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Abstract
The effect of silt intrusion on the liquefaction susceptibility of fine saturated sand has been studied here using a series of

strain-controlled cyclic triaxial tests on isotropically consolidated soil specimens. The fine sands used in this study were

collected from the Ganga and Sone river bed. The samples were prepared with 100% non-plastic silt, 100% sand and

different percentage (5%, 10%, 20%, and 30%) of non-plastic silt mixed with fine sand to study the effect of intruded silt

on liquefaction susceptibility of sand. It has been found that at the same relative density range (10–25%) and the same

percentage of intruded non-plastic silt, the Ganga sand is having higher liquefaction susceptibility than the Sone sand. The

outcome of the study also showed that the rate of generation of excess pore water pressure (EPWP) for all three soil

specimens was more or less same at higher strain levels (0.66–1.31%). However, the liquefaction potential continues to

increase with the increase in silt content at a lower strain rate of 0.13%. A graphical relationship has been proposed for the

EPWP development model parameter as a function of non-plastic silt content. This modification in the EPWP model

parameter is one of the novel aspects presented here, which can be used for site-specific nonlinear ground response

analysis.
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Abbreviations
Cc Coefficient of curvature

Cu Coefficient of uniformity

D10 Effective size of particles corresponding to

10% finer in the particle size distribution curve

D30 Diameter of particles corresponding to 30%

finer in the particle size distribution curve

D50 Mean grain diameter

D60 Diameter of particles corresponding to 60%

finer in the particle size distribution curve

p, F and

s

EPWP Model parameter

e Cyclic axial strain

cc Cyclic shear strain

r0h Effective stress acting on the horizontal

direction

r0m Mean principal effective stress

r0v Effective stress acting on soil on the vertical

direction

1 Introduction

Liquefaction is an undesirable phenomenon that occurs due

to substantial or total loss of shear strength and stiffness of

soil during a cyclic or monotonic loading. The loss of shear

strength and stiffness of soil may cause because of reduc-

tion in effective stress of soil deposit under cyclic loading

condition. The liquefaction is dependent on various

parameters that vary from one place to another like relative

density, soil type, water table depth, and topography, etc. It

has generally been observed that loose saturated cohe-

sionless soil deposits are highly susceptible to liquefaction;

however, the presence of fines in the sand has always

shown a muddling behaviour under seismic loading con-

dition. The soil can be classified as ‘‘sand-like’’ and ‘‘clay-
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like’’ soil based on its cyclic behaviour [1, 2]. The ‘sand-

like’ soils are gravels, sands, and low plastic silts, whereas

‘clay-like’ soils are clays and plastic silts. The ‘sand-like’

soils can experience liquefaction, and its behaviour has

become the area of research for the last few decades. The

clay-like soils can also experience cyclic failure and sig-

nificant ground deformation during an earthquake [3, 4].

Case studies from previous earthquakes (e.g., Haicheng

in 1975; Tangshan in 1976) indicate that soil having clay

content less than 20% had liquefied. Moreover, the field

investigation after the Tokachioki earthquake by [5]

showed that the presence of a higher proportion of plastic

fines increased the liquefaction resistance [6] of sand lay-

ers. Therefore, the main focus of this study was to quantify

the effect of non-plastic silts intruded in the sand in terms

of cyclic behaviour under cyclic loading condition. In the

last couple of decades, the impact of non-plastic fines in the

sand has been studied by various researchers [7–12]. A

summary of significant literature to quantify the effect of

fines content (FC) on liquefaction resistance (LR) using

cyclic triaxial tests are tabulated in Table 1

[9, 11, 13–23, 35, 47].

There are many factors such as sample preparation

technique, confining pressure, loading frequency, global

void ratio, intergranular void ratio and type of test (stress-

or strain-controlled) that control the outcomes. It can be

observed from the literature that no conclusive remark can

be drawn from the previous studies on cyclic/monotonic

load response of sand-silt mixture. Therefore, due to

divergence outcomes of previous studies, the cyclic

response of sand impinged by the silt of different per-

centages (0%, 5%, 10%, 20%, 30% and 100%) by weight

under cyclic loading condition has been studied in this

research. The main objective was to inspect the cyclic

behaviour of locally available sands, i.e. Sone and Ganga

sand at different silt content. It has been done through

strain-controlled undrained cyclic triaxial tests. A part of

the study on Ganga sand mixed with non-plastic silt has

already been presented by [15]. A comparison between the

cyclic response of Sone and Ganga sand intruded by silt

based on mean grain diameter ratio (D50 sand/D50 silt) has

been presented at ± 0.5 mm axial displacement amplitude.

