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Abstract
Calculation of load-carrying capacity of old railway masonry arch bridges as crucial infrastructures is one of the vital issues

in the railway industry. The field test of the 2PL20 bridge reveals important properties such as the initial stiffness and

cracking pattern, but the ultimate capacity of the bridge under static loading was not achieved due to the field limitations.

Therefore, the present study aims to predict the total nonlinear response of the 2PL20 bridge up to the failure status. All the

geometrical characteristics of the 2PL20 bridge are modeled precisely and the failure state is predicted using the three-

dimensional nonlinear finite element analysis. Moreover, to determine the load-carrying capacity of the 2PL20 bridge, the

behavior of materials is regarded nonlinearly in which the Williams and Warnke and the Drucker-Prager failure criteria are

taken into account for concrete and soil materials, respectively. To obtain precise results of ultimate capacity of the 2PL20

bridge under field test, the vertical and horizontal displacements of the crown on the northern span are chosen as the

calibration criterion and, consequently, the vertical and horizontal load-deformation curves are verified based on the field

test results. The obtained results indicate that the load-carrying capacity of the 2PL20 bridge equals 8880 kN under the

static field test. Finally, the calculated safety factor is equal to 3.2 and increasing axial load up to 35-ton is admissible based

on UIC 776-1 for a 25-ton axial load.

Keywords Masonry arch bridges � Railway bridges � Three-dimensional finite element simulation � Nonlinear static
analysis � Load-carrying capacity � Safety assessment

1 Introduction

Assessment of old masonry arch bridges is an important

issue for engineers and researchers. While the structural

parts require an accurate modelling, the complicated

behavior of such structures leads to field load testing. The

structural behavior and load-carrying capacity of the

masonry arch bridges have been studied frequently by

many ways from the past to the present. Totally, these

approaches are divided into three main groups: empirical,

analytical, and numerical methods. In all the three groups,

the experimental test is an essential part of the study. The

first one, proposed by the British defense research unit in

1946, led to the semi-empirical method, which was named

Military Engineering Experimental Establishment (MEXE)

[1]. This method was developed to quick assessment of

masonry arch bridges. The MEXE is based on the classic

theoretical approaches to study the stability of masonry

arches. This method has been extended in recent years and

reported in Ref. [2]. The most important analytical methods

are the mechanism and limit analysis methods, the former

was extracted by Heyman’s works as an equilibrium-based

model and subsequently the latter was developed based on

Heyman’s works [3]. As a frequently used method, the

limit analysis is currently implemented in the Ring limit

state software. Then, the numerical methods are used as a

powerful alternative approach with no limitations. The

most important approaches used as a numerical method to

assess the masonry arch bridges are finite element and

discrete-element methods [4]. These two methods are used

in macro-modeling [5], meso-modeling [6], and micro-

modeling approaches [7] for one-dimensional [8], two-
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dimensional [9], and three-dimensional [10] modeling of

masonry arch bridges.

The finite element analysis of masonry arches was first

conducted in the 19800s by the use of one-dimensional

modeling (curved and cone beam elements) [11]. Subse-

quently, the finite element method has been widely used for

modeling masonry arch bridges [12, 13]. In 2002, for

example, the service load of masonry arch bridges was

evaluated by the three-dimensional nonlinear finite element

method in mesoscale approach [14]. In 2012, the micro-

modeling technique was used by finite element approach to

predict the ultimate capacity of two stone arch bridges

under static loads [15]. To overcome the finite element

method restriction, the discrete element method as an

alternative has also been widely used in the last decades in

micro-scale approach to determine load-carrying capacity

of masonry arch bridges [16, 17]. For example, the effect of

construction method on the load-bearing capacity of a

single span skew masonry arch using the discrete element

method has been taken into account in recent years [18]. In

addition to the numerical simulations, extensive researches

were concentrated on the experimental works [19, 20]. For

example, many field tests were performed on the masonry

arch bridges to obtain service capacity and ultimate col-

lapse load in the 19900s [21].
Moreover, various works have been conducted about

two-dimensional and three-dimensional numerical simula-

tions in linear, nonlinear, plastic, and fracture mechanics

conditions to compute the failure status of masonry arch

bridges, for which references [22, 23] could be mentioned

for more information. In addition to the mentioned

researches that accomplished to evaluate the ultimate

capacity of masonry arch bridges under static conditions,

more works have been performed on dynamic analyses

[24–26] and seismic assessment analyses of these types of

structures [27–29].

