
Graph-Based RDF Data Management

Lei Zou1
• M. Tamer Özsu2

Received: 23 October 2016 /Accepted: 10 December 2016 / Published online: 4 February 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract The increasing size of RDF data requires effi-

cient systems to store and query them. There have been

efforts to map RDF data to a relational representation, and

a number of systems exist that follow this approach. We

have been investigating an alternative approach of main-

taining the native graph model to represent RDF data, and

utilizing graph database techniques (such as a structure-

aware index and a graph matching algorithm) to address

RDF data management. Since 2009, we have been devel-

oping a set of graph-based RDF data management systems

that follow this approach: gStore, gStore-D and gAnswer.

The first two are designed to support efficient SPARQL

query evaluation in a centralized and distributed/parallel

environments, respectively, while the last one aims to

provide an easy-to-use interface (natural language ques-

tion/answering) for users to access a RDF repository. In

this paper, we give an overview of these systems and also

discuss our design philosophy.

Keywords RDF � Graph database � Query processing

1 Introduction

The Resource Description Framework (RDF) data model

was originally proposed by W3C for modeling WebObjects

as part of developing the semantic web. However, its use is

now wider than the semantic web. For example, Yago and

DBpedia extract facts from Wikipedia automatically and

store them in RDF format to support structural queries over

Wikipedia [5, 26]; biologists encode their experiments and

results using RDF to communicate among themselves

leading to RDF data collections, such as Bio2RDF

(bio2rdf.org) and Uniprot RDF (http://www.uniprot.org/

format/uniprot_rdf). Related to semantic web, Linking

Open Data (LOD) project builds an RDF data cloud by

linking more than 3000 datasets. The use of RDF has

further gained popularity due to the launching of ‘‘knowl-

edge graph’’ by Google in 2012.

An RDF dataset is a collection of triples of the form

hsubject, property, objecti. A triple can be naturally seen as

a pair of entities connected by a named relationship or an

entity associated with a named attribute value. In contrast

to relational databases, an RDF dataset is self-describing

and does not need to have a schema (although one can be

defined using RDFS). The simplicity of this representation

makes it easy-to-use RDF for modeling various types of

data and favors data integration.

There exist many large-scale RDF datasets, e.g., Free-

base1 has 2.5 billion triples [6] and DBpeida2 has more

than 170 million triples [17]. LOD now connects more than

3000 datasets and currently has more than 84 billion tri-

ples,3 with the number of data sources doubling within

three years (2011–2014). The growth of RDF dataset sizes

and the expansion of their use, coupled by the definition of

a declarative query language (SPARQL) by W3C, have

made RDF data management an active area of research and
& Lei Zou

zoulei@pku.edu.cn

M. Tamer Özsu

tamer.ozsu@uwaterloo.ca

1 Peking University, Beijing, China

2 University of Waterloo, Waterloo, Canada

1 http://www.freebase.com/.
2 http://wiki.dbpedia.org/.
3 http://lod-cloud.net/.

123

Data Sci. Eng. (2017) 2:56–70

DOI 10.1007/s41019-016-0029-6

http://www.uniprot.org/format/uniprot%5frdf
http://www.uniprot.org/format/uniprot%5frdf
http://www.freebase.com/
http://wiki.dbpedia.org/
http://lod-cloud.net/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-016-0029-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-016-0029-6&domain=pdf

development, and a number of RDF data management

systems have been developed.

As with any database management system (DBMS), an

RDF data management system has to address the chal-

lenges of efficiency, scalability and usability. However,

these exhibit themselves in somewhat different ways, as we

describe below:

1. Efficiency Flexible pattern-matching capabilities of

SPARQL language and the large volume of RDF

repositories entail efficiency challenges for complex

queries. Furthermore, SPARQL queries tend to involve

more join steps compared to relational queries. Thus,

an RDF system requires specific query optimization

techniques to improve its efficiency.

2. Scalability The computational and storage require-

ments coupled with rapidly growing RDF datasets

have stressed the limits of single machine processing.

For further scalability, a distributed/parallel RDF

system is likely required.

3. Usability Although SPARQL is a standard language to

access a RDF dataset, it remains tedious and difficult

for end users, because of the complexity of the

SPARQL syntax and the RDF schema. Thus, providing

end users an easy-to-use interface is of crucial

importance in many knowledge graph applications.

4. Ability to deal with change Many of the early work

assume that RDF datasets are stationary. However, a

number of more recent applications deal with dynamic,

and streaming RDF datasets from RDF-encoded social

networks.4 Interest has now shifted to managing and

querying dynamic and streaming RDF datasets [36].

There are two typical approaches to designing RDF data

management systems: relational approaches and graph-

based approaches [22]. The relational approaches map

RDF data to a tabular representation in a number of ways

and then execute SPARQL queries on them—sometimes

mapping SPARQL queries to SQL. These can further be

grouped into four categories:

Direct relational mappings This approach (e.g., Sesame

[8] and Oracle [9]) exploits the fact that RDF triples

have a natural tabular structure and directly maps RDF

triples to a single table with three columns (subject,

property, object).5 The SPARQL query can then be

translated into SQL and executed on this table. The

advantage is that the mature relational query processing

and optimization techniques can be utilized. However,

many queries involve a large number of self-joins that

are difficult to optimize.

Single table exhaustive indexing These systems (e.g.,

Hexastore [30] and RDF-3X [20, 21]) incorporate a

native storage system that allows extensive indexing of

the triple table, for example one index for each possible

permutation of the subject, property and object attri-

butes. Each of these indexes is sorted lexicographically

by the first column, followed by the second column,

followed by the third column. These are then stored in

the leaf pages of a clustered Bþ-tree. Consequently,

SPARQL queries can be efficiently processed regardless

of where the variables occur (subject, property, object)

since one of the indexes will be applicable. The

downside is the space overhead as well as the compu-

tational overhead of maintaining these indexes for

dynamic datasets.

Property tables This approach exploits the regularity

exhibited in RDF datasets where there are repeated

occurrences of patterns of statements. Consequently, it

stores ‘‘related’’ properties in the same table. Example

systems include Jena [31] and IBM’s DB2RDF [7].

Binary tables This approach [1, 2] follows column-

oriented database schema organization and defines a

two-column table for each property containing the

subject and object, resulting in a set of tables each of

which are ordered by the subject. This is a typical

column-oriented database organization and benefits from

the usual advantages of such systems such as reduced

I/O due to reading only the needed properties and

reduced tuple length, compression due to redundancy in

the column values, etc.

The second major category of systems is graph-based,

which model both RDF data and the SPARQL query as a

graph and evaluate the query by subgraph matching using

homomorphism, e.g., [3, 34, 38, 39]. The advantage of this

approach is that it maintains the original representation of

the RDF data and enforce the intended semantics of

SPARQL. Also, some graph database techniques, such as

the structure-aware indices [38, 39] and graph-based query

algorithms [34], are more suitable for RDF data. The

challenge is to perform subgraph matching efficiently—

this is a well-known computationally expensive problem.

We have been developing a graph-based RDF data man-

agement system, called gStore, since 2009.6 In this paper,

we review our research results and provide an overview of

our graph-based data management techniques.

There are three pieces of gStore that warrant description.

The first is a centralized graph-based RDF triple store that

stores a RDF graph using adjacency lists [38, 39]. Two key

techniques incorporated in gStore are (a) a neighborhood

4 Recently, W3C has set up a community interested in addressing

problems of high velocity streaming RDF data (www.w3.org/

community/rsp/).
5 There usually are additional auxiliary tables, but they are not

essential to this discussion. 6 http://www.icst.pku.edu.cn/intro/leizou/projects/gStore.htm.

