
Query Optimal k-Plex Based Community in Graphs

Yue Wang1 • Xun Jian1 • Zhenhua Yang2 • Jia Li2

Received: 24 October 2017 /Accepted: 31 October 2017 / Published online: 13 November 2017

� The Author(s) 2017, corrected publication 11/2017. This article is an open access publication

Abstract Community search problem, which is to find

good communities given a set of query nodes in a graph,

has attracted increasing research interest recently. Though

various measurement models have been proposed to define

and solve community search problem. Few of them could

define a community concisely and have good quality of

query results. They either involve additional constraints for

modeling communities, such as size and diameter, or suffer

from the free rider effect, i.e., include irrelevant subgraphs.

In this paper, we propose a new k-plex based community

model for community search. We show that our model not

only is simple and clear, but also meets with basic

requirements of defining a community search problem. We

formulate the maximum k-plex community query

(MCKPQ) problem, that is, given a set of query nodes Q,

searching for optimal k-plex containing Q. We prove that

MCKPQ is NP-hard, and it is hard to approximate in any

constant factor. We first give exact solutions. Then, we

propose an efficient branch-and-bound (B&B) method and

design an effective upper bound function and a pruning

strategy. Furthermore, we optimize the basic B&B by fast

candidate generation. We also give a fast heuristic solution,

which produces high-quality results in practice. The

effectiveness of our model of community and the efficiency

of our methods are verified by elaborate experiments.

Keywords Community search � Graph algorithm � K-plex

1 Introduction

Community, which is defined as set of nodes densely

connected internally, is considered as an important struc-

ture in networks and plays a significant role in graph

mining. Community detection is a task to find communities

for a graph, and it has many applications in different fields,

such as: (1) mining sets of highly correlated stocks [27]; (2)

detecting DNA motif in bioinformatics [25]; (3) finding

Web sites communities sharing similar topics [23].

Numerous works, which are based on different community

models, have been developed to detect communities

[13, 32].

Since nowadays graph data become large and dynamic,

much research attention has been transferred from the

community detection problem to the community query

problem [10, 11, 17, 28]. Unlike community detection,

which enumerates all communities, community query aims

to find the communities that contain a set of query nodes Q.

Compared with community detection, community

search by query nodes could avoid: (a) the time consumed

to find all communities of entire large graphs; (b) the

inflexible global parameter for the community criterion;

(c) the difficulty to deal with the dynamically evolving

graphs [10]. In addition, community search has many

applications in real-life networks on its own for query

specific nodes:

& Yue Wang

ywangby@connect.ust.hk

Xun Jian

xjian@connect.ust.hk

Zhenhua Yang

silence.yang@huawei.com

Jia Li

lijia@huawei.com

1 Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong

2 Huawei Technologies Co. Ltd., Xi’an, China

123

Data Sci. Eng. (2017) 2:257–273

https://doi.org/10.1007/s41019-017-0051-3

http://orcid.org/0000-0002-8618-9806
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0051-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-017-0051-3&domain=pdf
https://doi.org/10.1007/s41019-017-0051-3

• Social group finding In an event-based social networks

such as Meetup,1 a common task is to personally search

for a group with strong social ties among people, to

organize interesting activities.

• Friends recommendation In popular social network

applications, e.g., Facebook,2 Twitter,3 and Instagram,4

community search could help predict potential friend-

ship relationships for users, especially for new users

with few friends.

• Frequent pattern mining When transactions and items

are modeled as a bipartite graph, then dense commu-

nities group items which are bought together frequently

in different transactions. Given some specific items,

community search would help identifying frequent item

sets and further benefiting marketing.

It is not straightforward to define what is a community

and to formulate community search problem precisely.

There are several aspects to be concerned, among which

the most important are how to measure the goodness of a

community and how to define it. Although there is no

standard answer, we summarize common requirements that

a formulated community search problem should meet:

1. Cohesive A community should be cohesive. Each

member within it should be familiar with others.

Currently, many cohesive measurements have been

proposed to ensure the cohesiveness of a community,

such as subgraph density [2, 9], minimum degree [11],

and subgraph diameter [28].

2. Number of query nodes When jQj ¼ 0, community

query is identical to community detection. Some works

limit jQj ¼ 1, a single query node, which is reasonable

but not general in all cases. It is required jQj � 1

sometimes. For example, Alice and Bod are holding a

party, and they want to invite friends who have strong

social ties with both of them.

3. Avoid free rider effect Lots of community measure-

ments lead to free rider effect [30], which means

including unrelated subgraphs in query results and

making communities impure. Thus, it is required that

the query results should not have the free rider effect.

4. Connectivity Suppose there is a community H for the

community query, then not only H should contain Q,

but also H is supposed to be connected. However, the

latter requirement is not always guaranteed in different

models.

5. Size of community In some scenarios, we are interested

in not only cohesive communities given a query, but

also those with size bound. As shown in [21], an

activity may not be triggered on if the size of social

group is less than the activity’s lower bound for the

number of participants. Sozio and Gionis [28] also

study the problem of querying the optimal community

with an upper bound of the size.

6. Fewparameters In spite of above constraints, as indicated

in [17], definitions of problems which are simple to

formulate have few parameters are more preferable.

Currently, several models of community have been pro-

posed to solve community query problem

[4, 11, 17, 18, 28, 31].However, none of themcould satisfy the

above requirements simultaneously, which means that more

constraints would be added to their proposed models to cover

missing requirement, and making the problems more com-

plicated. Take k-truss model [17] as an example, Huang et al.

[17] use k-truss property to ensure community cohesiveness

and use edge connectivity to ensure the community connec-

tivity. K-truss model is further improved by restricting com-

munity diameter, and avoiding free rider effect in [18]. k-core

based (minimum degree) model is also used to define com-

munity in [4, 11, 22, 28]. Sozio and Gionis [28] first introduce

minimum degree as the goodness function of community and

give a linear time algorithm for unbounded size problem. Cui

et al. [11] improve the unbounded size version using the local

search strategy, but leave the problem with bounded size

unsolved. Sozio and Gionis [28] also add the bounded diam-

eter and the size constraint to keep community small. Cui et al

[10] introduce a quasi-clique based community to discover

overlapping communities for single query node, but include

too many parameters and make the problem hard to set

appropriate parameters, as pointed out in [17] . To address the

free rider effect, which is common in most community mod-

els, Wu et al. [31] propose a query-density based model. In

[31], the random walk is used to measure the density of each

node from query nodes, and the problem is to find a com-

munity which maximizes the query-based density. However,

the result communities have no size guarantee in this

measurement.

To address the above problems, in this paper, we proposed

a novel k-plex based community model for query communi-

ties. K-plex, first introduced in [26], is one kind of relaxation

of a k-clique. A graph H is called a k-plex if for each node

v 2 H, v has at least jHj � k neighbors. In other words, each

member could have missed at most k non-neighbors in H.

Clique is a special case of k-plex when k ¼ 1.

