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Abstract
The study objective is to establish the learning curve model for precast component productivity in construction, verified

using cross-validation empirical data for over 90% of these facilities’ precast component production activities over the past

5 years, with a total of 373,077 datasets across 14 production activities, sorted among a total of 4352 workers. By applying

the learning curve theory to the analysis, the results show that relative to the straight-line model, the learning curve was

established using exponential models. The exponential model can effectively mitigate the unreasonable fluctuations present

in the cubic model’s representations of learning curves during initial training periods. This study therefore suggests the

adoption of the Exponential model to model the learning curves for production workers learning to make precast com-

ponents. The model has a satisfactory degree of fit (R2[ 0.88), and the post-cross-validation results also show that the

model has a highly accurate prediction capability (MAPE value\ 10%). The finding can serve as an important reference

for the creation of production personnel allocation plans, personnel reserve plans, and training plans at precast factories in

the construction industry.
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1 Introduction

The global precast construction system has developed

rapidly in recent years, with an annual rate of about 5% [1],

and the market size of the precast industry reached nearly

USD 200 billion in 2017 [2]. In China, over 600 precast

factories have been established the past 3 years, and over

1000 precast factories cover more than 30,000 m3 [3].

Facing the rapid growth of market, urgent issue of the

shortage of skilled labor in precast industry has been dis-

cussed frequently. Production methods and manufacturing

processes used for precast components are different from

traditional ones and demands workers greater both

knowledge and technical precision [4].

Skilled workers are undoubtedly important because they

could provide high and stable productivity. However, on

the other side, the productivity of unskilled workers seems

often being ignored. As the saying goes, ‘‘Rome wasn’t

built in 1 day,’’ newly employed workers wouldn’t become

skilled one of a sudden. They have to go through a learning

process to be skillful, and researchers have studied that and

developed the learning theory, which has been applied to

many different industries, including the construction

industry [5–11]. During the learning process, the
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productivity of unskilled workers will increase over time

and gradually become stable. If the manager regards

unskilled workers’ productivity as a constant, their pro-

ductivity may not be fully utilized. Therefore, a precise

model to describe the changes in the productivity of

unskilled worker is critical. However, literature shows that

only simple models such as the straight-line model or cubic

model have been applied in the construction or precast

industry [9–14]. Considering the complexity of the precast

industry, whether these simple models could precisely

describe the learning status is doubtful.

Therefore, the purpose of this study is as follows: (1) to

develop different learning curve models for trainees during

their initial learning of each precast component production

process; (2) to evaluate different learning curve models and

find out the best one. Since measuring productivity dif-

ference for individuals due to workers’ ages is complicated,

we have assumed that workers whose ages are in the range

of 15–65 have the same productivity.

2 Precast Production Management
and Process

Precast method has been considered to be effective pro-

duction methods to control cost, improve productivity, and

ensure quality within the construction industry, while

maintaining fast and automatic production processes [15].

It is regarded as one of the most common and advanced

industrialization methods in the construction industry, with

the utilization of the methods of normalization, standard-

ization, and modularization. The building is divided into

many elements or components, such as columns, walls,

beams, plates, and so on. After being produced in a factory

via industrial processes, these elements or components are

transported to the construction site to be assembled into a

building structure [16].

Studies have been conducted to improve the produc-

tivity of precast factories through various methods, such as

management practices, process reengineering, and simula-

tion [16–20].

Li et al. organized the literature in the Management of

Prefabricated Construction (MPC) research field between

2000 and 2013. These studies are categorized into five

major themes within, including the ‘‘Future Development

of the Industry’’, ‘‘Technology Development and Appli-

cation’’, ‘‘Performance Evaluation’’, ‘‘Technology Appli-

cation Environment’’ and ‘‘Design, Production,

Transportation and Assembly Strategies’’.[19].

The production process of the precast industry has also

been reviewed. By reviewing studies based on production

process models of precast factories, the manufacturing

processes for precast components can be understood [21].

Based on previous research, we regard the production

processes of precast components as the following 14 basic

activities (photos of some construction activities are shown

in Fig. 1), including: (1) steel mold cleaning (clearing

molds); (2) module assembly; (3) lofting (positioning for

iron components); (4) dipping of steel rod cages; (5) laying

of embedded parts; (6) checking before pouring concrete;

(7) pouring concrete; (8) surface whitewashing; (9) con-

crete curing; (10) mold removing; (11) demolding; (12)

component repair; (13) inspection of finished components

and (14) warehouse storage, [22–24]. Further work

including data collection, analysis, and discussion will base

on 14 activities in this study.