Graph-Based RDF Data Management 57

123

http://www.w3.org/community/rsp/
http://www.w3.org/community/rsp/
http://www.icst.pku.edu.cn/intro/leizou/projects/gStore.htm

structure-aware index that encodes the neighborhood

structure of vertices in data graphs into ‘‘signatures’’ and

builds a tree-structured index over them, and (b) employing

graph homomorphism-based subgraph match algorithm to

find answers to SPARQL queries instead of relational join

processing. Furthermore, gStore can also handle the

dynamic updates to the RDF data efficiently. This is

described in Sect. 3.

The second piece is a distributed version of gStore,

called gStore-D [23] that addresses scale-out issues. The

novel aspect of gStore-D is the adoption of ‘‘partial eval-

uation and assembly’’ framework. A large graph is divided

into several fragments, each of which is resident at one site

(we do not consider replication at this point). The key issue

then becomes how to find the subgraph matches (of

SPARQL query Q) that cross multiple fragments—these

are called crossing matches. We address this using the

partial evaluation approach where a SPARQL query is

executed over each fragment of RDF graph to find local

partial matches that are then assembled to compute the

crossing matches. This is described in Sect. 4.

The third piece addresses usability. Although SPARQL

is the standard query language for RDF, it is not an easy

language to learn and use, especially for casual users.

Therefore, we also design a RDF question/answering sys-

tem, called gAnswer [37], to answer users’ natural lan-

guage questions over RDF repositories. The core idea is to

translate a natural language question to a semantic query

graph and employ subgraph pattern-matching technique to

figure out the answers. This is described in Sect. 5.

2 Preliminaries

In this section, we provide an overview of RDF and

SPARQL. Readers can refer to W3C documents (such as

RDF primer7 and SPARQL 1.1 Recommendation8) for

more details.

RDF represents data as a collection of triples of the form

hsubject, property, objecti, where subject is an entity, class

or blank node, a property is one attribute associated with

one entity and object is an entity, a class, a blank node or a

literal value. In RDF, entities, classes and properties are

denoted by URIs (Uniform Resource Identifier) that refers

to named resources. Blank nodes refer to anonymous

resources that do not have a name.

Definition 1 (RDF dataset) Let pairwise disjoint infinite

sets I, B and L denote URI, blank nodes and literals,

respectively. An RDF dataset is a collection of triples, each

of which is denoted as tðsubject; property; objectÞ 2
ðI [BÞ � I � ðI [B [LÞ.

A triple can be naturally seen as a pair of nodes con-

nected by a named relationship. Hence, an RDF dataset can

be represented as a graph where subjects and objects are

vertices, and triples are edges with property names as edge

labels. Note that there may exist more than one property

between a subject and an object, that is, multiple-edges

may exist between two vertices in an RDF graph.

Definition 2 (RDF graph) An RDF graph is a four-tuple

G ¼ hV; LV;E;LEi, where

1. V ¼ Vc [Ve [Vb [Vl is a collection of vertices that

correspond to all subjects and objects in RDF data,

where Vc, Ve, Vb and Vl are collections of class

vertices, entity vertices, blank vertices and literal

vertices, respectively.

2. LV is a collection of vertex labels. Given a vertex u 2 Vl,

its vertex label is its literal value. Given a vertex

u 2 Vc [Ve, its vertex label is its corresponding URI.

The vertex label of a vertex in Vb (blank node) is NULL.

3. E is a collection of directed edges fui; uj��!g that connect
the corresponding subjects (ui) and objects (uj).

4. LE is a collection of edge labels. Given an edge e 2 E,

its edge label is its corresponding property.

An edge uiuj
�! is an attribute property edge if uj 2 Vl;

otherwise, it is a link edge. h

A sample of RDF dataset is given in Table 1, whose

corresponding RDF graph is given in Fig. 1a.9

SPARQL is the query language for RDF. The funda-

mental building block of SPARQL is the basic graph pat-

tern (BGP), which is a collection of triples.

Definition 3 (Basic Graph Pattern) A basic graph pat-

tern is a connected graph, denoted as Q ¼ fVðQÞ; EðQÞg,
such that (1) VðQÞ � ðI [L [VVarÞ is a set of vertices,

where I denotes URI, L denotes literals, and VVar is a set of

variables; (2) EðQÞ � VðQÞ � VðQÞ is a set of edges in Q;

and (3) each edge e in E(Q) either has an edge label in

I (i.e., property) or the edge label is a variable.

A match of BGP over RDF graph is defined as a partial

function l from VVar to the vertices in the RDF graph.

Formally, we define the match as follows:

Definition 4 (BGP Match) Consider an RDF graph G and

a connected query graph Q that has n vertices fv1; . . .; vng.
A subgraph M with m vertices fu1; . . .; umg (in G) is said to

7 RDF primer.
8 https://www.w3.org/TR/sparql11-query/.

9 Note that in Fig. 1 we do not put rectangles around vertices that

represent literals.

58 L. Zou, M. T. Özsu

123

https://www.w3.org/TR/sparql11-query/

be a match of Q if and only if there exists a function l from

fv1; . . .; vng to fu1; . . .; umg (n�m), where the following

conditions hold:

1. if vi is not a variable, lðviÞ and vi have the same URI or

literal value (1� i� n);

2. if vi is a variable, there is no constraint over lðviÞ
except that lðviÞ 2 fu1; . . .; umg;

3. if there exists an edge vivj
�! in Q, there also exists an

edge lðviÞlðvjÞ
������!

in G; furthermore, lðviÞlðvjÞ
������!

has the

same property as vivj
�! unless that the label of vivj

�! is a

variable.

The set of matches for Q over RDF graph G is denoted

as sQtG, based on which, we return variable bindings that

are defined in the SELECT clause.

Example 1 ‘‘Find all movies directed by Stanley Kubrick

and report their movie names.’’ The SPARQL query is

given as follows.

SELECT ?moviename
WHERE {
?m rd f s : l a b e l ?moviename . ?m d i r e c t o r ?d .
?d r d f s : l a b e l ‘ ‘ Stan ley Kubrick ’ ’ .
}

Note that this is a BGP query, since it contains a set of

triples without UNION, OPTIONAL and FILTER clauses.

The variables are prefixed by ‘‘?’’ and each triple ends with

a period (.).

The graph representation of this query is given in

Fig. 1b. The answers to the query are bindings to variable

?moviename as shown bellow.

Answers:
?moviename

“The Shining”
“Spartacus”

A general SPARQL query may contain FILTER,

UNION, OPTIONAL clauses. Note that these are optional

according to SPARQL syntax. Formally, a general graph

pattern in SPARQL is defined as follows:

Definition 5 Graph Pattern A graph pattern in SPARQL

is defined as follows:

Table 1 RDF dataset

Subject Predicate Object

Stepphen_King rdfs:label ‘‘Stepphen King’’

The_Shining_(book) author Stepphen_King

The_Shining_(film) relatedBook The_Shining_(book);

Stanley_Kubrick rdfs:label ‘‘Stanley Kubrick’’

The_Shining_(film) director Stanley_Kubrick

The_Shining_(film) rdfs:label ‘‘The Shining’’

Antonio_Banderas starring Philadelphia_(film)

Antonio_Banderas rdfs:label ‘‘Antonio Banderas’’

Melanie_Griffith spouse Antonio_Banderas

Melanie_Griffith rdfs:label ‘‘Melanie Griffith’’

Philadelphia(city) rdf:type city

Philadelphia rdfs:label ‘‘Philadelphia’’

Spartacus director Stanley_Kubrick

Spartacus rdfs:label ‘‘Spartacus’’

Antonio BanderasActor Melanie Griffith

Philadelphia (film) “Antonio Banderas”

“Melanie Griffith”Philadelphia(city) city

“Philadelphia”

“Philadelphia”

The Shining (book)

The Shining (film)

Stephen King

“Stephen King” Stanley Kubrick

“Stanley Kubrick”

“The Shining”

Spartacus

“Spartacus”
?m

?moviename

?d

“Stanley Kubrick”

(a) RDF Graph G (b) Query Graph Q

001

002

500400

006

007

008

009

010

011

003

spouse

starring

rdf:type

rdfs:label

rdfs:label

rdfs:label

rdfs:label

author

relatedBook

rdfs:label

rdf:type

rdfs:label

director

rdfs:label

director

rdfs:label

rdfs:label

director

rdfs:label

Fig. 1 RDF graph and SPARQL query graph

Graph-Based RDF Data Management 59

123

1. if P is a BGP, P is a graph pattern;

2. if P1 and P2 are both graph patterns, P1 AND P2, P1

UNION P2, P1 OPTIONAL P2 are all graph patterns;

3. If P is a graph pattern and R is a SPARQL built-in

condition, then the expression (P FILTER R) is a graph

pattern.

