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Abstract
This paper presents a theoretical framework for developing a risk–cost optimised maintenance strategy for structures

during their whole service life. A time-dependent reliability method is employed to determine the probability of structural

failure and a generic form of stochastic model is developed for structural responses. To facilitate practical application of

the proposed framework, a general algorithm is developed and programmed in a user-friendly manner. The merit of the

proposed framework is that, in predicting when, where and what maintenance is required for the structure, all structural

components and multi-failure modes are considered. It is found in the paper that, to ensure the safe and serviceable

operation of the structure as a whole, some components need maintenance multiple times for different failure modes, whilst

other components need ‘‘do nothing’’. It is also found that ignorance of correlation amongst structural components and

failure modes would underestimate the risk of structural failures in longer term and that the components with higher cost of

structural failures require more maintenance actions. The paper concludes that the proposed framework can equip structural

engineers, operators and asset managers with a tool for developing a risk–cost optimal maintenance strategy for structures

under their management.
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1 Introduction

Civil infrastructure plays a pivotal role in a nation’s

economy, prosperity, social wellbeing, quality of life and

the health of its population. This has been well recognized

by industry, business, community and political leaders all

over the world. However, due to its long-term service,

coupled with exposure to aggressive environment and

increased demands, deterioration of infrastructure has led

to unserviceable or unsafe operation, and in some cases,

catastrophic collapses of both underground and above-

ground infrastructure. Various cases of catastrophic fail-

ures of infrastructure, such as I-35W Mississippi River

bridge [1], Sasago tunnel in Tokyo [2] and underground

water mains [3], are well documented.

The deterioration of infrastructure is clearly the main

cause of structural damage and collapse. This is a severe

global problem with consequences becoming more and

more catastrophic. One apparent solution is to replace the

deteriorated infrastructure; however, this is very costly. For

example, the replacement cost for a tunnel structure is

estimated at $250 million/km [4] and the estimated

replacement cost for national and non-national highway

system bridges in the US alone is about $52 billion [5].

More importantly, due to the ever-increasing scarcity of

resources, this solution is not sustainable and impractical

for some types of infrastructure, such as the underground

structures.
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To ensure the safe and serviceable operation of infras-

tructure, maintenance or intervention, including repairs,

strengthening, instalment, etc., for infrastructure as a

structural system is essential. The problem is how to

determine when, where and what to maintain for a structure

at a minimal risk and with effective cost. Lack of effective

maintenance strategy has resulted in a situation where safe

structures or components have been routinely maintained

unnecessarily, whilst unserviceable or near-failure struc-

tures or components have not been maintained timely,

leading to avoidable failures. It is well known that the

maintenance cost is very high for certain types of structures

and problems. For example, in the US, the annual cost for

the problem of reinforcement corrosion is about $100 bil-

lion [6]. The annual cost of maintenance for tunnels could

be as high as $150 K/km [7]. Furthermore, the cost of

structural failures is beyond estimate when it involves

casualties. Evidently, a change of such situation demands a

risk–cost-optimized maintenance strategy as proposed

here.

Various frameworks have been proposed to formulate

strategies for inspection, maintenance and decision-making

for deteriorated structures using reliability-based methods.

These maintenance strategies are based on optimisation of

inspection/repair times through minimisation of the total

costs of inspection, repair and failure [8–10]. In addition to

cost, risk, defined as the product of probability of failure

and cost, is also used in optimisation of maintenance

strategies [11–13]. Multi-objective optimisations consid-

ering reliability, risk and cost have also been investigated

[14, 15]. A review of the key aspects involved in the

maintenance and operation of structures under uncertainty

can be found in [16]. These strategies have been applied to

a variety of structural problems, e.g., reinforced concrete

(RC) bridges subjected to de-icing salts [17], steel bridges

subjected to corrosion [18] and offshore steel structures

subjected to fatigue [19].

A thorough review of the available frameworks for

maintenance strategy shows that a comprehensive mainte-

nance strategy, capable of considering multiple structural

components with different failure modes and using

advanced time-dependent reliability methods, has not been

fully developed. Although there have been some studies

that consider different failure modes, categorized as ulti-

mate and serviceability limit states [20], most of these

studies consider only a single failure mode, either ultimate

[18] or serviceability [21, 22]. Whilst maintenance strate-

gies based on the probability of structure as a system

failure rather than its component failure can be found in the

literature [23–25], these studies only consider one failure

mode for each structural component. Integration of struc-

tural components and failure modes into a single system

has not been investigated previously. More importantly, in

these studies, the probability of system failure has not been

used as a basis for calculating the structural risk but only

used as an indicator to determine the time for maintenance.

