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Abstract
With widely available large-scale network data, one hot topic is how to adopt traditional classification algorithms to predict

the most probable labels of nodes in a partially labeled network. In this article, we propose a new algorithm called

identifier-based relational neighbor classifier (IDRN) to solve the within-network multi-label classification problem. We

use the node identifiers in the egocentric networks as features and propose a within-network classification model by

incorporating community structure information to predict the most probable classes for unlabeled nodes. We demonstrate

the effectiveness of our approach on several publicly available datasets. First, taking a semi-supervised approach, IDRN

without any community prior is applied in community detection experiments, and it outperforms most existing unsuper-

vised community detection algorithms. After that, in large-scale graph-based multi-label classification tasks, our

approaches perform well in both fully labeled and partially labeled networks in most cases. To evaluate the scalability of

our algorithm, we also show a scalability test to evaluate the running time of our algorithm in different networks. The

experiment results show that our approach is quite efficient and suitable for large-scale real-world classification tasks.

Keywords Within-network classification � Node classification � Collective classification � Relational learning

1 Introduction

Massive networks exist in various real-world applications.

These networks may be only partially labeled due to

manual labeling can be highly cost in real-world tasks. A

critical problem is how to use the network structure and

other extra information to build better classifiers to predict

labels for the unlabeled nodes. Recently, much attention

has been paid to this problem, and various prediction

algorithms over nodes have been proposed [1–3].

In this article, we propose a within-network classifier by

making use of the node identifiers in the egocentric networks

as features and the community prior. Traditional relational

classification algorithms, such as WvRN [4] and SCRN [5]

classifier, make statistical estimations of the labels through

statistics, class label propagation or relaxation labeling.

From a different viewpoint, many real-world networks dis-

play some useful phenomena, such as clustering

phenomenon [6] and scale-free phenomenon [7]. Most real-

world networks show high clustering property or community

structure, i.e., their nodes are organized into clusters which

are also called communities [6, 8]. The clustering phe-

nomenon indicates that the network can be divided into

communities with dense connections internally and sparse

connections between them. For example, people sharing the

same beliefs and interests tend to connect to each other [9],

and queries in the same text clustering often share similar

class labels [10]. The scale-free phenomenon indicates the

existence of nodes with high degrees [7], and the high

degree nodes’ identifiers can be also widely shared by

neighbors. In the dense connected communities, as hub

nodes are connected by different ones, thus the identifiers of

neighbors may be used as features to capture the label pat-

terns of nodes. Due to the widely existed high clustering

property and the scale-free phenomenon in network data, we

regard that the identifiers of nodes can be used as fine-

grained features and community prior can be used as coarse

grained prior to boost the performance of our approach in

node classification tasks. In this article, we first apply IDRN

[11] with 10% labeled nodes for training in the community
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detection experiments, and it improves the metric values

over the existing unsupervised community detection algo-

rithms. As well, we demonstrate the effectiveness of our

algorithm on tens of public datasets which are fully labeled

or partially labeled in multi-label classification tasks. In the

experiments, our approach outperforms recently proposed

baseline methods in most cases.

Our contributions are as follows. First, to the best of our

knowledge, this is the first time that node identifiers in the

egocentric networks are used as features to solve network-

based classification problem. Second, we utilize the com-

munity prior in a principle way to improve its performance

in different real-world networks. Finally, our approach is

very effective and easy to implement, which makes it quite

applicable for different real-world within-network classi-

fication tasks. The rest of the article is organized as fol-

lows. In the next section, we first review related work.

Section 3 describes our methods in detail. In sect. 4, we

show the experiment results in different publicly available

datasets. Section 5 gives the conclusion and discussion.

2 Related Work

One of the recent focus in machine learning research is how

to extend traditional classification methods to classify nodes

in network data, and a body of work for this purpose has

been proposed. Bhagat et al. [12] give a survey on the node

classification problem in networks. They divide the methods

into two categories: one uses the graph information as fea-

tures and the other one propagates existing labels via ran-

dom walks. The relational neighbor (RN) classifier provides

a simple but effective way to solve the node classification

problems. Macskassy and Provost [4] propose the weighted-

vote relational neighbor (WvRN) classifier by making pre-

dictions based on the class distribution of a certain node’s

neighbors. It works reasonably well for within-network

classification and is recommended as a baseline method for

comparison. Wang and Sukthankar [5] propose a multi-label

relational neighbor classification algorithm by incorporating

a class propagated probability obtained from edge cluster-

ing. Macskassy and Provost [13] also believe that the very

high cardinality categorical features of identifiers may cause

the obvious difficulty for classifier modeling. Thus there is

very little work that has incorporated node identifiers [13].

As we regard that node identifiers are also useful features for

node classification, our algorithm does not solely depend on

neighbors’ class labels but also incorporate node identifiers

in each node’s egocentric networks as features and com-

munity structure as prior.

For within-network classification problem, a large

number of algorithms for generating node features have

been proposed. Unsupervised feature learning approaches

typically exploit the spectral properties of various matrix

representations of graphs. To capture different affiliations

of nodes in a network, Tang and Liu [14] propose the

SocioDim algorithm framework to extract latent social

dimensions based on the top-d eigenvectors of the modu-

larity matrix, and then utilize these features for discrimi-

native learning. Rizos et al. [9] study the problem of semi-

supervised, multi-label user classification of networked

data in social networks. They propose a framework that

combines unsupervised community extraction and super-

vised community-based feature weighting before training a

classifier. Using the same feature learning framework,

Tang and Liu [15] also propose an algorithm to learn dense

features from the d-smallest eigenvectors of the normalized

graph Laplacian. Ahmed et al. [16] propose an algorithm to

find low-dimensional embeddings of a large graph through

matrix factorization. However, the objective of the matrix

factorization may not capture the global network structure

information. To overcome this problem, Tang et al. [2]

propose the LINE model to preserve the first-order and the

second-order proximities of nodes in networks. Perozzi

et al. [17] present DeepWalk which uses the SkipGram

language model [18] for learning latent representations of

nodes in a network by considering a set of short truncated

random walks. Grover and Leskovec [19] define a flexible

notion of a node’s neighborhood by random walk sam-

pling, and they propose node2vec algorithm by maximizing

the likelihood of preserving network neighborhoods of

nodes. Nandanwar and Murty [1] also propose a novel

structural neighborhood-based classifier by random walks,

while emphasizing the role of medium degree nodes in

classification. As most of the algorithms based on the

features generated by heuristic methods such as random

walks or matrix factorization often have high time com-

plexity, thus they may not easily be applied to large-scale

real-world networks. To be more effective in node classi-

fication, in both training and prediction phrases we extract

community prior and identifier features of each node in

linear time, which makes our algorithm much faster. We

will evaluate the scalability of our approach in different

large-scale networks in the following experiments.

