresponding plaintext times, 
thus providing an attractive security performance trade-
off against an extremely strong adversary. Further, while 
SPLIT does incur large storage overheads, the extremely 
low resource costs on the Cloud allow it to retain viability. 
Finally, SPLIT is attractive from a deployment perspective 
also since it can be implemented as a security layer over 
existing database engines, without necessitating internal 
changes.

Organization
The rest of the paper is organized as follows: We begin 

with the formal problem framework in Sect. 2. The new 
SPLIT encryption scheme and its associated range query 
processing technique are described in Sects. 3 and  4, respec-
tively. The security of SPLIT is analyzed in Sect. 5, and 
the formal proofs are derived in Sect. 6. The experimen-
tal results are presented in Sect. 7, while deployment and 
integration issues are discussed in Sect. 8. Related work is 
reviewed in Sect. 9, and our conclusions are summarized 
in Sect. 10.

2 � Problem Framework

As mentioned previously, the OPE and PPE schemes are 
currently in vogue for the secure handling of range queries 
and are defined as follows:

Order-Preserving Encryption [5] An order-preserving 
encryption function Eo is a one-to-one function from A ⊆ ℕ 

2  The Collateral range is fixed to a single value since the objective is 
to breach LoanAmt. A similar exercise can be carried out to break the 
Collateral column.
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to B ⊆ ℕ with |A| ≤ |B| , such that, for any two plaintext num-
bers i, j ∈ A , Eo(i) > Eo(j) iff i > j.

Prefix-Preserving Encryption [22] A prefix-preserving 
encryption function Ep is a one-to-one function from {0, 1}n 
to {0, 1}n such that, given two plaintext numbers a and b 
sharing a k-bit prefix, their corresponding ciphertexts Ep(a) 
and Ep(b) also share a k-bit prefix.

2.1 � Notations

The following notations are used in the remainder of this 
paper:

•	 xpxp+1 ⋯ xq denotes extraction of bits p through q from 
the (big-endian) binary representation of x.

•	 x1||⋯ ||xk denotes the concatenation of bits x1,⋯ , xk , 
from which each xi is uniquely recoverable.

•	  denotes the plaintext domain. Further, given a plaintext 
value x, its encrypted version is denoted by x∗.

•	 N denotes the size of the plaintext domain, and H repre-
sents the size of the RPS interval constraint specified by 
the data owner. The normalized plaintext domain size is 
denoted by � =

N

H
.

•	 [x]m
$
←− denotes a set of m plaintexts selected uniformly 

at random from the domain .
•	 The security parameter is denoted by �—for our purposes 

here, it corresponds to the bit lengths, denoted by n, of 
the plaintext values.

Negligible Success Probability (Definition 3.5 of [17]) Any 
encryption scheme is said to be secure if for any probabilistic 
polynomial-time adversary,3 there exists an integer N such 
that for all integers 𝜆 > N the probability that the adversary 
succeeds in breaking the scheme is f (𝜆) < 1∕p(𝜆) , where 
p() is any polynomial in � . That is, for every constant c, the 
adversary’s success probability is smaller than �−c for large 
enough values of � . A function that grows smaller than any 
inverse polynomial is called negligible and f (�) denotes this 
negligible success probability of the adversary.

2.2 � Data and Query Model

We assume that the encrypted information stored on the 
Cloud corresponds to a data warehouse, and the underlying 
plaintext values in the range-sensitive columns are from high 
cardinality domains. The queries issued against this database 
are OLAP-style decision support queries submitted through 
form interfaces.

2.3 � Adversary Model

As highlighted in Sect. 1, the data owner (DO) and the 
security agent (SA) are trusted entities in the HCC model, 
whereas the service provider (SP) is the untrusted entity who 
can collude with a few compromised query clients (QCs) to 
breach data security.

We assume that the adversary can observe all the 
encrypted data hosted at the SP site, and monitor the com-
putations carried out by the database engine. He is also privy 
to the choice of encryption schemes, with only the specific 
keys being kept secret. Further, the adversary can issue a 
sequence of range queries (via the set of compromised QC). 
In formulating each query in the sequence, the adversary is 
given the power to observe the results of previous queries 
in the sequence—it is this ability to issue adaptive queries 
which makes HCC a very powerful adversary. Specifically, 
using the form-based interface, the adversary can issue 
range queries with varying parameters and observe the cor-
responding computations on the SP site.

Adversary’s Objective In accordance with the DBaaS 
model, the DO gives access to portions of the data stored on 
the Cloud to QCs, using an access control mechanism and 
fixed query form templates. Further, the DO also defines 
the interval constraint size H . Given this environment, the 
adversary’s objective is to breach the range predicate secu-
rity (RPS) interval constraint. As an aside, we note that 
RPS is a variant of Message Recovery (MR) under an adap-
tive adversary, a commonly used security requirement in 
practice [4].

We assume that the adversary chooses a target cell of 
an encrypted tuple and desires to gain more information on 
its plaintext value.4 The adversary’s quantitative goal is to 
identify an interval (a, b) in which the plaintext value of 
this encrypted cell lies such that |b − a| < H . Note that, in 
the HCC model, each query will compulsorily leak some 
information about the cells, since the adversary knows the 
plaintext values of the range limits through collusion with 
the client. Therefore, the goal of our scheme is not to com-
pletely prevent leakage; rather, we aim to minimize the leak-
age bandwidth, measured in terms of the number of queries 
required to breach the security constraint for the target cell.

2.4 � Adversary Attack Model

We now move on to describing the Chosen Range Attack 
model (CRA) unleashed by a HCC adversary. For ease of 

3  Adversaries running for polynomial number of steps in the security 
parameter �.

4  While the specific mechanism to choose a target cell is outside the 
scope of this paper, it is possible that the HCC adversary may use 
secondary sources such as metadata information and access frequen-
cies to make this identification.
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presentation, we use  to represent the adversary against the 
deterministic encryption scheme  = (KeyGen,Enc,Dec).

The CRA attack model is applicable only to encryption 
schemes that allow range predicates to be evaluated in the 
encrypted domain. In this model, the adversary  has access 
to a Range Check Algorithm, RCA​(x∗,RI). RCA​ takes two 
inputs, x∗ being a ciphertext and RI being the encrypted Range 
Information corresponding to a plaintext range. RCA​ outputs 
1 if the plaintext value of x∗ belongs to the underlying range 
specified by RI, else it outputs 0. RCA​ corresponds to the SP 
observing the query processing at the Cloud server.  also has 
access to a Transformation Oracle (   ). The   , on input of 
a plaintext pair (lvalue, hvalue), returns the encrypted range 
information RI such that RCA​(x∗,RI) outputs 1 if and only if 
x ∈ [lvalue, hvalue] , where x∗ ← Enc(x) .   corresponds to 
the SA rewriting the plaintext query into the equivalent query 
over the encrypted database. The adversary  is given a set M∗ 
consisting of m ciphertexts and the interval constraint size H . 
 selects a challenge ciphertext x∗ ∈ M∗ and his objective is to 
identify a plaintext interval (a, b) for x∗ such that |b − a| < H . 
Also,  is allowed to issue a polynomial (in � , the security 
parameter) number of range queries to the   and observe 
their computations and results.