3 Learning Curve Theory and Its Application

In 1936, Wright found that when yield is doubled in air-

craft component production lines, the required work time

can be reduced by 20%. He then proposed a straight-line

model that speculates a constant rate of learning or

improvement, by which the work time of a given produc-

tion cycle can be reduced by a constant percentage each

time a new cycle is added [5, 9, 25]. After Wright proposed

the straight-line learning curve model, many other learning

curve models that are different from this model were pro-

posed. Since Wright’s discovery of the learning effect on

repetitive activities in aircraft component production lines

in 1936 [5], the question of how to use the learning curve

effect to improve the productivity of repetitive production

activities has been a subject of concern to many scholars

and applied to many industries. Many studies have pub-

lished papers on whether this theory can improve produc-

tivity, predict output value, assess project progress, and

improve cost-effectiveness [7, 26–29]. In addition, con-

struction industry-related researchers have applied the

learning curve theory to improve industry productivity

[11, 25].

Jordan Srour et al. divided the various learning curve

models proposed by scholars based on Wright’s straight-

line model into five categories: (1) the Wright model and

its variations; (2) polynomial models; (3) exponential

models; (4) hyperbolic models; (5) the recursive model

proposed by Srour himself [11]. Among these models, 7

learning curve models are well-known and frequently used,

and include the following:

1. Straight-line model

This model assumed that the degree of improvement

of work time is a result of learning at a fixed

logarithmic ratio, resulting in a straight line forming

in double logarithmic coordinates (Eq. 1)

[5, 10, 30, 31].
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Y ¼ aX�n; L ¼ 2�n; ð1Þ

where Y time required to produce unit X (cost or man-

hours), X quantity of units reproduced, a time required

to produce unit 1 (in cost or man-hours), n slope of

learning curve in double logarithmic coordinates,

L learning rate.

2. Stanford B model

With concern that the straight-line model was not

fully applicable to certain data from the WWII era, the

Stanford Research Institute of the United States

Department of Defense took into account the existing

experience of the workers that the straight-line model

Fig. 1 Related production activities of precast structure
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did not include. An improved model named the

Stanford B model was proposed based on straight-line

model theory in 1949 (Eq. 2) [11, 32].

Y ¼ a X þ bð Þ�n; L ¼ 2�n; ð2Þ

where b is the degree of experience that already exists

1� b� 10ð Þ, and the rest of the parameters are set the

same as those set by the straight-line model.

Parameter b in this model is generally preset to 4.

When b = 0, it represents the complete absence of

existing experience on the part of the operator, under

these conditions the Stanford B model is identical to

the straight-line model [33].

3. DeJong model

DeJong developed the DeJong model in 1957,

considering whether mechanized operations would

affect the learning curve. He argued that if operations

were primarily controlled by machinery, the potential

compression of production time proportional to the

increase in the number of operations could be damped,

and added an ‘incompressibility factor’ to the learning

curve model to define the degree to which the

production time could be compressible (Eq. 3) [6, 34].

Y ¼ a mþ 1� mð Þ � X�n½ �; L ¼ 2�n; ð3Þ

where m incompressibility factor 0�m� 1ð Þ.
In general, if the operation is performed manually,

m = 0.25; if m = 0, it means that the operation is under

complete manual control, in which case the DeJong

model is identical to the Straight-line model. Mean-

while, if m = 1, the operation is fully automated, and as

such undergoes no learning effect [31].

4. S-Curve model

The S-Curve model was developed by Carr in 1946.

Since subsequent studies found that the Stanford B

model was more suitable for the first half of the curve

and the DeJong model was more suitable for the

second half of the curve, Carr combined these two

learning curves into the S-Curve model (Eq. 4), where

the parameter settings are the same as those of the

above model [26, 32, 35]

Y ¼ a mþ 1� mð Þ X þ bð Þ�n½ �; L ¼ 2�n: ð4Þ

5. Cubic model

The cubic model included the effects of existing

experience and the cessation of productivity improve-

ment after operational proficiency had been achieved

and assumed that the learning rate would not be

constant (Eq. 5) [10, 36]

log Y ¼ log a� n logXð Þ þ c logXð Þ2þd logXð Þ3;
L ¼ 2�n:

ð5Þ

6. Exponential model

The concept of the exponential learning curve was

first developed by Thurstone in 1919 and was refined

by Kientzle et al. [8, 37–41], The mathematical

formula of the constant time model developed by

Towill is shown in Eq. (6)

Y ¼ Aþ B � 1� ec x�1ð Þ
� �

; L ¼ 2�n; ð6Þ

where A initial performance, the time it takes to pro-

duce the first unit (synonymous with the above variable

a). B difference between the asymptotic and initial

performance. A ? B asymptotic or final performance,

the production time that tends to stabilize after the

learning process has been completed. c learning

constant.