Several real-world network-based applications boost

their performances by obtaining extra data. McDowell and

Aha [20] find that accuracy of node classification may be

increased by including extra attributes of neighboring

nodes as features for each node. In their algorithms, the

neighbors must contain extra attributes such as textual

contents of web pages. Rayana and Akoglu [21] propose a

framework to detect suspicious users and reviews in a user-

product bipartite review network which accepts prior

knowledge on the class distribution estimated from meta-

data. To address the problem of query classification, Bian

and Chang [22] propose a label propagation method to
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automatically generate query class labels for unlabeled

queries from click-based search logs. To identify spammer

accounts, Fakhraei et al. [23] propose a statistical relational

model to makes use of structural features, sequence mod-

eling, and collective reasoning. With the help of the large

amount of automatically labeled queries, the performance

of the classifiers has been greatly improved. To predict the

relevance issue between queries and documents, Jiang et al.

[24] and Yin et al. [25] propose a vector propagation

algorithm on the click graph to learn vector representations

for both queries and documents in the same term space.

Experiments on search logs demonstrate the effectiveness

and scalability of the proposed method. Wang et al. [26]

study the problem of linked document embedding for

classification and propose a linked document embedding

framework LDE, which combines link and label informa-

tion with content information to learn document represen-

tations for classification. Newman and Clauset [27]

propose a method that combines a network and its node

information to detect communities. Their method learns

whether the node information is correlated with the com-

munities, and this method makes the predictions about the

community membership of nodes more accurately. Tu et al.

[28] propose a context-aware embedding algorithm to learn

the embeddings for vertices by considering both the

structural roles and text information of nodes simultane-

ously. Wang et al. [29] presents a novel item concept

embedding approach to learn the embeddings of both items

and words by leverage the concept of neighborhood

proximity in both homogeneous and heterogeneous retrie-

val tasks. However, as it is hard to find useful extra attri-

butes in many public available real-world network data and

it may require some domain knowledge to handle the extra

meta-data, in this article our approach only depends on the

structural information in partially labeled networks.

3 Methodology

In this section, as a within-network classification task, we

focus on performing multi-label node classification in

networks, where each node can be assigned to multiple

labels and only a few nodes have already been labeled. We

first present our problem formulation, and then show our

algorithm in detail.

3.1 Problem Formulation

The multi-label node classification we addressed here is

related to the within-network classification problem: esti-

mating labels for the unlabeled nodes in partially labeled

networks. Given a partially labeled undirected network

G ¼ fV; Eg, in which a set of nodes V ¼ f1; � � � ; nmaxg are

connected with edge eði; jÞ 2 E, and L ¼ fl1; � � � ; lmaxg is

the label set for nodes.

3.2 Objective Formulation

In a within-network single-label classification scenario, let

Yi be the class label variable of node i, which can be

assigned to one categorical value c 2 L. Let Gi denote the

information node i known about the whole graph, and let

PðYi ¼ cjGiÞ be the probability that node i is assigned to

the class label c. The relational neighbor (RN) classifier is

first proposed by Macskassy and Provost [4], and in the

relational learning context we can get the probability

PðYi ¼ cjGiÞ by making the first-order Markov assumption

[4]:

PðYi ¼ cjGiÞ ¼ PðYi ¼ cjN iÞ; ð1Þ

where N i is the set of nodes that are adjacent to node i.

Taking advantage of the Markov assumption, Macskassy

and Provost [4] proposed the weighted-vote relational

neighbor (WvRN) classifier whose class membership

probability can be defined as follows:

PðYi ¼ cjGiÞ ¼ PðYi ¼ cjN iÞ ¼
1

Z

X

j2N i

wi;j � PðYj ¼ cjN jÞ;

ð2Þ

where Z is a normalizer and wi;j represents the weight

between i and j.

3.2.1 IDRN Classifier

As shown in Eq. (2), traditional relational neighbor clas-

sifiers, such as WvRN [4], only use the class labels in

neighborhood as features. However, as we will show, by

taking the identifiers in each node’s egocentric network as

features, the classifier often performs much better than

most baseline algorithms.

In our algorithm, the node identifiers, i.e., unique sym-

bols for individual nodes, are extracted as features for

learning and inference. With the first-order Markov

assumption, we can simplify Gi ¼ GN i
¼ XN i

¼ fxjx 2
N ig [ fig as a feature vector of all identifiers in node i’s

egocentric graph GN i
. The egocentric network GN i

of node

i is the subgraph of node i’s first-order zone [30]. Aside

from just considering neighbors’ identifiers, our approach

also includes the identifier of node i itself, with the

assumption that both the identifiers of node i’s neighbors

and itself can provide meaningful representations for its

class label. For example, if node i (ID ¼ 1) connects with

three other nodes where ID ¼ 2; 3; 5, respectively, then its

feature vector XN i
of node i will be [1, 2, 3, 5]. Equa-

tion (2) can be simplified as follows:
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PðYi ¼ cjGiÞ ¼ PðYi ¼ cjGN i
Þ ¼ PðYi ¼ cjXN i

Þ: ð3Þ

By taking the strong independent assumption of naive

Bayes, we can simplify PðYi ¼ cjXN i
Þ in Eq. (3) as the

following equation:

PðYi ¼ cjXN i
Þ

¼ PðYi ¼ cÞPðXN i
jYi ¼ cÞ

PðXN i
Þ

_PðYi ¼ cÞPðXN i
jYi ¼ cÞ

_PðYi ¼ cÞ
Y

k2XN i

PðkjYi ¼ cÞ;

ð4Þ

where the last step drops all values independent of Yi.

3.2.2 Multi-label Classification

Traditional ways of addressing multi-label classification

problem is to transform it into a one-vs-rest learning problem

[5, 14]. When training IDRN classifier, for each node i with a

set of true labels Ti, we transform it into a set of single-label

data points, i.e., fhXN i
; cijc 2 Tig. After that, we use naive

Bayes training framework to estimate the class prior PðYi ¼
cÞ and the conditional probability PðkjYi ¼ cÞ in Eq. (4).