Further investigation has been carried out to find out the

effect of the applied cyclic strain level. The results show

that at higher strain levels (0.66–1.31%) the rate of gen-

eration of excess pore water pressure (EPWP) for all three

soil specimens are more or less same. Liquefaction strength

of a soil depends on the amount and rate of EPWP

development and can be estimated using a strain-based

mathematical model proposed by [24]. This model calcu-

lates the EPWP ratio as a function of the number of loading

cycles. The EPWP model parameters (F is one of them) in

this model depend on grain size, saturation condition, and

void ratio, as documented in the literature [25, 26]. Another

novel aspect studied here is the effect of non-plastic silt

content on EPWP model parameter F. A graphical relation

has been presented for EPWP model parameter F with the

percentage of the silt present in the sand matrix.

2 Material Used

The soil used in this study is locally available sand col-

lected from the alluvial deposit. The geology of the region

is greatly influenced by the fine sands deposited by Sone

and Ganga river [27]. Particle size distribution and specific

gravity confirming to IS: 2720 (part-4) [28] and IS: 2720

(part-3) [29] respectively have been carried out. As shown

in Fig. 1, the Sone and Ganga river sand get classified into

poorly graded, and the silt particle that is being used is

having the smallest size of around 10 lm. The other

important characteristics related to particle size distribution

have been tabulated in Table 2. The specific gravity for all

the soil samples was found to be lying in between 2.67 and

2.72. The maximum and minimum dry density of soil is not

unique as it is very much dependent on the method used for

its determination [30]. The maximum dry densities for all

the soil samples were measured using heavy compaction

test confirming to IS: 2720 (part-8) [31]. Dry density

obtained using heavy compaction yielded little bit higher

values than that obtained using the vibratory table. For the

minimum dry density of soil samples, ASTM D 4254-16

[32] method C has been used in this study. Using the

relationship between dry density and void ratio, maximum

and minimum void ratio of all soil (Sone and Ganga sand

intruded with various percentages of silt) samples were

obtained and is shown in Fig. 2. Consistency limit of silt

confirming to IS: 2720 (part-5) [33] was obtained, and the

test results suggest that the liquid limit value for the silt

that is being used is less than 2%. Furthermore, it was

observed that molding the sample into a thread of 3.2 mm

was not possible because of very low plasticity. Hence, it

has been ascertained that the silt used in the study is non-

plastic. Silt used in this study is collected from the top layer

of IIT Patna soil. Since the particle size of Ganga sand was

smaller than Sone sand hence the presence of space for

accommodating silt particles would also be lesser than the

Sone sand matrix. The X-ray diffraction (XRD) patterns of

various soils obtained from the XRD analysis are shown in

Fig. 3. From the XRD analysis, it has been observed that

minerals such as quartz, calcite, smectite and plagioclase

are present in Ganga sand. Apart from these above men-

tioned minerals, actinolite is also present in non-plastic silt

and Sone sand.
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Table 1 Summary of significant literature showing the requirement of the present study

Comparison basis Test type Fines

content

(FC)

D50;sand

D50;silt

Effect on liquefaction resistance References

Constant void

ratio

Cyclic triaxial 0–60% – Increases [16]

Constant void

ratio

Stress controlled

cyclic triaxial

0–20% 20.83 Increases [35]

Constant sand

skeleton void

ratio

Constant void

ratio

Strain controlled

cyclic triaxial

0–100% 35.29 Decrease up to a limiting value of silt content which is 30% silt

content

[47]

Constant relative

density

Cyclic triaxial 0–60% – Decreases till 20% FC then increases [17]

Constant void

ratio

Stress controlled

cyclic triaxial

10–50% – Increases [18]

Constant void

ratio

Stress controlled

cyclic triaxial

0–100% 14.33 Decreases till 35% FC then increases [19]

Constant sand

skeleton void

ratio

Constant till limiting fine content (LFC)

