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Abstract
In this study, the use of the displacement-based fibre element (DBFE) method for modelling the nonlinear seismic response

of reinforced concrete shear wall structures with a variation of damping ratios and types of structural damping is evaluated.

The experimental seismic responses of the CAMUS I and NEES-UCSD shear wall structures are compared with nonlinear

time-history analysis results obtained using the DBFE method. Comparisons are made in terms of the absolute maximum

values of the top displacement, the base shear force, the base bending moment values and minimum differences between

overlaps of top displacement time-history graphs. The Hilber-Hughes-Taylor-a integration method is selected for the

dynamic solution algorithm. Recommendations are made for appropriate damping ratios for stiffness-proportional, mass-

proportional, and Rayleigh damping to be used for the structural damping of nonlinear seismic analyses of the shear walls.

The minimum difference between experimental and numerical analysis results is obtained less than 11% using Rayleigh

damping. Additionally, the optimal number of fibre elements is researched with regard to the ratio of the mean length of the

fibre elements to the longitudinal length of the shear wall. When the ratio is smaller than 3%, the differences between

experimental and numerical analysis results for both shear walls are less than 2% at the optimal damping ratios.

Keywords Shear wall structures � Displacement-based formulation � Nonlinear time-history analysis, � Damping types �
Fibre element number

1 Introduction

Proper numerical modelling of the shear walls under seis-

mic loads has been a very important research subject for

decades. Although there are many experimental studies in

the literature which investigate the behaviour of reinforced

concrete (RC) shear walls against lateral loading, there are

still uncertainties with regard to the best numerical

approach and the best damping ratio in the modelling of

shear walls [1–3]. These uncertainties should be investi-

gated, and some recommendations should be made for

designers of RC shear wall structures. The seismic per-

formance of RC shear walls has been simulated using

different modelling approaches [4–7]. Beam-column ele-

ments comprised of nonlinear rotational and axial springs

were used in the most common modelling approach. These

elements were located at the centreline of the wall in the

vertical direction. Changing the neutral axis location,

rocking the wall and rotating the fixed end are some of the

deficiencies of the beam-column element model. These

deficiencies were addressed by the use of a three-vertical-

line-element model (TVLEM) based on the beam-column

element model. TVLEM consisted of two vertical line

elements at both sides and a vertical line element at the

centreline of the wall. The element at the centreline of the

wall includes three different nonlinear springs in the bot-

tom side of the wall (vertical, horizontal and rotational).
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These vertical line elements were connected to rigid beams

at their ends.

The multiple-vertical-line-element model (MVLEM), a

modified version of TVLEM, was developed [8]. This

model refined the definition of the flexural response of the

wall by using multiple uniaxial elements in parallel.

Another analytical model based on MVLEM which is

similar to the macroscopic fibre model was developed by

Orakcal [8]. In this model, a series of uniaxial elements

called ‘‘macro fibres’’ were used to simulate the flexural

behaviour of the RC shear wall. The force–displacement

relations and the stiffness properties of the macro fibres

were defined using cyclic constitutive models and the area

assigned for these uniaxial elements. The definition of the

cross-section of the shear wall was further refined by the

use of additional uniaxial elements. The fibre element

model used in this study is based on the nonlinear beha-

viour of uniaxial elements (fibres). Therefore, we investi-

gate the effectiveness of using fibre elements on the

numerical modelling of the shear walls structures.

A lumped plastic hinge model and a distributed plastic

hinge model are used for the numerical modelling of

nonlinear behaviour of the RC structural elements. The

lumped plastic hinge modelling approach is preferred in

most modelling programs because of its simplicity and the

reduced computational time used. Recently, the distributed

plastic hinge model has been developed for the more

accurate prediction of the nonlinear behaviour of RC

structural elements. In the distributed plastic hinge model,

the cross-section of the structural elements is divided into

steel and concrete fibre elements. In the model, the core

concrete, the cover concrete and the steel reinforcement in

the cross-section of each element are taken into account

using the linear superposition principle. The nonlinear

behaviour of these sections enables a more precise calcu-

lation of the behaviour of structural elements. This model,

which is based on both force-based and displacement-based

formulations, is also known as the fibre element model.

The Fibre Element Model was used in several numerical

studies to observe the nonlinear behaviour of RC structural

elements (i.e., beams, columns or shear walls) [9–12].

Although these previous studies converged numerically,

there are still uncertainties about the following aspects of

the model: the damping type and ratio of the structure, the

number of fibres in the element cross-section and the

number of integration points in the direction of the element

axis.

Though some recommendations are given in the litera-

ture, there are still uncertainties about the damping ratio of

RC shear wall structures. In most modelling programs,

seismic design spectra are defined according to a 5%

damping ratio, which also commonly assumed in structural

analyses. However, some researchers recommended a

damping ratio of 3% as appropriate for all vibration modes

in the design stage of the RC shear wall structures under

the seismic loading by accepting the findings of Fritz et al.

[13, 14]. In an experimental study which investigated the

dynamic properties of RC shear wall structures, damping

ratios of 27 RC shear wall structures ranged between 1 and

4%. This experimental study was reported according to

ambient vibration test results. A mean damping ratio of 2%

was calculated from 107 damping values. It was stated that

the damping ratio is critical between 3 and 4%. Moreover,

the damping ratio was shown to be independent of the

building height, the number of stories and the natural fre-

quency of corresponding mode [14].

In this study, the displacement-based fibre element for-

mulation is used for nonlinear seismic analysis of the RC

shear walls. The optimal number of fibre elements in the

cross-section of the wall is investigated. Two different RC

shear wall structures were analysed against two sample

earthquake loadings. We determined the optimal number of

fibre elements and the optimal damping ratio for three

different damping types. The feasible range of the damping

ratio of RC shear wall structures is also investigated by

comparing previous experimental results with new

numerical results. The number of integration points is taken

as a constant in the numerical solutions. Nonlinear time-

history analyses are conducted by SeismoStruct software

[15]. This software is commonly utilized in the literature

and gives good agreement between experimental and

numerical results [16, 17].