The reason of that we model a community as a k-plex is

it can meet all above requirements for the community

1 https://www.meetup.com/.
2 https://www.facebook.com/.
3 https://twitter.com/.
4 https://www.instagram.com/.

258 Y. Wang et al.

123

https://www.meetup.com/
https://www.facebook.com/
https://twitter.com/
https://www.instagram.com/

search problem, that is, a k-plex community H has good

cohesive structure, bounded diameter, upper bound size

guarantee. At the same time, the connectivity of H is

guaranteed as H becomes large. The overview properties of

a k-plex H are listed as below:

1. The diameter of H is bounded by k;

2. the lower bound of the density of H is
jHj�k

2
, which

makes community cohesive with its size increasing;

3. any k-plex larger than k þ 1 is connected;

4. there is an upper bound for |H|;

5. when H is optimal (defined in Section 2) for query

nodes, it can avoid free rider effect;

6. since a k-plex must be a (k þ 1)-plex, k-plex commu-

nities could form a hierarchy structure for query nodes,

by querying with increasing k.

The detailed analysis would be shown in Sect. 2. In spite of

listed properties, querying optimal k-plex community only

needs specifying Q and k, making issuing a query as easy

as possible.

Although the description of querying k-plex community

problem is simple and clear, we show it is NP-hard. In

addition, it is even NP-hard to approximate with O(n) fac-

tor in polynomial time.

Thus, to search k-plex community efficiently, we first

introduce two enumeration methods to get the exact solu-

tion, while the later can prevent repeated enumeration.

Next, we come up with an efficient branch-and-bound

framework. Furthermore, we reduce the search space by

carefully defining a upper bound function. In addition, we

also introduce global pruning and local pruning techniques

to filter out unqualified neighbors. Then, we present two

optimization methods, partial branching and incremental

generation, to accelerate the candidate generation pro-

cesses. In the end, we present heuristic solutions which can

generate results fast with good quality in practice.

The rest of the paper is organized as follows. We give

the problem definition in Sect. 2. We present baseline

solutions in Sect. 3. In Sect. 4, we propose an efficient

branch-and-bound framework. In Sect. 5, we introduce two

optimization techniques to accelerate the B&B framework.

In Sect. 6, we discuss a heuristic solution. Experiments are

reported in Sect. 7. We discuss related works in Sect. 8 and

conclusion in Sect. 9.

2 Problem Statement

In this section, we give some preliminaries and formulate

our k-plex based community problem, and then we com-

pare our model with current ones and present the analysis

of our proposed problems.

2.1 Problem Definition

In this paper, we consider simple undirected graphs

G(V, E) which have no weight on nodes and edges. Let

n ¼ jVðGÞj and m ¼ jEðGÞj. We denote the neighbors of a

node v 2 V by N(v) so the degree of v is degGðvÞ ¼ jNðvÞj.
For any H � V , the subgraph induced by H is denoted as

G[H] with nodes VðG½H�Þ ¼ H and edges

EðHÞ ¼ fðv1; v2Þjv1; v2 2 H; ðv1; v2Þ 2 EðGÞg. Sometimes

we replace G[H] by H if the context is clear (Table 1).

As a relaxation of clique, k-plex was first introduced in

[26]. We now give the definition of connected k-plex.

Definition 1 (Connected k-plex) Given a graph G and a

constant k, a subgraph G[H] is said to be a connected k-

plex if G[H] is connected and for any v 2 H,

degG½H�ðvÞ� jHj � k.

Lemma 1 If G is a k-plex. Then, any vertex-induced

subgraph from G is also a k-plex.

Compared with k-core model, whose lower bound of

minimum degree is a constant k, the minimum degree of a

k-plex is increased with its cardinality. The larger of a

k-plex, the more cohesive it is.

However, a k-plex defined by a single k would form

different structural subgraphs. Consider k ¼ 1, which is the

minimum k we could provide, then both an edge and a

clique could satisfy 1-plex property. Clearly the former one

is less concerned than the latter. So we define the k-plex

community problem with size constraint.

Definition 2 (Connected k-plex query) Given a graph G,

a set of query nodes Q 2 G, a constant k and size constraint

c, find a subgraph G[H], such that:

1. Q � H � VðGÞ and G[H] is a connected k-plex.

2. |H| is no less than c.

The results of CKPQ could be exponential. Consider a

clique of size n, set an arbitrary single query node q, k ¼ 1

and c ¼ 1, then there would be 2n�1 candidate results(each

subgraph whose size larger than 1 containing q would be a

Table 1 Notations and symbols

G(V, E) A simple graph with |V| nodes and |E| edges

G[H] The subgraph induced by a set of nodes H � V

Q A set of query nodes Q � V

degGðvÞ The degree of node v in graph G

dðGÞ The minimum degree of nodes in V(G)

NGðqÞ Neighbors of node q in graph G

NGðvÞ Non-neighbors of node v in G

Query Optimal k-Plex Based Community in Graphs 259

123

feasible solution). Now we give the optimized version of

k-plex community search problem.

Definition 3 (Maximize connected k-plex query) Given a

graph G, k, a set of query nodes Q 2 G find a subgraph

G[H] whose size is maximized among all the solutions to

CKPQ.

Theorem 1 For each q 2 Q, the maximized connected

k-plex consisting of Q must be one of maximal k-plex of q.

Proof Clearly the optimal solution H which consists of Q

must be maximal, otherwise we can add extra nodes to

current solution to make it larger, which results in better

solution and contradicts with that H is optimal. Next,

q 2 Q, Q � H implies H is maximal k-plex of q. h

2.2 Compare with k-core Based Community

There are already some works about searching community

with minimum degree guarantee [11, 28]. We make a

comparison with k-plex community here and show what is

the difference. For a community H, previous works mainly

focus on make dðHÞ large, where dðHÞ defines the lower

bound of neighbors for each node in |H|. However, k-plex

defines upper bound of the number of each node would

miss. That results in the larger H is, the more neighbors

each node has. As a result, k-plex community is ‘‘denser.’’

Definition 4 (k-core) Given graph G(V, E), a subgraph

G[H] is called k-core or a core of order k iff 8v 2
H; degHðvÞ� k and H is a maximum subgraph with this

property.

Without size bound, deciding whether there exists a H

such that dðHÞ� k can be done in linear time, shown in

[11, 28]. However, with size bound, the problem becomes

NP-hard. Authors of [11] provided efficient solution for the

unbounded version and proposed bounded problem

unsolved, shown below.

Definition 5 (mCST [11]) Given a graph G(V, E) and a

query node v0 2 V and a constant k, findH � V such that (1)

dðG½H�Þ� k; (2) G[H] is connected; (3) |H| is minimized.

Note that CKPQ(Q, k, c) is identical to decision version

of mCST, by setting jQj ¼ 1; k0 ¼ c� k; c0 ¼ c. In this

paper, we only focus on the optimization problem

MCKPQ, since the solution of MCKPQ can help solving

the CKPQ problem.

2.3 Hardness Results

In this section, we show the decision version of MCKPQ,

CKPQ is NP-complete. We further show that MCKPQ is

also hard to approximate in any constant factor.