Constant relative

density

6 Constant till limiting silt content then decrease

Constant sand

skeleton void

ratio

Increases till limiting silt content

Constant void

ratio

Stress controlled

cyclic triaxial

0–100% 6 Decreases till LFC then increases [9]

Constant void

ratio

Strain controlled

cyclic direct

shear

0–10% 41.67 Increases [20]

Constant sand

skeleton void

ratio

0–20% Increases till 10% FC and then decreases

Constant relative

density

0–20% Increases till 10% FC when c = 0.03% and maximum at 20% FC

when c = 0.3%

Constant gross

void ratio

Stress controlled

cyclic triaxial

0–60% 10.1 Decreases till LFC (approx. varies between 20 and 30%

depending on the post-consolidation void ratio) then increases

[21]

Constant sand

skeleton void

ratio

0–60% Remain same till the silt content corresponding to Dr = 70% then

increases

Constant relative

density

0–100% Initially increases till 5%, decreases till LFC (30%) then remain

constant

Constant relative

density

Stress controlled

cyclic triaxial

0–40% 10.52 Decreases [22]

Constant relative

density

Strain controlled

monotonic

triaxial

0–20% 2.6 For same FC and confining pressure, LR increases with decrease

in D50 Sand/D50 Silt ratio

[23]

5.9

10.1

Constant relative

density

Strain controlled

cyclic triaxial

0–20% 11.67 Increases till the optimum value of silt content (approx. 15% silt

content)

[13]

Constant dry

density

Stress controlled

cyclic triaxial

0–100% 9.23 Decreases till LFC (about 30% silt content) then increases [11]

Constant relative

density

Decreases till LFC (about 30% silt content) then constant
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3 Experimental Scheme

The cyclic response of Sone and Ganga sand intruded with

the different percentages by weight of non-plastic silt has

been studied here using the strain-controlled cyclic triaxial

test. A series of 18 strain-controlled cyclic triaxial tests

were performed at the soil dynamics lab of IIT Patna using

the hydraulic controlled cyclic triaxial testing equipment

(shown in Fig. 4). These tests were conducted with various

combinations of silt percentage mixed with natural Sone or

Ganga river sand (details of these experiments are shown in

Table 3). All tests were performed in undrained conditions

on isotropically consolidated specimens, as per the guide-

lines provided in ASTM D-5311 [34].

3.1 Specimen Preparation

There are several methods for soil specimen preparation,

e.g., dry air pluviation, dry and moist tamping and wet

tamping etc. According to [35], a higher degree of uni-

formity can be observed in soil specimen prepared using

dry deposition technique, while moist tamping method

yields considerable non-uniformity. The steady-state line

Table 1 (continued)

Comparison basis Test type Fines

content

(FC)

D50;sand

D50;silt

Effect on liquefaction resistance References

Constant void

ratio

Static triaxial 0–100% 9.2 Decreased till LFC (approx. 30% silt content) then increases [14]

Constant relative

density

Decreased till LFC (approx. 30% silt content) then constant

Constant relative

density

Strain controlled

cyclic triaxial

0–100% 4.4 Increased till 10% then decreased [16]

Table 2 Properties of the Sone and Ganga sand used in the study

Sone sand Ganga sand Silt

Grain size range 2 mm–

75 lm
2 mm–

75 lm
75–2 lm

D50, sand 0.3 0.2 0.045

D50, sand/D50, silt 6.67 4.44 –

D60 0.33 0.23 0.05

D30 0.23 0.18 0.03

D10 0.18 0.16 –

Cu 1.83 1.44 –

Cc 0.89 0.88 –

Liquid limit/plastic

limit

– – \ 2/non-

plastic

Classification Poorly

graded

Poorly

graded

Non-plastic
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was nearly the same for the silty sand prepared using dry

pluviation and moist tamping method [36, 37]. Researchers

[35, 38] suggested that the specimen prepared using a dry

deposition technique replicates the natural deposition of

sand. Because of these recommendations and findings, the

dry air pluviation method has been adopted in this study as

it maintains uniformity in soil specimen. The soil samples

were prepared in a split mould of 38 mm diameter and

76 mm height at low relative density (Dr). The soil samples

were prepared with an almost similar degree of compact-

ness (Loose, Dr was between 10 and 25%) for each test.