2 Fibre Element Method

The Fibre Element Method uses beam-column elements

consisting of longitudinal fibres in each cross-section of the

element. In this approach, cross-sections which are planar

before bending are assumed to remain planar after bending.

The sections are perpendicular to the reference axis. The

effects of cracking and tension stiffening are included by

modifying the stress–strain relation of RC based on the

smeared crack concept of finite element analysis. The

method does not consider cracking and bond-slip effects.

The geometric centroids of the sections are treated as a

straight line which coincides with the reference axis due to

the reference axis being fixed. Any element which does not

coincide with the reference axis is divided into sub-ele-

ments. These sub-elements connect the centroids of the

sections [18]. A fibre beam-column element is divided into

cross-sections which are located at the numerical integra-

tion points. A schematic view of the fibre beam-column

element and integration sections is shown in Fig. 1. The

behaviours of the element and the structure are affected by

302 International Journal of Civil Engineering (2021) 19:301–318

123



the number of sections in the element and the number of

fibres in the section.

2.1 Fibre Element Formulation of the Beam-
Column Element

In this section, the displacement-based fibre element

(DBFE) formulation of the beam-column element is

introduced. The formulation is based on a three-dimen-

sional law for the concrete and steel fibre elements in the

cross-section. In the elements, axial and bending

responses are obtained by decoupling the elements from

the shear responses of the section. The section stiffness

matrix is obtained by using the areas, coordinates and

tangent elasticity modulus of each fibre and layer (i.e.,

concrete and reinforcement) in each segment. The tan-

gent elasticity modulus of each concrete/reinforcement

pair can be calculated using the uniaxial stress–strain

relationship of each material. The linear superposition

rule is used to incorporate the different fibre material

properties in the section. The resulting section forces and

section tangent stiffness matrix can be written as

follows:

kðxÞ ¼

Pn
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Ef Af 0 0 0
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where n is the number of fibres in the section; rf , Af and

Ef are the stress, area and tangent elasticity modulus of

each fibre, respectively; yf and zf are the distance between

the centroid of the fiber and the centroid of the section; G

is the shear modulus; ASy and ASz are the reduced areas

for shear stress in directions of y and z; respectively; yc
and zc are the local coordinates of the shear centre of the

section; and J is the polar moment of inertia of the sec-

tion [18, 19].

The nonlinear response of the fibre beam-column ele-

ment depends on the nonlinear response of the fibres. The

material models of the fibres have more importance for the

validity of the numerical solutions. In this study, the

modified version of Menegotto and Pinto steel model [22]

and Mander-Priestley-Park model [21] are selected to

model the nonlinear behaviour of the reinforcement and the

concrete, respectively (Fig. 2).

2.2 Geometric Nonlinearity of the Beam-Column
Element

The geometrically nonlinear behaviour of the reinforced

concrete frame elements is taken into account as P-D
effects. Using a total co-rotational formulation, the defor-

mations relative to the chord of the frame are included in

the calculation [23]. The formulation is based on the

kinematic transformations related to the three-dimensional

displacement and rotations. Additionally, small deforma-

tions relative to the chord of the frame are considered, in

spite of large nodal displacement and rotations. The frame

element has six degrees of freedom in the local coordinate

axis system as seen in Fig. 3a. The displacement in the

direction of the element axis is D and each node has three

rotational degrees of freedom around the 1, 2 and 3 local

axes. The internal forces are calculated using these degrees

of freedom (Fig. 3b).

3 Numerical Investigation

In this study, numerical analyses of shear walls were

investigated using Fibre Element Method which includes

displacement-based formulations. The method was applied

to two shear wall structures: CAMUS I and NEES-UCSD.

CAMUS I and NEES-UCSD are a 5-story shear wall

structure scaled by 1/3 and a full-scale seven-story shear

wall structure, respectively. Shaking table test results of the

shear wall structures were compared with numerical anal-

ysis results. SeismoStruct software was used for nonlinear

seismic (dynamic) analyses of the walls. Geometric non-

linearity was included in all solutions of the shear wall

structures [24, 25].

y

z

Integration Points

x

Steel fibersConcrete fibers

Cover concrete (unconfined)

Core concrete (confined)

Fig. 1 The schematic view of fibre beam-column element, integration points and cross-sections [15]
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3.1 Dynamic Solution Algorithm
of the Structures

The equation of motion for the building including the linear

elastic material assumption can be written as:

M½ � af g þ C½ � vf g þ K½ � uf g ¼ M½ � if g ag ð2Þ

where af g, vf g and uf g are the relative acceleration,

velocity and displacement and for the building, respec-

tively; if g is the influence vector; ag is the ground accel-

eration; and M½ �, C½ � and K½ � are the mass matrix, damping

matrix and stiffness matrix of the building.

In the nonlinear behaviour model, an improved form of

Eq. (2) according to Hilber-Hughes-Taylor-a (HHT-a)
integration method can be written as,

M½ � af giþ1þð1þ aÞ C½ �iþ1 vf giþ1�a C½ �i vf giþð1
þ aÞ Ff giþ1�a Ff giþ1

¼ ð1þ aÞ Fg

� �
nþ1

�a Fg

� �
n

ð3Þ

where Ff g is the internal load vector; Fg

� �
is the external

load due to ground acceleration vectors; subscripts i and n

are the indices of the nonlinear solution and external load

step, respectively; and a is a parameter controlling the

numerical dissipation. To ensure second-order accuracy

and unconditional stability, these parameters should be

chosen such that,

a 2 � 1

3
; 0

� �

; b ¼ 1

4
ð1� aÞ2; c ¼ 1

2
� a ð4Þ

In this study, a is - 0.10 and b and c are the Newmark

parameters. C½ �i, the changing damping matrix in each

iteration step, is obtained by

C½ �i¼ ac � M½ � þ bc � K½ �i ð5Þ

where ac and bc are the mass matrix and the stiffness

matrix coefficients for Rayleigh damping (both) [26].