A SPARQL built-in condition is constructed using the

variables in SPARQL, constraints, logical connectives (:,
^, _), inequality symbols (� , � , \, [), the equality

symbol (¼), unary predicates like bound, isBlank and

isIRI, plus other features [24, 29]. We formally define the

answers of SPARQL based on BGP matches.

Definition 6 (Compatibility) Given two BGP queries Q1

and Q2 over RDF graph G, l1 and l2 define two matching

functions from vertices in Q1 (denoted as VðQ1Þ) and Q2

(denoted as VðQ2Þ) to the vertices in RDF graph G,

respectively. l1 and l2 are compatible when for all

x 2 VðQ1Þ \ VðQ2Þ, l1ðxÞ ¼ l2ðxÞ, denoted as l1� l2;
otherwise, they are not compatible, denoted as l1 6 � l2.

Definition 7 (SPARQL Matches) Given a SPARQL query

with graph pattern Q over a RDF graph G, a set of matches

of Q over G, denoted as sQtG, is defined recursively as

follows:

1. If Q is a BGP, sQtG is defined in Definition 4.

2. If Q ¼ Q1 AND Q2, then sQtG ¼ sQ1tG ffl sQ2tG
¼ fl1 [l2

�

� l1 2 sQ1tG ^ l2 2 sQ2tG ^ ðl1� l2Þg
3. If Q ¼ Q1 UNION Q2, then sQtG ¼ sQ1tG [sQ2tG
¼ fl

�

� l 2 sQ1tG _ l 2 sQ2tGg
4. If Q ¼ Q1 OPT Q2, then sQtG ¼ ðsQ1tG ffl sQ2tG [
ðsQ1tGnsQ2tG ¼ fl1[l2

�

� l1 2 sQ1tG ^ l2 2 sQ2tG
^ðl1 6 � l2Þg

5. If Q ¼ Q1 Filter F, then sQtG ¼ HFðsQ1tG ¼ fl1
�

�l1
2 sQ1tG and l1 satisfies Fg

The following example illustrates SPARQLs with

‘‘OPTIONAL’’.

Example 2 ‘‘Report all movie names directed by Stanley

Kubrick and their related book names if any.’’

SELECT ?moviename ?bookauthor
WHERE {
?m rd f s : l a b e l ?moviename . ?m d i r e c t o r ?d .
?d r d f s : l a b e l ‘ ‘ Stan ley Kubrick ’ ’ .
OPTIONAL {?d re latedBook ?book .

?book author ? author .
? author r d f s : l a b e l ? bookauthor .
}

}

whose results are:

Answers:
?moviename ?bookauthor

“The Shining” “Stephen King”
“Spartacus” –

Note that most existing work focus on BGP query pro-

cessing and optimization, which is also the focus of this

paper, although gStore can support full graph pattern

queries as defined in Definition 7.

3 gStore: A Graph-Based Triple Store

gStore [38, 39] is a graph-based RDF data management

system (or what is commonly called a ‘‘triple store’’) that

maintains the graph structure of the original RDF data. Its

data model is a labeled, directed multiedge graph (called

RDF graph—see Fig. 1a), where each vertex corresponds

to a subject or an object. We also represent a given

SPARQL query by a query graph Q (Fig. 1b). Query pro-

cessing involves finding subgraph matches of Q over the

RDF graph G. gStore incorporates an index over the RDF

graph (called VS*-tree) to speedup query processing. VS*-

tree is a height-balanced tree with a number of associated

pruning techniques to speedup subgraph matching.

3.1 Techniques

In this subsection, we briefly review the main techniques

employed in gStore. As mentioned earlier, we process

SPARQL queries by subgraph matching, which is compu-

tationally expensive. To reduce the search space and

improve query performance, there are two key techniques in

gStore: vertex encoding and indexing/querying techniques.

Encoding Techniques

Answering SPARQL queries is equivalent to finding sub-

graph matches of query graph Q over RDF graph G. If

vertex v (in query Q) can match vertex u (in RDF graph G),

each neighbor vertex and each adjacent edge of v should

match to some neighbor vertex and some adjacent edge of

u. In other words, the neighbor structure of query vertex

v should be preserved around vertex u in RDF graph. We

call this as the neighbor-structure preservation principle.

Accordingly, for each vertex u, we encode each of its

adjacent edge labels and the corresponding neighbor vertex

labels into bitstrings, denoted as vSig(u), which we call a

signature. We also encode query Q using the same

encoding method. Consequently, the match between Q and

G can be verified by simply checking the match between

corresponding signatures. This is helpful because matching

fixed-length bitstrings is much easier than matching vari-

able length strings.

60 L. Zou, M. T. Özsu

123

Given a vertex u, we encode each of its adjacent edges

e(eLabel, nLabel) into a bitstring, where eLabel is the edge

label and nLabel is the vertex label. This bitstring is called

edge signature (i.e., eSig(e)). It has two parts: eSig(e).e,

eSig(e).n. The first part (M bits) denotes the edge label (i.e.,

eLabel), and the second part (N bits) denotes the neighbor

vertex label (i.e., nLabel). eSig(e).e and eSig(e).n are

computed as follows:

ComputingeSigðeÞ:e Given an RDF repository, let |P| denote
the number of different properties. If |P| is small, we set

jeSigðeÞ:ej ¼ jPj, where |eSig(e).e| denotes the length of the
bitstring and build a 1-to-1 mapping between the property

and the bit position. If |P| is large, we resort to the hashing

technique. Let jeSigðeÞ:ej ¼ M. Using an appropriate hash

function, we set m out of M bits in eSig(e).e to be ‘‘1’’.

Specifically, we employ m different string hash functionsHi

(i ¼ 1; . . .;m), such as BKDR and AP hash functions [12].

For each hash functionHi, we set the (HiðeLabelÞmodM)-th

bit in eSig(e).e to be ‘‘1’’, whereHiðeLabelÞ denotes the hash
function value. The parameter setting problem is discussed in

detail in our research paper [39].

ComputingeSigðeÞ:n We first represent nLabel by a set of

q-grams [14], where an q-gram is a subsequence of q

characters from a given string. For example, ‘‘The Shin-

ing (film)’’ is represented by a set of 3-grams:

f(The),(he),(e S),...,g. Then, we use a string hash function
H for each q-gram g to obtainH(g).We set the (H(g) modN)-

th bit in eSig(e).n to be ’1‘‘. We also use n different hash

functions for each q-gram. Finally, the string’s hash code is

formed by performing bitwise OR over all q-gram’s hash

codes. Figure 2 demonstrates the whole process.

ComputingvSigðuÞ Assume that u has n adjacent edges ei,

i ¼ 1; . . .; n. We first compute eSigðeiÞ according to the

above methods. Then, vSigðuÞ ¼ eSigðe1Þ _ eSigðe2Þ_
. . . _ eSigðenÞ, _ is a bitwise OR operator.

For a query vertex v in SPARQL query Q, we have the

analog encoding technique to compute vSig(v) (Fig. 3).

Theorem 1 Consider a query vertex v(in SPARQL query

Q) and a data vertex u(in RDF graph G), if vSig(v) &

vSigðuÞ 6¼ vSigðvÞ, where ‘‘&’’ represents the bitwise ADD

operation, vertex ucannot match v; otherwise, uis a can-

didate to match v.