The effect of silt intrusion in sandy deposits has been

studied in the literature by various approaches (e.g., con-

stant gross void ratio, constant sand skeleton or intergran-

ular void ratio, constant relative density, and limiting fine

contents). The seismic behaviour of silty sand has been

studied here at a constant relative density of the soil sam-

ple. As more and more silts are added to the sand, it passes

from the sand dominated matrix to silt dominated matrix.

The limiting fines content (LFC) is a threshold value over

which further addition of silt in the sand matrix led to

loosing of intergranular contacts between sand particles.

Fig. 3 X-ray diffraction pattern and microscopic view of various soils obtained from the XRD and microscopic analysis (magnification

factor = 20) a Sone sand, b Ganga sand and c Silt
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The schematic demonstration of particle arrangement in the

sand-silt matrix is shown in Fig. 5. The LFC is very much

dependent on particle shape and size and is a unique value

for every soil [20]. Using the formula given by [20], the

LFC was calculated for both Sone and Ganga river sand

and found to be 31 and 29, respectively.

3.2 Sample Saturation and Consolidation

After depositing the soil inside the split mold, the sample

cap having a screwed piston rod was placed over it. A

suction of 10 kPa was applied to the sample before

removing the split mold. Then the cell chamber was

attached, which was filled with water to apply the desired

(150 kPa) confining pressure. The pressure difference

between confining and back pressure value was kept con-

stant (i.e. 20 kPa) during saturation. The degree of satu-

ration was estimated using the Skempton’s B parameter

after every increment of confining pressure of 20 kPa.

Once the desired degree of saturation (greater than 99%)

was achieved, the soil specimens were isotropically con-

solidated to an effecting confining pressure of 150 kPa. At

the time of consolidation, the volume change was measured

from the volume of water, leaving the system through the

back pressure line and getting collected into the volume

change indicator device. The soil samples were allowed for

consolidation until the volume change has become almost

constant. The pre- and post-consolidation relative density

of Sone and Ganga sand at different silt percentage are

shown in Fig. 6.

3.3 Cyclic Loading

Earthquake loading is highly irregular and is applied to a

soil deposit in all three directions. Most of the laboratory

cyclic triaxial testing generally apply unidirectional uni-

form cyclic loadings under stress-controlled or strain-con-

trolled condition. Previous studies claimed that the results

obtained from the stress-controlled test consist of unac-

ceptable scattered test data and is very sensitive to sample

disturbances, unlike in strain-controlled testing [39]. Cyclic

shear strain (c) is a fundamental parameter governing the

cyclic response of sand [40–42]. According to Muley et al.

[13] and Vucetic and Dobry [39], excess pore water pres-

sure generation is controlled mainly by the level of induced

shear strains. Hence, the present study has been focused on

analyzing the behaviour of sand-silt mixture using strain-

controlled cyclic triaxial tests. After attaining constant

volume change, all the soil specimens were loaded at dif-

ferent cyclic axial strain displacement amplitudes [i.e., ±

0.1 mm (e = 0.13%), ± 0.5 mm (e = 0.66%) and ± 1 mm

(e = 1.31%)] with a frequency of 0.5 Hz. The cyclic shear

strains corresponding to axial strain levels of 0.13%, 0.66%

and 1.31re 0.2%, 0.99% and 1.97% respectively.

4 Test Results and Discussion

4.1 Effect of Soil Type on Liquefaction Strength

The comparison of liquefaction potential of Sone and

Ganga sand has been carried out based on the mean grain

size diameter ratio (D50 sand/D50 silt) at the axial strain of

0.66% (± 0.5 mm amplitude). Theoretically, it has been

considered that a soil reaches initial liquefaction when the

EPWP ratio (ru) becomes 1, but in practice, it is considered

that the soil liquefies before the EPWP value reaches unity

[43]. The liquefaction initiation is considered here when

EPWP ratio reaches equal to 0.9. Figure 7 presents the

liquefaction behaviour of Ganga and Sone sand mixed with

various percentages of non-plastic silt. Figure 7a, b present

the development of maximum EPWP ratio (ru max) [44] in

Fig.4 Cyclic triaxial apparatus used in this study

Table 3 Details of cyclic triaxial experiments performed in this study (effective confining pressure = 150 kPa)

Number of tests Sand type Silt percentages by weight (%) Axial displacement amplitude (mm) Axial strain (%) Frequency (Hz)