The above attack model can be formalized in the form of 
a game between the challenger  and the adversary  for the 
deterministic encryption scheme :

The Chosen Range Attack Game ExpCRA


(�)

1.	  computes key K ← KeyGen(� ), chooses a set 
M = {x1,⋯ , xm} , where [x]m

$
←− from plaintext domain 

 , and computes the corresponding ciphertext set 
M∗ = {x∗

1
,⋯ , x∗

m
} , where x∗

i
← EncK(xi)∀i ∈ {1,m}.

2.	  is given RCA​, H and M∗ as input and selects a cipher-
text x∗ ∈ {x∗

1
,⋯ , x∗

m
} as its challenge ciphertext.

3.	 Now  adaptively asks the encryption of polynomial 
number of ranges from   and obtains the correspond-
ing encrypted range information RI.  uses RCA​ any 
number of times and finally outputs a plaintext range 
(a, b).

4.	 The output of the experiment is defined to be 1 if 
x ∈ (a, b) and |b − a| < H , where x is the plaintext cor-
responding to the challenge ciphertext x∗ , and 0 other-
wise.

The CRA advantage of the adversary  against  is defined 
as

 is said to be secure against a CRA adversary running in 
polynomial time if the advantage is negligible. The goal of 
the SPLIT scheme is to provide security against the CRA 

(1)AdvCRA
 ,

(�) = |Pr[ExpCRA
 ,

(�) = 1]|

by the HCC adversary, if the plaintext domain is sufficiently 
large.

3 � Database Encryption with SPLIT

In this section, we present the design of the SPLIT encryp-
tion scheme, which is conceptually based on two main 
ideas of splitting and layered encryption. The motivation 
for splitting stems from the limitation of current security 
systems (like OPE) that allow range query processing 
directly over encrypted data. Such systems are easily sus-
ceptible to a CRA attack in the HCC model, as shown in 
Sect. 1.1. Specifically, the adversary is able to perform a 
simple binary search as it is able to refine its search range 
with every subsequent query. Hence, to stop the adversary 
from continuing its binary search, we divide the search-
able data in separately encrypted data tables. Secondly, the 
motivation for layered encryption is to prevent linkages of 
tuples across these various encrypted tables.

The above concepts are elaborated in Sects.  3.1 
and  3.2, respectively. Subsequently, we describe how a 
plaintext database is converted to an encrypted database, 
followed by a rationale for the design choices.

3.1 � Splitting of Data

If we consider plaintexts sourced from an n-bit integer 
domain, the entire set of these plaintexts can be repre-
sented by a complete binary tree of height n, referred to 
as the Plaintext Tree (PT). The leaf level containing 2n 
nodes is denoted as L0 , the level above it is denoted as 
L1 , and so on. For example, consider the plaintext tree for 
4-bit integers shown in Fig. 4a. In this case, n is 4 and PT 
contains nodes at 5 different levels, L0 through L4 . Every 
node at the leaf level of PT is associated with n-bits of 
information characterizing its path from the root to level 
L0.

SPLIT partitions the levels of the PT into two contigu-
ous groups, referred to as Range Safe (RS) and Brute-
force Safe (BS), respectively. Based on this partitioning, 
associated encrypted tables RS and BS are created. Spe-
cifically, the RS partition consists of the top levels of PT. 
For example, in Fig. 4a, levels L2 through L4 belong to the 
RS partition, and the bits corresponding to these levels are 
encrypted for range query processing. (This procedure is 
explained later in Sect. 3.2.) Thus, in the encrypted RS 
table, for each plaintext value, the upper bits are encrypted 
for range query processing and the remaining bits are 
blinded using a secure block cipher (SBC). Hence, in this 
example, nodes at level L2 effectively serve as leaf nodes, 
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and the associated range for every such node is of granu-
larity 22 integers, as shown in Fig. 4b.

The BS partition, on the other hand, is comprised of 
the remaining PT levels from level L0 up to the level 
where the RS partition ends. In the current example, lev-
els L0 through L2 are assigned to the BS partition, and the 
bits corresponding to these levels are encrypted for range 
query processing. Thus, in the encrypted BS table, the 
lower bits are encrypted for range query processing while 
the upper bits are blinded using SBC. This represents a 
set of trees, with the prefixes blinded, as shown in Fig. 4c.

In general, the number of bits in the BS or RS parti-
tions is a configurable parameter for every column and 
can be set based on the application requirements. For 
example, if the DO has defined the RPS constraint to be 
H , then the number of bits in the BS partition are set to 
be l = ⌈log2(H)⌉ , and in the RS partition to be u = n − l . 
Now, a binary search over the RS table reveals values at 
granularities of size 2l ≥ H . So, to decrypt a value from 
the BS table, the adversary has to make O(2n−l) = O(�) 
brute-force queries.

Note that there is a trade-off between the H constraint 
and number of queries required to breach the constraint. 
For example, if the DO is comfortable in revealing data to 
a granularity of H = 224 , then considering n = 32 results 
in u = 8 and l = 24 . Thus, 28 = 256 queries are sufficient 
to breach this interval constraint. On the other hand, if 
H  was 220 , then 212 = 1024 queries would be needed to 
breach the constraint. In the coming sections, we will 
assume, without loss of generality, that the number of bits 
in the RS partition is equal to the number of bits in the 

BS partition, i.e., the PT is divided into two equal halves 
( u = l =

n

2
 ). This leads to a balance between the RPS con-

straint and the number of queries needed to breach the 
constraint.

3.2 � Layered Encryption

SPLIT uses three encryption schemes as black boxes, 
namely secure block cipher ( SBC ), order-preserving encryp-
tion ( OPE ), and prefix-preserving encryption ( PPE ). The 
SPLIT encryption scheme for plaintext domain  is con-
structed as a tuple of polynomial-time algorithms SPLIT = 
(KeyGen, BS, RS, SBC,BS,RS,SBC) , where KeyGen is 
probabilistic and the rest are deterministic.

Key Generation [ sk ← KeyGen(�,w, d)]
KeyGen is a probabilistic algorithm that takes the follow-

ing as input: The security parameter � , the total number of 
table columns w, and the number of columns on which range 
predicates can be simultaneously applied d. It then outputs 
the secret key sk, which consists of d ∗ 2d equi-length secret 
keys (K1

O
,K2

O
, ...,Kd∗2d

O
) of the OPE encryption algorithm 

( OPE ), d ∗ 2d equi-length secret keys (K1
P
,K2

P
, ...,Kd∗2d

P
) of 

the PPE encryption algorithm ( PPE ) and w ∗ 2d equi-length 
secret keys (K1

S
,K2

S
, ...,Kw∗2d

S
) of a secure block cipher ( SBC).