These coefficients are defined by the natural frequencies of

the two effective modes. The damping matrix can also be

calculated using only the mass matrix, only the stiffness

matrix or a combination of both matrices. For all three

types of damping, these coefficients are calculated using

only the natural frequency of the mode with the highest

mass participation ratio.

3.2 Numerical Modelling of CAMUS I Shear Wall

The CAMUS I shear wall structure was tested on the

shaking table at Azalée (France). The structure consisted of

two identical RC shear walls parallel to each other. These

shear walls were connected by rigid diaphragms. The

structure has 5 floors and the height of each floor is 0.9 m.

The footing height of the wall is 0.6 m. Thus, the total

height of the shear wall is 5.1 m from the base. The

thickness and width of the shear walls are 0.06 m and

1.7 m, respectively. Slabs measuring 1.7 9 1.7 m were

placed between the two parallel shear walls. Reinforcement

details for each floor are given in Fig. 4. Four different

longitudinal reinforcement bars were used whose diameters

were 4.5, 5.0, 6.0, and 8.0 mm. In the modelling process,

Fig. 2 a Modified Menegotto and Pinto steel model [20] and b Mander-Priestley-Park concrete model [21]

(a) (b)

Fig. 3 a Local degrees of freedom and (b) internal forces of the

beam-column frame element
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5 mm diameter steel bars at 170 mm spacing were used for

stirrups instead of 3 mm diameter with 60 mm spacing to

provide an equal shear reinforcement ratio. The tensile

strengths of steel bars changed between 430 and 570 MPa

according to tensile test results. In the numerical model, the

mean of this value, 500 MPa was used for the tensile

strength of the steel reinforcement [19].

The compressive strength and elasticity modulus of the

concrete were taken as 35 MPa and 28,000 MPa, respec-

tively [19]. Tensile strength f t is calculated by;

ft ¼ 0:5563
ffiffiffiffiffi
fck

p
ð6Þ

where f ck is the uniaxial compressive strength of the con-

crete [27]. The units in Eq. (6) are MPa. The tensile

strength of the concrete was calculated to be 3.291 MPa by

using this equation.

The recorded motion of the 1957 San Francisco earth-

quake was the third earthquake load studied in the exper-

imental investigation. This earthquake has high

accelerations in a narrow time interval and the PGA (peak

ground acceleration) of the earthquake is 1.11 g. The

acceleration values and the time axis of the 1957 San

Francisco earthquake were scaled by a factor of 2 and

1=
ffiffiffi
3

p
in the experimental program, respectively (Fig. 5).

The maximum acceleration value is 1.11 g [24]. The

absolute maximum values of displacement at the top of the

structure, shear force and bending moment at the base level

(at 0.0 m altitude) were recorded as 13.20 mm, 112 kN and

324 kN m, respectively.

We carried out time-history analyses of the shear wall

using SeismoStruct. In the software, the finite element

method is used for the global solutions of the walls and the

fibre element method is used for the calculation of the

nonlinear behaviour of the cross-sections of the structural

elements. The finite element model of the shear wall is

given in Fig. 6. In this model, 14 nodes and 12 elements

were used. In the fibre element model calculations, 4

integration points were selected. However, different num-

bers of fibre elements were used to observe the effect on

numerical solutions. The maximum iteration numbers

chosen for the global solution and for the element solutions

were 50 and 300, respectively.

Top displacement time-history graphs of the RC shear

wall structure from experimental and numerical analysis

results were compared. The damping ratio, the damping

type and the number of fibre element were used as variable

parameters for the comparison process. In the first solution

phase, the number of fibre elements was initially set to 250.

Fig. 4 Reinforcement details of the CAMUS I structure [19]

Fig. 5 Acceleration time-history graph of 1957 San Francisco

earthquake [24]

Fig. 6 Finite element model of CAMUS I structure and discretization

of the shear wall
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This value was varied to investigate the effectiveness of the

fibre element method on shear walls. The cross-section of

the shear wall and discretization of the fibre elements are

shown in Fig. 6. In the figure, lf represents the mean length

of fibre elements and Lw represents the length of shear wall.

The natural frequencies of the structure were calculated

using eigenvalue analysis. Effective modal mass percent-

ages are given in Table 1, where, Ux, Uy and Uz are the

displacements for the effective modal mass in the x, y and z

directions, respectively. Rx, Ry and Rz, the rotations for

effective modal mass around x, y and z axes, are also given.

Table 1 shows that the mass participation ratio of mode 3 is

the highest among the modes. Therefore, the natural fre-

quency of mode 3 was used in the stiffness- and mass-

proportional damping calculations. In the Rayleigh damp-

ing calculation, the natural frequency of mode 1 was used,

since it has the second-highest mass participation ratio

among all modes.