Based on material construction, masonry arch bridges

may be divided into three classes: brickwork arch bridges,

stone arch bridges, and plain concrete arch bridges. While

various numerical and experimental studies have fre-

quently been reported on brickwork and stone arch bridges,

a few field test studies have been conducted on plain

concrete arch bridges [5, 19]. This study, therefore, aims to

predict the load-carrying capacity of a plain concrete arch

bridge under field loading and UIC 776–1 axial loading

conditions by a comprehensive three-dimensional nonlin-

ear finite element model.

2 Field Test on Considered Railway Arch
Bridge

In this section the summary of field test of a masonry arch

bridge is presented. For more information about the field

test please refer to reference [5].

2.1 Discription of the Bridge

The considered bridge which has been built more than

80 years ago is placed in kilometer 23 of Tehran-Qom old

railway and consists of two identical 20-m spans. For

further simplification the considered bridge is named

2PL20 bridge. Reinforcement has not been used and all

structural parts 2PL20 bridge including the arch, spandrel

wall, abutment, wing wall, pier and foundation are plain

concrete constructions. Thin layer of concrete has been

used as a material to level out the surface above the arches.

The structure suffers 10–30 mm initial cracks in the crown

and in the middle springing of both arches which the width

of the cracks at the intrados varies in depth and developed

throughout the whole section of the arch. Other environ-

mental damage has not been found in the 2PL20 bridge.

Geometric properties of the 2PL20 bridge are shown in

Fig. 1 and summarized in Table 1. To evaluate the quality

of the concrete, mechanical properties of materials have

been determined by cylindrical core test and represented in

Table 2.

2.2 Results of Static Loading

To gain the ultimate capacity of 2PL20 bridge, load test

carried out just on the northern span, statically using 40 kN

weights. Figure 2 describes the static loading performed on

the 2PL20 bridge. As it is shown, the load increases

gradually by applying an incremental load of 240 kN. In

this experimental study the variation of the vertical dis-

placement and crack opening of the crown have been

recorded and displayed in Fig. 3.

Field test observations demonstrated that new micro-

cracks were appeared before starting nonlinear zone around

the initial cracks in the springings and the crown. Although

the initial cracks became wider. At a load level of around

3500 kN, the micro-cracks became detectable and through

the increase of load, they turned into wider and deeper

cracks. However, the slope of the vertical and horizontal

load–displacement curves has remained almost constant up

to 6240 kN which is illustrated in Fig. 3.

Large deformations begin in 6240 kN load, and the

structural stiffness decrease remarkably. Loading had been

continued up to 7280 kN, but due to safety consideration

and field limitation, applying more loads was impossible
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and the test had stopped and did not continued until failure

of the structure. In addition, due to intensive damage of

heavy loading process, the bridge went out the service.

However, the load applied in the field test is more than the

service load of the current railway network, the load-car-

rying capacity of the 2PL20 bridge remains as a query,

which determining it may be a vital step to recognize the

nonlinear behavior of the plain concrete arch bridges. In

the last stage of static loading (7280 kN), the cracking

pattern does not change, so the cracks which appeared

almost in the northern span and near the springings are

named second cracks. After appearing the second cracks, it

Fig. 1 Geometric characteristics of the 2PL20 bridge (units are in meter). a longitudinal section, (b) transversal section and (c) structural parts of
Plain concrete arch bridges
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seems that the crack propagation patterns remain constant

and does not reform in the post-yield state of the 2PL20

bridge. However, the depth and width of the both initial

and second cracks increase with the loading process. The

initial and second cracks are depicted in Fig. 4 in final

stage of field test.

3 Three-Dimensional Finite Element
Analysis

The actual behaviour of masonry arch bridges depends on

the boundary conditions, material properties, changing

features in sections, sliding between filling-materials and

the arch, fatigue effects, the location and size of the cracks,

environmental damage, discontinuities, and connectivity.

Practically, considering all these parameters in simulations

seems to be impossible and lead to high computational

effort for these massive structures. Therefore, some of

these parameters should be implemented indirectly in the

numerical method (see Refs. [28, 30, 31]).