Finally, only a few maintenance strategies based on

advanced time-dependent reliability methods, e.g., the first

passage probability method, can be found [26]. Most of the

current maintenance strategies employ the Monte Carlo

simulation technique without considering the correlation in

the deterioration process over time for calculating the

probability of failure.

The intention of this paper is to propose a framework for

developing a risk–cost-optimized maintenance strategy for

structural systems. The first-passage probability method is

employed to determine the probability of structural failure.

A generic form of stochastic model is proposed for struc-

tural response with various failure modes. To facilitate the

practical application of the proposed framework, an algo-

rithm is developed and programmed in a user-friendly

manner. Two examples are provided to illustrate the

application of the developed algorithm to corrosion-af-

fected reinforced concrete structures. The significance of

the proposed framework is that it can predict when, where

and what to maintain for a structure to ensure its safe and

serviceable operation during its whole lifespan. Timely

maintenance has the potential to extend the service life of a

structure and in some cases save lives.

2 Formulation of Maintenance Strategy

The conceptual design of the proposed maintenance strat-

egy is based on the following idea. A structure or its

component is to be maintained only when it fails (defined

as undesirable behaviour). The failure should be predicted

with sufficient confidence before it is too late to fix. A

structure consists of many components, some of which are

redundant. Thus, a structural system should be modelled as

a series system for non-redundant components and as a

parallel system for redundant components. Similarly, a

component can fail in many modes, that can be categorised

as ultimate and serviceability limit states. Serviceability

limit states represent the state of operation of the system,

while ultimate limit states represent the state of safety or

collapse. Violation of any ultimate limit state constitutes

the structural failure. Therefore, a series system is appro-

priate for ultimate failure modes. On the other hand, the

violation of one serviceability limit state does not neces-

sarily lead to safety concern or collapse. A realistic model

for combining serviceability and ultimate limit states

would be complex. To avoid this complexity, it is assumed

that failure of all serviceability limit states constitutes the

system failure. Thus, the parallel system is appropriate for

assessment of serviceability failures [27, 28]. With this
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assumption, the ultimate and serviceability limit states can

be related. Failure of components can be modelled as a

system, which is a combination of series system for ulti-

mate failures and parallel system for serviceability failures

(referred to as component subsystem). This concept can be

logically illustrated in Fig. 1.

Since failure is not only random but also time variant, a

time-dependent (i.e., when) reliability method should be

used to determine the probability of the basic failure, i.e., a

component (i.e., where) failure by a certain mode (i.e.,

what). This results in when, where and what maintenance

actions are required for the structural system. The rationale

for a risk–cost optimization is that, whilst keeping the

probability of ultimate failure under control (to ensure

safety), only when the probability of serviceability failure

reaches an acceptable limit, the maintenance would be

warranted. This means that if the probability of failure for

serviceability limit states is less than a certain level, no

maintenance action is required. However, if this level is

reached, maintenance action is warranted. The merit of this

rationale is to minimize the regular inspections for condi-

tion assessment without compromising the safety of the

structure. The decision on when, where and what mainte-

nance actions are required is based on the probability of

system failure as schematically illustrated in Fig. 2. The

maintenance actions, e.g., repair, strengthening, etc. take

place on components for a given mode as shown in Fig. 2,

where the first maintenance action at time t1 (when) is

determined by system failure and this action is on com-

ponent 3 (where; the highest probability of three) for the

given failure mode (what).

The above idea for risk–cost optimization can be

mathematically formulated as follows:

Minimize :
XNr

i¼1

XNc

j¼1

XNm

k¼1

½psysðtiÞ � psysðti�1Þ� �
CFjkðtiÞ
ð1 þ irÞti

þ CPjkðtiÞ
ð1 þ irÞti

� �

Subject to : puðtiÞ� pu;a; psðtiÞ� ps;a; psysðtiÞ� psys;a;

ti � ti�1 �Dtmin; 0\ti\tL;

ð1Þ

where ti is the maintenance time with i refereeing to time

sequence, Nr is the number of maintenance actions, Nc is

the number of components in the system and Nm is the

number of failure modes. In Eq. (1), CPjk is the cost (in-

cluding the annual discount rate) of maintenance action for

jth component due to kth failure mode and CFjk is the

corresponding cost of failure (including the consequences).

ps and ps,a are the probability and acceptable probability of

serviceability failure, pu and pu,a are the probability and the

acceptable probability of ultimate failure and psys and psys,a

are the probability and the acceptable probability of system

failure, respectively. Finally, Dtmin is the minimum time

interval between two consecutive maintenance actions and

tL is the designed or expected lifetime of the structure. As it

can be seen in Eq. (1), all the cost terms are converted to

the present value (PV) by [29]:

PV ¼ Cjk

ð1 þ irÞt
; ð2Þ

where ir represents the annual discount rate.