Encryption Algorithms
SPLIT incorporates two encryption algorithms BS and 

RS . Both the algorithms are deterministic and take the 
following as input: the plaintext data item m, key for OPE 
encryption KO , key for PPE encryption KP , key for SBC 

Fig. 4   Basic SPLIT scheme. a Plaintext tree (PT). b Range safe partition (RS). C Brute-force safe partition (BS)
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KS and number of bits u in the RS partition. The BS algo-
rithm outputs the BS ciphertext ( c∗

BS
 ), while RS outputs the 

RS ciphertext ( c∗
RS

 ) corresponding to message m encrypted 
under the given keys. Let l = n − u , m� = mn−1mn−2 ⋯ml and 
m�� = ml−1ml−2 ⋯m0 , and thus, m = m�||m�� . Then,

•	 Encryption for BS [ 
��
(�,�

�
,�

�
,�

�
, �) ] 

•	 Encryption for RS [ 
��
(�,�

�
,�

�
,�

�
, �) ] 

The entire set of data encryption steps for a given plaintext 
value, as described above, is pictorially shown in Fig. 5.

(2)c∗
BS

← 
KO

OPE
(

KP

PPE
(

KS

SBC
(m�)||m��))

(3)c∗
RS

← 
KO

OPE
(

KP

PPE
(m�||

KS

SBC
(m��)))

Decryption Algorithms
SPLIT incorporates two decryption algorithms BS and 

RS . Both the algorithms are deterministic and take as input 
the BS and RS ciphertexts, respectively, along with the key 
for OPE encryption KO , key for PPE encryption KP , key for 
SBC KS , and the number of bits u in the RS partition. Let 
l = n − u . Then,

•	 Decryption of BS [ 
��
(�∗

��
,�

�
,�

�
,�

�
, �) ] 

•	 Decryption of RS [ 
��
(�∗

��
,�

�
,�

�
,�

�
, �) ] 

3.3 � Data Transformation

Consider a plaintext table with w columns, from which we 
wish to support range predicates on d columns. The plain-
text values for each of the d columns are independently 
encrypted 2d−1 times using BS and RS each, thus creating 2d 
ciphertext columns. Further, 2d encrypted tables are created 
by capturing all BS and RS combinations of these columns. 
The remaining columns in the plaintext table—on which 
range queries will not be issued—are simply encrypted using 
an SBC.

We illustrate these data transformation process with 
the help of an example. Assume the plaintext table is 

(4)m∗
←

KP

PPE
(

KO

OPE
(c∗

BS
))

(5)m ←
KS

SBC
(m∗

n−1
⋯m∗

l
)||m∗

l−1
⋯m∗

0

(6)m∗
←

KP

PPE
(

KO

OPE
(c∗

RS
))

(7)m ←m∗
n−1

⋯m∗
l
||

KS

SBC
(m∗

l−1
⋯m∗

0
)

Fig. 5   SPLIT ciphertext construction

Fig. 6   SPLIT banking 
database. a Loan_BS_BS. b 
Loan_BS_RS. c Loan_RS_BS. 
d Loan_RS_RS
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Loan with schema as enumerated in Fig. 2a—then, w = 3 . 
Assume that range predicates can only be asked on the 
LoanAmt and Collateral columns, i.e., d = 2 . First, we 
call KeyGen(�, 3, 2) , which returns secret keys consisting 
of eight (2 ∗ 22) OPE keys (K1

O
,K2

O
,… ,K8

O
) , eight (2 ∗ 22) 

PPE keys (K1
P
,K2

P
,… ,K8

P
) , and twelve (3 ∗ 22) SBC keys 

(K1
S
,K2

S
,… ,K12

S
) . Next, we create four encrypted tables, as 

shown in Fig. 6, which contain all combinations of the BS 
and RS partitions of LoanAmt and Collateral. Further, the 
physical row orderings of the tables are randomized to pre-
vent position-based linkages across their tuples.

3.4 � Design Rationale

The motivation for row randomization and layered encryp-
tion in SPLIT is to prevent linkages of tuples across the 
various encrypted tables. For example, there should be no 
linkage between tuples in Loan_RS_RS and Loan_BS_RS, 
both of which correspond to the RS partition of Collateral. 
If such a linkage exists, it can be used to connect the tuples 
on the Collateral column in the two tables, thereby enabling 
a binary search attack by keeping this column fixed, and 
searching on the other LoanAmt column.

Further, the Collateral values are encoded using the same 
RS Encrypt function, but with different keys in Loan_RS_
RS and Loan_BS_RS, respectively. This is where the layered 
encryption, using OPE and PPE, plays a role. In both these 
columns, the lower l bits are blinded using an SBC with dif-
ferent keys, so it is not possible to link tuples based on the 
lower bits. However, if no further encryption is used, i.e., the 
upper u bits are kept as plaintext, it would be possible to link 
the tuples based on the upper bits. So, further encryption that 
enables range queries based on the upper u bits is necessary. 
Clearly, OPE and PPE are possible schemes that can be used. 
However, OPE by itself is not sufficient: Consider a set of 
values  encrypted using OPE with two different keys giv-
ing sets 1 and 2 . Since OPE preserves order, the order of 
encrypted values in 1 and 2 is identical. Thus, by sorting 
these sets, their values can be linked.

Similarly, PPE by itself is not secure since it preserves the 
structure of the tree corresponding to the binary representa-
tion. That is, in some cases, it may be possible to map nodes 
across two PPE trees by using the structure. For example, if 
in the plaintext domain, there is a single value with bit n − 1 
as 1, and all others have bit n − 1 as 0, then this value can be 
linked across different PPE trees, irrespective of whether or 
not bit n − 1 gets flipped.

In a nutshell, the advantage of OPE is that it destroys 
the structure of the tree and the advantage of PPE is that it 
destroys the order information. Thus, by combining OPE 
with PPE, we remove both order- and structure-based 
linkages.

4 � Range Query Processing

In this section, we explain how a range query is executed 
over a SPLIT encrypted database. The main idea is to 
transform the query range into a disjoint set of prefix 
ranges of the form bn−1bn−2 ⋯ bj ∗ , where each bi is a bit 
taking value 0 or 1, and ∗ can match any value. Smaller 
ranges, corresponding to j < l , are answered from the 
BS tables, while larger ranges are answered from the RS 
tables. Functionally, the range query processing consists 
of two main steps—range query mapping and range query 
execution, which are described below.

4.1 � Range Query Mapping

The steps to map range predicates from the plaintext 
domain to the RS and BS partitions are shown in RQM 
Algorithm 1. The mapping process starts by converting 
the input range r into a set of ranges  represented by 
prefixes (Line 1). The maximum number of such ranges 
is 2 ∗ (n − 1) , where n is the number of bits used for rep-
resenting the attribute values [22]. For each prefix in  , a 
value with that prefix is chosen—the remaining unspeci-
fied bits are set to 0 (Line 4). Then, depending on the 
size of the range represented by the prefix, it is mapped 
to either the RS or the BS partition. For a BS range, the 
higher-order bits are encrypted with the SBC (Line 7). 
Then the value is encrypted with PPE (Lines 8, 10). The 
lower and upper bounds of the range in the PPE encrypted 
domain are computed by replacing all the remaining lower 
j bits with 0 and 1, respectively (Lines 12–13). Finally, 
these lower and upper bits are further encrypted using 
OPE encryption with the appropriate keys and the range 
is added to RBS or RRS , depending on the size of the range 
(Lines 14–20). It can be seen that due to the prefix-pre-
serving property of PPE, and the order-preserving prop-
erty of OPE, this mapping produces the correct range on 
the encrypted domain. The ranges in RRS are answered 
from the RS partition, and those from RBS are answered 
from the BS partition.