Proof If vSig(v) & vSigðuÞ 6¼ vSigðvÞ, it means that there

exists at least one edge e(eLable, nLabel) adjacent to v that

does not match any edge adjacent to u. This contradicts the

neighbor-structure preservation principle. Thus, u cannot

match v. h

Index Structure and Query Evaluation

According to the encoding technique, each node in both the

query graph and the RDF graph is encoded into bitstrings.

Theorem 1 tells us the basic pruning principle. In order to

speedup filtering, we design an index, called VS	-tree,
which is a height-balanced tree [38], where each node is a

bitstring that corresponds to each vertex’s code. It is a

multi-level summary tree where the leaves contain the

vertices in the original encoded RDF graph, and higher

levels summarize the structure of the level below it. An

The Shining (film) e S

he

The

Sh

Shi

......

0000 0000 0100 0010

0000 1100 0000 0000

0000 0001 1000 0000

0010 1000 0000 0000

0100 0000 1000 0000

OR

0110 1101 1100 0010The Shining (film)

Fig. 2 Encoding strings

The Shining (film)The Shining (book)

Stanely Kubrick

“The Shining”

relatedBook

director

rdfs:label

e2

e1

e3

relatedBook

director

rdfs:label

The Shining (book)

Stanely Kubrick

“The Shining”

e1

e2

e3

nSig

0010 1100 0100

eSig.e

0100 0101 1001

0001 0110 0100

0111 1111 1101

1010 0101 0110 0010

eSig.n

0101 0101 1001 0010

0100 0100 1000 0100

1111 0101 1111 0110
OR

Fig. 3 Encoding technique

Graph-Based RDF Data Management 61

123

example of VS	-tree is given in Fig. 4. In the filtering

process, we visit VS	-tree from the root and judge whether

the visited nodes are candidates. We prove that if a node at

one level does not meet the condition, none of its children

can match that condition. Thus, the subtree rooted at that

node is pruned safely from VS	-tree. Then, each vertex in

query graph has a candidate list of nodes in the data graph.

Finally, applying a depth-first search strategy, we perform

a multi-way join over these candidate lists to find subgraph

matches.

3.2 System Architecture

In this section, we present the system architecture, as

illustrated in Fig. 5. The whole system consists of an off-

line part and an online part.

The offline process stores the RDF dataset and builds the

VS	-tree index. RDFParser accepts a number of popular RDF

file formats, such as N3, Turtle. The parsing result is a col-

lection of RDF triples. We build an RDF graph using adja-

cency list representation for these triples, where each entity is

a vertex (represented by its URI) and each triple corresponds

to an edge connecting two corresponding vertices. We use a

key-value store to index the adjacency lists, where URIs are

keys. In the Encoding Module, we encode the RDF graph G

into a signature graph G	 using the encoding technique dis-

cussed earlier. Finally, VS	-tree builder constructs a VS	-tree
overG	. The signature graphG	 and theVS	-tree are stored in
key-value store and VS	-tree store, respectively.

The online system consists of four modules. A SPARQL

statement is the input to the SPARQL Parser, which is

generated by a parser generator library called ANTLR3.10

The SPARQL query is parsed into a syntax tree, based on

which, we build a query graph Q and encode it into a query

signature graph Q	 as discussed earlier.

The online query evaluation process consists of two

steps: filtering and joining. First, we generate the candi-

dates for each query node using VS	-tree (Filter Module).

Then, applying a depth-first search strategy, we perform

the multi-way join (Join Module) over these candidate lists

to find the subgraph matches of SPARQL query Q over

RDF graph G.

gStore’s code is publicly released on Github,11 including

source codes, documents and benchmark test report. It

currently has more than 140,000 lines of C?? code, not

including generated SPARQL parser code. It provides both

the console and the API interfaces (including C??, Java,

Python, PHP). A client/server development is also

supported.

4 gStore-D: A Distributed Graph Triple Store

The increasing size of RDF data requires a solution with

good scale-out characteristics. Furthermore, the increasing

amount of RDF data published on the Web requires dis-

tributed computing capability. We address this issue by

developing a distributed version of gStore that we call

gStore-D [23].

1111 1101

0011 1001 1111 1100

0011 1001 0010 1001 1000 1100 0111 1000

0000 1001

0010 1000
0001 1000

0010 0001

0010 1000

1000 0100

1000 1000
0000 1100

0010 1000

0100 1000

0001 1000

001

002

003

004

005

006

008

009

010

011

007

d3
1 d3

2 d3
3 d3

4

000010

000001

000100 001000

010000

100000

100000

000001 100000 010000

000010 100000

001000
010000

000100

000011 110000

001000

110100

111111

010000

G3

G2

G1

Fig. 4 VS	-tree

10 http://www.antlr3.org/.
11 https://github.com/Caesar11/gStore.

62 L. Zou, M. T. Özsu

123

http://www.antlr3.org/
https://github.com/Caesar11/gStore

Given a RDF graph G, we adopt a vertex-disjoint graph

partitioning algorithm (such as METIS [16]) to divide G

into several fragments, such as Fig. 6. In the vertex-disjoint

graph partitioning, any vertex u is only resident at one

fragment and we also say that vertex u is an inner vertex of

the fragment. If a vertex u is linked to another vertex in the

other fragment, u is called a boundary vertex. In our

method, we allow some replica of the boundary vertices

between different fragments. In Fig. 6, vertex 008 (in

fragment F2) is a boundary vertex, since it is linked to

vertex 003 in fragment F1. Thus, we allow the replica of

008 in fragment F1. The replica is called an extended

vertex in F1. We note that gStore-D does not require a

specific graph partitioning strategy, although different

partitioning strategies may lead to different performance.

For now, we consider each fragment being placed at one

site. The main challenge in gStore-D is that evaluating a

query may involve accessing multiple fragments. Some

partition of the query may be answered within a fragment

(i.e., subgraph matches are evaluated locally) that we call

local partial matches (defined in Definition 8). Others,

however, may require determining matches across frag-

ments that we call crossing matches. Local partial matches

can be handled using the technique of the previous section,

but evaluating crossing matches requires a new approach.

For this, we adopt a ‘‘partial evaluation and assembly’’

strategy. We send the SPARQL query Q to each fragment

Fi and find local partial matches of query Q over fragment

Fi. If a local partial match is a complete match of Q, it is

called an ‘‘inner match’’ in fragment Fi. The main issue of

answering SPARQL queries over the distributed RDF

graph is finding crossing matches efficiently. We illustrate

the main idea of gStore-D using the following example.

Example 3 Assume that an RDF graph G is partitioned

into two fragments as shown in Fig. 6. Considering the

following SPARQL query, its query graph is given in

Fig. 7. The subgraph induced by vertices 003,006, 007,008,

012, 013 and 014 (shown in the shaded vertices and the red

edges in Fig. 6) is a crossing match of Q.

System Architecture

Offline Online

 Storage

Input Input

RDF Parser

RDF Graph
Builder

Encoding
Module

VS*-tree
builder

RDF data

RDF Triples

RDF Graph

Signature Graph

Key-Value
Store

VS*-tree
Store

SPARQL
Parser

SPARQL Query

Encoding
Module

VS*-tree

Query Graph

Filter
Module

Join
Module

Signature Graph

Node Candidate

Results

Fig. 5 System architecture

Antonio Banderas Melanie GriffithPhiladelphia (film)

“Antonio Banderas”actor

“Melanie Griffith”
Philadelphia(city) city

“Philadelphia”

“Philadelphia”

The Shining (book) The Shining (film)

Stephen King

“Stephen King”

Stanley Kubrick

“Stanley Kubrick”

“The Shining”

Spartacus

“Spartacus”

Fragment F1 Fragment F2

001002

500400

006

007

008

009

010

011

003

017

012

013

014

015

016

018

019

spousestarring

rdf:type

rdfs:label

rdfs:label

rdfs:label
rdfs:label

author

relatedBook

rdfs:label
rdfs:label

director

rdfs:label

director

rdfs:label

rdf:type

Fig. 6 A distributed RDF graph

Graph-Based RDF Data Management 63

123

SELECT ?x ?y
WHERE {
?m rd f s : l a b e l ?x . ?m d i r e c t o r ?d .
?d r d f s : l a b e l ‘ ‘ Stan ley Kubrick ’ ’ .
?d re latedBook ?b .
?b author ?a .
?a r d f s : l a b e l ?y .
}

As noted above, the key issue in the distributed envi-

ronment is how to find crossing matches; this requires

subgraph matching across fragments. For query Q in

Fig. 7, the subgraph induced by vertices 003,006, 007,008,

012, 013 and 014 is a crossing match between fragments F1

and F2 in Fig. 6 (shown in the shaded vertices and red

edges).