6 Sone river 0, 5, 10, 20, 30, 100 ± 0.5 0.66 0.5

6 Ganga river 0, 5, 10, 20, 30, 100 ± 0.5 0.66 0.5

3 Sone river 0, 20, 100 ± 0.1 0.13 0.5

3 Sone river 0, 20, 100 ± 1 1.31 0.5
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each cycle of loading. The maximum EPWP signifies the

maximum EPWP developed at a particular cycle, as shown

in the inset figures. It is quite noticeable that the soil

sample with 100% silt has the highest rate of generation of

pore water pressure, which is then followed by 30% silt soil

sample in both the cases. It is also interesting to note that a

lower rate of EPWP development is observed for speci-

mens prepared using 10% silt in both Sone and Ganga river

sand. The specimens with 5% and 20% silt content shown

more or less similar behaviour in both cases. However, in

terms of the overall scenario, it can be ascertained that the

rate of development of EPWP was higher in Ganga sand

specimens as compared to Sone sand specimens. To

demonstrate the behaviour of soil specimen when it liq-

uefies deviatoric stress and axial strain curves has been

shown in Fig. 7c, d for Ganga and Sone sand mixed with

20% silt. From the results, it can be inferred that soils have

been liquefied with in few cycles.

Alternatively, the same can be ascertained from Fig. 8.

Figure 8 delineates the number of cycles at which the soil

specimens liquefied. The very first observation is that all
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the specimens are getting liquefied within five loading

cycles only, and this is because the samples were prepared

at low relative density. It can be easily depicted that the

number of cycles required for liquefaction occurrence in

Ganga sand specimen started decreasing after increasing

the silt content beyond 10% silt in the sample. However,

the liquefaction resistance remained the same for samples

with 5% silt to 20% silt content in Sone sand and beyond

that, the liquefaction potential of specimen increased. The

similar behaviour has also been observed by [13] on Saloni

river sand impinged with different percentages of silt at an

axial strain of 0.75%

A couple of previous studies in the literature docu-

mented that the soil having a lower D50 sand/D50 silt ratio

would possess higher liquefaction potential at a lower

percentage of silt content [22, 23]. As presented in Table 2,

the D50 sand/D50 silt ratio was higher for Sone sand. It is

evident from Fig. 8 that for every silt-sand mixture, the

samples of Ganga sand-silt mixture liquefied earlier than

that of Sone sand-silt mixture. As the D50 sand/D50 silt ratio

of Ganga sand was smaller than Sone sand, due to which

the silt particles found it difficult to fit themselves in the

intergranular voids of Ganga sand grains. This peculiar

characteristic of Ganga sand results in pushing of its grains

apart from each other, which in turn reduces the liquefac-

tion resistance at even lower fines content. The results

obtained in this study gives very good affirmation to the

findings of Monkul and Yamamuro [23] because at the

same relative density, same confining pressure and same
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fine content, the liquefaction susceptibility is higher for the

soil having less D50 sand/D50 silt ratio.

4.2 Effect of Silt Percentage on EPWP Model
Parameter F

As discussed in the previous subsection, the liquefaction

strength of studied natural soil depends on the strain

amplitude and the silt percentage present in that soil. Dobry

et al. [40] proposed a mathematical model for EPWP

generation in the soil which was based on the observation

from a series of strain-controlled cyclic triaxial tests. The

proposed equation is as follow:

1

ru
¼ 1

p
þ 1

pFfN cc � ctvcð Þs ; ð1Þ

where p, F and s are the model parameters, f = 1 or 2

depending on whether the loading is one or two-directional,

cc = cyclic shear strain amplitude and ctvc = threshold

cyclic shear strain amplitude. Based on the literature, it has

been observed that the reciprocals of maximum EPWP

ratio and the number of cycles followed a linear relation-

ship between them [25]. The Eq. (1) can be represented

using the following expression:

1

ru
¼ x

1

N
þ y: ð2Þ

In the modified equation, ru is the maximum EPWP ratio

in each loading cycle, and N is the number of loading

cycles. The intercept y is almost equal to 1 as the maximum

EPWP ratio development in all the cyclic triaxial tests

reaches close to unity at the end of the test. So, the

parameter p, which is reciprocal of y is also close to 1.