The above walkthrough shows the range mapping for 
a single column. If there are ranges on multiple columns, 
each range is split into prefixes and the set of all combina-
tions of prefixes together represents the full range of the 
original query. Each combination is answered from the 
table corresponding to the range types. For example, a BS 
range on the LoanAmt column combined with a BS range 
on the Collateral column is answered from the Loan_BS_
BS table.
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Algorithm 1 Range Query Mapping (RQM)
Input: Range r on plaintext attribute. OPE keys K1

O and K2
O, PPE keys K1

P and K2
P ,

SBC keys K1
S and K2

S for RS and BS partition respectively. The number of bits in RS
partition ‘u’

Output: Set of ranges on RS partition RRS , set of ranges on BS partition RBS

1: Convert r into a set of ranges R of form bn−1bn−2 · · · bj∗ {using technique in [22]}
2: Let l = n− u
3: for all (ri = bn−1bn−2 · · · bj∗) in R do
4: v ← bn−1bn−2 · · · bj0 · · · 0 {set lower bits to 0}
5: vU ← vn−1vn−2 · · · vl ; vL ← vl−1vl−2 · · · v0
6: if (j < l) then {BS range}
7: v∗ ← EK2

S
(vU )||vL

8: e∗v ← EK2
P
(v∗)

9: else {RS range}
10: e∗v ← EK1

P
(v)

11: end if
12: Let cncn−1 · · · c0 be the bit representation of e∗v
13: rL ← cn−1cn−2 · · · cj0 · · · 0; rU ← cncn−1 · · · cj1 · · · 1
14: if (j < l) then
15: r∗L ← EK2

O
(rL) ; r∗U ← EK2

O
(rU )

16: Add (r∗L, r
∗
U ) to RBS

17: else
18: r∗L ← EK1

O
(rL) ; r∗U ← EK1

O
(rU )

19: Add (r∗L, r
∗
U ) to RRS

20: end if
21: end for
22: return RRS , RBS

5 � Security Analysis of SPLIT

In this section, we evaluate the range predicate security 
offered by the SPLIT scheme against a Honest-but-Curious 
with Collusion adversary mounting a Chosen Range Attack. 
Specifically, in a binary search attack, as the range is refined, 
the table from which the query is answered is switched from 
RS to BS according to the RQM Algorithm 1. So, a target 
RS cell cannot be guessed to a range of size less than 2l . 
And there is no way to reach the corresponding target cell 
in the BS table in log(�) steps unless the rows in the tables 
can be linked. Without linkage, binary searches over all the 
� sub-trees in the BS partition will be needed. We formally 
prove that the table rows cannot be correlated in the follow-
ing discussion.

For ease of understanding, a diagrammatic view of the 
layered SPLIT encryption scheme is shown in Fig. 7.5 The 
various ways in which RPS for the LoanAmt column can be 
breached are highlighted through the numbered dotted lines, 
which are explained below—a similar reasoning holds for 
the Collateral column. The SPLIT scheme protects against 

5  For visual clarity, CustName is not shown in the figure, but its 
encrypted form, CustName_Enc , is present in all four tables.

4.2 � Range Query Execution

The next step is to execute the ciphertext queries at SP. We 
illustrate this process through the example plaintext query 
specified in Fig. 3. The following steps are performed to 
evaluate this query in SPLIT:

1.	 QC sends the plaintext query to the SA.
2.	 SA calls RQM Algorithm 1 and identifies sub-ranges 

over ciphertext tables.
3.	 Using the output of Step 2, SA creates ciphertext sub-

queries and sends them to SP.
4.	 SP executes the sub-queries and sends the (encrypted) 

result tuples to SA.
5.	 SA computes the union of the tuples returned from 

each sub-query, and then decrypts the result tuples. 
(The union is efficiently computable because it is apri-
ori known that the sub-queries access disjoint sets of 
tuples.)
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all these breaches, as explained in the remainder of this 
section.

To begin with, the HCC adversary is unable to inde-
pendently break the BS and RS ciphertexts (dotted lines 1 
and 2, respectively) because these were generated by SBC-
encrypting the upper and lower half bits of the plaintext 
value, respectively. Secondly, the BS and RS ciphertexts 
(dotted lines 3 and 4) corresponding to a given LoanAmt 
plaintext value cannot be associated, because there is no 
value linkage between these ciphertexts—again due to the 
blinding of the lower half bits in the RS table and the upper 
half bits in the BS table using a SBC. Further, the linkages 
of row locations between these tables have been removed 
due to the randomization (denoted by R in the figure) of the 
physical row orderings of the tables. Preventing this associa-
tion ensures a break in the chain of attack queries.

Apart from these direct attacks on LoanAmt, there could 
also be indirect attacks launched via the sibling Collateral 
attribute. Specifically, the linkage between a pair of BS 
ciphertexts corresponding to a Collateral plaintext value 
(dotted line 5), or a pair of RS ciphertexts corresponding 
to a Collateral plaintext value (dotted line 6), could be used 
to launch a BSA on LoanAmt. This is prevented because 
physical randomization ensures the absence of row link-
ages between the encrypted Collateral columns, while value 
linkages are eliminated by the three-layered SBC-PPE-OPE 
encryption, using different keys for each table, as described 
in Sect. 3.

In a nutshell, the security of the SPLIT encryption 
scheme is established based on the following points:

1.	 The BS and RS encryptions are independently secure 
(dotted lines 1 and 2 in Fig. 7). The associated security 
proofs are presented in Sect. 6.

2.	 For any plaintext table, there is no linkage between the 
corresponding BS and RS ciphertext tables (dotted lines 
3 and 4 in Fig. 7).

3.	 For any plaintext table, there is no linkage between a 
pair of corresponding BS (or two RS) ciphertext tables 
(dotted lines 5 and 6 in Fig. 7).

6 � Security Guarantees

In this section we present the formal proofs for the secu-
rity of the BS and RS encryption schemes. The full suite of 
proofs for the security of SPLIT are available in the technical 
report [24].

6.1 � Formal Security Proof For BS Encryption

Claim  If SBC is a secure block cipher, then any probabilistic 
polynomial-time adversary BS will have negligible advan-
tage in the Chosen Range Attack experiment ExpCRA

BS ,BS
(�) 

against the BS encryption scheme.

Fig. 7   Ensuring security of 
LoanAmt values
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Proof  We will prove the claim by contradiction. Specifically 
assume that there exists a CRA adversary BS against the 
BS scheme with some non-negligible advantage � . Then we 
can show that there exists an adversary SBC against the SBC 
scheme with a non-negligible advantage �′ . This contradicts 
the assumption that SBC is a secure block cipher, and there-
fore, the adversaries SBC and BS cannot exist. The nihility 
of SBC and BS is shown in the remainder of this section.