In Eq. (1), the optimization variables are a sequence of

times for maintenance actions, i.e., ti (i = 1, 2, …, Nr). At

each optimized maintenance time, the critical structural

component and failure mode are identified as outputs.

These outputs will form the maintenance strategy for the

structure; that is, when (ti), where (component j) and what

type of maintenance (failure mode k) is required for the

structure during its service life (tL) at an acceptable (mini-

mum) risk (psys,a) and with effective cost. To ensure the

safe and serviceable operation of the structure pu,a and ps,a

probability limits are imposed. Types of maintenance are

related to types of structural failure represented by a limit

state, the attainment of which is quantified by a probability

ps or pu, respectively. For example, for concrete structures,

these maintenance actions may include (1) superficial

patching for concrete cracking, (2) major repair for con-

crete delamination and (3) overall structural strengthening

for rupture (or end of service life). It needs to be noted that

how to maintain is beyond the scope of the paper assuming

that after maintenance actions the structure is reinstated to

a proportion of its original state with a maximum propor-

tion of 100%.

As acknowledged in Sect. 1, various frameworks for

maintenance strategy have been proposed (see above ref-

erences). The essential difference between the maintenance

strategy proposed herein and others is that the optimization

variables of the former are related to components and

(a)

(b)

Fig. 1 Concept of structural system failure
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failure modes. More importantly, the methods of time-de-

pendent reliability as well as system reliability are

employed in developing the strategy. This provides direct

guidance on the types and times of maintenance to be

carried out. It also facilitates practical applications of the

proposed strategy since the design and assessment criteria

are serviceability and ultimate limit states, as used by

practitioners. A technical difference is that the estimation

of psys is based on the first-passage probability method in

conjunction with the system reliability as will be described

below. Moreover, the maintenance strategy proposed

herein has considered multiple failure modes for both

components and structural system in the risk–cost opti-

mization. Correlation amongst failure modes is also con-

sidered in the evaluation of probability of structural system

failure. It needs to be noted that the proposed maintenance

strategy also covers the ‘‘do-nothing’’ option of the con-

ventional maintenance strategies since to determine when

to do it implies ‘‘do nothing’’ at other times.

3 Probability of Structural Failure

A key contribution of the proposed maintenance strategy is

the employment of upcrossing method in determining the

probability of structural failure and in the risk–cost

objective function. Although time-dependent reliability

theory has been well established, it is briefly introduced in

the paper for completeness of the developed maintenance

strategy.

In assessing the risk of failures for a structure, a per-

formance criterion should be established for the structure.

In the theory of structural reliability, this criterion is

expressed in the form of a limit state function as follows:

GðL; S; tÞ ¼ LðtÞ � SðtÞ; ð3Þ

where S(t) is the structural response (or load effect), L(t) is

an acceptable limit for structural response (or structural

resistance) and t is the time. With the limit state function of

Eq. (3), the probability of structural failure, pf, can be

determined by

ptðtÞ ¼ P GðL; S; tÞ� 0½ � ¼ P SðtÞ� LðtÞ½ �; ð4Þ

where P denotes the probability of an event. Equation (4)

represents a typical upcrossing problem, which can be dealt

with using time-dependent reliability methods [27]. Time-

dependent reliability problems are those in which either all

or some of the basic random variables are modelled as

stochastic processes. To calculate the probability of failure

for deteriorating structural systems, as is formulated in

Eq. (4), different analytical and numerical methods can be

used [30]. In this paper, the first passage probability

method, which is an analytical method, is used for calcu-

lating the time-dependent probability of failure. The

method allows for the correlation in the deterioration pro-

cess over time. Other analytical methods based on the

Gamma process, which is a form of Markov processes, can

Fig. 2 Rationale for maintenance strategy
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also be employed but these processes are memoryless and

not able to account for the correlation in time. One of the

limitations in first-passage probability method is that ana-

lytical solutions are only available for cases in which either

the load effect or the resistance are modelled as stochastic

process. Furthermore, few solutions for non-Gaussian

stochastic processes have been developed [31, 32].