In a typical RC structure, the damping ratio generally

changes between 1 and 10%. In some special cases,

damping ratio may exceed 15% [28]. Therefore, in the first

solution phase of the study, numerical results were

obtained using 2%, 3% and 5% damping ratios. The model

was calibrated by changing the damping ratio based on

these obtained results. All the solutions of the first phase

were obtained according to stiffness-proportional, mass-

proportional and Rayleigh damping calculations. The tan-

gent stiffness matrix was used for the structural damping

calculation. Top displacement time-history graphs of the

shear wall were obtained under the San Francisco earth-

quake loading for the three damping ratios and the results
Fig. 7 Comparison of experimental results with numerical analysis

results of CAMUS I obtained for (a) stiffness-proportional, (b) mass-

proportional and (c) Rayleigh damping types at 2% damping ratio

Table 1 Effective modal mass pe rcentages of CAMUS I structure

Mode Period Ux (%) Uy (%) Uz (%) Rx (%) Ry (%) Rz (%)

1 0.824014 0.00 64.01 0.00 34.21 0.00 0.00

2 0.136322 0.00 19.72 0.00 14.93 0.00 0.00

3 0.121107 70.45 0.00 0.00 0.00 1088.45 0.00

4 0.119675 0.00 0.00 0.00 0.00 0.00 1028.37

5 0.095043 0.00 0.17 0.76 0.31 0.00 2.23

6 0.049906 0.00 6.49 0.00 8.17 0.00 0.00

7 0.032248 0.00 3.14 0.01 4.63 0.00 1.00

8 0.019811 0.00 0.91 0.00 1.52 0.00 254.13

9 0.019420 19.88 0.00 0.00 0.00 254.70 0.00

10 0.017280 0.00 6.11 0.00 10.61 0.00 57.07

11 0.006804 5.08 0.00 0.00 0.00 114.07 0.00

12 0.006087 0.00 0.13 66.10 0.20 0.00 2.08

13 0.004773 0.00 0.59 0.19 0.92 0.00 8.98

14 0.003387 1.58 0.00 0.00 0.00 43.54 0.00

15 0.002081 0.42 0.00 0.00 0.00 12.92 0.00

16 0.000969 2.59 0.00 0.00 0.00 89.80 0.00
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are given in Figs. 7, 8 and 9. According to the numerical

results, solutions with the damping ratio of 2% converged

until t = 4.58 s, t = 4.11 s and t = 4.33 s for stiffness-

proportional, mass-proportional and Rayleigh damping,

respectively. After these times, solutions were not obtained

due to divergence. Additionally, solutions for stiffness-

proportional, mass-proportional and Rayleigh damping at

3% damping ratio were divergent at t = 4.94 s, t = 4.35 s

and t = 4.79 s, respectively. Although the solution for

mass-proportional damping completed for 5% damping

ratio, solutions for stiffness-proportional and Rayleigh

damping types cannot be obtained after t = 5.02 s and

t = 5.19 s, respectively.

Differences between experimental and numerical results

are shown in Table 2 for the three damping types and the

ratios. As seen in this table, the minimum differences

between experimental and numerical results were obtained

as 5.74% for the stiffness-proportional damping type at 2%

damping ratio, 11.67% for the mass-proportional damping

type at 3% damping ratio, as 6.77% for the Rayleigh

damping type at 2% damping ratio. The best approximation

within these nine solutions was obtained for stiffness-pro-

portional damping type at 2% damping ratio.

The model was refined by changing the damping type

and the damping ratio for the best approximation to the

experimental results. Therefore, different damping ratio

values from 2%, 3% and 5% were used for the three

damping types. According to the numerical results, a dif-

ference of 0.04% from the experimental data was obtained

for the stiffness-proportional damping type at 2.31%

damping ratio. Numerical solution steps for this model

could be obtained until 4.60 s. For the mass-proportional

damping type at 3.20% damping ratio, a difference of

1.71% was calculated and numerical solution steps could

be obtained until 4.68 s (Fig. 10).

Combinations of 2.31% and 3.20% damping ratios and

the natural frequencies of mode 1 and mode 3 were used

for the calculation of Rayleigh damping coefficients. The

first combination used mode 1 for the first natural

Fig. 8 Comparison of experimental results with numerical analysis

results of CAMUS I obtained for (a) stiffness-proportional, (b) mass-

proportional and (c) Rayleigh damping types at 3% damping ratio

Fig. 9 Comparison of experimental results with numerical analysis

results of CAMUS I obtained for (a) stiffness-proportional, (b) mass-

proportional and (c) Rayleigh damping types at 5% damping ratio
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frequency with a 2.31% damping ratio and mode 3 for the

second natural frequency with a 3.20% damping ratio. The

difference between experimental and numerical results was

calculated as 1.62% for the first combination. The second

combination used mode 3 with a 3.20% damping ratio for

the first natural frequency and mode 1 with a 2.31%

damping ratio for the second natural frequency. The dif-

ference between experimental and numerical results was

observed as 20.81% for this combination. Numerical

solution steps of the first and the second combinations

could be also obtained until 4.44 s and 4.91 s, respectively

(Fig. 11).

Time-history graphs of the numerical solutions coin-

cided more with the experimental results, especially

between the time interval of t = 2.5–3.1 s. Differences

between frequencies and amplitudes were observed after

t = 3.1 s. Consequently, this time interval was used in the

comparison stage of the time-history graphs.

Comparisons of damping types were carried out

according to differences between experimental and

numerical analysis results in terms of absolute maximum

Fig. 10 Comparison of experimental results with numerical analysis

results of CAMUS I obtained for (a) stiffness-proportional damping

type at 2.31% damping ratio and (b) mass-proportional damping type

at 3.20% damping ratio

Fig. 11 Comparison of experimental results with numerical analysis

results of CAMUS I obtained for (a) 2.31–3.20% damping ratios and

(b) 3.20–2.31% damping ratios for Rayleigh damping type

Table 2 Comparison of experimental results with numerical analysis results of CAMUS I structure obtained for 2%, 3% and 5% damping ratios

Damping

type

Damping

ratio (%)

Top displacement Base shear force Moment

Absolute

maximum

value (mm)

Difference between

Exp. and Num.

analysis (%)

Absolute

maximum

value (kN)

Difference between

Exp. and Num.