Theorem 2 The CKPQ Problem is NP-Complete for any

constant k and jQj � 1.

Proof Clearly, given Q, k, c and a candidate subgraph H,

we could test whether H is a k-plex with size larger than

c and contains Q in polynomial time.

Next, we reduce from k-plex problem, which is shown

NP-complete for any positive integer k in [3]. Given a

graph G(V, E) and k, the k-plex problem is to decide

whether there exists a k-plex of size c in G. We now

construct an instance of CKPQ by constructing a new

graph G0ðV 0;E0Þ as follows: we create arbitrary set of nodes
Q and add them to V, so VðG0Þ ¼ Qþ VðGÞ, for each node

v in Q, we connected v to all the other nodes, i.e.,

EðG0Þ ¼ EðGÞ [fðv1; v2Þjv1 2 Q; v2 2 V 0; v2 6¼ v1g, obvi-

ously G0½Q� is a clique, and we finish construction by

setting c0 ¼ cþ jQj and Q as query nodes. We show that k-

plex problem is a Yes-instance iff the decision version of

MCKPQ is a Yes-instance. Suppose subgraph G[H] is a

solution of k-plex problem, then H0 ¼ G0½H [Q� is a

solution of MCKPQ: (1) Each pair of nodes in H0 is

adjacent or connected by at least one node in Q; (2)

jH0j � jQj þ c ¼ c0; (3) for any node v 2 H, degG½H0 �ðvÞ ¼
degG½H�ðvÞ þ jQj � jHj � k þ jQj ¼ jH0j � k0, for any node

v 2 Q, degG½H0 �ðvÞ ¼ jQj � 1þ jHj ¼ jH0j � k0. So G½H0� is
a k-plex. For the other direction, if we have a connected k-

plex G0½H0� with size c0, then G½H0 n Q� ¼ G0½H0 n Q� is a k-
plex by Lemma 1 and has size c0 � jQj ¼ c, which

completes the proof. h

Theorem 3 For any �[0, it is hard to approximate for

MCKPQ problem in polynomial time within a factor n1��.

Proof Works in [16] show it is n1��-hard to approximate

the maximum clique problem, which aims to find the largest

clique in a given graph. Given an instance G of MCP, we

can perform a gap-preserving reduction to MCKPQ by

setting G0 ¼ G, Q ¼ ;, and k ¼ 1, whose solution is

identical to MCP. So there is no ðn1��Þ-approximation

algorithm which runs in polynomial time for MCKPQ,

where n ¼ jVðGÞj. h

2.4 Problem Analysis

In this subsection, we first show that the solution of

MCKPQ problem can avoid the free rider effect, then we

present the properties of our proposed community model,

and show that it can meet the requirements for community

search problem, as summarized in Sect. 1.

2.4.1 Free Rider Effect(FRE)

In community detection problem, the free rider effect is

under some goodness metric, the results of community

260 Y. Wang et al.

123

search admit including irrelevant subgraph [18, 30].

According to [18], most of community metrics suffer from

free rider effect, such as minimum degree, graph density,

subgraph modularity and so on. We first give an example of

FRE and formal definition of it based on [18], and then we

show the formulation of MCKPQ can avoid free rider

effect.

Minimum degree dðHÞ is commonly used as community

measurement in [4, 11, 22, 28], the bigger, the better. Take

graph G in Fig. 1 for example, suppose Q ¼ fgg. Then
most subgraphs in G consisting of fg; e; hg could be as

results of this query with optimal value 2, for example the

subgraph dðfg; h; e; d; k; jgÞ ¼ 2. But obviously it cannot

be returned as best community, since k, j are too far away

from g and make no contribution to optimal value. The

same scenario also exists in k-truss model in [17].

Definition 6 (Free Rider Effect [18]) Suppose H is a

solution to a community definition according to a goodness

function f(.). The community definition is called suffers

from free rider effect, provided whenever there is an

optimal solution H� to the community detection problem,

then f ðH [H�Þ 	 f ðHÞ. This means the combination of

communities H and H� is no worse than H.

Theorem 4 The definition of MCKPQ could avoid free

rider effect.

Proof Given Q and k, the optimal community H� is the

largest k-plex containing Q. So for any other k-plex

fH : Q � Hg. And f(.) is simply |H|. There are two cases

between H and H�:

1. H � H�. Then f ðH [H�Þ ¼ f ðH�Þ ¼ jH�j[
jHj ¼ f ðHÞ.

2. H 6� H�. Since H� is optimal and maximal, then H [
H� cannot be k-plex(otherwise, H� ¼ H [H� since

H [H� is larger) and becomes not feasible any more.

We cannot evaluate H [H� by f(.).

In both cases, we cannot get f ðH [H�Þ	 f ðHÞ. So defi-

nition of MCKPQ could avoid FRE. h

2.4.2 Properties of k-plex

In this section, we dive into properties of k-plex and

describe how it can meet requirements of community

search problem stated previously. These properties include

bounded size, bounded diameter, connectivity.

Given single k, then any k-plex community has global

bounded size.

Theorem 5 Given a connected graph G(V, E), for any

node v, its optimal k-plex size satisfies

jH�j 	
ðk þ 2Þ þ

ffi

ðk þ 2Þ2 � 8ðjVj � jEjÞ
q

2

ð1Þ

Proof Suppose a k-plex H. Then dðHÞ� jHj � k and

jEðHÞj� jHjðjHj�kÞ
2

. Then, we contract H to one node in G to

get G0. From the fact G is connected, G0 is also connected.

So jEðG0Þj � jVðGÞj � jHj þ 1� 1 ¼ jVj � jHj. Also |E| is

the upper bound of number of edges of this two graphs H

and G0.

jEj � jEðHÞj þ jEðG0Þj � jHjðjHj � kÞ
2

þ jVj � jHj ð2Þ

Solving above inequation, we get the result. h

If we take Q into consideration, then we have a local

bounded community size stated as follows:

Theorem 6 Given an instance of MCKPQ(G, Q, k), the

optimal size

jH�j 	 min
q2Q

ðjNGðqÞjÞ þ k ð3Þ

Proof Suppose H is one of solutions. Then

dðHÞ� jHj � k, it follows jNHðqÞj � jHj � k for any q 2 Q.

Since H � G, then jNGðqÞj � jNHðqÞj. So we have

jHj 	 k þ jNGðqÞj. Because arbitrariness of q, so

jHj 	 minq2QðjNGðqÞjÞ þ k. h

We next discuss the connectivity of k-plex. We first

show that for a disconnected k-plex, upper bound of its size

is related to the number of its disjoint component and

k. Based on that, we show when a k-plex is larger than a

threshold, it must be connected.

Theorem 7 If disconnected k-plex H ¼
Sa

i¼1 Ci has a
disjoint components (a[1), then jHj\ a

a�1
ðk � 1Þ.