Let SBC be a challenger for the SBC scheme. Given a set 
of SBC ciphertexts, the objective of SBC is to learn some 
plaintext bits of a target SBC ciphertext. Further SBC is 
allowed to ask the encryption of plaintexts (polynomial in � ) 
from SBC . In the BS security game shown below, SBC acts 
as the challenger ( BS ) of the BS scheme and uses BS to 
achieve its objective. Further, BS makes at most 2 SBC que-
ries for every query from its adversary, since the ranges that 
map to the BS table using Algorithm 1 can have at most two 
different u bit prefixes. Let BS be able to breach the interval 
constraint H, and guess the target ciphertext to a plaintext 
range H′ ≤ H . It can be seen that the u bit prefix of all the 
points in the interval H′ can take at most two values, since 
H� ≤ H = 2l . SBC will randomly pick one of these u bit pre-
fixes (by choosing one of the two endpoints of the range and 
taking its prefix) as its guess for the target SBC ciphertext. 
If BS makes q queries and succeeds with non-negligible 
probability � , SBC will make 2 ∗ q queries and succeed 
with the non-negligible probability �

2
 , which contradicts the 

assumption that SBC is a secure block cipher. Hence, the 
adversary BS with non-negligible advantage against the BS 
encryption scheme cannot exist, and BS is secure against 
CRA (proof for dotted Line 1 in Fig. 7).

The security game between SBC , SBC , and BS has fol-
lowing steps:

1.	 The challenger SBC has a set  of n
2
bit integers. SBC 

first generates the key K1
S
← KeyGenSBC for the SBC and 

encrypts each number in set  to compute the set 
∗ = {s∗|∃s ∈  ∶ s∗ ← K1

S
(s)} . SBC forwards ∗ to the 

SBC adversary SBC.
2.	 The SBC adversary SBC also acts as the challenger BS 

for the BS encryption scheme. It receives the set ∗ and 
performs below steps to generate BS ciphertexts:

•	 It generates the key K1
O
← KeyGenOPE for OPE and 

key K1
P
← KeyGenPPE for PPE.

•	 It generates a set of all the n
2
bit numbers  . It 

then picks every number in set ∗ one by one and 
appends it with all the numbers in set  to compute 
the set  � = {s�|∃s∗ ∈ ∗,∃u∗ ∈  ∶ s� ← s∗||u∗)}

•	 It further computes a set  �� = {s��|∃s� ∈  � ∶

(s�� ← 
K

1

O

(
K

1

P

(s�))}

	    If we denote the set created by appending numbers 
to the elements in set  as  , it can be seen that the ele-
ments in set  ′′ are the BS ciphertexts that would have 
been produced by BS on  . BS stores the values in the 
set  ′′ as a single column BS table (say D_BS ) at the 
SP’s site which also acts as the CRA adversary ( BS ) 
against the BS encryption scheme.

3.	 Next, the adversary BS selects a tuple from the BS table 
D_BS and declares it as its target ciphertext (say c∗ ) for 
decryption. Further, SBC declares the SBC ciphertext 
(say c′ ) used to form c∗ as its target. BS can now issue 
range predicate queries over D_BS.

4.	 BS sends its plaintext range predicate query to BS.
5.	 BS identifies the prefix based sub-ranges as specified in 

Line 1 of Algorithm 1. The ranges represented by larger 
prefixes (more than n

2
bits ) are answered from the D_BS 

table by BS.
6.	 For each BS range, BS needs to perform the steps cor-

responding to BS in Algorithm 1 (Lines 7, 8, 15 and 
16) to map the input range to a range on the encrypted 
domain. While the PPE and OPE encryptions can be 
directly performed by it, this is not the case for the SBC 
encryption in Line 6 since it does not have the secret key 
of SBC . Instead, it sends these higher-order n

2
bits to SBC 

to obtain their SBC encryptions.
	   The rewritten query with the mapped ranges is exe-

cuted over D_BS , and the received tuples are decrypted 
and forwarded to BS . The tuples can be decrypted by 
BS since it knows the OPE and PPE keys and all result 
tuples corresponding to a range have the same n

2
bits 

prefix, whose SBC decryption corresponds to the n
2
bits 

prefix of the input range on the plaintext domain.
7.	 The adversary BS can ask for more range predicate que-

ries (polynomial in the security parameter). For each of 
these, BS constructs a response as shown in the steps 
above.

8.	 At the end, BS outputs an interval H′ as its guess of the 
interval in which the plaintext for its target ciphertext c∗ 
belongs.

9.	 BS forwards to the SBC challenger SBC , the n
2
bits of the 

prefix of one of the two endpoints (randomly chosen) in 
H′ as the plaintext corresponding to the target ciphertext 
c′.

Further in Step 6 above, the ranges that map to the BS 
table using Algorithm 1 can have at most two different 
n

2
bit prefixes. This is because if the granularity of any 

sub-range for the BS table overlaps more than 2 sub-trees, 
then that sub-range can be further divided into 1 sub-range 
for the RS tables and 2 sub-ranges for the BS table. For 
example, consider the BS and RS divisions of the plaintext 
tree shown in Fig. 4—here, the sub-range [7, 12] which 
touches three sub-trees from the BS table can be rewritten 
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into sub-ranges {[8, 11]} for the RS table and {[7, 7], [12, 
12]} for the BS table. 	�  □

6.2 � Formal Security Proof For RS Encryption

Claim  If SBC is a secure block cipher, then any probabilistic 
polynomial-time adversary RS will have negligible advan-
tage in the Chosen Range Attack experiment ExpCRA

RS ,RS
(�) 

against the RS encryption scheme.

Proof  The proof for this claim is similar to that of Claim 6.1. 
One difference in the RS game is that RS does not need to 
perform any SBC encryption queries from SBC . Further, the 
adversary SBC can only guess some of the l plaintext bits, 
depending on the granularity of the range guessed by the 
adversary RS . Further, as in the BS game, the advantage is 
�

2
 , since SBC has to pick one of two possible prefixes, which 

contradicts the assumption that SBC is a secure block cipher. 
Hence, the adversary RS with non-negligible advantage 
against RS cannot exist, and therefore, RS is secure against 
CRA (proof for dotted Line 2).

The security game between SBC , SBC and RS has fol-
lowing steps:

1.	 The challenger SBC has a set  consisting of all n
2
bit 

integers. SBC first generates a key K1
S
← KeyGenSBC for 

the SBC and then encrypts each number in the set —
this results in the set ∗ = {s∗|∃s ∈  ∶ s∗ ← K1

S
(s)} . 

SBC forwards ∗ to the SBC adversary SBC.
2.	 The SBC adversary SBC also acts as the challenger RS 

for the RS encryption scheme. It receives the set ∗ and 
performs the following actions to generate RS cipher-
texts:

•	 It generates key K1
O
← KeyGenOPE for OPE and key 

K1
P
← KeyGenPPE for PPE.

•	 It generates a set of all the n
2
bit numbers  . It 

then picks every number in set  , one by one, and 
appends it with all the numbers in set ∗ to compute 
the set  � = {s�|∃s∗ ∈ ∗,∃u∗ ∈  ∶ s� ← u∗||s∗)}.

•	 It further computes a set  �� = {s��|∃s� ∈  � ∶

(s�� ← 
K

1

O
(

K
1

P

(s�))}.