Algorithm 1 shows how to train IDRN to get the maximal

likelihood estimations (MLE) for the class prior PðYi ¼ cÞ
and conditional probability PðkjYi ¼ cÞ, i.e., ĥc ¼ PðYi ¼ cÞ
and ĥkc ¼ PðkjYi ¼ cÞ. As it has been suggested that multi-

nomial naive Bayes classifier usually performs better than

Bernoulli naive Bayes model in various real-world practices

[31], we take the multinomial approach here. Suppose we

observe N data points in the training dataset. Let Nc be the

number of occurrences in class c and let Nkc be the number of

occurrences of feature k and class c. In the first 2 lines, we

initialize the counting values of N, Nc and Nkc. After that, we

transform each node i with a multi-label set Ti into a set of

single-label data points and use the multinomial naive Bayes

framework to count the values of N, Nc and Nkc as shown

from line 3 to line 12 in Algorithm 1. After that, we can get

the estimated probabilities, i.e., ĥc ¼ PðYi ¼ cÞ and

ĥkc ¼ PðkjYi ¼ cÞ, for all classes and features.

In multi-label prediction phrase, the goal is to find the most

probable classes for each unlabeled node. Since most methods

yield a ranking of labels rather than an exact assignment, a

threshold is often required. To avoid the affection of intro-

ducing a threshold, we assign s most probable classes to a

node, where s is the number of labels assigned to the node

originally. Unfortunately a naive implementation of Eq. (4)

may fail due to numerical underflow, the value of PðYi ¼
cjXN i

Þ is proportional to the following equation:

PðYi ¼ cjXN i
Þ_ logPðYi ¼ cÞ þ

X

k2XN i

logPðkjYi ¼ cÞ:

ð5Þ

Defining bc ¼ logPðYi ¼ cÞ þ
P

k2XN i
logPðkjYi ¼ cÞ and

using log-sum-exp trick [32], we get the precise probability

PðYi ¼ cjXN i
Þ for each class label c as follows:

PðYi ¼ cjXN i
Þ ¼ eðbc�BÞ

P
c2L e

ðbc�BÞ ; ð6Þ

where B ¼ maxc bc. Finally, to classify unlabeled nodes i,

we can use Eq. (6) to assign s most probable classes to it.

Algorithm 1: Training the Identifier based relational neighbor classifier.
Input: Graph G = {V, E}, the labeled nodes V ′ and the class label set L.
Output: The MLE for each class c’s prior θ̂c and the MLE for conditional probability

θ̂kc.
1 N := 0;
2 Nc := 0 and Nkc := 0, ∀c ∈ L and ∀k ∈ V.
3 for i ∈ V ′ do
4 C = Ti; // Get the true label set C of node i.
5 for c ∈ C do
6 for k ∈ XNi

do
7 N := N + 1;
8 Nc := Nc + 1;
9 Nkc := Nkc + 1;

10 end
11 end
12 end
13 for c ∈ L do
14 θ̂c := Nc

N
;

15 for k ∈ V do
16 θ̂kc := Nkc+1

N+|V | ; // Corresponding to Laplace adding-one smoothing.
17 end
18 end
19 return θ̂c and θ̂kc, ∀c ∈ L and ∀k ∈ V .
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3.2.3 Community Prior

Community detection is one of the most popular topics of

network science, and a large number of algorithms have

been proposed recently [8, 33]. It is believed that nodes in

communities share common properties or play similar

roles. Grover and Leskovec [19] also regard that nodes

from the same community should share similar represen-

tations. The availability of such pre-detected community

structure allows us to classify nodes more precisely espe-

cially with insufficient training data. Given the community

partition of a certain network, we can estimate the proba-

bility PðYi ¼ cjCiÞ for each class c through the empirical

counts and adding-one smoothing technique, where Ci

indicates the community that node i belongs to. Then, we

can define the probability PðYi ¼ cjXN i
Þ in Eq. (3) as

follows:

PðYi ¼ cjXN i
;CiÞ ¼

PðYi ¼ cjCiÞPðXN i
jYi ¼ c;CiÞ

PðXN i
jCiÞ

;

ð7Þ

where PðXN i
jCiÞ refers to the conditional probability of the

event XN i
occurring given that node i belongs to com-

munity Ci. Obviously, given the knowledge of Ci will not

influence the probability of the event XN i
occurring, thus

we can assume that PðXN i
jCiÞ ¼ PðXN i

Þ and

PðXN i
jY ¼ c;CiÞ ¼ PðXN i

jY ¼ cÞ. So Eq. (7) can be

simplified as follows:

PðYi ¼ cjXN i
;CiÞ

¼ PðYi ¼ cjCiÞPðXN i
jYi ¼ cÞ

PðXN i
Þ

_PðYi ¼ cjCiÞPðXN i
jYi ¼ cÞ

_ logPðYi ¼ cjCiÞ þ
X

k2XN i

logPðkjYi ¼ cÞ:

ð8Þ

As shown in Eq. (8), we assume that different communities

have different prior rather than sharing the same global

prior PðYi ¼ cÞ.

3.3 Efficiency

Suppose that the largest node degree of the given network

G ¼ fV; Eg is K. In the training phrase, as shown in

Algorithm 1, the time complexity from line 1 to line 12 is

about OðK � jLj � jVjÞ, and the time complexity from line

13 to line 18 is OðjLj � jVjÞ. So the total time complexity

of the training phrase is OðK � jLj � jVjÞ. Obviously, it is
quite simple to implement this training procedure. In the

training phrase, the time complexity of each node is linear

with respect to the product of the number of its degree and

the size of class label set jLj.
In the prediction phrase, suppose node i contains n

neighbors. It takes Oðnþ 1Þ time to find its identifier

vector XN i
. Given the knowledge of i’s community

membership Ci, in Eqs. (5) and (8), it only takes O(1) time

to get the values of PðYi ¼ cjCiÞ and PðYi ¼ cÞ, respec-
tively. As it takes O(1) time to get the value of PðkjYi ¼ cÞ,
for a given class label c, the time complexities of Eqs. (5)

and (8) both are O(n). Thus for a given node, the total

complexity of predicting the probability scores on all labels

L is OðjLj � nÞ even we consider predicting the precise

probabilities in Eq. (6). For each class label prediction, it

takes O(n) time which is linear to its neighbor size. Fur-

thermore, the prediction process can be greatly sped-up by

building an inverted index of node identifiers, as the

identifier features of each class label can be sparse.