7. Piecewise model

The comparison among these 7 methods is listed in

Table 1. In addition, the time used in this formula is

slightly different from that used in the several aforemen-

tioned formulas, the aforementioned time x is defined as

the production efficiency on the xth day, and here the time

is defined as the production efficiency after x days of study,

so x - 1 is taken as the parameter for the equation [11, 26].

Since the learning curve theory came into being, many

scholars have also applied it toward the cause of improving

the productivity of the construction industry. As far as the

learning process is concerned, it can be divided into the

initial operation learning phase and the later routine pro-

cedure phase [42, 43]. In 1986, Thomas et al. collected data

from 65 of precast component utilization procedures at

construction sites, conducted fitting to five learning curve

models including the straight-line, Stanford B, cubic,

piecewise, and exponential models in order to examine

their R2 value. The results show that the cubic model has

the best fit for historical data and is also best suited to

predict the production time for independent sampling data

at the same phase [10]. Everett and Farghal studied the fit

of 12 learning curves to historical data and the ability to

predict future performance against 60 sets of construction

data covering the on-site assembly process of precast

components. The results show that the cubic model is more

suitable for fitting existing historical data compared to

other models. However, the cubic model performs the

worst at predicting future production data; the straight-line

model performs the worst in fitting existing historical data

but the best at predicting future production data [9].

Learning curve theory was also applied to different

construction projects in other studies. Lee et al. studied

cases of high-rise buildings in Korea and developed a set of

learning curves which considered several factors that could

affect the learning curve in the construction of high-rise

building projects and were then converted into another set
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of suggested learning curves to improve labor productivity

[14]. Based on the data of 15-storey concrete buildings in

Italy, Pellegrino et al. conducted a fitting using a straight-

line model and discussed the influence of interrupting

construction projects on the learning curve [13]. Many

scholars also have applied the learning curve theory to

formwork engineering, reinforcement fixing operations,

roof insulation engineering, and other projects [25, 44, 45].

Based on the above literature, it is found that the learning

curve models most commonly used in the construction

industry are the straight-line model and cubic model.

Researches attempt to apply learning curve theory to

increase the productivity of the construction industry has a

very long history with many research results having been

achieved in this field [10, 11]. However, the application of

learning curves in the precast industry has only involved a

few analysis on the assembly operation of precast com-

ponents at construction sites [9, 10], and there has been

little research on the production processes of precast

components. Furthermore, regarding the complexity of the

construction industry, both the straight-line model and the

cubic model could be questioned as too simple. Therefore,

this study will analyze the training data of precast workers

in learning the production process of precast components

and validate the fit and predictive accuracy by using

straight-line, cubic, and exponential models, allowing the

results of the analysis to help the precast industry improve

its productivity.

4 Data Collection and Basic Analysis

This study gathered and analyzed the precast structural

component data from more than 90% of new precast con-

struction projects in Taiwan among 5 years (2015–2019).

To participate, understand and investigate the production

system of precast plants through thorough field study, we

observed, measured, collected, and verified the character-

istics and the duration of each manufacturing activities in

the field. Data collected mainly targeted on the main pro-

duction time of three types of structural components,

namely the main beam, minor beam, and column. Our team

measured every trainee’s daily production time based on 14

basic activities mentioned above, and the production data

was collected from the first day they learned to work on

those activities until their performance becomes steady.