As mentioned earlier, we adopt the partial evaluation

and assembly [15] strategy in our distributed RDF system

design. Each site Si treats fragment Fi as the known input s

and other fragments as yet unavailable input G. Each site Si

finds all local partial matches of query Q within fragment

Fi. We prove that an overlapping part between any crossing

match and fragment Fi must be a local partial match in Fi.

Then, these local partial matches are assembled into the

complete matches of SPARQL query Q.

Figure 8 demonstrates how to assemble local partial

matches. For example, the subgraph induced by vertices

003, 006, 008 and 012 is an overlapping part between M

and F1. Similarly, we can also find the overlapping part

between M and F2. We assemble them based on the

common edge 008; 003
�����!

to form a crossing match.

To summarize, there are three major steps in our

method.

Step 1 (Initialization) A SPARQL query Q is input and

sent to all sites.

Step 2 (Partial Evaluation) Each site finds local partial

matches of Q over fragment Fi. This step is executed in

parallel at each site.

?d “Stanley Kubrick”

?m ?x?b?a

?y rdfs:label

director

rdfs:label
relatedBookauthor

rdfs:label

v1

v3v5v6

v7

v4

v2Fig. 7 SPARQL query graph Q

Stanley Kubrick“Stanley Kubrick”

The Shining (film)“The Shining” The Shining (book)

The Shining (book)The Shining (film)

Stephen King“Stephen King”

Local Partial
Match in Fragment
F1

Local Partial
Match in Fragment
F2

rdfs:label

director

rdfs:label
relatedBook

rdfs:label

author

007

008

008

014

013

003

003

relatedBook

006012

Stanley Kubrick“Stanley Kubrick”

The Shining (film)“The Shining” The Shining (book)

rdfs:label

director

rdfs:label
relatedBook

Stephen King“Stephen King”
rdfs:label

author

Fig. 8 Assemble local partial

matches

64 L. Zou, M. T. Özsu

123

Recall that each site Si receives the full query graph Q (i.e.,

there is no query decomposition). In order to answer query

Q, each site Si computes the partial answers (called local

partial matches) based on the known input Fi. Intuitively, a

local partial match PMi is an overlapping part between a

crossing match M and fragment Fi at the partial evaluation

stage. Moreover, M may or may not exist depending on the

yet unavailable input G . Based only on the known input Fi,

we cannot judge whether or not M exists. For example, the

subgraph induced by vertices 003, 006, 008 and 012

(shown in shaded vertices and red edges) in Fig. 6 is a local

partial match between M and F1.

Definition 8 (Local Partial Match) Given a SPARQL

query graph Q with n vertices fv1; . . .; vng and a connected

subgraph PM with m vertices fu1; . . .; umg (m� n) in a

fragment Fk, PM is a local partial match in fragment Fk if

and only if there exists a function f : fv1; . . .; vng
! fu1; . . .; umg [fNULLg, where the following condi-

tions hold:

1. If vi is not a variable, f ðviÞ and vi have the same URI or

literal or f ðviÞ ¼ NULL.

2. If vi is a variable, f ðviÞ 2 fu1; . . .; umg or f ðviÞ ¼
NULL.

3. If there exists an edge vivj
�! in Q (1� i 6¼ j� n), then

PM should meet one of the following five conditions:

(1) there also exists an edge f ðviÞf ðvjÞ
������!

in PM with

property p, and p is the same to the property of vivj
�!; (2)

there also exists an edge f ðviÞf ðvjÞ
������!

in PM with property

p, and the property of vivj
�! is a variable; (3) there does

not exist an edge f ðviÞf ðvjÞ
������!

, but f ðviÞ and f ðvjÞ are both
in Ve

k ; (4) f ðviÞ ¼ NULL; (5) f ðvjÞ ¼ NULL.

4. PM contains at least one crossing edge, which

guarantees that an empty match does not qualify.

5. If f ðviÞ 2 Vk (i.e., f ðviÞ is an internal vertex in Fk) and

9vivj�! 2 Q (or vjvi
�! 2 Q), there must exist f ðvjÞ 6¼

NULL and 9f ðviÞf ðvjÞ
������!

2 PM (or 9f ðvjÞf ðviÞ
������!

2 PM).

Furthermore, if vivj
�! (or vjvi

�!Þ has a property p,

f ðviÞf ðvjÞ
������!

(or f ðvjÞf ðviÞ
������!

) has the same property p.

6. Any two vertices vi and vj (in query Q), where f ðviÞ
and f ðvjÞ are both internal vertices in PM, are weakly

connected in Q. We say that two vertices are weakly

connected if there exists a connected path between two

vertices when all directed edges are replaced with

undirected edges.

Vector ½f ðv1Þ; . . .; f ðvnÞ
 is a serialization of a local partial

match.

Step 3 (Assembly) Each site finds all local partial mat-

ches in the corresponding fragment. The next step is to

assemble partial matches to compute crossing matches and

compute the final results. We propose two assembly

strategies: centralized and distributed (or parallel). In

centralized, all local partial matches are sent to a single site

for assembly. For example, in a client/server system, all

local partial matches may be sent to the server. In dis-

tributed/parallel, local partial matches are combined at a

number of sites in parallel.

We first define the conditions under which two partial

matches are joinable. Obviously, crossing matches can

only be formed by assembling partial matches from dif-

ferent fragments.

Definition 9 (Joinable) Given a query graph Q and two

fragments Fi and Fj (i 6¼ j), let PMi and PMj be the cor-

responding local partial matches over fragments Fi and Fj

under functions fi and fj. PMi and PMj are joinable if and

only if the following conditions hold:

1. There exist no vertices u and u0 in PMi and PMj,

respectively, such that f�1i ðuÞ ¼ f�1j ðu0Þ.

2. There exists at least one crossing edge uu0
�!

such that u

is an internal vertex and u0 is an extended vertex in Fi,

while u is an extended vertex and u0 is an internal

vertex in Fj. Furthermore, f�1i ðuÞ ¼ f�1j ðuÞ and

f�1i ðu0Þ ¼ f�1j ðu0Þ.

The first condition says that the same query vertex

cannot be matched by different internal vertices in joinable

partial matches. The second condition says that two local

partial matches share at least one common crossing edge

that corresponds to the same query edge.

The join result of two joinable local partial matches is

defined as follows.

Definition 10 (Join Result) Given a query graph Q and

two fragments Fi and Fj, i 6¼ j, let PMi and PMj be two

joinable local partial matches of Q over fragments Fi and

Fj under functions fi and fj, respectively. The join of PMi

and PMj is defined under a new function f (denoted as

PM ¼ PMi fflf PMj), which is defined as follows for any

vertex v in Q:

1. if fiðvÞ 6¼ NULL ^ fjðvÞ ¼ NULL12, f(v) fiðvÞ13;
2. if fiðvÞ ¼ NULL ^ fjðvÞ 6¼ NULL, f(v) fjðvÞ;
3. if fiðvÞ 6¼ NULL ^ fjðvÞ 6¼ NULL, f(v) fiðvÞ (In this

case, fiðvÞ ¼ fjðvÞ)
4. if fiðvÞ ¼ NULL ^ fjðvÞ ¼ NULL, f(v) NULL

12 fjðvÞ ¼ NULL means that vertex v in query Q is not matched in

local partial match PMj. It is formally defined in Definition 8

condition (2).
13 In this paper, we use ‘‘ ’’ to denote the assignment operator.