4 Experiments

In this section, we first use IDRN to detect communities

with partially cluster labels to show the ‘community aware’

characteristic it has, then we introduce the datasets and the

evaluation metrics for multi-label classification tasks. After

that, we conduct several experiments to show the effec-

tiveness of our proposed algorithm. Code to reproduce our

results is available at the authors’ website.1

4.1 Networks with Known Communities

To empirically demonstrate the ‘community aware’ char-

acteristic IDRN has [17], in this part, we apply IDRN on

five real-world networks whose community clustering

meta-data are perfectly corresponding to the underlying

ground truth. Using the community meta-data as labels, we

directly run IDRN without any community prior to predict

the labels of unlabeled ones in these networks.

4.1.1 Metrics on Comparing Community Partitions

To quantify the similarity between the communities

extracted by different algorithms and the ‘ground truth’

communities, we choose the normalized mutual informa-

tion (NMI) [34], the Jaccard index (Jaccard) and the Rand

index (Rand) as the metrics. The details of these metrics

can be found in the survey [33]. All these metrics ranges

from 0 when the detected community labels are uninfor-

mative to 1 when the community labels specify the original

partitions completely.

1 https://github.com/yeqi-adrs/IDRN.
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4.1.2 Networks with Community Meta-data

We use the community meta-data for creating different

node classes, and all these datasets are publicly available

from the website.2 The details of the datasets are summa-

rized as follows:

• karate: The Karate club network is a well-known

network of friendships between 34 members in an

American University [35]. After a dispute between the

coach and the treasurer, the network is further split into

two communities. There are 34 nodes and 78 edges in

this network.

• dolphin: The dolphin social network is an undirected

social network of frequent associations between 62

dolphins in a community living off Doubtful Sound,

New Zealand [36]. The dolphin network splits into two

communities as a result of the departure of a key

individual. The links between nodes are established by

observation of statistically significant frequent associ-

ations. The network contains 62 nodes and 159 edges.

• football: This is a collage football network which

represents the schedule of games between American

college football teams in the 2000 season [37]. Nodes

in the network represent teams, and edges represent

regular-season games between teams. There are 115

nodes and 613 edges in the network. This network is

partitioned into 12 conferences.

• polbook: This is a network of books about US politics

published around the time of the 2004 presidential

election and sold by the online bookseller Amazon.com

[38]. Edges between books represent frequent co-

purchasing of books by the same buyers. The commu-

nity labels are ‘liberal,’ ‘neutral’ and ‘conservative.’

There are 105 nodes and 441 edges in the network.

• polblog: This is a network of hyperlinks between

weblogs on US politics, recorded in 2005 by Adamic

and Glance [39]. Community labels are ‘liberal’ and

‘conservative’ which are assigned by blog directories or

occasional self-evaluation. There are 1490 nodes and

16,715 edges in the network.

4.1.3 Experiments on Networks

To show the performance of IDRN on different networks,

we randomly use 10% nodes for training and predict the

community belongings of all left nodes. Please note that

since we want to show the performance of IDRN on

community prediction by utilizing a few community cluster

labels, we just use the method in Eq. (3) without any

community prior. We compare IDRN algorithm with some

well-known community detection algorithms, i.e., the GN

algorithm [6], the CNM algorithm [37], the Louvain

algorithm [40], the MMO algorithm [41] and the label

propagation algorithm (LPA) [42]. The experiments have

been repeated 10 times, and then we report the average

scores over different datasets in Table 1.

Table 1 shows the average NMI score, the average

Jaccard index, and the average Rand index for community

clustering results in the datasets. We highlight the best

algorithms in each metric of different datasets. As shown in

the table, IDRN outperforms most existing unsupervised

baselines. As we show through our experiments in the

networks with known community structure, by taking a

semi-supervised approach with just a few labeled nodes,

our algorithm can learn the ‘community aware’ charac-

teristic better than most widely used existing unsupervised

community detection algorithms.

4.2 Datasets for Classification

In the following experiments, we will predict the labels for

the remaining nodes in different graph-based classification

tasks. We use the following publicly available datasets

described below.

Amazon The dataset contains a subset of books

from the amazon co-purchasing

network data extracted by Nandanwar

and Murty [1]. For each book, the

dataset provides a list of other similar

books, which is used to build a

network. Genre of the books gives a

natural categorization, and the

categories are used as class labels in

our experiment.

CoRA It contains a collection of research

articles in computer science domain

with predefined research topic labels

which are used as the ground-truth

labels for each node.

IMDb The graph contains a subset of

English movies from IMDb,3 and the

links indicate the relevant movie pairs

based on the top 5 billed stars [1].

Genre of the movies gives a natural

class categorization, and the

categories are used as class labels.

2 http://www-personal.umich.edu/*mejn/netdata/. 3 http://www.imdb.com/interfaces.
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PubMed The dataset contains publications

from PubMed database, and each

publication is assigned to one of three

diabetes classes. So it is a single-label

dataset in our learning problem.

Wikipedia The network data is a dump of

Wikipedia pages from different areas

of computer science. After crawling,

Nandanwar and Murty [1] choose 16

top level category pages, and

recursively crawled subcategories up

to a depth of 3. The top level

categories are used as class labels.

Youtube A subset of Youtube users with

interest grouping information is used

in our experiment. The graph contains

the relationships between users, and

the user nodes are assigned to

multiple interest groups provided by

Nandanwar and Murty [1].

Blogcatalog and

Flickr

These datasets are social networks,

and each node is labeled by at least

one category. The categories can be

used as the ground truth of each node

for evaluation in multi-label

classification task.

PPI It is a protein–protein interaction

(PPI) network for Homo Sapiens. The

labels of nodes represent the

bilolgical states.

POS This is a co-occurrence network of

words appearing in the Wikipedia

dump. The node labels represent Part-

of-Speech (POS) tags of each word.

CiteSeer The CiteSeer dataset consists of

labeled 3312 scientific publications

classified into one of six classes. The

citation network consists of 4536

undirected links among the labeled

nodes.