Proof Suppose Ci is the minimized component of H, then

jCij 	 jHj
a . For each node in Ci, it has at least ða� 1Þ non-

neighbors, so a� 1	 k � 1) a	 k.

a
b

e

c

d

h

g
k

j

Fig. 1 An example graph

Query Optimal k-Plex Based Community in Graphs 261

123

jH2j 	 jCij þ ða� 1Þ

) jH2j 	
jH2j
a

þ ðk � 1Þ

) jH2j 	
a

a� 1
ðk � 1Þ

ð4Þ

h

Actually this bound is tight. Consider the disconnected

3-plex VðHÞ ¼ fg; h; j; kg in Fig. 1 with two components.

jHj ¼ 2 � ð3� 1Þ ¼ 4.

Corollary 1 If a k-plex H whose size is larger than

ðk þ 1Þ, then H must be connected.

Proof We prove by contradiction. Suppose H is discon-

nected, then it has 1\a	 k components, and

H	 a
a�1

ðk � 1Þ. That implies k þ 1\ a
a�1

ðk � 1Þ by The-

orem 7. However,

k þ 1� a
a� 1

ðk � 1Þ ¼ ða� 1Þðk þ 1Þ � aðk � 1Þ
a� 1

¼ 1� a� k

a� 1
[0 ðsince 1\a	 kÞ

ð5Þ

the Eq. 5 contradicts with our assumption. h

Theorem 8 If G is a connected k-plex, then jGj � k þ 1.

Proof Since G is connected, then every node in G would

at least have one neighbor, which implies jGj � k� 1. h

From above we can see that when H is larger than

ðk þ 1Þ, it must be connected. As a result, while finding k-

plex community, we do not need to do the connectivity

checking for most of them, which is a main process in most

community search algorithm [28, 31]. If we make the

assumption for each k-plex community query, there always

exists H such that jHj[k þ 1, in this case, connectivity is

not a concern any more.

Since diameter is another additional constraint for

community query [18, 28]. Next, we show that any k-plex

has bounded diameter by k.

Theorem 9 If a connected k-plex G has the diameter d,

then k� d.

Proof Suppose v1 � v2 � � � vdþ1 is the longest shortest path

in G. For node v1, there are at least d � 1 non-neighbors in

this path, which implies k � 1� d � 1. h

Corollary 2 All nodes of optimal solution of MCKP are

in k-hop neighbors of Q.

In this section, we state rationality of k-plex community

search problem. Even though the problem is simple to

model, interestingly it has nice properties for size,

connectivity, diameter, free rider effect, all of which are

major requirements for most of community search prob-

lem. Next, we discuss solutions to MCKPQ problem.

First, we give two basic enumeration algorithms as

baselines. Next, we improve by presenting branch-and-

bound based algorithm and introduce the upper bound

function and pruning strategies. Furthermore, we present

two methods to accelerate the basic B&B algorithm.

3 Baseline Methods

We first give the baseline method to solve the MCKP

problem. Since MCKP is NP-hard and it is hard to

approximate by any linear function in polynomial time, we

use the generate and verify method to explore the whole

search space. Algorithm 1 describes this basic framework:

It enumerates all k-plexes consisting of Q, the methods of

enumeration differ but all using neighbors of current k-plex

being enumerated, keep those with largest size(note that

there maybe multiple largest k-plexes with the same size),

among them it returns the connected one. Otherwise, it

claims there does not exist solution for the query.

The search space of enumeration decreases with

increasing query size, based on Theorem 10.

Theorem 10 Given Q ¼ fq1; . . .; qng and

Qi ¼ fq1; . . .; qigð1	 i\nÞ. Let Mi denote set of all max-

imal k-plex of Qi. Then for any 1	 i	 j	 , Mj � Mi.

Next, we show that if maximized k-plexes are not

connected, then all k-plexes are not connected.

Theorem 11 If all maximized k-plex of Q is not con-

nected, then there does not exist connected k-plex con-

sisting of Q.

Proof We prove by contradiction. Suppose H ¼
Ta

i¼1 Ci

is maximized k-plex of Q, disconnected. And there exists

another connected k-plex H0 that satisfies jH0j\jHj. Since
the enumeration is based on neighbors of Q and H is dis-

connected, then G[Q] is disconnected either, at the same

time, each component Ci contains at least one of the query

nodes. H0 includes all query nodes, and H0 would intersect

each of component of H. Now H0 can be represented by

262 Y. Wang et al.

123

H0 ¼ ð
Sa

i¼1 IiÞ
S

ðH0 n HÞ. We now can construct a con-

nected k-plex H� whose size is equal to |H| by following

steps. Initially set H� ¼ H, at each iteration remove the

node with minimum degree among all the components and

add one node from H0 until all nodes in H0 n H are added to

H0, H� is a connected k-plex, contradicting with all H are

disconnected. h

To achieve both maximization and connectivity con-

straint of MCKP, based on Algorithm 1, we only need to

check the connectivity of those k-plexes with largest size

with Theorem 11. The NaiveEnum (shown in algorithm 2)

is used to generate all k-plexes of Q. Starting with Q, it

searches each of Q0s neighbors to check whether it is val-

idate to extend Q until there is no such neighbors. Even

though NaiveEnum would generate all maximal k-plexes, it

can result in repeated generation, i.e., enumerate identical

k-plex multiple times.

Example 1 When Q ¼ fgg and k ¼ 2 in Fig. 1, then the

maximal 2-plex fg; a; e; hg could be enumerated by g !
e ! a ! h and g ! h ! a ! e. Hence, tedious compu-

tation may happen in naive enumeration.

To prevent stated drawbacks and reduce the computa-

tion, we design algorithm basing on Bron–Kerbosch algo-

rithm [8], which is used to generate all maximal cliques

recursively given a graph. Here, we changed it to enu-

merate all maximal k-plex containing a set of specific

query nodes. At each iteration, three sets R, P, X are feed

to Maximal Search (MS), shown in algorithm 3. R is cur-

rent founded k-plex, which is to be extended; P is candi-

date nodes, each of which can enlarge R, and nodes in X

can also extend R but they are used in previous search.

When there is no candidate can be used to enlarge R, then it

is maximal. And if there are all candidates have already

been used in previous search, i.e., X is not empty, it means

that maximal k-plex containing R is already enumerated.

Otherwise, we perform DFS search for all candidates. To

get maximal k-plex of Q, MS is initialized with R ¼
fQg;P ¼ fv : v 2 NðQÞ;R ¼ fv : v 2 NðQÞ;
fvg [Q is k ¼ plexg;X ¼ ;.

4 Branch-and-Bound

The general generate and test procedure shown above is

costly. First, for each found k-plex, it expands all its neigh-

bors no matter whether they can lead to a better solution or

not. Second, all candidates are enumerated equally, and each

neighbor is chosen with equal probability to expand current

solution. However, some candidates and neighbors are more

potential to enlarge the size of current k-plex. To reduce the

search space and improve efficiency, we develop branch-

and-bound(B&B) based algorithm shown in Algorithm 4.

B&B paradigm is widely used for solving large-scale

NP-hard combinatorial problems. An explicit enumeration

for hard problem is normally time consuming due to

exponentially increasing number of potential solutions.