There are 4352 workers involved in the data collection

project where 354,240 data points are recorded from the

field and none of them has been used or published in any

other work. The research contents of 14 activities in precast

factories conducted by the research team are described as

follows:

Table 1 Comparison between commonly used learning curve models

Model Formula Comparison

Straight-

line

Y ¼ aX�n The original model proposed by Wright in 1936 [5]. It

assumed that the learning rate is a fixed value

Stanford B Y ¼ a X þ bð Þ�n Improved model considering the existing experience

of the workers that the straight-line model did not

include

DeJong Y ¼ a mþ 1� mð Þ � X�n½ � Improved model considering whether mechanized

operations would affect the learning curve [6]

S-curve Y ¼ a mþ 1� mð Þ X þ bð Þ�n½ � Improved model combined the concept and

assumption of the Stanford B and DeJong Model

[33]

Cubic log Y ¼ log a� n logXð Þ þ c logXð Þ2þd logXð Þ3 The cubic model included the effects of existing

experience and the cessation of productivity

improvement after operational proficiency had been

achieved and assumed that the learning rate would

not be constant [37]

Exponential Y ¼ Aþ B � 1� Xc x�1ð Þ� �
The model is based on the concept that subject to

improvement will be reduced after a constant

number of cycles, and the time will gradually

approach an ultimate or lowest value [9]

Piecewise log Y ¼ logA� n1 logX � n2J1 logX � log xp1
� �

� n3J2 logX � log xp2
� �

A linearized approximation of the cubic model, it is

found that this model is more difficult to use than

the others [10]
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1. Type of projects for data collection

There are seven project types for the collected data,

including collective housing, schools, office buildings,

large shopping malls, technology plants, biotech fac-

tories, and composite shopping malls, as shown in

Fig. 2. The data collected include production times for

basic activities in the primary construction of precast

building structures, and the recorded production times

are calculated in minutes.

2. Objects for data collection

(1) Newly employed workers: the manager of the

precast factory will allocate training activities as

need, and each newly employed worker is

considered able to formally conduct production

activities after completing one of the 14 training

activities.

(2) In-service workers: the training of other activi-

ties is carried out to increase worker’s skill levels

according to human resource planning and

assignment of the precast factory, as well as

personal preference on the part of the workers

themselves.

(3) The trainees include both domestic workers and

foreign workers.

3. Object background information for data collection

(1) The trainees used for data collection in this study

are all actively employed workers at a precast

factory.

(2) Each trainee has undergone a physical examina-

tion and was in good health before becoming an

active employee.

(3) The experience of the trainees, whether related to

the precast industry or not, is irrelevant to the

training activities.

4. Data collection methods

(1) In the first year, our team observed the training

status of workers within the precast factory, and

during each training session at the precast

factory, the team mainly performed measure-

ment and video recording from 8:00 AM to 5:00

PM that day. However, some activities (such as

lofting, laying of embedded parts, surface

Fig. 2 Scope analysis of precast projects
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whitewashing, and component repair) were

trained on a non-periodic basis, and the team

also made appropriate cooperative efforts. The

next 4 years, with the consent of the precast

factory, data collection was mainly performed

via CCTV video recording, and videos were

regularly exported for data analysis.

(2) In this study, data were collected for each

individual’s training sessions across all 14

activities, via random sampling mode. If the

person exited the training period prematurely,

that data was excluded.

(3) The collected data correspond to the training

modules produced on that day, with a maximum

of 6 sets and a minimum of 3 sets, and the work

time of various production processes have been

recorded for each of the 14 activities.

(4) The training of some activities is sometimes

conducted privately by the workers themselves,

mainly for activities such as lofting, the laying of

embedded parts, surface whitewashing, and

component repair (evidence states that employee

pay is increased after they have completed

training for the above four activities), so training

time does not necessarily occur during working

hours.

(5) Analysis of production trainee numbers

The analysis of the number of production trainees in

this study is shown in Table 2, and the total number of

trainees for whom data has been collected is 4352.

There are 3432 domestic (78.9%) and 920 foreign

(21.1%) workers participated during training. In terms

of age distribution, the highest proportion for domestic

workers in Taiwan is at age of 30–39 (1605 persons,

46.8%), while the largest proportion for foreign

workers is at age of 20–39 (396 persons, 43.0%). The

total average time of employment of those involved in

precast projects was 1.61 years, and the overall time

employed of those involved was not high. The total

average time employed of domestic workers was

1.68 years, while that of foreigners was 1.53 years.

This study distinguishes 14 activities into 3 modules

according to the categories used by Chen et al.: the

molding module, the filling module, and the repair and

storage module [18]. The data analyses of component

production trainees are described separately below:

1. Molding module

The analysis of data from the molding module is

shown in Table 3 and consists of five activities: steel

mold cleaning (mold clearing), module assembly,

lofting, dipping of steel rod cages, and laying of

embedded parts. Within the research database of this

module, domestic workers accounts for over 70% in

most training activities, except in the laying for

embedded parts, where it was 59.6% (293 persons).