In this study, a comprehensive finite element model is

established using the ANSYS FEM package. This program

can be used for linear, nonlinear, static, and dynamic

analysis of structures. Thus, different parts of the 2PL20

bridge, including the arches, the abutments, the spandrel

walls, the wing walls, the piers, the foundation, and the

filler materials, are modelled precisely by means of a

macro-modelling, as depicted in Fig. 5. The soil was

simulated in limited dimensions due to the complex and

unknown boundary conditions of the bridge, on the one

hand, and to incorporate side effects such as soil settle-

ment, on the order hand [6]. Thus, the modelled soil

allowed for properly defining the boundary conditions of

the bridge. It should be noted that it was not required to

model the soil in infinite dimensions, since the structure

applied static loading to the soil [28]. According to the

dominant behaviour of plain concrete arch bridges, macro-

modelling and 3D eight-node solid isoperimetric elements

(24 translation degrees of freedom for each element) are

used to establish the primary finite element model (Fig. 6).

Moreover, old unreinforced arch bridges typically undergo

cracking after construction due to their weights and service

loads in the crown or springings, being referred to as

cracked structures. Therefore, the existing initial cracks are

considered as void spaces in the finite element model to

take account of the actual conditions of the bridge based on

observation measurement. In addition, it can be noted that

the initial cracks are modelled with the aim of assigning

defects and pre-stress effects to the numerical model before

starting the analysis. For this purpose, all cracks are con-

sidered as void spaces to consider decreasing in the

strength of the 2PL20 bridge. Accordingly, the features

mentioned by fracture mechanics theory as the stress

intensity factor are not used for initial cracks. According to

the supposed assumptions, Fig. 6 represents the details of

the final finite element model.

Table 1 Geometric characteristics of the 2PL20 bridge

Bridge 2PL20

Total length 58.4 m

Width 4.4 m

Arches number 2

Piers

Width 3.9 m

Length 3.6 m

Height 4.43 m

Arch

Shape of arch Segment of circle

Span 20 m

Rise at span 8 m

Vault thickness at the springing 1.9 m

Vault thickness at the crown 1.1 m

Spandrel walls

Thickness 1 m

Table 2 Mechanical features of concrete based on tests of cylindrical

cores

Material Compressive

strength (MPa)

Modulus of

elasticity (GPa)

Density of

concrete (kg/m3)

Concrete-

fill

17.6 20.2 2300

Arch 17.3 17.0 2280

Pier 27.9 37.3 2350

Fig. 2 Static loading of 2PL20 bridge

826 International Journal of Civil Engineering (2021) 19:823–836

123



After implementing the geometric features of the finite

element method in the primary numerical model, material

properties are defined in the finite element model based

on the cylindrical core test results. In this simulation,

material behavior is considered to act nonlinearly and

fracture mechanic theory is taken into account to calculate

the structural damage. In computational fracture

mechanics, two approaches are generally adopted to

analyze cracked solids and structures, including (i) geo-

metrical modeling [32, 33] and (ii) non-geometrical

modeling [34]. The former models the crack geometry,

while the latter non-geometrically incorporates the effects

of defects. The geometrical approach involves two sub-

approach; the first ones is related to traditional finite

element method in which the crack growth path is

dependent on the geometry of elements. The second sub-

approach, on the other hand, includes adaptive finite

element method and utilizes the idea of re-meshing to

implement the crack propagation. Thus, the crack growth

path is independent of the element geometry. The non-

geometrical approach is further divided into two sub-ap-

proaches. The first sub-approach includes behavior equa-

tion-based methods. This sub-approach does not model

cracks but treats the area around the cracks as a weak

region that can be incorporated in the form of reduced

strength or reduced stiffness. Furthermore, it may use the

elimination of elements; instead of weakening the inten-

ded area, element elimination is applied to exclude the

cracked region. The smeared cracking method is among

the most used techniques of the first non-geometrical sub-

approach type, which has been of great interest to

researchers. The second non-geometrical sub-approach, on

the other hand, includes kinematic methods that utilize

enrichment methods. It changes formulation, unlike the

first non-geometrical sub-approach. Thus, the second non-

geometrical sub-approach enjoys the advantages of geo-

metrical modeling. The extended finite element method is

a technique of the second non-geometrical sub-approach

[35].