However, the slope x is different for different strain

amplitudes and effective confining stresses. In the present

study, the loading was one-dimensional (1-D), so f was

considered as 1, the parameter s also considered as a unity,

and the threshold shear strain value was considered as

0.015%.

4.2.1 Variation of the Slope of 1/ru and 1/N Plot
at Different Silt Content

Figure 9 presents the result of strain-controlled cyclic tri-

axial tests performed on silt intruded Sone and Ganga sand

in terms of 1/N and 1/ru for 0.66% axial strain. At a par-

ticular shear strain with a y-intercept of 1/p an inverse slope

of g ccð Þ. exists in the figure (as shown in Fig. 9), where

g ccð Þ ¼ F cc � ctvcð Þs. The slope has become lowest until

the silt content reaches 10% of the total weight of sand in

the mixture and increases after that for further increases in

the silt content. It is because the silt particles are filling

inside the voids of sand skeleton initially. Due to the lower

voids, less amount of EPWP has been develop. After a

certain percentage (10% in this study) of silt intruded in the

sand matrix, sand particles lose contact and start floating in

the silt matrix. The variation of the slope with the increase

in silt content for various axial train levels has been pre-

sented in Fig. 10. It has been observed that this change in

the slope due to change in the silt content is less at lower

shear strain and more at higher shear strain (shown in

Fig. 10). At higher strain, EPWP developed very quickly,

which causes a rapid increase in the slope (also observed in

[25]).

4.2.2 Variation of EPWP Model Parameter F Depending
on the Silt Content for Various Sands

The EPWP model parameter F also has been followed a

similar trend, as shown in Fig. 11. Tests have been
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Fig. 9 Relationship between 1/ru and 1/N for different percentage of

silt intruded (e = 0.66%) in a Sone sand, b Ganga sand
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performed at intermediate silt contents also at a shear strain

level of 0.99% to identify the variation of EPWP model

parameter F. It has been observed from results that for

0.99% shear strain, it decreases up to 10% silt content and

increases after that. Further, the variation of EPWP model

parameter F has been compared for Ganga sand also (as

shown in Fig. 12) for an applied shear strain of 0.99%. It

can be observed from the figure that for both Ganga and

Sone sand, the EPWP model parameter F decreases ini-

tially with the increase in the silt content up to 10% and

then increases. The possible reason behind it could be the

silt dominated soil skeleton formation at higher silt con-

tents in the soil mixture as discussed in Fig. 5 and also by

[45].

4.3 Effect of Strain Rate

To evaluate the effect of strain rate on cyclic behaviour of

sand-silt mixture, the analysis on Sone sand and non-plastic

silt mixed samples has been carried out at two other axial

displacement amplitudes also, i.e., at ± 0.1 mm and ±

1 mm. The liquefaction resistance of Sone sand has started

decreasing after 20% silt content (as shown in Fig. 8) and

which is considered here as threshold silt content. Hence to

rationalize, the tests were carried out on three specimens

(Sone sand with 0%, 20% and 100% silt contents). Table 4

presents the number of loading cycles at which ru max = 0.9

developed at axial displacement amplitudes of 0.1 mm,

0.5 mm and 1 mm. It is evident from the table that soil

specimen with 100% non-plastic silt is highly susceptible

to liquefaction. However, it has also been observed that at

higher axial strain levels (0.66% and 1.31%) the number of

cycles required for ru max = 0.9 is almost the same for all

three specimens.

Jiaer et al. [43] have discussed that shear strain (c)
serves as a very good criterion for seismic performance

assessment purposes and the relation between shear and

axial strain in undrained triaxial tests is ‘‘c ¼ 1:5� �’’.

Thus in an attempt to showcase the results in terms of shear

strain, Fig. 13 portrays the generation of maximum EPWP

ratio in each loading cycle for the soil samples tested at

three different shear strains (0.2%, 0.99% and 1.97%). It is

quite obvious that a faster rate of EPWP generation has

been observed for specimens tested at higher strain

amplitudes, and the same can be observed from Fig. 13b, c.

Although at higher strains, the ru max has become 0.9 within

few loading cycles only. However, a contrasting rate of

EPWP generation behaviour can be observed for the

samples tested at a comparatively lower strain level (shown

in Fig. 13a). It is because the soil samples have been pre-

pared at very low relative densities (Dr = 10–25%) due to

which they are unable to withstand for longer at higher
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shear strains. Vis-a-vis the effect of silt can be observed at

lower shear strains, i.e., increasing silt content, the lique-

faction resistance found to be decreasing.