WebKB The WebKB dataset consists of 877

scientific publications classified into

one of five classes. The citation

network consists of 1608 links. To

form an undirected graph with all

nodes labeled, there are 877 nodes

and 1388 undirected edges in the

graph.

SocialSpam This anonymized dataset was

collected from the Tagged.com social

network website [23]. It contains 5.2

million users in the graph and 496

million undirected links between

them. Each user is manually labeled

as ‘spammer’ or ‘not spammer.’

Table 1 Experiment

comparisons between IDRN

(with 10% labeled nodes for

training) and other unsupervised

community detection algorithms

by the metrics of NMI, Rand

index and Jaccard index

Network Metrics (%) Algorithms

IDRN GN CNM Louvain MMO LPA

Karate NMI 87.62 57.98 69.25 68.73 56.12 46.58

Rand 95.44 76.92 85.90 85.90 74.36 85.90

Jaccard 91.58 74.29 84.06 83.82 70.59 84.72

Dolphin NMI 79.88 55.42 62.08 51.62 40.63 51.42

Rand 92.72 82.39 83.23 76.73 69.18 79.25

Jaccard 88.40 81.82 83.23 76.13 68.59 79.11

Football NMI 83.67 87.89 76.24 85.61 91.11 82.56

Rand 95.47 92.01 84.18 90.38 92.33 90.05

Jaccard 62.25 88.84 79.49 86.89 88.92 86.50

Polbook NMI 59.87 55.85 53.08 53.69 40.63 56.40

Rand 85.75 83.67 82.77 83.22 57.60 84.35

Jaccard 69.92 82.90 82.16 82.38 55.16 83.61

Polblog NMI 53.30 30.34 37.99 37.55 34.77 39.09

Rand 80.36 93.70 95.33 95.12 93.47 95.66

Jaccard 67.63 93.28 95.02 94.79 93.03 95.37
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Snow2014all and

Snow2014

We use the mention and retweet

social interactions to form the graph

edges from the tweet collection

introduced in the SNOW 2014 Data

Challenge [43], and the labels belong

to various types of user attribute. This

dataset is a partially labeled, and we

form two graphs from dataset. The

Snow2014all graph is partially labeled

with 10,992 nodes labeled, and the

Snow2014 graph is a subgraph of it

with all nodes labeled. Both of these

two graphs are unweighted and

undirected in order to make the

method comparisons fair.

Youtubeall In this graph vertices represent users

in the YouTube4 video sharing

website. Apart from uploading videos,

users form a subscription graph

among them and also subscribe to

various interest groups. There are

1,138,499 vertices and 2,990,443

edges in the original graph with only

31,703 nodes labeled.

The Amazon, CoRA, IMDb, PubMed, Wikipedia and

Youtube datasets are made available by Nandanwar and

Murty [1]. The Blogcatalog and Flickr datasets are pro-

vided by Tang and Liu [14], and the PPI and POS datasets

are provided by Grover and Leskovec [19]. The CiteSeer

dataset can be downloaded from the download link,5 and

the WebKB dataset can be fond from this link.6 The

Snow2014all and Snow2014 data sets can be downloaded

from the link.7 The Youtubeall are provided by the Social

Computing Data Repository at Arizona State University.8

The SocialSpam dataset has been provided by the authors.9

The statistics of the datasets are summarized in Table 2.

4.3 Classification Evaluation Metrics

In this part, we explain the details of the evaluation met-

rics: Hamming score, Micro� F1 score and Micro� F1
score which have also widely been used in many other

multi-label within-network classification tasks [1, 5, 14].

Given node i, let Ti be the true label set and Pi be the

predicted label set, then we have the following scores:

Definition 1 Hamming Score ¼
PjVj

i¼1
jTi\Pij
jTi[Pij;

Definition 2

Micro� F1 Score ¼ 2
PjVj

i¼1 jTi \ Pij
PjVj

i¼1 jTij þ
PjVj

i¼1 jPij
;

Definition 3

Macro� F1 Score ¼ 1

jLj
XjLj

j¼1

2
P

i2Lj
jTi \ PijP

i2Lj
jTij þ

P
i2Lj

jPij
;

where jLj is the number of classes and Lj is the set of

nodes in class j.

4.3.1 Baseline Methods

In this article, we focus on comparing our work with the

state-of-the-art approaches. To validate the performance of

our approach, we compare our algorithms against a number

of baseline algorithms. We use IDRN to denote our

approach with the global priori and use IDRNc to denote

the algorithm with different community prior. All the

baseline algorithms are summarized as follows:

• WvRN [4]: The Weighted-vote Relational Neighbor is

a simple but surprisingly good relational classifier.

Given the neighbors N i of node i, the WvRN estimates

i’s classification probability P(y|i) of class label y with

the weighted mean of its neighbors as mentioned above.

As WvRN algorithm is not very complex, we imple-

ment it in Java programming language by ourselves.

• SocioDim [14]: This method is based on the SocioDim

framework which generates a representation in d di-

mension space from the top-d eigenvectors of the

modularity matrix of the network, and the eigenvectors

encode the information about the community partitions

of the network. The implementation of SocioDim in

Matlab is available on the author’s website.10 As the

authors preferred in their study, we set the number of

social dimensions as 500.

• DeepWalk [17]: DeepWalk generalizes recent advance-

ments in language modeling from sequences of words

to nodes [44]. It uses local information obtained from

truncated random walks to learn latent dense represen-

tations by treating random walks as the equivalent of

sentences. The implementation of DeepWalk in Python

has already been published by the authors.11

4 https://www.youtube.com/.
5 https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz.
6 https://linqs-data.soe.ucsc.edu/public/lbc/WebKB.tgz.
7 https://github.com/MKLab-ITI/reveal-graph-embedding.
8 http://socialcomputing.asu.edu/datasets/YouTube2.
9 https://linqs-data.soe.ucsc.edu/public/social_spammer/.

10 http://leitang.net/social_dimension.html.
11 https://github.com/phanein/deepwalk.
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• LINE [2]: LINE algorithm proposes an approach to

embed networks into low-dimensional vector spaces by

preserving both the first-order and second-order prox-

imities in networks. The implementation of LINE in

C?? has already been published by the authors.12 To

enhance the performance of this algorithm, we set

embedding dimensions as 256 (i.e., 128 dimensions for

the first-order proximities and 128 dimensions for the

second-order proximities) in LINE algorithm as pre-

ferred in its implementation.