analysis (%)

Absolute

maximum

value (kN m)

Difference between

Exp. and Num.

analysis (%)

Stiffness-

prop

2 13.95 5.74 110.91 0.97 308.20 4.88

3 11.05 16.27 108.86 2.80 306.90 5.28

5 8.66 34.36 93.92 16.14 307.30 5.15

Mass-

prop

2 15.8 19.77 183.48 63.82 326.16 0.67

3 14.73 11.67 171.99 53.56 329.80 1.79

5 11.32 14.2 141.79 26.59 285.67 11.83

Rayleigh 2 14.09 6.77 113.35 1.20 306.29 5.46

3 11.18 15.31 109.26 2.45 305.62 5.67

5 8.71 33.98 95.48 14.75 303.37 6.37

The bold values show minimum differences between experimental and numerical analysis results
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top displacement, base shear force and base bending

moment (Fig. 12). For top displacements, if the damping

ratio selected is between 2.5% and 3%, the differences

obtained between experimental and numerical analysis

results for all three damping types are less than 16%

(Fig. 12a). The differences are defined as less than 59%

(less than 3% except for mass-proportional damping) and

6% for base shear force and bending moment for the same

interval of damping ratio, respectively. The maximum

difference observed was for mass-proportional damping

type when calculating the base shear force.

Both the minimum differences between absolute maxi-

mum top displacement values and the minimum differ-

ences between the overlaps of time-history graphs were

taken into consideration in the comparison stage. These

minimum differences were observed in three different

conditions; stiffness-proportional damping with 2.31%

damping ratio, mass-proportional damping with 3.20%

damping ratio and Rayleigh damping with 2.31–3.20%

damping ratios. In the investigation phase of the optimal

fibre element length ratio, the mean length of one fibre

element ðlfÞ was divided by longitudinal length of the shear

wall ðLwÞ. The three conditions which provide the best

approximation in all solutions were considered whilst

investigating the lf=Lw ratio. Therefore, the number of fibre

elements was changed to 100, 500, 750 and 1000 from the

conventional value of 250. Numerical results according to

the lf=Lw ratios are given in Table 3.

The optimal ratio of lf=Lw for stiffness-proportional and

Rayleigh damping was determined to be 2.78% for 250

fibre elements. This optimal ratio was identified as 0.62%

for 1000 fibre elements for mass-proportional damping.

Minimum differences between top displacement values of

the shear wall obtained from experimental and numerical

analysis results for the stiffness-proportional, mass-pro-

portional and Rayleigh damping solutions were calculated

as: 0.037% at 2.31% damping ratio, 0.376% at 3.20%

damping ratio and 1.622% at 2.31–3.20% damping ratios,

respectively. The best approximation was obtained by the

stiffness-proportional damping at 2.31% damping ratio. On

the other hand, when stiffness-proportional damping and

mass-proportional damping are selected for the CAMUS I

structure, the resulting top displacement differences using

the DBFE method are less than 0.6% for 0.76% ratio of

lf=Lw.

3.3 Numerical Modelling of NEES-UCSD Shear
Wall

A full-scale seven-story reinforced concrete shear wall

structure, built by the University of California at San Diego

(UCSD), NEES (network for earthquake engineering sim-

ulation) Consortium and Portland Cement Association

(PCA) was tested on a shaking table [19]. The structure

consisted of two types of shear walls which had pier col-

umns at each corner of the structure. The shear walls,

referred to as the flange wall and the web wall, are

Fig. 12 Comparisons of differences between experimental with

numerical results obtained for different damping types of CAMUS I

structure in terms of (a) top displacement, (b) base shear force and

(c) bending moment
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perpendicular to each other. The flange wall was connected

to the slab. The shear walls were connected to each other

via slotted connections. The basement height is 0.76 m and

the height of each floor is 2.74 m. The structure is fixed at

basement level. The total height and total mass of the

structure are 19.96 m and 226 tons. Two different cross-

sections were defined for the flange wall and web wall. The

widths of the flange wall and web walls are 4.88 m and

3.65 m. The flange wall thicknesses are 203 mm for the 7th

floor and 152 mm for the other floors. The web wall

thicknesses are 203 mm for the 1st and the 7th floor and

152 mm for other floors. The shear walls and pier columns

supported 3.65 9 8.13 m slabs for each floor. Precast piers

(post-tensioned) were connected to the web wall and slabs

through bracing. A view of the NEES-UCSD shear wall

structure and its details is shown in Fig. 13.

For longitudinal reinforcement, 12.7 and 15.9 mm

diameter steel bars were used in the web wall, but only

12.7 mm diameter steel bars were used the flange wall. At

Fig. 13 View of NEES-UCSD shear wall structure [19]

Fig. 14 The acceleration time-history graph of the 1994 Northridge

earthquake [15]

Fig. 15 Finite Element model of the NEES-UCSD shear wall

structure

Table 3 The effect of fiber element number on the solutions for the CAMUS I

Fiber element

number

lf/Lw ratio

(%)

Absolute maximum value of top displacement

(mm)

Difference between experimental and numerical

analysis results (%)