Most of the trainees aged 20–39 (over 70% in every

activity of this module), and more than one-third of

them aged 30–39. In terms of the average time

employed for participants in precast projects, the

average time employed of personnel in lofting and

laying of embedded parts is significantly higher than

that of other activities in this module.

2. Filling module

The analysis of the data for the filling module is

shown in Table 3 and consists of four activities:

checking before pouring concrete, pouring concrete,

surface whitewashing, concrete curing. Within the

research database of this module, domestic workers

accounts for over 50% in every training activity, with

the highest ratio being in concrete pouring at 86.2%

(424 persons). Over 70% workers aged 20–39 for all

four activities. In terms of the average time employed

of participants in precast projects, the average time

employed of employees engaged in surface white-

washing is significantly higher than that of other

activities in this module.

3. Repair and storage module

The analysis of the data for the repair and storage

module is shown in Table 3, and this consists of five

activities: mold removing, demolding, component

repair, inspection of finished components, and ware-

house storage. Within the research database, domestic

workers accounts for over 60% in every training

activity, with the ratios of component repair and

Table 2 The analysis of the number of production trainees

Item Age Number of

trainee

Percentage

(%)

Precast

experience

(year)

Domestic

workers

20–29 1011 29.5 1.1

30–39 1605 46.8 1.6

40–49 618 18.0 1.8

Above

50

198 5.8 2.2

Sum 3432 78.9 1.68

Foreign

workers

20–29 396 43.0 0.8

30–39 322 35.0 1.7

40–49 202 22.0 2.1

Above

50

0 0.0 0

Sum 920 21.1 1.53

Total 4352 Total

average

1.61
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inspection for finished components being as much as

74.6% (367 persons) and 73.6% (362 persons) respec-

tively. Over 70% of workers aged 20–39 for all four

activities. In terms of average time employed for

participants in the precast projects, time employed for

those trained in mold removal and component repair

was significantly higher than those of other activities in

this module.

Due to the different degrees of difficulty for each

activity, the number of days required to perform data col-

lection also varied. For some activities, the work time of

workers tended to stabilize within 10 days, but other

activities required more than a hundred days to stabilize.

The number of observations, observation days, and data

points collected for each activity are shown in Table 4

Each worker produced 3–6 sets of modules per day, and the

work time was recorded according to the 14 prescribed

activities. Within the production data of 14 activities, work

time on the final measurement day can be reduced by

32–87% compared with that of the first day, as shown in

Table 5. I It follows that the learning effect clearly

increases productivity in trainees. However, if human

resources are to be deployed to take advantage of this

effect, it is important to know how the trainees’ work time

changes before they enter a stable phase under the learning

effect. Therefore, in the next section, various models of

learning curve theories will be applied to identify the most

suitable model to describe the changes in production data

for trainees during the initial learning phase, which can

serve as an important foundation for subsequent research or

practical applications in improving the productivity of

precast factories.

5 Learning Curve Model and Validation
for Precast Component Production

To acquire the learning curve for each activity, we analyze

the obtained data through tenfold cross-validation and

makes ten analyses by dividing the 354,240 datasets for all

14 activities in the building precast structure into ten equal

parts. In each analysis, 90% of the data are used as training

data to perform regression analysis of the straight-line,

cubic, and exponential learning curve models, and the R2

value is used to check the degree of fit. The other 10% of

the data are then used as testing data to perform validation,

and the MAPE value is then calculated to judge the pre-

diction accuracy of the model. The results of the analysis

are shown in Table 6, for each activity, there is a range of

R2 values and MAPE values due to a total of 10 times of

cross-validation. For each activity, both the R2 and the

MAPE value of the cubic and exponential learning curveTa
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models perform better than those of the straight-line

learning curve model. It is thus known that, for the precast

component production data at the initial production phase,

the cubic and exponential models can more accurately fit

the historical data than the straight-line model, and also are

more suitable for predicting the production data of trainees.

Therefore, this study will continue the subsequent analysis

based on the cubic and exponential models and generate

learning curves for each activity.

In the above-mentioned cross-validation, the data have

undergone ten cross-validation analyses, so ten sets of

learning curves are generated for each activity. In the

analysis results of the cubic and exponential models, the

difference between the maximum and minimum values of

R2 is within 0.008, and the difference between the maxi-

mum and minimum values of MAPE is within 10%, so the

ten sets of learning curves for each activity can be regarded

as being very similar curves. To generate a learning curve

representing each activity, the study has selected the min-

imum MAPE value among the ten sets of learning curves

of each activity as the learning curve LCbest represented

the activity.