• SNBC [1]: To classify a node, SNBC takes a structured

random walk from the given node and makes a decision

based on how nodes in the respective kth-level neigh-

borhood are labeled. The implementation of SNBC in

Matlab has already been published by the authors.13

• node2vec [19]: It also takes a similar approach with

DeepWalk which generalizes recent advancements in

language modeling from sequences of words to nodes.

With a flexible neighborhood sampling strategy,

node2vec learns a mapping of nodes to a low-dimen-

sional feature space that maximizes the likelihood of

preserving network neighborhoods of nodes. The

implementation of node2vec in Python is available on

the authors’ website.14

We obtain 128 dimension embeddings for a node using

DeepWalk and node2Vec as preferred in the algorithms.

After getting the embedding vectors for each node, we use

these embeddings further in classification. In the multi-

label classification experiment, each node is assigned to

one or more class labels. We assign s most probable classes

to the node using these decision values, where s is equal to

the number of labels assigned to the node originally.

Specifically, for all vector representation models (i.e.,

SocioDim, DeepWalk, LINE, SNBC and node2vec), we

use a one-vs-rest logistic regression implemented by

LibLinear [45] to return the most probable labels as

described in prior work [5, 14, 17]. In the following parts,

we will evaluate the performances of within-network

classifiers in different datasets, respectively. As some

baseline algorithms are just designed for undirected or

unweighted graphs, we transform all the graphs to undi-

rected and unweighted ones for a fair comparison.

4.4 Different Community Prior

To show the performance of IDRN with different

community prior from various community detection algo-

rithms, we combine IDRN with different community

detection algorithms, i.e., the CNM algorithm [37], the

Louvain algorithm [40], the MMO algorithm [41] and the

label propagation algorithm (LPA) [42]. Table 3 shows the

metrics of IDRN with 10% nodes labeled with underlying

cluster labels for training and the rest for testing. As shown

in the table, IDRN with different community prior improve

the metrics over the one with global prior. The results also

indicate that there is no much difference between the prior

got by different community detection algorithms. Although

IDRN with the CNM algorithm seems to be comparable

with IDRN with the Louvain algorithm, however, to keep

Table 2 Summary of undirected

networks used for multi-label

classification

Dataset #Nodes #Edges #Classes Average category #Edges

#Nodes

Amazon 83,742 190,097 30 1.546 2.270

CoRA 24,519 92,207 10 1.004 3.782

IMDb 19,359 362,079 21 2.301 18.703

PubMed 19,717 44,324 3 1.000 2.248

Wikipedia 35,633 495,388 16 1.312 13.903

Youtube 22,693 96,361 47 1.707 4.246

Blogcatalog 10,312 333,983 39 1.404 32.387

Flickr 80,513 5,899,882 195 1.338 73.278

PPI 3890 37,845 50 1.707 9.804

POS 4777 92,295 40 1.417 19.320

CiteSeer 3312 4536 6 1.000 1.369

Snow2014 9489 22,309 90 2.351 2.538

WebKB 877 1388 5 1.000 1.582

SocialSpam 5,275,125 49,6691,571 2 1.000 94.157

Snow2014all 533,874 942,226 90 2.534 1.764

Youtubeall 1,138,499 2,990,443 47 1.000 2.626

12 https://github.com/tangjianpku/LINE.
13 https://github.com/sharadnandanwar/snbc.
14 https://github.com/aditya-grover/node2vec.
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the balance of the speed and performance, we still choose

the Louvain algorithm to get the community prior of IDRN

in the following experiments as suggested by the experi-

ments in different papers [8, 33].

4.5 Performance of Classifiers

To study the performance of different classification algo-

rithms on a sparsely labeled network, we show results

obtained by using 10% nodes for training and the left 90%

nodes for testing. The process has been repeated 10 times,

and we report the average scores over different datasets. As

mentioned above, we choose the Louvain algorithm to

extract communities in networks which has been shown as

one of the best performing algorithms. This community

detection algorithm has also been implemented by us and is

available at the authors’ website.