Based on Fig. 7, William and Warnke and Drucker-

Prager failures are implemented for the tri-axial behavior

based on a constitutive model for concrete and soil mate-

rial, respectively. The criterion for the failure of concrete

due to a multi-axial stress state can be expressed in the

following form:

F

f
0
c

� S� 0 ð1Þ

Fig. 3 Displacement of the 2PL20 bridge, at the crown, under static loading: (a) variation of vertical direction and (b) variation of crack width

(horizontal direction)

Fig. 4 Crack pattern at final stage of static loading (field test). Cracks represented by red existed before the test (initial cracks)
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Arch

Soil

Abutment

Wing Wall

Spandrel Wall

Filling-Material

Wing Wall

Abutment

Soil

Pier

Soil

Fig. 5 Modeling different parts of the 2PL20 bridge by the ANSYS FEM package

Fig. 6 Final three-dimensional finite element model of the 2PL20 bridge with eight-node elements (with 24 degrees of freedom) and initial

cracks in the crown of the arches
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where F indicates a function of the principal stress state

(rxp, ryp, rzp) in which rxp, ryp and rzp describe principal

stresses in principal directions. S stands for failure surface

expressed in terms of principal stresses and seven input

parameters are needed to define as [36]:

• Ultimate uniaxial tensile strength (f t)

• Ultimate uniaxial compressive strength (f
0

c)

• Ultimate biaxial compressive strength (f cb)

• Ambient hydrostatic stress state (rh)
• Ultimate compressive strength for a state of biaxial

compression superimposed on the hydrostatic stress

state (f 1)

• Ultimate compressive strength for a state of uniaxial

compression superimposed on the hydrostatic stress

state (f 2)

• Shear transfer coefficients (bt and bc)

However, the failure surface can be specified with a

minimum of two constants, f t and f
0

c. The following three

constants are equal to the defaults of Willam and Warnke

f cb ¼ 1.2f
0

c ð2Þ

f 1 ¼ 1.45f
0

c ð3Þ

f 2 ¼ 1.725f
0

c ð4Þ

However, these default values are valid only for stress

states under the following condition

rhj j �
ffiffiffi

3
p

f c ð5Þ

Since the compressive strength of concrete was derived

from the cylindrical core test, other failure parameters of

these models may be extracted directly as mentioned

above. Additionally, the maximum tensile strength of

concrete (f t) is assumed as f t ¼ 0.56

ffiffiffiffi

f
0
c

q

� �

in which it is

proposed by ACI 318–11 [37]. In addition, bt is defined

that denotes a shear strength reduction factor for those

subsequent loads that induce sliding across the crack face.

If the crack is closed, then all the compressive stress nor-

mal to the crack plane are transferred across the crack,

thereby defining bc. Besides, bt ¼ 0.25 and bc ¼ 0.8 are

considered in this study [14].

It is worthwhile to mention that the constitutive model

was supposed based on a smeared crack model in fracture

mechanics theory to allow the formation of cracks per-

pendicular to the direction of principal stresses that exceed

the tensile strength of the concrete. This model is also

considered both cracking in tension zone and crushing in

compressive zone. Cracking or crushing of an element is

started when one of the principal stresses of an element at

integration points exceed the tensile or compressive

strength of the domain. Cracked or crushed zones, as

opposed to discrete cracks, are then formed perpendicular

to the relevant principal stress direction with stresses being

redistributed locally; hence, the element is nonlinear and

needs an iterative solver. In the numerical procedures, the

formation of crack is gained by the adaptation of the stress–

strain relationship of the element to present a plane of

weakness in the requisite principal stress direction. The

amount of shear transfer across a crack can vary between

full shear transfer and no shear transfer at a cracked sec-

tion. The crushing algorithm is similar to a plasticity law in

that when a section has crushed, further application of load

in that direction progresses the increasing strain at constant

stress (see Fig. 7). Following the formation of an initial

crack, stresses tangential to the crack face may cause a

second or third crack to develop at integration point [14].

Fig. 7 William and Warnke failure criterion: (a) three-dimensional surface in principal stress and (b) failure surface in principal stress space with
nearby biaxial stress
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In addition, the behavior of the concrete material is simu-

lated by the use of a solid element that can have its stiffness

adapted by the expansion of cracks and crushing. This

criterion is frequently used to calculate the failures that

occurred in concrete structures [38].