After comparing the LCbest curves of the cubic and

exponential models, it is found that the differences in

MAPE values for the two models are within 5%, indicating

that the two models have similar performance. Among

these differences, the biggest comes from the activity of

lofting, in which the MAPE value of the exponential model

exceeds that of the cubic model by 4.07%. In addition, if

the learn curve is actually drawn, it can be found that many

activities are affected by the cubic model’s characteristics

of inflection points and more inconsistent fluctuations in

the initial phase, while the exponential model can mitigate

this problem (as shown in Fig. 3). Therefore, we suggest

that the learning curve of each activity in the precast fac-

tory should adopt the exponential model.

The exponential model learning curve, initial learning

rate, R2 value, and MAPE value for each activity are shown

Table 4 Collected data

Activity Observations Observation

days

Data

points

Steel mold cleaning 492 35 17,220

Modules assembling 15 7,380

Lofting 166 81,672

Dipping for steel rod cage 25 12,300

Laying for embedded parts 84 41,328

Checking before concrete

pouring

35 17,220

Concrete pouring 10 4,920

Surface whitewashing 112 55,104

Concrete curing 10 4,920

Mold removing 8 3,936

Stripping 22 10,824

Component repair 116 57,072

Inspection for finished

components

32 15,744

Warehouse storage 50 24,600

Total 720 354,240

Table 5 Production time comparison between the first and final measurement for each activity

Activity T1 T2 T1 � T2 T1�T2
T2

� 100%

Steel mold cleaning 62.1 24.4 37.6 61%

Modules assembling 39.8 19.2 20.6 52%

Lofting 93.7 12.3 81.4 87%

Dipping for steel rod cage 53.1 31.0 22.1 42%

Laying for embedded parts 124.4 55.4 69.0 55%

Checking before concrete pouring 27.0 10.3 16.8 62%

Concrete pouring 47.1 27.2 19.8 42%

Surface whitewashing 94.1 31.7 62.4 66%

Concrete curing 21.3 12.2 9.1 43%

Mold removing 23.8 16.3 7.5 32%

Stripping 28.5 10.9 17.6 62%

Component repair 197.3 69.0 128.2 65%

Inspection for finished components 29.1 13.9 15.1 52%

Warehouse storage 76.1 25.6 50.5 66%

T1 average work time of the first day, T2 average work time of the final measurement day
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in Table 7. The R2 values for all the activities are above

0.88, indicating that the degree of fit is extremely high and

the MAPE values are all less than 10%, in line with the

high-accuracy prediction defined by Lewis [46]. Therefore,

the learning curve model of 14 basic activities developed in

this study can fit the data collected by this study and can

also accurately predict the production data of newly

employed workers having undergone initial training.

Based on the above research results, learning rate can be

seen to not be a fixed value in learning processes in which

trainees have learned how to conduct precast component

production activities, so the finding of this study is in line

with that of Thomas et al. [10]. Moreover, we know that

the cubic learning curve model proposed by Thomas et al.

has both good fit and predictability. However, the perfor-

mance of the cubic model in the initial learning of some

activities undergoes major fluctuations, so we propose that

the exponential model performs as a more appropriate

model to represent the learning curve of precast component

production activities.

6 Results and Discussion

According to the above research results, we further divide

the learning curves of all activities into two groups (as

shown in Fig. 4) by using the K-means algorithm and the

learning curve formula from Table 9. The result of this

grouping can be seen from Table 8, and there are 10

activities in the first group while four activities in the

second. The initial performance (A) and the asymptotic

performance of the second group are both high, and the

absolute value of the learning constant is lower. As a result,

the complex activities can be defined including lofting,

laying of embedded parts, surface whitewashing, and

component repairs. This helps managers to understand

training difficulty for each activity and take advantage of it

to ensure sufficient professional human resources for each

activity. Figure 5 shows the exponential learning curves for

all activities where Figs. 6, 7 and 8 illustrate closer looks at

the learning curves for each modules. As observed, it takes

a long time for the complex activities to stabilize. When

further analyzing the asymptotic performance (A ? B) for

each activity (as shown in Table 9), it is found that those

complex activities indicate negative extremes for lofting

and surface whitewashing. These two activities difficultly

achieve convergence because their learning constants are

particularly small (\ 0.01). The other two complex activ-

ities achieve high asymptotic performance, as observed,

due to their learning constants rational for convergence.