Stiffness

2.31%

Mass

3.20%

Rayleigh

2.31–3.20%

Stiffness

2.31%

Mass

3.20%

Rayleigh

2.31–3.20%

100 11.20 13.46 13.86 13.78 2.009 5.057 4.396

250 2.78 13.19 13.42 13.41 0.037 1.707 1.622

500 1.14 13.18 13.42 13.42 0.110 1.698 1.706

750 0.76 13.17 13.27 13.43 0.209 0.582 1.781

1000 0.62 13.17 13.24 13.42 0.210 0.376 1.740

The bold values show minimum differences between experimental and numerical analysis results
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the ends of both the flange wall and the web wall, a 9.5 mm

diameter steel bar with 101.6 mm spacing was used for

stirrups. The mean yield strength of the steel bars was

defined as 458.63 MPa. This value was calculated as the

mean of tensile test results of 11 specimens. The elasticity

modulus and compressive strength of the concrete were

also calculated as 29.24 GPa and 41.39 MPa. These values

were defined by mean of uniaxial compressive strength test

results of 10 specimens [19]. Thus, the uniaxial tensile

strength of the concrete was computed to be 3.580 MPa

using Eq. (6). For the seismic input, the record of the1994

Northridge earthquake taken at the Sylmar Olive View

Medical Centre was used. The acceleration time-history

graph of the 1994 Northridge earthquake is given in

Fig. 14. The earthquake had a magnitude of 6.7, measured

by released energy. The earthquake had high accelerations

in a narrow time interval. The maximum acceleration value

is 0.83 g [19]. Absolute maximum values of displacement,

shear force and bending moment from the experimental

results were recorded as: 395 mm at the top of the struc-

ture, 1184.7 kN and 11,839.4 kN�m at the base level,

respectively.

In this section of the study, the seismic performance of

the NEES-UCSD shear wall structure was investigated

using the DBFE method. The NEES-UCSD shear wall

structure was modelled with 56 nodes and 14 elements. The

finite element model of the structure is shown in Fig. 15.

The number of integration points for each element was

selected as 4. The maximum iteration numbers chosen for

the global solution and for the element solutions were 50

and 300, respectively.

Numerical analysis results were compared with experi-

mental results according to top displacement time-history

graphs. For the numerical analyses, variable parameters

were specified as the damping type, the damping ratio and

the number of fibre elements. The first solution stage used

250 fibre elements were used. Subsequently, the number of

Table 4 Effective modal mass percentages of NEES-UCSD structure

Mode Period Ux

(%)

Uy

(%)

Uz

(%)

Rx

(%)

Ry

(%)

Rz

(%)

1 2.123972 0.00 0.02 0.07 0.19 0.00 0.00

2 0.514932 23.68 0.00 0.00 0.00 9.85 42.09

3 0.473033 0.00 64.37 0.00 30.76 0.00 0.00

4 0.248135 41.24 0.00 0.00 0.00 18.14 23.11

5 0.139734 0.01 0.00 0.04 0.05 0.03 0.50

6 0.085337 6.96 0.00 0.00 0.00 8.55 13.18

7 0.084365 0.00 0.00 48.48 0.01 0.00 0.00

8 0.077571 0.00 20.62 0.00 24.22 0.00 0.00

9 0.042680 0.00 0.00 0.02 0.09 0.00 0.06

10 0.040835 13.60 0.00 0.00 0.00 14.75 6.96

11 0.030640 2.22 0.00 0.00 0.00 4.23 4.74

12 0.028455 0.00 0.00 5.08 0.00 0.00 0.00

13 0.028031 0.00 7.32 0.00 13.94 0.00 0.00

14 0.022968 0.00 0.00 12.76 4.18 0.00 0.00

15 0.020827 0.00 0.00 14.17 2.80 0.00 0.00

16 0.020387 0.00 0.00 11.30 0.01 0.00 0.00

17 0.017284 0.00 0.01 1.47 0.16 0.00 0.00

18 0.016407 0.00 3.76 0.01 8.57 0.00 0.00

19 0.015711 1.72 0.00 0.00 0.00 3.65 1.84

20 0.014813 4.27 0.00 0.00 0.00 7.39 2.99

21 0.012710 0.00 0.01 0.67 0.03 0.00 0.01

22 0.009633 0.78 0.00 0.00 0.00 1.86 1.20

23 0.007657 0.46 0.01 4.21 0.00 0.97 0.26

24 0.007573 2.20 0.00 0.84 0.01 4.71 0.68

25 0.005029 1.51 0.05 0.02 0.15 3.68 0.03

26 0.001635 0.42 0.14 0.04 0.39 0.91 2.77

The bold values show minimum differences between experimental and numerical analysis results
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fibre elements was changed to determine the optimal fibre

element length ratio.

The natural frequencies of the structure were specified

with respect to effective modal mass percentages. Obtained

results by using eigenvalue analysis are given in Table 4.

The table shows that the mass participation ratio of mode 3

is the highest among the modes. Therefore, the natural

frequency of mode 3 was used in the stiffness- and mass-

proportional damping calculations. In the Rayleigh damp-

ing calculation, the natural frequencies of mode 3 and

mode 4 were used, since mode 4 has the second-highest

mass participation ratio among all modes.

Numerical solutions were obtained for damping ratios of

2%, 3% and 5%. The damping matrix of the structure was

calculated using its tangent stiffness matrix. Comparisons

of experimental results with numerical analysis results are

given in Figs. 16, 17 and 18 for these three damping ratios

with stiffness-proportional, mass-proportional and

Rayleigh damping types. Seismic analyses of the NEES-

UCSD structure converged for all solution steps.

In Table 5, the differences between experimental and

numerical results are shown for the three damping types

and ratios. The minimum differences between experimental

and numerical analysis results for stiffness-proportional,

mass-proportional and Rayleigh damping types were

5.77%, 0.25% and 1.29%, respectively at 3% damping

ratio. The best approximation within these nine solutions

was given by the mass-proportional damping type at a 3%

damping ratio.