Table 3 Experiment

comparisons of IDRN with

different community prior by

the metrics of Hamming score,

Micro� F1 score and

Macro� F1 score with 10%

nodes labeled for training

Metric Network IDRN IDRNLouvain IDRNCNM IDRNMMO IDRNLPA

Hamming score (%) Amazon 56.20 63.86 63.54 56.09 58.65

Youtube 37.17 39.91 39.94 38.90 39.58

CoRA 71.71 73.58 72.33 71.77 72.33

IMDb 20.33 20.79 21.20 20.97 21.00

PubMed 73.76 78.02 78.07 74.57 76.14

Wikipedia 71.67 71.12 70.54 72.02 72.02

Flickr 28.44 29.11 29.62 29.66 29.71

Blogcatalog 26.77 26.29 26.39 26.13 26.73

PPI 11.39 12.34 11.77 12.06 12.22

POS 39.09 39.94 39.62 39.14 39.12

CiteSeer 43.55 55.76 54.42 46.22 49.21

Snow2014 24.97 27.50 26.80 25.37 25.95

WebKB 47.17 44.25 46.01 48.37 44.01

Micro-F1 (%) Amazon 56.86 64.62 64.32 57.07 59.64

Youtube 43.08 45.20 45.20 44.27 45.03

CoRA 71.72 73.59 72.34 71.78 72.34

IMDb 29.63 29.81 30.29 29.94 29.98

PubMed 73.76 78.02 78.07 74.57 76.14

Wikipedia 73.21 72.79 72.18 73.57 73.51

Flickr 31.99 32.56 33.09 33.03 33.09

Blogcatalog 29.05 28.81 28.80 28.39 29.06

PPI 15.82 17.15 16.21 16.64 16.74

POS 42.36 43.71 43.29 42.48 42.56

CiteSeer 43.55 55.76 54.42 46.22 49.21

Snow2014 28.87 30.55 30.24 29.09 28.94

WebKB 47.17 44.25 46.01 48.37 44.01

Macro-F1 (%) Amazon 53.48 61.00 61.03 53.91 57.57

Youtube 34.48 37.85 36.84 35.06 37.28

CoRA 64.57 66.36 64.60 64.54 65.80

IMDb 19.96 20.57 20.57 20.14 20.43

PubMed 72.04 76.79 76.89 72.86 74.64

Wikipedia 64.84 65.46 64.40 65.29 64.64

Flickr 14.85 14.80 15.17 14.91 15.68

Blogcatalog 11.39 12.08 11.74 11.32 11.56

PPI 10.93 12.96 12.33 12.53 11.88

POS 5.88 6.68 6.65 5.87 6.12

CiteSeer 40.36 52.05 50.43 43.08 46.32

Snow2014 14.00 17.82 17.51 14.42 17.02

WebKB 26.38 26.01 26.76 25.44 25.74

Using Node Identifiers and Community Prior for Graph-Based Classification 77

123



Table 4 shows the average metric scores for multi-label

classification results in the datasets. We highlight the best

performance algorithms of each metric in bold. As shown

in the table, in most of the cases, IDRN and IDRNc algo-

rithms improve the metrics over the existing baselines. Our

model with community prior, i.e., IDRNc often performs

Table 4 Experiment comparisons of baselines, IDRN and IDRNc by the metrics of Hamming score, Micro� F1 score and Macro� F1 score with

10% labeled nodes for training

Metric Network WvRN SocioDim DeepWalk LINE SNBC node2vec IDRN IDRNc

Hamming score (%) Amazon 33.76 38.36 31.79 40.55 59.00 49.18 56.20 63.86

Youtube 22.82 31.94 36.63 33.90 35.06 33.86 37.17 39.91

CoRA 55.83 63.02 71.37 65.50 66.75 72.66 71.71 73.58

IMDb 33.59 22.21 33.12 30.39 30.18 32.97 20.33 20.79

PubMed 50.32 65.68 77.40 68.31 79.22 79.02 73.76 78.02

Wikipedia 45.10 65.29 71.10 68.812 68.78 70.69 71.67 71.121

Flickr 21.37 29.67 28.73 30.96 24.20 30.65 28.44 29.11

Blogcatalog 17.89 27.04 25.63 25.32 22.40 27.46 26.77 26.29

PPI 6.28 8.61 8.14 9.27 7.97 8.88 11.39 12.34

POS 23.05 21.06 31.40 38.24 37.73 34.59 39.09 39.94

CiteSeer 31.89 20.04 23.80 22.79 54.89 50.99 43.44 55.76

Snow2014 15.71 9.39 8.71 12.97 22.57 20.00 24.91 27.50

WebKB 42.67 28.06 27.58 45.57 47.97 35.79 48.34 44.25

SocialSpam 11.29 – – – – – 98.89 98.91

Micro-F1 (%) Amazon 34.86 39.62 33.06 42.42 59.79 50.55 56.86 64.62

Youtube 27.81 36.40 40.73 38.01 39.67 38.35 43.08 45.20

CoRA 55.85 63.00 71.36 65.47 66.78 72.66 71.72 73.59

IMDb 42.62 29.99 41.82 39.89 39.53 42.36 29.63 29.81

PubMed 50.32 65.68 77.40 68.31 79.22 79.02 73.76 78.02

Wikipedia 48.51 66.95 72.19 70.21 70.68 72.07 73.21 72.79

Flickr 25.40 32.91 31.66 34.03 27.60 33.76 31.99 32.56

Blogcatalog 20.50 28.86 27.29 27.45 24.66 29.41 29.05 28.81

PPI 18.41 12.29 11.52 13.16 11.32 12.80 15.82 17.15

POS 26.04 24.42 35.98 42.70 41.99 39.09 42.36 43.71

CiteSeer 31.89 20.04 23.80 22.79 54.89 50.99 43.44 55.76

Snow2014 20.43 15.23 14.50 17.26 23.36 24.55 29.02 30.55

WebKB 42.67 28.06 27.58 45.57 47.97 35.79 48.34 44.25

SocialSpam 11.29 – – – – – 98.89 98.91

Macro-F1 (%) Amazon 32.00 35.95 21.64 37.52 56.84 45.85 53.48 61.00

Youtube 18.17 34.19 33.92 33.47 32.07 32.60 34.48 37.85

CoRA 43.16 56.82 62.68 59.07 55.68 64.79 64.57 66.36

IMDb 18.89 18.77 18.22 18.83 17.45 18.46 19.96 20.57

PubMed 41.57 64.85 75.92 66.66 77.16 77.50 72.04 76.79

Wikipedia 45.58 58.93 62.29 62.17 61.99 64.90 64.84 65.46

Flickr 15.54 18.28 17.13 21.80 7.36 18.46 14.85 14.80

Blogcatalog 11.47 18.88 14.65 15.52 8.29 17.16 11.39 12.08

PPI 7.35 10.59 9.61 10.82 8.27 11.27 10.93 12.96

POS 3.91 6.05 8.26 8.93 5.92 8.61 5.58 6.68

CiteSeer 26.13 18.27 21.84 20.26 51.17 46.39 40.50 52.05

Snow2014 9.67 4.41 4.53 8.84 12.57 14.03 14.06 17.82

WebKB 15.86 20.19 20.54 24.53 25.53 20.05 26.31 26.01

SocialSpam 10.68 – – – – – 98.75 98.77
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better than IDRN with global prior. For the three metrics,

IDRNc performs consistently better than other algorithms

in most of these datasets. Take IMDb dataset for an

example, we observe that Hamming score and Micro� F1
score got by IDRNc are worse than those got by some

baseline algorithms, such as node2vec and WvRN, how-

ever Macro� F1 score got by IDRNc is the best. As

Macro� F1 score computes an average over classes while

Hamming and Micro� F1 scores get the average over all

testing nodes, the result may indicate that our algorithms

get more accurate results over different classes in the

imbalanced IMDb dataset. To show the results more

clearly, we also get the average validation scores for each

algorithm in these datasets which are shown in the last lines

of the three metrics in Table 4. On average our approach

can provide Hamming score, Micro� F1 score and

Macro� F1 score higher than competing methods. The

results indicate that our IDRNc outperforms most baseline

methods when networks are sparsely labeled. We also

perform our algorithm on an extremely large dataset—

SocialSpam. As SocialSpam is very huge, most of the

competing methods cannot finish their algorithm in less

than 24 hours which are indicated by the ‘-’ characters in

the table. Among all the competing methods only the

simplest algorithm, i.e., WvRN can classify the nodes in

SocialSpam in 24 hours. However, our results are much

better than those got by WvRN, and the Hamming score,

Micro� F1 score and Macro� F1 score got by IDRNc are

98.91, 98.91 and 98.77%, respectively. We believe the

reason is that since the SocialSpam network is much

denser than others and it can provide more node identifiers

as features, so our algorithms works very well in such

dense and large networks.