Using bounds for the function to be optimized plus score of

current best solution enables B&B to search parts of the

candidate space only.

Algorithm 4 is to get the maximized k-plex of Q. It is

DFS-based branch-and-bound, which is shown efficient

practical in solving various hard problems.

At each iteration, H is the current k � plex, we select

validate nodes B (candidate neighbors are generated by

cand_gen) from H0s neighbors and branch on each node of

set B. Algorithm 4 also generates maximal k-plexes of Q;

however, it only searches partial searching space instead of

all of them, which is performed in NaiveEnum and

B&KEnum. This is done by following strategies:

1. define effective upper bound function for candidate, if

current candidate k-plex cannot improve the quality

better than current optimal one, then it is discarded. So

the search space starting with this branch is removed.

2. for each candidate to be extended, select neighbors of

candidate with high priority first to get optimal k-plex

early.

3. prune invalidate neighbors.

Query Optimal k-Plex Based Community in Graphs 263

123

4.1 Upper Bound Function

Upper bound function is crucial in B&B algorithm, loose

upper bound would have no ability to prune search space.

To derive efficient upper bound function of current k-plex

H, we consider two cases.

Definition 7 (tight nodes) A node v 2 H is called tight if

degHðvÞ ¼ jHj � k

The upper bound function of H is defined as follows:

1. There exist tight nodes in H. Suppose

V ¼ fv : v 2 H; v is tightg. Then at most j
T

v2V NðvÞj
nodes could be added to H, this means every node

added to H must be one of neighbors of tight node v

(any node non-neighborhood of v is unqualified

because v has already k � 1 non-neighborhood in H).

2. There exist no tight nodes in H. In this case, upper

bound is defined as

jHj þminv2HðjNGnHðvÞj þ ðk þ NHðvÞ � jHjÞÞ. For

each node, it can expand |N(v)| neighbors and limited

number of non-neighbors candidates, and the maxi-

mized size H can be expanded depends on lowest

candidates number of v 2 H.

Upper bound of above two cases involves |N(v)|. We fur-

ther improve the bound quality by replacing N(v) with

fu : u 2 NðvÞ; dðH [fugÞ� jHj þ 1� kg. By not counting

neighbors that cannot be used to expand H, the gap

between limitation of H and bound function is reduced.

4.2 Prune Unqualified Nodes

Unqualified nodes refer to those that are not able to pro-

duce maximized k-plex of Q or even k-plex of Q. Next, we

introduce two strategies for pruning unqualified nodes: one

is based on the query distance, the other is based on the

core number.

Definition 8 (Query Distance) Given a graph G(V, E)

and a set of query nodes Q � V , and a arbitrary node

v 2 V , the query distance between v and Q is

distðv;QÞ ¼ minv2Q distðv; qÞ, where dist(v, q) is the length
of shortest path between v and q.

Based on Theorem 9, the query distance of any node v

and Q is no greater than k. So the candidate nodes set

Vc ¼
Ti¼jQj

i¼1 fv : v is k� hop neighbor of qg . We only per-

form the search in the subgraph G0 ¼ G½Vc�.
Furthermore, not all neighbors of current candidate H

are supposed to branch on. Let current maximized k-plex is

denoted by H�. Neighbors of H are pruned by following

strategies: degree pruning and core number pruning.

Degree pruning is straightforward: if for node v 2 NðHÞ,
degG0 ðvÞ\jH�j � k, then it is unqualified for branching.

Since for any subgraph consisting of v, its minimum degree

is no greater than deg(v).

Definition 9 (core number) The core number cv of node v

is the highest order of a core that contains this node.

Theorem 12 For any subgraph H � G, if v 2 H, then

dðHÞ	 cv.

Proof This can be proved by contradiction. Let

dðHÞ[cv and H0 denote dðHÞ � core of G, then H � H0,
otherwise, H0 [H would result in a larger subgraph whose

minimum degree is no less than dðHÞ, contradicting H0 is
maximized. Since H 2 H0 and v 2 H, then

cv � dðH0Þ ¼ dðHÞ. This contradicts that dðHÞ[cv. h

264 Y. Wang et al.

123

By Theorem 12, a node v cannot be included in any

subgraph whose minimum degree is larger than cv. So we

remove nodes in N(H) if cv\jH�j � k, where H� is current
best solution. Note that calculating core number for each

node is a preprocessing step, and this can be done in linear

time by core decomposition using method in [5].

We now analyze time complexity of basic candidate

generation. Testing whether H is k-plex can be done in

O(|H|) time. The algorithm 5 would run in OðdmaxjHj2Þ,
where dmax ¼ maxv2HdegGðvÞ.

5 Optimization on B&B

5.1 Partial Branching

In basic branch-and-bound algorithm, given a k-plex H, we

simply extend H by branching all the validate neighbors

B of H until all of them become maximal or cannot produce

larger results by upper bound function. That is, we enu-

merate all branches and give them the same priority. The

following two observations lead us to devise more subtle

branching schema. First, the minimum degree of optimal

k-plex is largest among others. Second, bottleneck of

extending a current k-plex H always depends on the nodes

those have the minimum degree.

So the improved candidate generation method partial

branching makes following improvement:

• Instead of representing each current k-plex H as a set of

nodes, it uses min-heap structure with node v as key,

degHðvÞ as value.
• At each iteration, we only consider neighbors of node

with minimum degree in H and use them to expand H.

Next we show the partial branching would not miss any

feasible solution.

Theorem 13 Given any two k-plex H0 and Hk in G, which

satisfies H � H0;H0is connected. There always exists a

sequence v1; . . .; vk such that 8i 2 ½0; k � 1�; vi 2 Hkn
H0;Hiþ1 ¼ Hi [fviþ1g; ðviþ1; uiÞ 2 EðGÞ, where

ui ¼ arg minui2Hi;9v2HknHi;ðui;vÞ2Eðui;vÞdegG½Hi�ðuiÞ.

Proof We can construct this sequence by following steps.

First, we partition G½Hk� into two parts

A ¼ G½H0�;B ¼ G½Hk n H0�. Then at each step, we move

one node from B to A, by choosing the crossing edge(one

endpoint in A, the other in B) whose degree of the node in A

is minimum compared with other crossing edges. The

process is always success until B is empty. Suppose at

some step A0;B0 there is no crossing edge and B0 is not

empty, this would imply G½A0 [B0� ¼ G½Hk� is not con-

nected, which contradicts the assumption. h

We now analyze complexity of partial candidate gen-

eration. Since we only extend neighbors of node v with

minimum degree in H and H is a min-heap, fetching v can

be done in O(1) time. Let dmin denote degree of node v.

And up to dmin, updates are performed to H due to

expanding. Updating a heap H can be done in O(log(|H|)).

Totally, the time complexity is OðdminjHjÞ

5.2 Incremental Candidate Update

We now introduce an alternative to reduce cost of candi-

date neighbors generation. In basic B&B algorithm, in each

round validate neighbors are generated from scratch given

H. That would incur the case one node would be generated

multiple times in following steps, starting from H.