The model was calibrated by changing the damping type

and the damping ratio for the best approximation to the

experimental results. Damping ratios of 2%, 3% and 5%

were used for the three damping types. A difference of

0.375% was obtained between experimental and numerical

analysis results by using stiffness-proportional damping

type at 3.91% damping ratio. A difference of 0.412% was

also obtained by using damping ratio of 3.08% for mass-

Fig. 16 Comparison of experimental results with numerical analysis

results of NEES-UCSD structure obtained for (a) stiffness-propor-

tional, (b) mass-proportional and (c) Rayleigh damping types at 2%

damping ratio

Fig. 17 Comparison of experimental results with numerical analysis

results of NEES-UCSD structure obtained for (a) stiffness-propor-

tional, (b) mass-proportional and (c) Rayleigh damping types at 3%

damping ratio
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proportional damping type. The resulting time-history

graphs of these two cases are given in Fig. 19. For the

calculation of the Rayleigh damping coefficients, combi-

nations of 3.91% and 3.08% damping ratios and natural

frequencies of mode 3 and mode 4 were used. For the first

combination, a natural frequency of mode 3 having a

damping ratio of 3.91% and a natural frequency of mode 4

having a damping ratio of 3.08% were selected. The

resulting difference for this is 6.201%. In the second

combination, a natural frequency of mode 3 having a

damping ratio of 3.08% and a natural frequency of mode 4

having aa damping ratio of 3.91% were used. The differ-

ence between numerical and experimental results is

1.704%. Time-history graphs obtained from results of the

first and the second combinations are given in Fig. 20.

Differences between experimental and numerical anal-

ysis results in terms of the absolute maximum top dis-

placement, the base shear force and the bending moment

were investigated for defining the effectiveness of damping

types in Fig. 21. For top displacements, if the damping

ratio selected is between 2.5% and 3.5%, the differences

between experimental and numerical analysis results for all

three damping types is less than 8% as seen Fig. 21a. The

differences are defined as less than 34% for the base shear

force and less than 38% for the bending moment for the

same interval of damping ratio. Maximum differences were

seen in the base shear force and the bending moment

calculations.

Time-history graphs of the numerical solutions coin-

cided best with experimental results between the t = 4–

10 s time interval. Frequency and amplitude differences

were observed after t = 10 s. This time interval was taken

into consideration in the comparison stage of the time-

history graphs. The minimum differences of the top dis-

placement values and the minimum divergences of fre-

quency/amplitude contents (closest time-history graphs)

were observed at 3.91% damping ratio for stiffness-

Fig. 18 Comparison of experimental results with numerical analysis

results of NEES-UCSD structure obtained for (a) stiffness-propor-

tional, (b) mass-proportional and (c) Rayleigh damping types at 5%

damping ratio

Table 5 Comparison of numerical analysis results with experimental results of NEES-UCSD structure for 2%, 3% and 5% damping ratios

Damping

type

Damping

ratio (%)

Top displacement Base shear force Moment

Absolute

maximum

value (mm)

Difference between

exp. and num.

analysis (%)

Absolute

maximum

value (kN)

Difference between

exp. and num.

analysis (%)

Absolute

maximum

value (kN m)

Difference between

exp. and num.

analysis (%)

Stiffness-

prop

2 444.94 12.64 928.35 21.64 8068.12 31.85

3 417.77 5.76 958.38 19.10 8171.48 30.98

5 363.54 7.96 983.88 16.95 8333.10 29.62

Mass-

prop

2 431.26 9.18 777.83 34.34 7695.40 35.00

3 395.97 0.25 789.86 33.33 7472.72 36.88

5 339.49 14.05 823.51 30.49 7275.76 38.55

Rayleigh 2 431.79 9.31 847.22 28.49 7701.57 34.95

3 400.09 1.29 880.32 25.69 7611.53 35.71

5 346.13 12.37 942.32 20.46 7358.15 37.85

The bold values show minimum differences between experimental and numerical analysis results
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proportional damping, at 3.08% damping ratio for mass-

proportional damping and at 3.08–3.91% damping ratios

for Rayleigh damping. For the investigation of optimal

fibre element number, these three conditions were used.

Numbers of fibre elements of 70, 80, 90, 100, 250, 500, 750

and 1000 were tested to obtain the optimal number. The

lf=Lw ratios and obtained numerical results according to the

fiber element numbers are given in Table 6. Minimum

differences were obtained of 0.146% at 3.91% damping

Fig. 19 Comparison of experimental results with numerical analysis

results of NEES-UCSD structure obtained for (a) stiffness-propor-

tional damping type at 3.91% damping ratio and (b) mass-propor-

tional damping type at 3.08% damping ratio

Fig. 20 Comparison of experimental results with numerical analysis

results of NEES-UCSD structure obtained for (a) 3.91–3.08%

damping ratios and (b) 3.08–3.91% damping ratios for Rayleigh

damping type

Fig. 21 Comparisons of differences between experimental with

numerical results obtained for different damping types of NEES-

UCSD structure in terms of (a) top displacement, (b) base shear force
and (c) the bending moment
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ratio for stiffness-proportional damping, 0.072% at 3.08%

damping ratio for mass-proportional damping and 1.601%

at 3.08–3.91% damping ratios for Rayleigh damping. The

best approximation was obtained with the stiffness-pro-

portional damping at 3.91% damping ratio.

The optimal ratio of lf=Lw for stiffness-proportional and

mass-proportional damping was 10.87% using 100 fibre

elements. Moreover, the optimal ratio was 0.98% for 750

fibre elements and Rayleigh damping. On the other hand,

when stiffness-proportional damping and mass-propor-

tional damping were used for the NEES-UCSD structure,

top displacement differences resulting from the DBFE

method are less than 0.5% for all numbers of fibre ele-

ments. Provided that the fibre element length is less than

21.75% of the longitudinal length of the shear wall, the

differences are less than 1% for all numerical solutions

obtained by using stiffness-proportional and mass-propor-

tional damping types for DBFE method.

3.4 Comparison of CAMUS I and NEES-UCSD
Shear Wall Structures

The differences between experimental and numerical

results of CAMUS I and NEES-UCSD shear wall struc-

tures were compared with respect to the top displacement,

the base shear force and the bending moment for each

damping type and damping ratio for investigation of the

effectiveness of numerical solutions.