Hazirbaba and Rathje [46] documented that the rate of

generation of EPWP for the sand specimen with 0% and

20% silt content at c = 0.3% were quite identical which is

also having very good agreement to the behavior observed

in the present study as shown in Fig. 13a. While little

discrepancy observed in the behaviour of sand specimen

with 20% silt at c = 0.2% with the study conducted by

Hazirbaba and Rathje [46] can be justified by the presence

of more percentage of finer silt particles in the latter case.

A higher percentage of fines led to higher pore water

pressure development per cycle. As can be observed from

the particle size distribution curve shown in Fig. 1 that the

particle size of silt used in the present study is ranging from

75 lm to about 20 lm while the silt used in the study

conducted by Hazirbaba and Rathje [46] has a minimum

particle size of 2 lm.

It is evident that despite varying strain levels, the

development of pore water pressure with loading cycles

was observed more in the soil specimen having 100% non-

plastic silt. Thus it can be easily claimed now that the non-

plastic fines are highly susceptible to liquefaction. On

comparing clean sand and sand specimen with 20% non-

plastic silt, the development of pore water pressure was

observed more or less similar at a shear strain of 0.9% and

1.75%. However, a small discrepancy has been observed at

a shear strain of 1.75% where the rate of pore water

pressure generation is a little bit more than that of clean

sand. This anomaly in seismic behaviour of sand can be

occurred because, at higher strains, sudden large magni-

tudes of loads are applied. Sudden load application is more

like an application of impact loads, and thus higher pore

pressure generation takes place in the soil specimen with

less percentage of voids.

5 Conclusion

A series of 18 strain-controlled cyclic triaxial tests were

performed using the servo-hydraulic controlled cyclic tri-

axial testing equipment. The major distinction of this

present study is modifying the EPWP model parameter

F for non-plastic silty sands. The EPWP model parameter

F has been expressed here as a percentage of silt present in

two different sand matrixes. The cyclic behaviour of sand

with varying percentage of non-plastic silt has been

assessed and explained in terms of mean grain diameter

Table 4 No. of cycles required for liquefaction at various axial strain

levels for Sone sand

Soil specimens e = 0.13% e = 0.66% e = 1.31%

100% sand ? 0% silt 100 3 3

80% sand ? 20% silt 88 5 2

0% sand ? 100% silt 41 3 1

All the values are rounded up to the nearest integer
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ratio (D50 sand/D50 silt). Following conclusion can be drawn

from this study:

• Higher rate of excess pore water pressure generation

has always been observed for the soil specimen

prepared with 100% non-plastic silt at all strain levels.

The rate of excess pore water pressure generation was

initially found to decrease till 20% and 10% non-plastic

silt content in Sone and Ganga sand, respectively. This

behaviour was mainly observed because till this time

the silt particle could accommodate themselves inside

the sand matrix without effecting their intergranular

contact.

• Among Sone and Ganga sand, the liquefaction suscep-

tibility of Ganga sand has been found higher than Sone

sand at the same relative density, confining pressure,

strain level and fines content. Hence, it can be stated

that with the increase in D50 sand/D50 silt ratio, the

liquefaction susceptibility of sand decreases.

• While inspecting the behaviour possessed by Sone river

sand at various axial strain levels (i.e., 0.13%, 0.66%

and 1.31%), it was found that the effect of non-plastic

silt intrusion in the sand could be observed at the lower

strain level. The liquefaction resistance of sand

decreases with the increase in non-plastic silt proportion

at axial strain level of 0.13%. However, at higher axial

strain amplitudes (0.66% and 1.31%) the number of

cycles required for liquefaction was observed almost

the same for the soil specimen with 0%, 20% and 100%

non-plastic fines.

• Based on the Dobry’s work, EPWP model parameter

F has been modified here for various percentages of silt

for two different sands (Sone and Ganga river sand).

The EPWP model parameter F has been reduced

initially (up to 10% silt) as a function of non-plastic

silts percentage and increased after that.

It can be inferred from this study that the model

parameter F can be modified depending on the percentage

of silt particles present in the sand matrix. Further study is

required to propose EPWP model parameter F for a wider

range of silt percentages.
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