	    If we denote the set of all n bit numbers as  , it can 
be seen that the elements in the set  ′′ are the RS cipher-
texts that would have been produced by RS on  . RS 
stores the values in the set  ′′ as a single column RS 
table (say D_RS ) and host this table at SP’s site, which 
also acts as the CRA adversary ( RS ) against the RS 
encryption scheme.

3.	 Next, the adversary RS selects a tuple from the RS table 
D_RS and declares it as the target ciphertext (say c∗ ) for 

decryption. Further, SBC declares the SBC ciphertext 
(say c′ ) used to form c∗ as its target. RS can now issue 
range predicate queries over D_RS.

4.	 RS sends its plaintext range predicate query to RS , and 
let the result tuples be from the range [a, b].

5.	 RS identifies the prefix based sub-ranges as specified 
in Line 1 of Algorithm 1. The ranges represented by 
smaller prefixes (less than n

2
bits ) are answered from the 

D_RS table by RS.
6.	 For each RS range, RS needs to perform the steps cor-

responding to RS in Algorithm 1 (specifically Lines 10, 
18 and 19) to map the input range to a range on the 
encrypted domain. All these steps can be directly per-
formed since it has the keys for OPE and PPE and no 
block cipher encryptions are needed.

	   The rewritten query with the mapped ranges is exe-
cuted over D_RS to obtain the encrypted result tuples. 
The decrypted results correspond to all integers between 
a and b (the query range), since  consists of all the 
n bit integers. The encrypted result tuples, along with 
the decrypted set, are forwarded to RS.

7.	 The adversary RS can ask more range predicate queries 
(polynomial in the security parameter). For each of these 
queries, RS constructs a response as shown in steps 5-6 
above.

8.	 At the end, RS outputs an interval H′ as its guess of the 
interval in which the plaintext for its target ciphertext c∗ 
belongs.

9.	 RS computes the prefixes of the endpoints in H′ and 
forwards to SBC challenger SBC the bits after the most 
significant n

2
bits of the prefix, representing its guess of 

some plaintext bits corresponding to its target ciphertext 
c′ .

In the RS game, SPLITRS
 does not need to perform any AES 

encryption queries from AES . Thus, if SPLITRS
 has a non-

negligible advantage � in the CRA experiment with SPLITRS
 , 

this advantage carries over and AES will win the AES chal-
lenge with the same non-negligible � probability, i.e.,

which contradicts the assumption that AES is a secure block 
cipher. Hence, the adversary SPLITRS

 with non-negligible 
advantage against SPLITRS cannot exist. 	�  □

7 � Experimental Evaluation

The importance of range predicates in OLAP environments 
can be gauged from the fact that more than half the queries 
in the TPC-H and TPC-DS decision support benchmarks 
feature such predicates. In this section, we move on to 

(8)Pr[success of AES] = �
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empirically evaluating SPLIT ’s efficiency with regard to 
handling range predicates in the encrypted domain.

Our experimental setup consisted of two identical server 
machines, with one representing the SP hosting the DO’s 
encrypted data, and the other representing the SA interfac-
ing with the QCs. PostgreSQL 9.4 was used as the database 
engine on the SP server, and all queries were issued through 
a Java program, which converted the plaintext queries to 
their SPLIT ciphertext equivalents.

The experiments were carried out on 10 GB versions of 
the TPC-H and TPC-DS benchmark databases. For TPC-H, 
we constructed the queries on lineitem, the largest table in 
the TPC-H schema (60 million rows). Each query had range 
predicates on four attributes, with the predicates covering 
the entire spectrum of selectivities. The reason we used syn-
thetically created queries is because the native queries were 
either not rich in range predicates, or contained aggregate 
operators which we currently do not handle. On the other 
hand, for TPC-DS, we directly invoked three benchmark 
queries (queries Q82, Q87, and Q96) which contained only 
range predicates, and could therefore be fully executed on 
a SPLIT encrypted version of the database. The listings of 
these queries are provided in [24].

7.1 � SPLIT Encryption Time

A legitimate concern about SPLIT could be regarding the 
time it takes to encrypt databases, especially in light of its 
multiple splitting and layered encryption operations. How-
ever, our experiments have shown that encrypting the 10 GB 
TPC-H database takes less than 12 h and for the 10 GB TPC-
DS database it took around 13 h using 8 concurrent threads.

From the above, it is evident that data encryption takes 
only a few hours, which appears to be a reasonable one-time 
overhead that is amortized over the stream of range queries 
subsequently executed over the encrypted database. Further, 
we have found that the final result set decryption times are 
negligible in comparison with the data encryption or query 
execution times, due to the small size of these results, and 
hence, they are added to the query execution times reported 
in Sect. 7.2.

7.2 � Query Execution Time

The execution times for range query processing by the 
SPLIT and plaintext algorithms are captured in Fig. 8a, b 
for the above-mentioned TPC-H and TPC-DS databases, 
respectively. The results in these figures consistently show 
that the performance of SPLIT is within a factor of two of 
the plaintext query execution. For instance, in Fig. 8b at 
50% lineitem selectivity, the plaintext query takes around 30 
seconds while SPLIT completes in 52 seconds. Similarly, in 
Fig. 8b, Query 82 takes 32 seconds in the plaintext environ-
ment and is computed in 45 seconds with SPLIT encryption.

At first glance, it may seem that SPLIT may incur a 
performance slowdown commensurate with the storage 
blowup. However, such worst-case scenarios require a 
query containing multi-dimensional range predicates, 
where each predicate has a sufficiently coarse selectivity to 
result in a full table scan. In general, if indexes are present 
and are chosen by the optimizer, then the number of tuples 
fetched from the disk will be proportional to the size of the 
final result set. In these cases the performance overhead 
will be within two times since the ciphertext size is twice 
the size of the plaintext. Further note that since the query 
rewriting leads to multiple queries, each with predicates 
having smaller selectivities, there is a higher likelihood 
that the optimizer decides to use indexes.

Note that the good performance of SPLIT is despite the 
large number of sub-queries in the transformed query. This 
is because each sub-query accesses a disjoint set of tuples, 
meaning that the total work done is effectively equiva-
lent to that of the single query in the plaintext domain, 

Fig. 8   Query execution time on benchmark databases. a 10GB 
TPC-H database. b 10GB TPC-DS database
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particularly if indexes are used in the query plan. This 
feature points to the practicality of the SPLIT scheme.

Another important observation here is that our SPLIT 
implementation lacked any parallelization. However, 
many sub-queries (one per encrypted table) in the trans-
formed query can, in principle, all be executed in parallel 
on the encrypted database. If this optimization were to be 
implemented, the time overheads will be further reduced.