Second, we show the performance of the classification

algorithms of different training fractions. When training a

classifier, we randomly sample a portion of the labeled

nodes as the training data and the rest as the test. For all the

datasets, we randomly sample 10–90% of the nodes as the

training samples, and use the left nodes for testing. The

process has been repeated 5 times, and we report the

averaged scores. Due to limitation in space, we just sum-

marize the results of some datasets for Hamming scores,

Micro� F1 scores and Macro � F1 scores in Fig. 1. Here

we can make similar observations with the conclusion

given in Table 4. As shown in Fig. 1, IDRN and IDRNc

perform consistently better than other algorithms in the

Amazon, Youtube, PubMed and Wikipedia datasets in

Fig. 1. In fact, nearly in all these datasets, our approaches

outperform all the baseline methods significantly, as the

lack of space we do not show all the figures here. Note in

the IMDb dataset as shown in Fig. 1m, n the Hamming

scores and Micro� F1 scores got by IDRN and IDRNc are

not the best, however, the Macro� F1 scores got by IDRN

and IDRNc are much better than those got by other clas-

sification algorithms as shown in Fig. 1o. The results also

indicate that our algorithms get more accurate results over

different classes in the imbalanced dataset. We also note

that when the networks are sparsely labeled (i.e., with 10 or

20% labeled data), IDRNc performs slightly better than

IDRN. However, when more nodes are labeled, IDRN

usually outperforms IDRNc. As we see that the posterior in

Eq. (3) is a combination of prior and likelihood, the results

may indicate that the community prior of a given node

corresponds to a strong prior, while the global prior is a

weak one. The strong prior will improve the performance

of IDRN when the training fractions are small, while the

opposite conclusion holds for training on large training

fractions.

As an empirical benchmark, we perform a scalability

test to evaluate the running time of our algorithms in large-

scale networks in Table 5. We show the results in the

networks with most edges using 10% training data and the

rest for testing data. Both IDRN and IDRNc are written in

Java, and these algorithms are performed on a server with

256 G memory, Intel Xeon 2.60 GHz CPU, and Redhat OS

system in a single thread. As shown in Table 5, IDRN and

IDRNc are very fast to handle large-scale networks which

is in accordance with the complexity analysis we mention

above. Both of our methods can finish their training and

testing processes in nearly one hour in the largest network,

SocialSpam, which contains 5.2 million users and 496

million links. However, it may be even hard for most other

comparing algorithms to load such large-scale networks in

memory.

4.6 Performance of Classifiers in Partially
Labeled Networks

As we have mentioned before, in many real-world appli-

cations, the lack of labeled data poses a major practical

bFig. 1 Performance evaluation of Hamming scores, Micro� F1
scores and Macro� F1 scores on varying the amount of labeled data

used for training. The x axis denotes the fraction of labeled data, and

the y axis denotes the Hamming scores, Micro� F1 scores and

Macro� F1 scores, respectively. a Amazon. b Amazon. c Amazon.

d Youtube. e Youtube. f Youtube. g PubMed. h PubMed. i PubMed.

j Wikipedia. k Wikipedia. l Wikipedia. m IMDB. n IMDB. o IMDB

Table 5 Summary of running time (in s) of IDRN and IDRNc in each

validation process by using 10% training data and 90% testing data

Dataset Wikipedia Snow2014all Youtubeall Flickr Spammer

IDRN 2 3 14 518 2937

IDRNc 2 5 9 482 4145
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issue for many network classification tasks. In most cases,

large-scale networks may only be partially labeled in real-

world tasks, so it is valuable to show the performance of

our algorithms in these partially labeled datasets. In this

part, we evaluate our algorithms in two partially labeled

networks, i.e, Youtubeall and Snow2014all, which are not

used in above experiments. We run some of the comparing

methods which are capable to handle these datasets as

baselines. More precisely, after getting the structural fea-

tures by the algorithms, we use 10% labeled data for

training and use the left 90% for testing just as the method

used by others [9]. As shown in Table 6, in these partially

labeled networks, the result still suggests that our algo-

rithms work better than most comparing methods. For

example, in the Youtubeall network, IDRN outperforms all

baselines by at least 17.91, 57.52 and 86.70% with respect

to Hamming score, Macro� F1 score and Micro� F1
score, respectively.

5 Conclusion and Discussion

In this article, we propose a novel approach for node

classification, which uses the node identifiers in the ego-

centric networks as fine-grained likelihood features and

community prior. Using the coarse-grained community

prior, we can get high level features of the nodes’ cate-

gories. However, these coarse-grained features may not be

discriminative enough especially for the nodes linked to

different communities. As node identifiers can be shared by

neighbors, identifiers retain fine-grained details critical for

discrimination class labels in nodes’ adjacent communities.

Thus, we propose our new approach which combines the

coarse-grained features and fine-grained features. We

consider that this is the first time that node identifiers in the

egocentric networks are used as features. In this article,

first, we show that IDRN can learn the ‘community aware’

characteristic, and it stably outperforms most existing

unsupervised community detection algorithms with a few

underlying cluster labels. After that, empirical evaluation

confirms that our proposed algorithm is capable of han-

dling high-dimensional identifier features and achieves

better performance in real-world networks. We

demonstrate the effectiveness of our approach on many

publicly available datasets. No matter networks are spar-

sely labeled or densely labeled, our approach usually pro-

vides higher metric scores than competing methods.

Moreover, our method is quite practical and efficient, since

it only requires the features extracted from network struc-

ture without any extra data which makes it suitable for

different real-world within-network classification tasks.

It should be noted that there is significant space for our

future research. We would like to assess our algorithm’s

effectiveness in classifying search queries in click-through

bipartite graph by integrating extra textual features in web

search companies. Furthermore, as many real-world net-

work, e.g., social networks and click-through networks, are

evolving over time, it is important to classify these newly

appearing ones automatically. We could improve our

algorithm to predict the node labels in these involving

networks in the future. Besides, as we find that the node

identifiers are very useful features, we would like to try

more effective classification models which can combine

these sparse, high-dimensional and discrete features, such

as node identifiers, with other deep representations in a

low-dimensional space to get higher classification

performance.
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