This specifies that it still takes longer to complete these two

activities than that of the others even if workers are skilled.

To sum up, the exponential model provides the value of

asymptotic performance serving as the production time that

workers may achieve under maximum proficiency. This

study therefore suggests the adoption of the exponential

model to model the learning curves for production workers

learning to make precast components. The model has a

satisfactory degree of fit (R2[ 0.88), and the post-cross-

validation results also show that the model has a highly

accurate prediction capability (MAPE value\ 10%). The

other findings show that 4 difficult activities have been

Table 6 Learning curve model comparative analysis for each activity

Activity Straight-line model Cubic model Exponential model

R2 MAPE (%) R2 MAPE (%) R2 MAPE (%)

Steel mold cleaning 0.8581–0.8554 9.15–13.23 0.9422–0.9447 6.67–11.02 0.9637–0.9662 5.76–10.62

Modules assembling 0.9420–0.9453 4.85–10.93 0.9826–0.9853 3.36–10.20 0.9817–0.9844 3.82–10.26

Lofting 0.4426–0.4455 46.71–47.47 0.9605–0.9607 10.90–13.22 0.9905–0.9913 6.83–10.77

Dipping for steel rod cage 0.7919–0.7973 7.83–10.21 0.9394–0.9426 4.92–8.30 0.9156–0.9191 6.04–8.68

Laying for embedded parts 0.7006–0.7030 11.83–13.65 0.9737–0.9740 4.63–8.52 0.9680–0.9701 4.71–8.51

Checking before concrete pouring 0.7913–0.7944 13.26–14.79 0.9378–0.9390 7.99–10.45 0.9512–0.9564 8.50–10.99

Concrete pouring 0.9190–0.9321 6.19–13.49 0.9889–0.9928 4.27–13.49 0.9835–0.9862 4.76–13.42

Surface whitewashing 0.5380–0.5478 22.71–23.67 0.9807–0.9837 4.84–8.41 0.9800–0.9809 5.45–8.88

Concrete curing 0.8662–0.8820 6.00–8.66 0.9928–0.9944 3.44–6.86 0.9895–0.9903 3.82–7.09

Mold removing 0.7400–0.7609 7.07–10.75 0.9058–0.9099 5.39–8.77 0.8840–0.8912 5.43–9.43

Stripping 0.8168–0.8180 12.28–14.18 0.9412–0.9431 7.22–10.53 0.9679–0.9689 7.06–10.39

Component repair 0.6085–0.6098 18.99–20.09 0.9716–0.9729 5.41–7.90 0.9817–0.9824 5.43–7.92

Inspection for finished components 0.9330–0.9367 7.43–9.13 0.9777–0.9796 6.56–8.15 0.9850–0.9861 6.43–7.97

Warehouse storage 0.8519–0.8540 11.90–12.36 0.9640–0.9646 8.44–8.82 0.9734–0.9749 7.85–8.21
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identified as lofting, laying of embedded parts, surface

whitewashing, and component repairs. No matter how well

trained workers carry out these four activities, their per-

formance does not show much learning effect by the reason

of various circumstances on-site, customized orders, and

high-quality demands.

7 Conclusion

Based on literature and field visits, and the production data

of 14 basic precast activities obtained from precast facto-

ries in Taiwan are studied and analyzed using the learning

curve theory. Using a total of 373,077 datasets regarding

14 production activities sorted among a total of 4352

workers, the findings show that the exponential model is

more suitable than the straight-line model for fitting his-

torical data and predicting the production data of trainees

during their initial training. This also indicates that the

learning rate is not a fixed value during the learning process

as previously considered in the construction industry. The

second finding expresses that the learning curve model

Fig. 3 Cubic and exponential learning curve of lofting

Table 7 Exponential model data for each activity

Activity Exponential model

R2 MAPE (%) LCbest formula

Steel mold cleaning 0.9658 5.76 y = 62.2–41.38(1-*exp(- 0.09877*(x - 1)))

= 20.82 ? 41.38*exp(- 0.09877*(x - 1))

Modules assembling 0.9840 3.82 y = 39.76–21.55(1-*exp(- 0.4388*(x - 1)))

= 18.21 ? 21.55*exp(- 0.4388*(x - 1))