7.3 � Storage Cost

The storage blowup factor of SPLIT depends only on the 
number of attributes and is independent of the database 
size. Also, since indexes are used by both the plaintext 
and SPLIT algorithms, we expect their relative perfor-
mance to be similar for different database sizes. In the 
above experiments, the size of the plaintext TPC-H data-
base with indexes was 21 GB, whereas the corresponding 
SPLIT encrypted database is 335 GB. On the other hand, 
for TPC-DS the plaintext database size with indexes is 22 
GB, whereas the corresponding SPLIT encrypted database 

is 359 GB. These values are an outcome of our incorporat-
ing four range predicates in the queries, resulting in the 
encrypted database being roughly 16 times the size of the 
plaintext database. Though the blowup is certainly large, 
the overall impact on the system dollar cost is much lower, 
since storage is relatively cheap. For instance, Table 1 
shows the monthly costs for attaining similar throughputs 
with the plaintext and SPLIT schemes, estimated using 
the rates charged by Amazon’s AWS service  [23] for 
machines similar to our experimental configuration. Since 
the execution time of SPLIT is within twice of the plain-
text execution time, and the resource cost is dominated by 
the VM rental duration, the overall monetary investment 
in the SPLIT scheme is also within a factor of two with 
respect to the plaintext scheme. Finally, various workload-
dependent optimizations to reduce the storage overheads 
are described later in Sect. 8.1.

7.4 � Scaling Experiment

In the previous experiments, we evaluated SPLIT using 10 
GB versions of the benchmark databases. But in order to 

Table 1   Monthly dollar cost of 
Cloud platforms

Scheme Size (GB) $/VM $/GB $ (VM) $ (Storage) $ 
(Total)

Plaintext 21 288 0.045 288 0.945 288.945
SPLIT 335 288 0.045 576 15.075 591.075

Fig. 9   a Query execution time and b database size for 100 GB TPC-DS benchmark database
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better understand the overheads and strengthen our perfor-
mance claims, we now present results from scaleup experi-
ments. Specifically, we created a 100 GB TPC-DS data-
base and again executed queries Q82, Q87 and Q96. The 
times taken for processing these queries over the plaintext 
and SPLIT encrypted databases are shown in Fig. 9a, and 
it is evident that SPLIT is within a factor of two of the 
plaintext query execution even on these large databases.

For the same environment, the storage costs of the 
plaintext and SPLIT encrypted databases are shown (on 
a log scale) in Fig. 9b. Again, since we are handling four 
range predicates and have created indexes over both the 
plaintext and SPLIT databases, the encrypted database size 
turns out to be roughly 16 times the size of the plaintext 
database.

8 � Deployment and Integration

We now turn our attention in this section to discuss deploy-
ment and integration issues of the SPLIT algorithm. Spe-
cifically, we first present a strategy for materially reducing 
its space overheads. Then we describe the mechanisms 
for deploying SPLIT as a component of secure database 
systems that support a rich set of SQL primitives.

8.1 � Workload‑based Reductions of Storage 
Requirement

The discussion of storage overheads in the experimental sec-
tion was from the financial perspective. We now consider 
workload-based optimizations to reduce the space require-
ment of the SPLIT scheme.

Let C = {C1 ⋯Ct} represent the set comprising of all 
the columns in the database. Firstly, if the DO can iden-
tify a subset of columns S that will not be used as range 
predicates in any query, then they need not be considered 
for the SPLIT scheme. Instead, these columns can sim-
ply be encrypted using a secure deterministic encryption 
scheme, such as AES. Only the set C� = C − S needs to be 
considered for SPLIT encryption. Let the size of C′ be d. 
Further, suppose that the DO can partition C′ into a number 
of disjoint classes based on the query workload, such that 
columns in a class do not simultaneously occur in range 
predicates of any query. Then, the columns in a class are 
treated like a composite column while generating the BS 
and RS combinations during encryption. Thus, if there are 
e such disjoint classes the total blowup due to table replica-
tion reduces to 2e from 2d.

The identification of disjoint classes from the set C′ 
can be reduced to the minimum vertex coloring problem, 
following the steps shown in Algorithm 2. The minimum 
vertex coloring  represents the desired disjoint classes 
since no two adjacent vertices in the graph  are given the 
same color, which implies that none of the column pairs 
corresponding to vertices in  with the same color appear 
simultaneously in range predicates in a SQL query. Fur-
ther, the chromatic number of the minimum vertex color-
ing gives a bound on the size of the encrypted database.

Since the minimum vertex coloring problem is NP-
hard, we use the approximation algorithms presented 
in [8, 10] for the efficient identification of the color 
assignments.

Algorithm 2 Minimum Number of Disjoint Classes
Input: The set of columns C′ that needs to be considered for SPLIT encryption,

The query workload Q
Output: The e disjoint classes I
1: Initialize an empty graph G = (V, E)
2: Add a vertex vi in G for every column C′

i ∈ C′

3: for every query q ∈ Q do
4: for every pair of columns C′

i and C′
j that appear in range predicates in q do

5: Create an edge eij between the corresponding vertices vi and vj
6: E = E ∪ eij
7: end for
8: end for
9: Identify a minimum vertex coloring I for graph G [8,10]
10: return I
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We expect that the above optimization is likely to be 
very effective in real deployments since Cloud databases 
are typically accessed through standard form interfaces, 
which restrict the types of queries issued to the underly-
ing warehouse. For example, in TPC-H, the total number 
of columns in the database is 61 of which only 6 columns 
appear in range predicates, hence d = 6 . Further, by ana-
lyzing the benchmark query set, we can partition these 6 
columns into 3 disjoint classes, and therefore, e = 3 . Thus, 
the SPLIT encrypted TPC-H database will be 8 times the 
plaintext database.

Similarly, with TPC-DS, the total number of columns is 
429, of which only 34 columns appear in range predicates, 
hence d = 34 . By analyzing the benchmark query set, we can 
partition these 34 columns into 4 disjoint classes, and there-
fore, e = 4 . Thus, the SPLIT encrypted TPC-DS database is 
16 times the plaintext database.

The above discussion, which indicates that 4 classes 
are sufficient for both TPC-H and TPC-DS, was the basis 
for deploying queries with 4 range predicates in our 
experiments.

8.2 � Handling Updates

In principle, a SPLIT encrypted database can handle 
updates, insertions, and deletions to the original database. 
All these operations require updating of all the ciphertext 
tables corresponding to the plaintext table being updated. 
However, if these operations are done one row at a time, 
then they allow the adversary to correlate the corresponding 
rows across the tables. To prevent this correlation leakage, 
we resort to batch updates. That is, all pending updates are 
kept at the security agent (SA) until a full batch is accumu-
lated. Then this batch update is applied at one go by making 
random passes over the set of updates in the batch for each 
encrypted table. Batch updates are common in databases 
designed for analytical workloads, since they are populated 
periodically using ETL scripts.

8.3 � Extending SPLIT to Other Operators

As mentioned earlier, SPLIT can also be extended to handle 
additional operators that commonly occur in SQL queries 
such as Equality predicates, Equi-joins, Group By, and Hav-
ing clauses.

The Equality and Equi-join predicates are handled by 
treating these operators as range predicates with a range of 
size 1. Further, since SPLIT is a deterministic encryption 
scheme, it directly supports the Group By operator. How-
ever, there is a possibility that a particular group may appear 
in the results of different sub-queries being executed on dif-
ferent tables. These groups can be easily merged by the SA 
after decrypting the independent results. For example, for a 
Group By with Count aggregate, the SA needs to simply add 
the counts for a given group from different result sets before 
returning the final answer to the QC. The Having clause can 
also be supported similarly as a filter applied by the SA on 
the Group By results.