To employ the Drucker–Prager yield criterion, the fol-

lowing three parameters are demanded as input data:

• cohesion (c)

• angle of internal friction (u)
• angle of dilation (w)

These three parameters are extracted directly from the f t
and f

0

c. In the second step of the simulation procedure,

uncertain parameters such as boundary conditions,

mechanical properties of the filler material, and the soil

underneath the foundation are chosen as variable parame-

ters for calibrating the finite element model. By calibrating

the variable parameters, the finite element model can des-

ignate the actual behavior of the bridge. In addition to the

calibration procedure, sensitive analysis is taken into

account to subsequently determine variable parameters. To

get better sense of the precise finite element model with

low computational cost, the calibration procedure and

sensitive analysis are done simultaneously. For this reason,

by selecting the size of elements between 0.1 and 1.2 m,

totally 18,819 eight-node solid elements with 63,096

degrees of freedom are used for the 2PL20 bridge model

(see Figs. 5 and 6). Finally, final properties of the materials

are displayed in Table 3.

4 Numerical Results

To validate the finite element model of the 2PL20

bridge, the vertical displacement and the crack opening

of the crown in the northern span are compared with the

field test results. Figure 8 presents to get a better sense

of the accuracy of the finite element model. As it is

clear, the finite element results have a good compatibility

with the experimental results in both small and large

deformation stages. It is worthwhile to mention that the

calibration parameters are altered in model updating

process until the experimental and the numerical results

converge together.

In the nonlinear static analysis, element matrices are

computed by the Gaussian numerical integration. In addi-

tion, the nonlinear static analysis is solved by the Newton–

Table 3 Final mechanical features of materials

Material

behavior

Material law Mechanical

features

Soil Filler

material

Arch Pier, abutment,

foundation

Wing wall, spandrel

wall

Linear Hook cðton=m3Þ 1.8 2 2.28 2.35 2.3

EðGPaÞ 0.1 0.5 17 37.3 20.2

m 0.33 0.3 0.21 0.17 0.2

Nonlinear Drucker–Prager cðMPaÞ 0.4 0.5 – – –

u� 30 30 – – –

w� 2 2 – – –

Willam and

Warnke
f
0

cðMPaÞ – – 17.3 27.9 17.6

f tðMPaÞ – – 2.33 2.96 2.35

f cbðMPaÞ – – 20.76 33.48 21.12

f 1ðMPaÞ – – 25.08 40.45 25.52

f 2ðMPaÞ – – 29.84 48.13 30.36

(a)

(b)

Fig. 8 Comparison of variation displacement of the 2PL20 bridge for

the northern span at the crown: (a) vertical displacement and (b) crack
width variation

830 International Journal of Civil Engineering (2021) 19:823–836

123



Raphson algorithm with a load increment of dF = 40 kN.

Finally, by defining the displacement as convergence cri-

terion, the failure load of the 2PL20 bridge is determined

equal to 8880 kN in a total of 222 steps of analysis. Dis-

placement field and progress of damaged zone of the

2PL20 bridge in the failure stage (8880 kN load) are

depicted in Figs. 9 and 10. As shown in Fig. 10, the

maximum displacement of the 2PL20 bridge occurs in the

crown due to the existing initial cracks. By comparing

Figs. 4 and 10, it may also be concluded that the damaged

zones or cracking pattern of the 2PL20 bridge, determined

by finite element analysis, have adequate compatibility

with the field results. Although Fig. 4 is not presented for

damaged zone of the 2PL20 bridge in the ultimate capacity,

it may be concluded that the cracking pattern does not

change after starting post-yield behavior and the revealed

cracks only become much wider and deeper.

Based on the cracking pattern depicted in Fig. 10, it may

be derived that the location of damaged zones is related to

the plastic hinges (or nonlinear zones). The figure also

shows that three plastics hinges have formed in the

northern span of the 2PL20 bridge, which include the

crown and each of the springings. To better understand the

formation of the three plastic hinges, two fundamental

concepts are presented based on Fig. 11. The variation of

failure principle stress criterion of crack-tip (crown) in the

northern span of the 2PL20 bridge versus loading is shown

in Fig. 11a. It is observed that the failure principle stress

criterion had jumping in three stages; therefore, it may be

concluded that severe changes in these three stages are

exactly the plastic zones (hinges) in the 2PL20 bridge (see

Fig. 11b). Despite this conceptual way, three plastic hinges

may be represented by the variation of curvature of load-

deformation slope (see Fig. 11c). As depicted in Fig. 11d,

this way proves the formation of three plastic hinges. By

comparing Fig. 11b, d, it can be concluded that the

moments of the first and third plastic hinges are similar but

the second one is different.