Graph-Based RDF Data Management 65

123

Example 4 Let us recall query Q in Fig. 7. Figure 8

shows two different local partial matches PM2
1 and PM2

2.

We also show the functions in Fig. 8. There do not exist

two different vertices in the two local partial matches that

match the same query vertex. Furthermore, they share a

common crossing edge 008; 003
�����!

, where 008 and 003 match

query vertices v3 and v5 in the two local partial matches,

respectively. Hence, they are joinable. Figure 8 also shows

the join result of PM2
1 fflf PM

2
2.

In the centralized assembly, all local partial matches are

sent to a final assembly site. We propose an iterative join

algorithm to find all crossing matches. In each iteration, a

pair of local partial matches is joined. When the join is

complete (i.e., a match has been found), the result is

returned; otherwise, it is joined with other local partial

matches in the next iteration. In order to reduce the join

space of the iterative join algorithm, we divide all local

partial matches into multiple partitions such that two local

partial matches in the same set cannot be joinable; we only

consider joining local partial matches from different par-

titions. In the distributed assembly, we adopt Bulk Syn-

chronous Parallel (BSP) model [28] to design a

synchronous algorithm for distributed assembly. A BSP

computation proceeds in a series of global supersteps, each

of which consists of three components: local computation,

communication and barrier synchronization. In the local

computation step, each site adopts the iterative join algo-

rithm to assemble local partial matches within the site. If a

join result is a complete match of query graph Q, it will be

returned directly; otherwise, these join results (i.e., the

intermediate results) will be sent to the other sites in the

communication step. The details about the communication

and system termination condition are discussed in [23].

5 gAnswer: Answering Natural Language
Questions Using Subgraph Matching

As mentioned earlier, gStore and gStore-D aim to answer

users’ structural languages (SPARQL) efficiently. As noted

earlier, the complexity of the SPARQL syntax and the lack

of a schema make it hard for end users to use SPARQL.

Providing end users an easy-to-use interface to access RDF

datasets in an effective way has been recognized as an

important concern. This has lead to research for RDF

question/answering (Q/A) systems [4, 32, 33, 37]. We have

designed gAnswer [37] to address the problem from the

perspective of a graph database.

Usually, there are two stages in RDF Q/A systems:

question understanding and query evaluation. Existing

systems in the first stage translate a natural language

question N into SPARQL queries [11, 18, 32], which are

evaluated in the second stage. The focus of the existing

solutions is on query understanding.

The inherent hardness in RDF Q/A is the ambiguity of

natural language. In order to translate N into SPARQL

queries, each phrase in N should map to a semantic item

(i.e., an entity or a class or a predicate) in RDF graph G.

However, some phrases have ambiguities. For example,

phrase ‘‘Philadelphia’’ may refer to entity hPhiladelphia(-
film)i or hPhiladelphia(city)i. Similarly, phrase ‘‘play in’’

also maps to predicates hstarringi or hdirectori. Although it

is easy for humans to know that the mapping from phrase

‘‘Philadelphia’’ (in question N) to hPhiladelphia(city)i is
wrong, this is not easy for machines. Disambiguating one

phrase in N can influence the mapping of other phrases.

The most common technique is joint disambiguation [32].

Existing disambiguation methods only consider the

semantics of a question sentence N. They have high cost in

the query understanding stage; thus, it is most likely to

result in slow response time in online RDF Q/A processing.

gAnswer [37] deals with the disambiguation in RDF

Q/A from a different perspective. We do not resolve the

disambiguation problem in the question understanding

stage, i.e., the first stage. We take a lazy approach and push

down the disambiguation to the query evaluation stage. The

main advantage of our method is it can avoid the expensive

disambiguation process in the question understanding stage

and speedup the entire process. We illustrate the intuition

of our method by an example as follows:

Example 5 Given a RDF graph in Fig. 1a, assume that a

user asks ‘‘Who was married to an actor that plays in

Philadelphia?’’

Consider a subgraph of graph G in Fig. 1a (the subgraph

induced by vertices 001, 011, 002 and 009). Edge 001; 011
�����!

says that ‘‘AntonioBanderas is an actor’’. Edge 009; 001
�����!

says

that ‘‘Melanie Griffith is married to Antonio Banderas’’.

Edge 001; 002
�����!

says that ‘‘Antonio Banderas starred in a film

hPhiladelphia(film)i’’. The natural language question N is

‘‘Who was married to an actor that plays in Philadelphia’’.

Obviously, the subgraph formed by edges 001; 011
�����!

, 009; 001
�����!

and 001; 002
�����!

is amatch of N. ‘‘Melanie Griffith’’ is a correct

answer. On the other hand, we cannot find a match (of N)

containing hPhiladelphia(city)i in RDF graph G. Therefore,

the phrase ‘‘Philadelphia’’ (in N) cannot map to hPhiladel-
phia(city)i. This is the basic idea of our graph data-driven

approach. Different from traditional approaches, we resolve

the ambiguity problem in the query evaluation stage.

A challenge of our method is how to define a ‘‘match’’

between a subgraph of G and a natural language question

N. Because N is unstructured data and G is graph structure

66 L. Zou, M. T. Özsu

123

data, we should fill the gap between two kinds of data.

Therefore, we propose a semantic query graph QS to rep-

resent the question semantics of N. We formally define QS

in Definition 12. An example of QS is given in Fig. 9,

which represents the semantic of the question N. Each edge

in QS denotes a semantic relation. For example, edge v1v2
denotes that ‘‘who was married to an actor.’’ Intuitively, a

match of question N over RDF graph G is a subgraph

match of QS over G (formally defined in Definition 13).

Definition 11 (Semantic Relation) A semantic relation is

a three-tuple hrel; arg1; arg2i, where rel is a relation phrase
in the paraphrase dictionary D, arg1 and arg2 are the two

argument phrases.

In the running example of Fig. 9, h‘‘be married to,’’

‘‘who,’’ ‘‘actor’’i is a semantic relation, in which ‘‘be

married to’’ is a relation phrase, ‘‘who’’ and ‘‘actor’’ are its

associated arguments. We can also find another semantic

relation h‘‘play in,’’ ‘‘that,’’ ‘‘Philadelphia’’i in N. The two

semantic relations are joined to form a semantic query

graph, which is defined as follows.

Definition 12 (Semantic Query Graph) A semantic query

graph, denoted as QS, is a graph in which each vertex vi is

associated with an argument and each edge vivj is associ-

ated with a relation phrase, 1� i; j� jVðQSÞj.

There are offline and online phases in our solution. In

the offline phase, we build a paraphrase dictionary D,

which records the semantic equivalence between relation

phrases and predicates. In the online phase, given a natural

language question N, we interpret N as a semantic query

graph QS and find answers to N by matching QS over RDF

graph G.

5.1 Offline

To enable the semantic relation extraction from N, we build

a paraphrase dictionary D to match relation phrases with

predicates. For example, in the running example, natural

language phrases ‘‘be married to’’ and ‘‘play in’’ have

semantics similar to predicates hspousei and hstarringi,
respectively. There are some relation phrase datasets, such

as Patty [19] and ReVerb [13] that can be used for this

purpose. We propose a graph mining algorithm to align

these relation phrases with the corresponding predicates.

For example, ‘‘be married to’’ is matched with predicate

hspousei, as shown in Table 2.