8.4 � Integrating SPLIT in a Complete System

To support the full power of SQL, including sub-queries and 
aggregates, SPLIT needs to be embedded in a complete data 
processing system. For instance, we can substitute SPLIT in 
place of OPE in systems such as Cipherbase [2] or Monomi 
[20], thereby enhancing their security at the cost of a modest 
increase in query execution times.

A collateral side benefit of incorporation in a full-fledged 
system is that it also allows us to handle situations where the 
DO has laid down a limit on the storage budget. For instance, 
consider the case where the DO has fixed the encrypted stor-
age budget to be at most 8 times the size of the plaintext 
database. This constraint implies that we need to divide the 
potential range predicate columns into at most 3 equivalence 
classes, hence e = 3 . In the event that this restriction cannot 
be met, we can still handle the situation if SPLIT is part of 
a larger system, such as Cipherbase. Specifically, we can 
rewrite the query by choosing a subset of predicates such 
that there is at most one column from each equivalence class. 
This reduced query is executed over the encrypted database, 
whereas the remaining predicates are applied in a post-filter-
ing step, in the trusted hardware of the Cipherbase system.

Performance of SPLIT Component
To study the effectiveness of SPLIT when part of a larger 

system, we conducted sample experiments on the TPC-H 
environment described earlier. In these experiments, the 
complete benchmark queries were executed, not just the 
range predicates. To facilitate this, the input query was 
divided into two parts—the first part containing equi-joins, 
equality and range filter predicates, which were executed 
directly on the encrypted database, and the second part 

Fig. 10   Query execution time (10GB TPC-H database)
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containing the remaining predicates which were processed 
after decryption in a trusted hardware setup. A Java program 
was used to simulate the trusted hardware processing.

Specifically, we built two secure trusted hardware sys-
tems, TH-OPE and TH-SPLIT, employing the OPE and 
SPLIT encryption schemes, respectively, to evaluate range 
predicates. All the columns not involved in range predicates 
were encrypted using AES. The SPLIT encrypted database 
was constructed so as to support the 3 disjoint classes (as 
described in the previous subsection) of range predicates 
arising in the TPC-H benchmark. Non-clustered indexes 
were created on range predicate columns in both the plain-
text and ciphertext databases.

We executed TPC-H queries Q1 and Q10 to evaluate the 
performance of SPLIT when used as a replacement for OPE, 
and the resulting query execution times are shown in Fig. 10. 
These results clearly indicate that for complex queries, the 
performance differences between SPLIT and OPE are likely 
to reduce due to the predominant processing in the trusted 
hardware, which is identical for SPLIT and OPE. Overall, 
it indicates that SPLIT maintains reasonably good perfor-
mance while delivering a much stronger security guarantee 
than OPE.

9 � Related Work

Several schemes have been proposed over the last decade 
for securely processing range predicates over outsourced 
encrypted databases. The most prominent among them 
have been OPE [1, 5, 6, 13, 18] and PPE [15, 22], which 
inevitably leak order-based and structure-based character-
istics, respectively, of the plaintext data. More pertinently, 
these solutions can be easily breached in the HCC model, 
as shown in Sect. 1.1.

An encrypted tree-based index structure, called PBtree, 
was proposed in [16], but it requires significant changes to 
the underlying database engine which may hinder its adop-
tion by industry. In contrast, SPLIT can be noninvasively 

deployed with currently relational systems. Subsequently, 
alternative tree-based encryption schemes were presented in 
[7, 9], while Bucketing Schemes were analyzed in [11, 12]. 
These schemes provide stronger security guarantees than 
OPE schemes in the Honest-but-Curious model. However, a 
fundamental problem is that they return false positives in the 
query results. For instance in [11], the whole data domain 
is partitioned into buckets, each having a unique ID that is 
stored at the server along with the encrypted data. The input 
range query is mapped to bucket IDs and all rows which fall 
into these buckets are returned—this results in false posi-
tives if the bucket boundaries do not match exactly with the 
range boundary. SPLIT, on the other hand, always returns 
accurate results.

Another line of research [2, 3, 19–21] has focused on 
building complete systems which support secure execu-
tion of entire SQL queries over encrypted databases. For 
instance, in CryptDB [19], multiple encryption schemes 
are used to encrypt the data in an “onion”-style layering. 
At query processing time, the outer layers of the appropri-
ate onions are removed as dictated by the query predicates. 
MONOMI  [20] also uses multiple encryption schemes, 
albeit without the onion-based layering. It assumes instead 
that the clients also have a local database engine, and each 
query is split into two parts—the first part is executed on the 
encrypted data at the Cloud server, and its result is trans-
ferred to the client and decrypted and loaded into the local 
database. The second part of the query is then run on this 
local plaintext database. Since both CryptDB and MONOMI 
incorporate the OPE encryption scheme for efficient query 
processing, they also inherit its security limitations.

Another group of secure systems, such as TrustedDB [3] 
and Cipherbase [2], assume the availability of trusted hard-
ware at the server for decrypting and processing the data in 
a secure manner. In TrustedDB, the whole database engine 
runs inside the trusted hardware and all data is brought to it 
for processing. But this is a very expensive proposition in 
terms of both infrastructure and processing overheads. On 
the other hand, in Cipherbase, the database engine is aware 
of the encryption requirements and integrates tightly with 

Fig. 11   Comparison of SPLIT 
with prior systems
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the trusted hardware. However, its use of OPE for efficient 
query processing results in the attendant security limitations.

Again these systems use OPE encryption scheme to 
enhance their performance and hence inherit its limitations 
too.

Finally, the SDB system [21] is based on an asymmetric 
secret-sharing scheme with a set of interoperable operators 
over the encrypted data. This design facilitates processing 
of a wide range of SQL queries at the SP, but is again sus-
ceptible to a CRA attack in the HCC model.

A summary comparison of the security properties of 
SPLIT with respect to the prior literature is shown in Fig. 11.

10 � Conclusions

In this paper we considered a Honest-but-Curious with Col-
lusion adversary on Cloud-resident databases. This model 
represents a significantly more powerful attack than the 
traditional HBC adversary and is capable of easily launch-
ing Chosen Range Attack to breach the encrypted data. We 
proposed the SPLIT encryption scheme to securely pro-
cess range predicates in the presence of such adversaries, 
with the key features being splitting of data values and lay-
ered encryption. With this scheme the adversary requires 
exponentially more queries to breach the data, making the 
attack unviable in practice. SPLIT was implemented and 
evaluated on benchmark environments, and the experimental 
results demonstrate that its strong security guarantees can 
be supported without incurring more than a doubling of the 
plaintext response time, even under sequential execution. 
When parallel execution is implemented, these performance 
overheads are expected to be much smaller. Therefore, in an 
overall sense, SPLIT promises to be a viable and desirable 
component for securely handling OLAP queries.

In our future work, we plan to compare the efficiency of 
our work with alternative solutions in the HBC model (e.g., 
PBtree [16]) and to design encryption schemes to securely 
handle additional SQL operators (e.g., � join) against HCC 
adversaries.
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