Lofting 0.9907 6.83 y = 100.41–138(1-*exp(- 0.006511*(x - 1)))

= - 37.59 ? 138*exp(- 0.006511*(x - 1))

Dipping for steel rod cage 0.9177 6.04 y = 53.04–26.77(1-*exp(- 0.09279*(x - 1)))

= 26.27 ? 26.77*exp(- 0.09279*(x - 1))

Laying for embedded parts 0.9683 4.71 y = 124.37–82.13(1-*exp(- 0.02508*(x - 1)))

= 42.24 ? 82.13*exp(- 0.02508*(x - 1))

Checking before concrete pouring 0.9520 8.50% y = 27.11–18.9(1-*exp(- 0.08162*(x - 1)))

= 8.21 ? 18.9*exp(- 0.08162*(x - 1))

Concrete pouring 0.9857 4.76 y = 46.94–21.25(1-*exp(- 0.5042*(x - 1)))

= 25.69 ? 21.25*exp(- 0.5042*(x - 1))

Surface whitewashing 0.9809 5.45 y = 96.36–120.6(1-*exp(- 0.007981*(x - 1)))

= -24.24 ? 120.6*exp(- 0.007981*(x - 1))

Concrete curing 0.9903 3.82 y = 21.53–9.321(1-*exp(- 0.7737*(x - 1)))

= 12.21 ? 9.321*exp(-0.7737*(x - 1))

Mold removing 0.8886 5.43% y = 23.98–8.064(1-*exp(- 0.708*(x - 1)))

= 15.92 ? 8.064*exp(- 0.708*(x - 1))

Stripping 0.9686 7.06 y = 28.44–20.18(1-*exp(- 0.08944*(x - 1)))

= 8.26 ? 20.18*exp(- 0.08944*(x - 1))

Component repair 0.9823 5.43 y = 197.54–170.5(1-*exp(- 0.01334*(x - 1)))

= 27.04 ? 170.5*exp(- 0.01334*(x - 1))

Inspection for finished components 0.9855 6.43 y = 29.05–15.57(1-*exp(- 0.1282*(x - 1)))

= 13.48 ? 15.57*exp(- 0.1282*(x - 1))

Warehouse storage 0.9736 7.85 y = 76.1–53.31(1-*exp(- 0.07469*(x - 1)))

= 22.79 ? 53.31*exp(- 0.07469*(x - 1))
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proposed in the study has a good fit to the historical data

(R2 values all[ 0.88), and the model is highly accurate in

predicting the production data of trainees through their

initial learning curves (MAPE values\ 10%). The third

finding reveals that, through using the K-means method,

the 14 basic activities are divided into two groups due to

the convergence of their learning curves respectively. As a

result, the complex activities can be defined including

lofting, laying of embedded parts, surface whitewashing,

and component repairs. This helps managers to understand

training difficulty for each activity and take advantage of it

to ensure sufficient professional human resources for each

activity. It is an important reference for the production

planning and personnel training planning of precast facto-

ries to improve the productivity of the precast industry. The

contributions by the study are substantial especially for

practitioners.

The results of this study can serve as a well-developed

and accurate foundation, and it is suggested that future

studies make efforts in this direction. Follow-up studies

focus on the threshold value for worker proficiency stan-

dards that is another important step for managerial practice.

To achieve it, since asymptotic performance for those

difficult activities (1-ec(x-1)) in the model is as close as 1,

it implies that the workers’ training never goes effective.

Therefore, it is suggested that future research can seek a

threshold as standard proficiency for workers based on the

level of difficulty or complexity toward each activity.

Studies dealing with formulas grouped to a couple of

general formulas for all activities are also recommended to

possibly simplify and to increase practicability for the

findings. Additionally, since productivity difference for an

individual based on workers’ ages and nationality is pos-

sible, future work regarding productivity difference among

Fig. 4 Clustering result of exponential learning curve (with centroids)

Table 8 K-means grouping results

Group A B C Activity numbers

Mean Standard deviation Mean Standard deviation Mean Standard deviation

1 40.815 18.334 - 23.63 13.994 - 0.299 0.28 10

2 123.967 46.905 - 127.808 36.81 - 0.013 0.008 4

A initial performance: time required for produce the first unit. B asymptotic performance and initial performance deviation. C learning constant

Fig. 5 Exponential learning curves of all activities Fig. 6 Exponential learning curves of molding module
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workers’ ages and nationality is practicable to enhance the

current work.
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