5.2 Online

Although there are still two stages ‘‘question understand-

ing’’ and ‘‘query evaluation’’ in our method, we do not

WhoV1 actorV2

“that”

PhiladelphiaV3

be married to play in

?who

spouse,1.0

actor,1.0

starring,0.9

director,0.5

Philadelphia(city),1.0

Philadelphia(film),0.9

Who was married to an actor that play in Philadelphia ?

actor
011

Antonio Banderas
001

Melanie Griffith
009

Philadelphia (film)
002

spouse starring

type

Generating a Semantic Query Graph Semantic
Query Graph

Finding Top-k Sub-
graph

Matches

Fig. 9 An example in gAnswer

Graph-Based RDF Data Management 67

123

adopt the existing framework, i.e., SPARQL query gener-

ation-and-evaluation. We propose a graph-driven solution

to answer a natural language question N. The coarse-

grained framework is given in Fig. 9.

(1)QuestionUnderstandingAsmentioned earlier, we use a

semantic query graph to understand users’ query intension.

Specifically,we interpret a natural language questionN as a

semantic query graph QS. Given a natural language

questionN, weuseStanford parser toobtain thedependency

tree14 Y ofN. Based on the dependency tree, we first extract

all semantic relations inN, each of which corresponds to an

edge inQS. Figure 10demonstrates an example of semantic

relation extraction. If the two semantic relations have one

common argument, they share one endpoint in QS. In the

running example, there are two semantic relations, i.e., h‘‘be
married to,’’ ‘‘who,’’ ‘‘actor’’i and h‘‘play in,’’ ‘‘that,’’

‘‘Philadelphia’’i, as shown in Fig. 10. Although they do not
share any argument, arguments ‘‘actor’’ and ‘‘that’’ refer to

the same thing because of ‘‘coreference resolution’’ [25].

(2)Query EvaluationAsa structural representation of users’

natural language questionN, we need to find a subgraph (in

RDF graph G) that matches the semantic query graph QS.

The match is defined according to the subgraph isomor-

phism (formally defined in Definition 13).

First, each argument in vertex vi ofQ
S is mapped to some

entities or classes in the RDF graph, which is exactly the

entity linking problem [35]. In Fig. 9b, argument

‘‘Philadelphia’’ is mapped to three two entities hPhiladel-
phia(city)i and hPhiladelphia(film)i, while argument ‘‘ac-

tor’’ is mapped to a class hActori. We can distinguish a class

vertex and an entity vertex according to RDF’s syntax. If a

vertex has an incoming adjacent edge with predicate hrdf:-
typei or hrdf:subclassi, it is a class vertex; otherwise, it is an

entity vertex. Furthermore, if arg is a wh-word, we assume

that it can match all entities and classes in G. Therefore, for

each vertex vi in QS, it also has a ranked list Cvi containing

candidate entities or classes. Note that each linked item is

associated with a confidence probability.

Each relation phrase relvivj (in edge vivj of Q
S) is also

mapped to a list of candidate predicates and predicate paths.

This list is denoted asCvivj . The candidates in the list are also

ranked by the confidence probabilities. We resolve this by

building a paraphrase dictionary, like Table 2. In the running

example, ‘‘Philadelphia’’ maps to two possible entities,

hPhiladelphia(city)i and hPhiladelphia(film)i. Although the

former matching is wrong for ‘‘Philadelphia’’ in the running

example (in Fig. 9), gAnswer does not resolve the ambiguity

issue in this step. We allow all possible matches and push

down the disambiguation to the query evaluation step.

Second, a subgraph in RDF graph can match QS if and

only if the structure (of the subgraph) is isomorphic to QS.

We have the following match definition.

Definition 13 (Match) Given a semantic query graph QS

with n vertices fv1,...,vng, each vertex vi has a candidate list
Cvi , i ¼ 1; . . .; n. Each edge vivj also has a candidate list of

Cvivj , where 1� i 6¼ j� n. A subgraph M containing n

vertices fu1,...,ung in RDF graph G is a match of QS if and

only if the following conditions hold:

1. If vi maps to an entity ui, i ¼ 1; . . .; n, ui must be in list

Cvi ; and

2. If vi maps to a class ci , i ¼ 1; . . .; n, ui is an entity

whose type is ci (i.e., there is a triple hui rdf:type cii in
RDF graph) and ci must be in Cvi ; and

3. 8vivj 2 QS; uiuj
�! 2 G _ ujui

�! 2 G. Furthermore, the

predicate Pij associated with uiuj
�! (or ujui

�!) is in Cvivj ,

1� i; j� n.

Let us recall the running example in Fig. 9b. Although

‘‘Philadelphia’’ can map two different entities, in the query

evaluation stage, we can only find a subgraph (included by

vertices 001, 002, 009 and 011 in G in Fig. 1a) containing

hPhiladelphia filmi that matches the semantic query graph

QS. According to the subgraph graph, we know that the

result is ‘‘Melanie Griffith’’; meanwhile, the ambiguity is

resolved. Mapping phrases ‘‘Philadelphia’’ to hPhiladel-
phia(city)i of QS is false positive for the question N, since

there are no data to support that.

6 Conclusion

In this paper, we review our recent work on graph-based

RDF data management. Specifically, we give an overview

of the systems developed in our project: gStore, gStore-D

Table 2 Paraphrase dictionary D

Relation

phrases

Predicates or predicate

paths

Confldence

probability

’’be married to’’ <spouse> 1.0

’’play in’’ <starring> 0.9

’’play in’’ <director> 0.5

’’uncle of’’ <hasChild>

<hasChild>

<hasChild> 0.8

� � � � �� � � � � �� � � � � ��

14 The dependencies are grammatical relations between a governor

(also known as a regent or a head) and a dependent. Usually, we can

map straightforwardly these dependencies into a tree, called depen-

dency tree.

68 L. Zou, M. T. Özsu

123

and gAnswer. The design philosophy behind our systems is

to employ graph database techniques for RDF data man-

agement. As a native implementation, graph-based

approaches maintain the original representation of the RDF

data and enforces the intended semantics of RDF and

SPARQL. The practice of our projects proved the effec-

tiveness and efficiency of graph-based RDF data manage-

ment techniques.

We note that gStore is not the only graph-based solution

for RDF data management. To the best of our knowledge,

GRIN [27] is the first work that considers a graph-structural

index. It uses a distance-based height-balanced tree to index

the RDF graphs. Specifically, each leaf node contains a set

of vertices in RDF graph. The set of leaf nodes in the tree

forms a partition of all vertices in RDF graph. Interior nodes

are constructed by finding a ‘‘central’’ vertex, denoted c, and

a radius value, denoted r. All vertices within the distance r

from the center c are included in the interior vertex. Note

that if interior node x is a child of y in GRIN tree, all vertices

included in x are a subset of that included in y. During query

evaluation, GRIN derives a set of inequality constraints

based on the query graph structure. For example, if the

distance between two query vertices v1 and v2 (in Q) is l, the

distance between their matching vertices (in RDF graph G)

is no longer than l. Based on these inequality constraints,

some nodes of the index can be safely pruned to reduce the

search space. The intuition of GRIN is similar to M-tree [10]

that is designed to support similarity search in metric spaces.

Another system that we would like to mention is Trinity.

RDF [34], a distributed, memory-based graph engine for

web-scale RDF data. Due to the poor locality of graph

operations, it is argued that maintaining the whole RDF

graph in a memory cloud is feasible. Instead of join pro-

cessing, graph exploration is used to boost the system’s

performance. The exploration-based approach uses the

binding information of the explored subgraphs to prune

candidate matches in a greedy manner [34].