Example 2 Consider the graph in Fig. 1 again, suppose

H ¼ fa; g; k ¼ 2. Figure 2 shows one of search paths of

basic B&B algorithm, extending H until it becomes max-

imal. At each round, it first gets its neighbors and keeps

those valid. From B1 (candidates in round 1) to B5, node c

is generated and tested three times and node d twice. The

case also applies to nodes not valid. For example, g is

rejected in N3ðHÞ, but still tested in the next round in

N4ðHÞ.

The above example shows tedious calculation in can-

didate generation step. Here, we propose more efficient

way (shown in algorithm 6) to generate candidates Btþ1,

which takes use of results Bt in last round. We define B as

hash table, whose key is node id and value number of non-

neighbors in H plus 1. First, remove a v of Bt and add it to

Query Optimal k-Plex Based Community in Graphs 265

123

H. can expand indicates whether new members can be

added. Then, we increase the value of node who is not in

neighbors of v in Bt by one. Then filter out those non-

neighbors in H exceed k. Next, we add new members x

from NGnðBt[HÞðvÞ if can expand is still positive. There are

three cases that we cannot extend the current candidates Bt

from residual graph G n ðBt [HÞ:

1. Some node u of Bt becomes tight. In this case, it would

block all new members since any new node x. Because

node u 2 Bt, u must have at least one neighbor in H,

which implies

jNHðxÞj ¼ jHj[jHj � 1� jNHðuÞj[¼ k.

2. Some node w of H becomes tight. If x 2 NGnðBt[HÞðvÞ,
adding x would cause jNH[fxgðwÞj[jNHðwÞj ¼ k.

3. jHj[k. Then, any new member would have at least

k non-neighbors in H.

In above three cases, can expand would be toggled to

negative and jBtj would decrease in the following

iterations.

We now analyze time complexity of candidates update.

Updating values of hash table costs OðjBtjÞ time. Checking

tight nodes in H costs OðjHjjBtjÞ time. Adding new

member cost O(|N(x)|) time if Bt can be extended. Since

jBtj always smaller than N(H), the total time complexity

would be O(|H||N(H)|).

6 Heuristic Solutions

Since MCKPQ is hard for both optimization and approxi-

mation, in this section, we propose heuristic algorithms

which are fast and produce high-quality results, while have

no theoretical guarantee. At each step, we choose one node

from NGðHÞ greedily to extend H until H becomes maxi-

mal. The new node is chosen based on the quality function

f. Intuitively, given a set of neighbor nodes to extend H, the

larger f(v), the more promising H [fvg could reach a

k-plex with large size.

So how to define a quality function is the key issue to

influence results. Given two k-plex H and H0 with same

size, there are two aspects to compare its ability of

extension:

1. Number of missing links. K-plex requires each node in

it has at most k non-neighbors, so H would be more

promising to expand to larger size if

jEGðHÞj[jEGðH0Þj.
2. neighbors of H. This is straightforward because if

NðHÞ[NðH0Þ, H would have a higher chance to

become a larger community.

So we define the quality function of v as follows:

fHðvÞ ¼ jEGðH [fvgÞj þ jNðH [fvgÞj
maxv2CjNðH [fvgÞj ð6Þ

The intuition is to find neighbors which can achieve largest

edges increment and break ties by choosing the one who

can add more neighbors to current solution.

7 Experiment

We have conducted extensive experiments to test the

effectiveness and efficiency of our proposed solutions in

finding k-plex community. We first show by case study that

the effectiveness of k-plex community model capturing

cohesive membership structure and common interests of

members in searching results. Then, we report the experi-

mental results on the efficiency tests using different prob-

lem settings on different datasets. We use four real-world

datasets provided by Stanford network dataset collection:5

(1) DBLP collaboration network; (2) Amazon product co-

5 https://snap.stanford.edu/.

Fig. 2 Extending H ¼ fag to

maximal 2-plex

266 Y. Wang et al.

123

https://snap.stanford.edu/

purchasing network; (3) Google-Web graph; (4) Arxiv

collaboration network of condensed matter. The statistical

information of datasets is shown in Table 2. All algorithms

are implemented in Python and run on a PC with

Intel(R) Core(TM) i7 CPU 860 @2.8GHz 2.8GHz with

8GB memory.

7.1 Case Study

Since different community query models differ in their

objective goodness functions (such as degree, density, and

diameter), an uniform quantitive quality evaluation is

beyond this paper’s scope. Instead, we show the results of

our k-plex community search by case studies.

We use the dblp coauthor graph, in this graph two sci-

entists are linked together if they have worked on the same

paper. We issue the query Q ¼ fJiawei Hang; k ¼ 2 and we

get optimal communities shown in Fig. 3, both of which

achieve maximized community. To see the effectiveness,

we can see members in H1 are all data mining scientists.

Jiawei Han and Philip S. Yu have worked on about 50

papers together, and Jian Pei and Ke Wang have worked on

more than 20 papers together. H1 and H2 also indicate the

ability of extracting overlapping communities of k-plex

model. By increasing k by 1 and using the same query, we

get another result shown in Fig. 4a, which is a supergraph

of H1, this implies the hierarchical structure of k-plex

community model. We also issue query with multiple

nodes Q ¼ fXuemin Lin; JeffreyXuYug; k ¼ 3. From the

result shown in Fig. 4b, we can see members in this

community all have published papers in graph database and

processing, which are one of research interests of Xuemin

Lin and Jeffrey Xu Yu and this is verified by checking their

webpage profile.

Table 2 Statistical information of datasets

Dataset #Nodes #Edges Avg. deg diam(G)

DBLP 317,080 1,049,866 6.62 21

Amazon 334,863 925,872 5.53 44

Arxiv COND-MAT 23,133 93,497 8.08 14

Google-Web 875,713 5,105,039 9.87 21

Fig. 4 Results of 3-plex community query. a Q ¼ fJiawei Hang; k ¼ 3 and b Q ¼ fXuemin Lin; JeffreyXuYug; k ¼ 3

Fig. 3 Communities of

Q ¼ fJiawei Hang; k ¼ 2. a 2-

plex community H1 and b 2-

plex community H2

Query Optimal k-Plex Based Community in Graphs 267

123

7.2 Efficiency Results

Next, we study the time efficiency of different methods.

There are two parameters for querying k-plex community:

Q and k. We range |Q| from 1 to 4 and k from 1 to 4. To

generate query sets, some preprocessing steps are con-

ducted, for example: For each graph, we first sort all the

nodes based on their degree. Then, nodes are partitioned

into five buckets in degree order so that each bucket has the

same number of nodes. For each pair of (|Q|, k), we ran-

domly sample 20 queries from each degree bucket. So for

each query setting, we get 100 queries to evaluate. Diam-

eter of query is also concerned, let Qk denote query nodes

for k, then queries are generated with the restriction of

diamGðQkÞ	 k, since for any diamGðQkÞ[k, there does

not exist feasible solution. We denote B&K enumeration

by bk_enum, the naive branch-and-bound method by

bb_basic, the partial branching method by bb_pb, the

incremental candidate generation method by bb_inc. Since

most of results of the naive enumeration method do not

return in hours thus cannot be collected, we would ignore

this method in our comparison.