Most of researchers believe that four plastic hinge for-

mation may cause failure in the masonry arch bridges, and

failure was also reported by 3 and 5 plastic hinges in some

cases [21]. However, they assert that plastic hinge formation

is dependent on geometric properties of the bridge part and

the distance of loading to the crown. The failure mechanism

of the 2PL20 bridge, which does not occur based on four

plastic hinge formation (common failure mechanism in

arches), is due to the similar mechanical properties of the

spandrel walls and the arch (see Table 2), and complicated

geometry of the bridge. Hence, it may be concluded that the

behavior of the 2PL20 bridge, which is not identical to the

commonmasonry arch bridges and the failure mechanism of

this bridge, is different from other masonry bridges (in

masonry arch bridges, the mechanical properties of spandrel

walls and fill materials are usually more less than arches)

[5, 21]. As a result, it may be declared that the pattern

obtained for the plastic hinge formation and the displace-

ment-load curve may be accurate and acceptable. Likewise,

the estimated load-carrying capacity of the 2PL20 bridge is

about 8880 kN and is completely reliable.

5 Saftey Assessment

Determination of load-carrying capacity of masonry arch

bridges has been considered in many studies. For example,

the geometric and mechanical properties of 50 masonry

arch bridges of Italian railway network were collected to

assess the safety of the bridges [39]. The results indicated

that the safety factor of considered bridges was from 2 up

to 30 based on UIC 776-1 loading. In addition to geometric

and mechanical properties, the real safety factor may be

affected by abundant factors, such as environmental dete-

rioration and fatigue. For the latter, experimental obser-

vations demonstrated that repeated cyclic loading over

50% of the final static strength might induce fatigue failure

[40]. For more information about safety assessment of

masonry bridges, the reader is referred to [41]. The results

of finite element simulation under static field test and UIC

776-1 train live loading for calculation of safety factor are

presented in this section.

5.1 Results of Static Field Loading

As shown in Sect. 4, the load-carrying capacity of the

2PL20 bridge is determind according to the Fig. 8.

Therefore, if k is defined by the ratio of collapse load (CL)

and plastic hinges (PH) as

k ¼ CL

PHi
ð6Þ

where i ¼ 1,2,3; k is computed as

k1 ¼ 8880=2600ð Þ ¼ 3.415, k2 ¼ 8880=5160ð Þ ¼ 1.721,

and k3 ¼ 8880=8840ð Þ ¼ 1.005. Then, the load factor for a

possible collapse mechanism is denoted as

LFjk ¼
kj
kk

ð7Þ

where j,k ¼ 1,2,3 for j\k. Consequently, LF is determined

as LF12 ¼ 3.415=1.721ð Þ ¼ 1.984,

LF13 ¼ 3.415=1.005ð Þ ¼ 3.980, and

LF23 ¼ 1.721=1.005ð Þ ¼ 1.712. Another important

parameter in the assessment of nonlinear behavior of the

masonry arch bridges is ductility factor (DF). Based on the

Fig. 9, it may be rather assumed that the 2PL20 bridge

behavior is linear up to the displacement of 12.87 mm (LS),

and the nonlinear behavior starts from this point, continues
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Fig. 9 Vertical deformation of the 2PL20 bridge in the failure state (8880 kN)

Fig. 10 Damaged zone progress in different stages. a Cracked media in 3000 kN load, b cracked media in 7280 kN Load, and c final cracked

media in collapse state (8880 kN load)
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up to the large deformations, and collapse occurs in

32.66 mm displacement (US). Based on the considered

assumptions, the ductility factor may be derived as

DF ¼ US

LS
ð8Þ

Thus, the ductility factor of the 2PL20 bridge is com-

puted as DF ¼ 32.662=13.206ð Þ ¼ 2.473. Regardless of

the fact that the reinforcement was not used in the 2PL20

bridge, the structure benefits from an appropriate ductility,

and it could be emphasized that the 2PL20 bridge has an

appropriate nonlinear behavior.

5.2 Safety Factor

In addition to the static loading of field test, the UIC 776-1

code was used for the assessment of the 2PL20 bridge

under 25-ton axial service live train load [42]. As depicted

in Fig. 12, the service load in the UIC 776-1 code for the

railway bridges was 4 concentrated loads of 250 kN with a

distance of 1.6 m and two distributed loads of 80 kN=m

with a distance of 0.8 m from the concentrated loads.