The differences of the top displacement, the base shear

force and the bending moment results obtained for damp-

ing ratios between 2.0% and 2.5% are less than 13%, 22%

and 32% for stiffness-proportional damping, respectively

(Fig. 22). The differences of the top displacement, the base

shear force and the bending moment results obtained for

the same damping ratio interval are less than 11%, 29%

and 36% for Rayleigh damping, respectively (Fig. 23). Ho

wever, the differences of the top displacement, the base

shear force and the bending moment for damping ratios

between 4.5% and 5.0%, were less than 14%, 34% and

39% for mass-proportional damping, respectively (Fig. 24).

In the DBFE method, deformations are calculated in the

first phase. The base shear force and the bending moment

are calculated using the deformation values. Therefore, the

differences calculated for the base shear force and the

bending moment are greater than the top displacement

differences.

4 Conclusions

In this study, the effect of DBFE method on numerical

solutions of RC shear wall structures has been investigated.

Several time-history analyses were performed for the

CAMUS I and NEES-UCSD (Network for Earthquake

Engineering Simulation and University of California at San

Diego) shear wall structures. These shear wall structures

were subjected to the 1957 San Francisco and 1994

Northridge earthquake loadings, respectively. These

earthquakes have high accelerations in a narrow time

interval and the maximum acceleration value of the

earthquakes is between 0.83 and 1.11 g. Furthermore,

modal analyses were performed to obtain the natural fre-

quencies of the structures. Our numerical results have been

compared with previously performed experimental shaking

table test results on these two shear wall structures. Com-

parisons are carried out in terms of both absolute maximum

values and time-history graphs of the top displacements. In

the first stage of the comparison, which includes the top

displacement, the base shear force and the bending

moment, results at 2%, 3% and 5% damping ratios were

used for stiffness-proportional, mass-proportional and

Rayleigh damping types. Different damping ratios were

Table 6 The effect of fiber element number on solutions for the NEES-UCSD

Fiber element

number

lf/Lw ratio

(%)

Absolute maximum value of top displacement

(mm)

Difference between experimental and numerical

analysis results (%)

Stiffness

3.91%

Mass

3.08%

Rayleigh

3.08–3.91%

Stiffness

3.91%

Mass

3.08%

Rayleigh

3.08–3.91%

70 43.50 414.19 397.19 412.92 4.858 0.556 4.536

80 21.75 392.47 396.32 403.46 0.641 0.335 2.143

90 15.20 392.03 396.32 404.18 0.752 0.335 2.325

100 10.87 395.58 395.29 404.09 0.146 0.072 2.302

250 2.81 393.52 393.37 401.73 0.375 0.412 1.704

500 1.36 393.19 393.27 401.43 0.458 0.438 1.628

750 0.98 393.24 393.25 401.32 0.446 0.443 1.601

1000 0.71 393.22 393.23 401.36 0.452 0.447 1.610

The bold values show minimum differences between experimental and numerical analysis results
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investigated to obtain the optimal damping ratio for each

damping type until minimum differences were observed

between the experimental and numerical results. The

number of fibre elements was first selected as 250 for

numerical solutions. In order to obtain the optimal fibre

element length ratio, the fibre element number in each

cross-section of the shear walls was changed to 70, 80, 90,

Fig. 22 Comparisons of differences between experimental with

numerical results obtained for stiffness-proportional damping in

terms of (a) top displacement, (b) base shear force and (c) the bending
moment

Fig. 23 Comparisons of differences between experimental with

numerical results obtained for Rayleigh damping in terms of (a) top
displacement, (b) base shear force and (c) the bending moment
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100, 250, 500, 750 and 1000. The ratio of the mean length

of fibre elements to the longitudinal length of shear wall

ðlf=LwÞ is also taken into consideration. In the DBFE

method, obtained results from this research can be sum-

marized as follows:

• The differences of the top displacement, the base shear

force and the bending moment results obtained for a

damping ratio between 2.0% and 2.5% are less than

13%, 22% and 32%, respectively for stiffness-propor-

tional damping.

• The differences of the top displacement, the base shear

force and the bending moment results obtained for a

damping ratio between 2.0% and 2.5% are less than

11%, 29% and 36%, respectively for Rayleigh

damping.

• The differences of the top displacement, the base shear

force and the bending moment for a damping ratio

between 4.5% and 5.0% are less than 14%, 34% and

39%, respectively for mass-proportional damping.

• Within the damping types, the Rayleigh damping model

had the minimum difference (11%) between experi-

mental and numerical analysis results.

• The minimum differences of the top displacement

between experimental and numerical analysis results for

the CAMUS I and NEES-UCSD structures are calcu-

lated at 2.31% and at 3.91% damping ratios, respec-

tively, for the stiffness-proportional damping. However,

the minimum differences for the CAMUS I and NEES-

UCSD structures are determined to be 3.2% and 3.08%

damping ratios, respectively, for the mass-proportional

damping.

• The optimal number of fibre elements is determined

according to the ratio of lf=Lw ¼ 0:76% for the

CAMUS I structure and according to the ratio of

lf=Lw ¼ 21:75% for the NEES-UCSD structure. When

the ratio is smaller than 3%, the differences between

experimental and numerical analysis results for both

shear wall structures are calculated as less than 2% at

the optimal damping ratios.

• The base shear force and the bending moment are

computed by using the deformations that are obtained

in the first solution phase. Therefore, the differences

between base shear force and the bending moment are

greater than displacement differences.

• The DBFE method is usable for nonlinear seismic

analysis of reinforced concrete shear wall structures.

This subject can be extended for different soil by con-

sidered soil-structure interaction in future studies.
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