7.2.1 Varying |Q|

We evaluate querying time using different query size |Q|.

For each |Q|, we aggregate query time on |Q| and calculate

the average. The results of different datasets are listed in

Fig. 5. For all datasets, B&K enumeration always has

highest query delay. And branch-and-bound based methods

can reduce query delay significantly. The simple greedy

heuristic solution has lowest cost of time. For different

B&B based methods, bb_inc outperforms bb_basic and

bb_pb since its incremental candidate generation reduces

the repeated evaluation of neighbors. The improvement of

bb_pb on bb_basic is not notable. The reason is that even

Fig. 5 Query time varying |Q| (aggregated on k 2 ½1; 4�). a DBLP, b Amazon, c Arxiv and d Google-Web

268 Y. Wang et al.

123

though partial branching decreases the cost of selecting

valid neighbors, i.e., it narrows down the number of chil-

dren of a branching node in each step, the size of search

tree is not shrunk. We can also observe that query time

decreases with increasing |Q|. This is due to search space is

reduced by adding query nodes. This is illustrated by

Theorem 10. While jQj ¼ 1, searching for maximum k-

plex would cost hundreds of seconds. When |Q| has

increased to 4, query time decreases, respectively, to

between 0.01 and 0.1 s. Average query time of each |Q| in

Fig. 5 shows the aggregated results on various k. Thus, to

get a more clear investigation of varying |Q|, we also fix k

for various query sizes. Results of Amazon dataset are

shown in Fig. 6, and evaluation of other datasets is omitted

due to limited space. For k ¼ 1, the task is equal to search

for maximum clique and the B&K enumeration is most

costly compared with other methods, while they could get

near zero cost for clique finding.

7.2.2 Varying k

We test query performance on various k. Even though there

is no limitation of k in k-plex search, usually k is set to

small values to keep subgraph cohesive, 2 and 3 are fre-

quently used in practice [3, 6]. We range k from 1 to 4. For

each specific k, different query size |Q| is evaluated and we

take the average query time. Results from different datasets

are shown in Fig. 7. The query time increases with

increasing k. This is because the larger k, the larger upper

bound of number of non-neighbors; this results in larger

search space. B&K enumeration is most costly in different

k settings. And B&B based algorithms is better, due to its

pruning technique and early termination. In spite of

improvement of branch-and-bound technique, the com-

plexity is still exponential with k, since it is an exact

solution. And the heuristic greedy algorithm always ter-

minates fast and outperforms others. For fixed k, results of

different query size contribute to average query time. Since

queries with small |Q| contribute large amount of query

Fig. 6 Amazon: query time varying |Q|. a k ¼ 1, b k ¼ 2, c k ¼ 3, and d k ¼ 4

Query Optimal k-Plex Based Community in Graphs 269

123

time. We also test results of different fixed |Q| to get a more

accurate evaluation of various k, shown in Fig. 8. Results

of DBLP dataset are listed and others omitted. As we can

see from Fig. 7, while k ¼ 1, query time is no larger than

0.1 s. When k is increased to 4, the time consuming would

increase to hundreds of seconds. This is due to the expo-

nential time complexity of MCKPQ on k.

7.2.3 Quality of Heuristic

The quality of output of heuristic greedy algorithm is also

tested, shown in Fig. 9. Since all other methods would

output optimal k-plex community, so only one of exact

algorithm bb_basic is compared. For each specific k,

average size of optimal k-plex is calculated. We feed the

same set of queries to heuristic solution and get average

size of output. We can see from results heuristic solution

has size larger than 50% of optimal averagely. The results

also imply the influence of k on the size of output

community. In average, smaller k would result in smaller

cohesive community.

8 Related Work

8.1 Densest Subgraph Problem

Densest subgraph problem is a major research topic in

graph analysis. Given a graph G, the task is to find the

densest subgraph. Average degree is one of most frequent

used measurements in dense subgraph mining. [15] first

gives polynomial time algorithm O(mn) for densest sub-

graph problem, by transforming it into min-cut instance

and using binary search to get the optimal density. An 2-

approximation algorithm is proposed in [9], this is done by

greedily removing node which is of minimum degree. This

greedy algorithm runs in Oðmþ nÞ time. [19] first intro-

duces densest subgraph problem for directed graphs and

Fig. 7 Query time varying k. a DBLP, b Amazon, c Arxiv, and d Google-Web

270 Y. Wang et al.

123

gives an OðlogðnÞÞ-approximation algorithm. [20] then

gives a max-flow based exact algorithm firstly and

improves the greedy one to Oðmþ nÞ.
Even though densest subgraph problem (DSP) admits

polynomial time complexity, it becomes NP-hard when

where is a size constraint. There are three variants: (a) k-

densest subgraph problem (DkS): It requires subgraph

jSj ¼ k; (b) densest subgraph at least k(DalkS): It requires

subgraph jSj � k; and (c) denest subgraph at most

k(DamkS): It requires subgraph jSj 	 k. It is hard to

approximate DkS and DamkS problem within a constant

factor. [12] introduces an Oðn1
3Þ-approximate algorithm for

DkS. However, DalkS can be approximated with a constant

factor. An 3-approximate solution is shown in [2]. Fur-

thermore, [20] provides an 2-approximate algorithm for

Dalks.

Our work differs in that it’s query specific and its

goodness metric is size of k-plex, instead of subgraph

density.

8.2 Community Search

Community search problem is recently proposed in [28].

The task is to find high-quality community given initial

query members. There is no uniform goodness metric for

this problem. Minimum degree measurement is used in

[4, 11, 28]. K-truss based variants are introduced in

[17, 18]. [17] requires results are of edge connectivity to

avoid disjoint communities. They further define optimal k-

truss community by largest k and smallest diameter in [18].

Since the problem becomes NP-hard, they present ð2� �Þ-
approximate algorithm to solve it. [30] addresses the free

rider effect and proposes query-density based community

query problem. [29] studies triangle densest community

problem and shows a max-flow based algorithm. However,

the connectivity of answer community is not guaranteed.

[10] studies searching overlapping communities given one

single query node. Their model is based on quasi-clique.

Fig. 8 DBLP: query time varying k. a jQj ¼ 1, b jQj ¼ 2, c jQj ¼ 3 and d jQj ¼ 4

Query Optimal k-Plex Based Community in Graphs 271

123

Our work differs from above works in definition of

objective community and unrestricted size of query nodes.

8.3 Community Detection

Community detection is a well-studied topic in graphs and

social network analysis. The task is to identify and list all

communities given a graph. A common used measurement

is modularity [24]. Modularity maximization is shown NP-

hard theoretically in [7]. [1] introduces rounding technique

and efficient algorithms. However, optimizing modularity

in large networks has limitation to resolve small commu-

nities, shown in [14]. The above works focus on detecting

disjoint communities and graphs are partitioned. Since each

person can be involved in multiple groups in social net-

work, there are also works on detecting all overlapping

communities [32]. Our work differs in that it is query

oriented. And query result can be different from that of

maximizing modularity (a global optimal graph partition

may not be an local optimal community for query sets).