Subsequently, to obtain the factor of safety, the ratio of the

applied load to the service load of the UIC 776-1 is aug-

mented until failure happens in the bridge. Results indicate

that the residual capacity of the bridge under train live

loads is much higher than the service load. For this reason,

the results discussed herein are based on the most critical

states reported in [39]. Since it constrains the upward

deflection of the arches adjacent to the loaded span and

prevents the development of the collapse mechanism,

which leads in turn to a higher load carrying capacity, the

distributed load is not included in the critical load pattern

(different for deck bridges). Therefore, the design exercise

load (DEL) value is 1000 kN 4� 25tonð Þ per track line

running on the bridge [39]. Hence, the factor of safety (FS)

may be computed by the ratio of CL and DEL as

FS ¼ CL

DEL
ð9Þ

According to the UK highway agency, the safe capacity of

masonry arch bridges is 50% of ultimate load-carrying

capacity [43]. Accordingly, the FS of the 2PL20 bridge is

figured as FS ¼ 0:5� 6400=1000ð Þ ¼ 3:200. The limit

state as an analytical approach is used to validate the

obtained safety factor. This method is implemented in the

Ring software and recommend by the UK highway agency

to calculate the ultimate load capacity of masonry arch

bridges. Based on Fig. 13, the collapse load and mecha-

nism state of the 2L20 bridge are determined in critical

Fig. 11 Nonlinear zone (plastic hinges) deformation. a Variation of failure principle stress criterion versus displacement, b calculation of the

collapse mechanism based on the first concept, c variation of loading versus curvature, and d calculation of the collapse mechanism based on the

second concept
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position of the UIC 776–1 load distribution. The calculated

factor of safety based on the limit state method is computed

equal to FS ¼ 3.490.

The factor of safety calculated by finite element method

is 8.3% less than limit state method. The main reason for this

difference is the modeling of initial cracks and compre-

hensiveness of the three-dimensional nonlinear finite ele-

ment model. Based on the geometric properties such as span

length (l ¼ 20m), ring thickness (s ¼ 1.1m), rise (r ¼ 8m),

maximum pier height (h ¼ 4.43m), number of spans

(n ¼ 2), rise-to-span ratio (r=l ¼ 0.4), and ring thickness-to-

span ratio (s=l ¼ 0.055), the safety factor of 50 railway

masonry arch bridges is also determined as 3� FS� 5 [39].

Also in Ref [44] by statistical analysis and using linear

elastic fracture mechanics (LEFM) theory, factors of safety

was estimated about 1.8–5.4 for masonry arch bridges.

Thus, the results obtained by the finite element mode are

completely reliable. It is worthwhile to mention that the

safety estimate provided in the present work does consider

the actual damage state of the 2PL20 bridge. Finally, it may

be concluded that the factor of safety for the 2PL20 bridge is

220%more than the service load for a 25-ton axial load. As a

result, it can be decided that the rise of axial load up to 40%

is admissible (from 25-ton up to 35-ton axial load).

6 Conclusions

There are about 3400 masonry arch bridges in Iran’s

railway network which most of them have been con-

structed more than 80 years ago. Due to the need of

increasing axial loads in the current railway network,

assessment of old masonry arch bridges as crucial

infrastructures to obtain load-carrying capacity of them

has become an important issue in the last decades. Due

to the complex behavior of such bridges, accurate

simulation is required to assess and study their behav-

ior. In this study, the results from the nonlinear three-

dimensional finite element modeling to evaluate the

load-carrying capacity for a plain concrete arch bridge

with two 20 m spans have been presented. The residual

capacity of the bridge was not never determined in field

test loading; therefore, the residual strength and the

nonlinear response of the 2PL20 bridge are derived

using the limited results obtained from filed tests and

the numerical modeling. The residual strength of the

bridge has been calculated equal to 8880 kN and the

failure of the structure has occurred with the formation

of three plastic hinges (zones) in the crown and each of

the springings. The results indicate that the condition of

the 2L20 bridge under 25-ton axial load with FS ¼
3.200 as an old railway masonry arch bridge is

acceptable and it may be concluded that by considering

the design safety factor equal to two, increase of axial

load up to 40% (axial load of 35-ton) is allowable for

railway network of Iran. In addition, the results indicate

the nonlinear behavior of this structures are appropriate

in post-yield stage.
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17. Sarhosis V, Forgács T, Lemos JV (2019) A discrete approach for

modelling backfill material in masonry arch bridges. Comput

Struct 224:106108
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