Acknowledgements Lei Zou was funded by National Key Research

and Development Program of China under grant 2016YFB1000603

and NSFC under grant No. 61622201. M. Tamer Özsu’s research was

funded by a grant from Natural Sciences and Engineering Research

Council (NSERC) of Canada.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Abadi DJ, Marcus A, Madden S, Hollenbach K (2009) SW-Store:

a vertically partitioned DBMS for semantic web data manage-

ment. VLDB J 18(2):385–406

2. Abadi DJ, Marcus AS, Madden R, Hollenbach K (2007) Scalable

semantic web data management using vertical partitioning. In:

Proceedings of the 33rd international conference on very large

data bases, pp 411–422

3. Aluç G (2015) Workload matters: a robust approach to physical

RDF database design. PhD thesis, University of Waterloo

4. Androutsopoulos I, Malakasiotis P (2010) A survey of para-

phrasing and textual entailment methods. J Artif Intell Res

38:135–187

5. Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak

R, Hellmann S (2009) Dbpedia—a crystallization point for the

web of data. J Web Semant 7(3):154–165

Who

married

was to

actor

an starred

that
in

Philadelphia

nsubjpass prep

pobj

det rcmod

nsubj prep

pobj

auxpass

R1=(“(be) married to”, “who”, “ac-
tor”)

R2=(“star in”, “that”, “Philadel-
phia”)

Re-
lation

Extration

Re-
lation

Extration

Fig. 10 Semantic relation

extraction

Graph-Based RDF Data Management 69

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

6. Bollacker KD, Evans C, Paritosh P, Sturge T, Taylor J (2008)

Freebase: a collaboratively created graph database for structuring

human knowledge. In: Proceedings of the ACM SIGMOD

international conference on management of data, pp 1247–1250

7. Bornea MA, Dolby J, Kementsietsidis A, Srinivas K, Dantres-

sangle P, Udrea O, Bhattacharjee B (2013) Building an efficient

RDF store over a relational database. In: Proceedings of the ACM

SIGMOD international conference on management of data,

pp 121–132

8. Broekstra J, Kampman A, van Harmelen F (2002) Sesame: a

generic architecture for storing and querying RDF and RDF

schema. In: Proceedings of the 1st international semantic web

conference, pp 54–68

9. Chong E, Das S, Eadon G, Srinivasan J (2005) An efficient SQL-

based RDF querying scheme. In: Proceedings of the 31st inter-

national conference on very large data bases, pp 1216–1227

10. Ciaccia P, Patella M, Zezula P (1997) M-tree: an efficient access

method for similarity search in metric spaces. In: Proceedings of

the 23rd international conference on very large data bases,

pp 426–435

11. Cimiano P, Lopez V, Unger C, Cabrio E, Ngomo A-CN, Walter S

(2013) Multilingual question answering over linked data (QALD-

3): lab overview. In: Proceedings of the CLEF 2013 conference

on information access evaluation, pp 321–332

12. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Intro-

duction to algorithms. The MIT Press, Cambridge

13. Fader A, Soderland S, Etzioni O (2011) Identifying relations for

open information extraction. In: Proceedings of the conference on

empirical methods in natural language processing, pp 1535–1545

14. Gravano L, Ipeirotis PG, Jagadish HV, Koudas N, Muthukrishnan

S, Pietarinen L, Srivastava D (2001) Using q-grams in a DBMS for

approximate string processing. IEEE Data Eng Bull 24(4):28–34

15. Jones ND (1996) An introduction to partial evaluation. ACM

Comput Surv 28(3):480–503

16. Karypis G, Kumar V (1995) Analysis of multilevel graph parti-

tioning. In Proceedings of the IEEE/ACM Supercomputing95

conference, p 29

17. Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D,

Mendes PN, Hellmann S, Morsey M, van Kleef P, Auer S, Bizer

C (2015) DBpedia—a large-scale, multilingual knowledge base

extracted from wikipedia. Semant Web 6(2):167–195

18. Lopez V, Unger C, Cimiano P, Motta E (2013) Evaluating

question answering over linked data. J Web Semant 21:3–13

19. Nakashole N, Weikum G, Suchanek FM (2012) Patty: a taxonomy

of relational patterns with semantic types. In: Proceedings of the

conference on empirical methods in natural language processing

and computational natural language learning, pp 1135–1145

20. Neumann T, Weikum G (2008) RDF-3X: a RISC-style engine for

RDF. Proc VLDB Endow 1(1):647–659

21. Neumann T, Weikum G (2009) The RDF-3X engine for scalable

management of RDF data. VLDB J 19(1):91–113

22. Özsu MT (2016) A survey of RDF data management systems.

Front Comput Sci 10(3):418–432

23. Peng P, Zou L, Özsu MT, Chen L, Zhao D (2016) Processing

SPARQL queries over distributed RDF graphs. VLDB J

25(2):243–268

24. Pérez J, Arenas M, Gutierrez C (2006) Semantics and complexity

of SPARQL. CoRR, arXiv:cs/0605124

25. Soon WM, Ng HT, Lim DCY (2001) A machine learning

approach to coreference resolution of noun phrases. Comput

Linguist 27(4):521–544

26. Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of

semantic knowledge. In: Proceedings of the 16th international

world wide web conference, pp 697–706

27. Udrea O, Pugliese A, Subrahmanian VS (2007) GRIN: a graph

based RDF index. In: Proceedings of the 22nd national confer-

ence on artificial intelligence, pp 1465–1470

28. Valiant LG (1990) A bridging model for parallel computation.

Commun ACM 33(8):103–111

29. W3C. W3C: SPARQL 1.1 overview. https://www.w3.org/tr/rdf-

sparql-query/. 21 March (2013)

30. Weiss C, Karras P, Bernstein A (2008) Hexastore: sextuple

indexing for semantic web data management. Proc VLDB Endow

1(1):1008–1019

31. Wilkinson K (2006) Jena property table implementation. Tech-

nical Report HPL-2006-140, HP Laboratories Palo Alto, October

2006

32. Yahya M, Berberich K, Elbassuoni S, Ramanath M, Tresp V,

Weikum G (2012) Natural language questions for the web of

data. In: Proceedings of the conference on empirical methods in

natural language processing and computational natural language

learning, pp 379–390

33. Yahya M, Berberich K, Elbassuoni S, Weikum G (2013) Robust

question answering over the web of linked data. In: Proceedings

of the 22nd ACM international conference on information and

knowledge management, pp 1107–1116

34. Zeng K, Yang J, Wang H, Shao B, Wang Z (2013) A distributed

graph engine for web scale RDF data. Proc VLDB Endow

6(4):265–276

35. Zhang W, Su J, Tan CL, Wang W (2010) Entity linking lever-

aging automatically generated annotation. In: Proceedings of the

23rd international conference on computational linguistics,

pp 1290–1298

36. Zhang Y, Pham M, Corcho Ó, Calbimonte J (2012) Srbench: a

streaming RDF/SPARQL benchmark. In: The Semantic Web—

ISWC 2012—11th international semantic web conference, Bos-

ton, MA, USA, November 11–15, 2012, Proceedings, Part I,

pp 641–657

37. Zou L, Huang R, Wang H, Yu JX, He W, Zhao D (2014) Natural

language question answering over RDF: a graph data driven

approach. In: Proceedings of the ACM SIGMOD international

conference on management of data, pp 313–324

38. Zou L, Mo J, Chen L, Özsu MT, Zhao D (2011) gStore:

answering SPARQL queries via subgraph matching. Proc VLDB

Endow 4(8):482–493

39. ZouL, ÖzsuMT,ChenL,ShenX,HuangR,ZhaoD (2014) gStore: a

graph-based SPARQL query engine. VLDB J 23(4):565–590

70 L. Zou, M. T. Özsu

123

http://arxiv.org/abs/cs/0605124
https://www.w3.org/tr/rdf-sparql-query/
https://www.w3.org/tr/rdf-sparql-query/

	Graph-Based RDF Data Management
	Abstract
	Introduction
	Preliminaries
	gStore: A Graph-Based Triple Store
	Techniques
	System Architecture

	gStore-D: A Distributed Graph Triple Store
	gAnswer: Answering Natural Language Questions Using Subgraph Matching
	Offline
	Online

	Conclusion
	Acknowledgements
	References