9 Conclusion

In this paper, we study querying optimal k-plex community

problem, that is, given a set of nodes Q, finding optimal

k-plex community consisting of Q. We show that our

proposed community model can guarantee the good quality

of query results theoretically. Based on the fact the prob-

lem is NP-hard and hard to approximate, we design effi-

cient branch-and-bound method and further improve it by

technique of fast generating candidates. We then give

heuristic solution of low time cost. Experiments show the

effectiveness of our k-plex model and efficiency of our

proposed methods.

Fig. 9 Quality comparison of heuristic greedy. a DBLP, b Amazon, c Arxiv and d Google-Web

272 Y. Wang et al.

123

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Agarwal G, Kempe D (2008) Modularity-maximizing graph

communities via mathematical programming. Eur Phys J B

66(3):409–418

2. Andersen R, Chellapilla K (2009) Finding dense subgraphs with

size bounds. In: Proceedings of algorithms and models for the

web-graph, 6th international workshop, WAW 2009, Barcelona,

Spain, February 12–13, 2009, pp 25–37

3. Balasundaram B, Butenko S, Hicks IV (2011) Clique relaxations

in social network analysis: the maximum k-plex problem. Oper

Res 59(1):133–142

4. Barbieri N, Bonchi F, Galimberti E, Gullo F (2015) Efficient and

effective community search. Data Min Knowl Discov

29(5):1406–1433

5. Batagelj V, Zaversnik M (2003) An O (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049

6. Berlowitz D, Cohen S, Kimelfeld B (2015) Efficient enumeration

of maximal k-plexes. In: Proceedings of the 2015 ACM SIGMOD

international conference on management of data, Melbourne,

Victoria, Australia, May 31–June 4, 2015, pp 431–444

7. Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, Nikoloski

Z, Wagner D (2008) On modularity clustering. IEEE Trans

Knowl Data Eng 20(2):172–188

8. Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of

an undirected graph. Commun ACM 16(9):575–577

9. Charikar M (2000) Greedy approximation algorithms for finding

dense components in a graph. In: Proceedings of approximation

algorithms for combinatorial optimization, third international

workshop, APPROX 2000, Saarbrücken, Germany, September

5–8, 2000, pp 84–95

10. Cui W, Xiao Y, Wang H, Lu Y, Wang W (2013) Online search of

overlapping communities. In: Proceedings of the 2013 ACM

SIGMOD international conference on management of data,

ACM, pp 277–288

11. Cui W, Xiao Y, Wang H, Wang W (2014) Local search of

communities in large graphs. In: International conference on

management of data, SIGMOD 2014, Snowbird, UT, USA, June

22–27, 2014, pp 991–1002

12. Feige U, Kortsarz G, Peleg D (2001) The dense k-subgraph

problem. Algorithmica 29(3):410–421

13. Fortunato S (2010) Community detection in graphs. Phys Rep

486(3):75–174

14. Fortunato S, Barthélemy M (2007) Resolution limit in commu-

nity detection. Proc Nat Acad Sci 104(1):36–41

15. Goldberg AV (1984) Finding a maximum density subgraph.

University of California, Berkeley, Berkeley

16. Håstad J (1999) Clique is hard to approximate within n1��. Acta

Math 182(1):105–142

17. Huang X, Cheng H, Qin L, Tian W, Yu JX (2014) Querying

k-truss community in large and dynamic graphs. In: International

conference on management of data, SIGMOD 2014, Snowbird,

UT, USA, June 22–27, 2014, pp 1311–1322

18. Huang X, Lakshmanan LVS, Yu JX, Cheng H (2015) Approxi-

mate closest community search in networks. PVLDB

9(4):276–287

19. Kannan R, Vinay V (1999) Analyzing the structure of large

graphs. Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn

20. Khuller S, Saha B (2009) On finding dense subgraphs. In: Pro-

ceedings of automata, languages and programming, 36th inter-

national colloquium, ICALP 2009, Rhodes, Greece, July 5–12,

2009, Part I, pp 597–608

21. Li K, Lu W, Bhagat S, Lakshmanan LVS, Yu C (2014) On social

event organization. In: The 20th ACM SIGKDD international

conference on knowledge discovery and data mining, KDD ’14,

New York, NY, USA, August 24–27, 2014, pp 1206–1215

22. Li R, Qin L, Yu JX, Mao R (2015) Influential community search

in large networks. PVLDB 8(5):509–520

23. McDermott R (2000) Knowing in community. IHRIM 19

24. Newman ME (2004) Fast algorithm for detecting community

structure in networks. Phys Rev E 69(6):066,133

25. Rowe L, Nadeau J, Turner R, Frankel W, Letts V, Eppig J, Ko M,

Thurston S, Birkenmeier E (1994) Maps from two interspecific

backcross dna panels available as a community genetic mapping

resource. Mamm Genome 5(5):253–274

26. Seidman SB, Foster BL (1978) A graph-theoretic generalization

of the clique concept. J Math Sociol 6(1):139–154

27. Song DM, Tumminello M, Zhou WX, Mantegna RN (2011)

Evolution of worldwide stock markets, correlation structure, and

correlation-based graphs. Phys Rev E 84(2):026,108

28. Sozio M, Gionis A (2010) The community-search problem and

how to plan a successful cocktail party. In: Proceedings of the

16th ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, pp 939–948

29. Tsourakakis C (2015) The k-clique densest subgraph problem. In:

Proceedings of the 24th International Conference on World Wide

Web, International World Wide Web Conferences Steering

Committee, pp 1122–1132

30. Wu Y, Jin R, Li J, Zhang X (2015a) Robust local community

detection: on free rider effect and its elimination. Proc VLDB

Endow 8(7):798–809

31. Wu Y, Jin R, Li J, Zhang X (2015b) Robust local community

detection: on free rider effect and its elimination. PVLDB

8(7):798–809

32. Xie J, Kelley S, Szymanski BK (2013) Overlapping community

detection in networks: the state-of-the-art and comparative study.

ACM Comput Surv (csur) 45(4):43

Query Optimal k-Plex Based Community in Graphs 273

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Query Optimal k-Plex Based Community in Graphs
	Abstract
	Introduction
	Problem Statement
	Problem Definition
	Compare with k-core Based Community
	Hardness Results
	Problem Analysis
	Free Rider Effect(FRE)
	Properties of k-plex

	Baseline Methods
	Branch-and-Bound
	Upper Bound Function
	Prune Unqualified Nodes

	Optimization on B&B
	Partial Branching
	Incremental Candidate Update

	Heuristic Solutions
	Experiment
	Case Study
	Efficiency Results
	Varying |Q|
	Varying k
	Quality of Heuristic

	Related Work
	Densest Subgraph Problem
	Community Search
	Community Detection

	Conclusion
	Open Access
	References