Although the formulated maintenance strategy, i.e.,

Eq. (1), is general, any time-dependent reliability methods

can be used in determining the probability of failure over

time.

For the problems involving stochastic process of struc-

tural response, S(t), the structural reliability depends on the

time that is expected to elapse before the first occurrence of

S(t) upcrossing a critical limit (the threshold) L(t) sometime

during a given time interval [0, tL]. Equivalently, the

probability of the first occurrence of such an excursion is

the probability of structural failure pf(t) during that time

interval. This is known as ‘‘first-passage probability’’ and

under the assumption of Poisson processes, it can be

expressed as follows (Melchers 1999):

ptðtÞ ¼ 1 � 1 � pfð0Þ½ �e
�
Rt
0

vds

; ð5Þ

where pf(0) is the probability of structural failure at time

t = 0 and t is the mean rate for the response process S(t) to

upcross the threshold L(t). In many practical problems, the

mean upcrossing rate t is small so that Eq. (5) can be

approximated as follows:

ptðtÞ ¼ pfð0Þ þ
Z t

0

vds: ð6Þ

The upcrossing rate in Eq. (6) can be determined by

Rice formula (e.g., [27]) as follows:

v ¼ vþL ¼
Z1

L

ð _S� _LÞfS _SðL; _SÞd _S; ð7Þ

where mþL is the upcrossing rate of the response process S(t)

relative to the threshold L, _L is the slope of L with respect

to time, _S tð Þ is the time derivative process of S(t) and fS _SðÞ
is the joint probability density function for S and _S. An

analytical solution to Eq. (7) has been derived in [33] when

S(t) is a Gaussian process and the threshold L is deter-

ministic. This is expressed as follows:

v ¼ vþL¼det

¼
r _SjS
rS

/
L� lS
rS

� �
/

_L� l _SjS
r _SjS

 !
�

_L� l _SjS
r _SjS

U
_L� l _SjS
r _SjS

 !( )
;

ð8Þ

where mþL¼det denotes the upcrossing rate when the threshold

L is deterministic, /() and U() are standard normal density

and distribution functions, respectively, l and r denote the

mean and standard deviation of S and S
�
, represented by

subscripts, and ‘‘|’’ denotes the condition.

Since it is unlikely that the structural response exceeds a

critical limit at the beginning of structural service, the

probability of structural failure at t = 0 is zero, i.e., pf(0)=0.

Furthermore, since in most practical applications, the

critical limit L(t) is a constant, such as prescribed in design

codes and standards, the solution to Eq. (8) can be further

simplified as follows:

t ¼ tþL¼det

¼
r _SjS
rS

/
L� lS
rS

� �
/

�l _SjS
r _SjS

 !
þ
l _SjS
r _SjS

U
l _SjS
r _SjS

 !" #
: ð9Þ

For a given Gaussian stochastic process with mean

function lS(t) and auto-covariance function CSS(ti,tj), all

variables in Eq. (9) can be determined, according to the

theory of stochastic processes [see, e.g., 27, 34] as outlined

in ‘‘Appendix’’. To apply Eq. (9) in the risk–cost opti-

mization of Eq. (1), the main effort lies in developing

stochastic models of structural response S(t). This will be

dealt with in the next section.

The probability of system failure depends on the con-

figuration of the structural components and identified fail-

ure modes. It needs to be noted that a component failure is

treated as system failure because there are many failure

modes, i.e., limit state functions, by which the component

can fail. In this study, a method proposed by [9] for finding

the probability of system failure for series systems is used.

Using some basic set theory transformation, intersection of

events is transformed into a union of events so that the

method proposed by [9] can be used. Other methods such

as the Monte Carlo simulation can also be employed for

calculating the probability of system failure.

4 Modelling of Structural Response

As may be appreciated, the structural response, S(t), is not

only random but also time variant, depending on many

factors, such as material properties, geometry, stress con-

ditions, defects and so on. It is, therefore, well justified to

model the structural response as a stochastic process,

expressed in terms of primary contributing factors, which

are treated as basic random variables. It follows that the

structural response is a function of basic random variables

as well as time and can be expressed as follows:

SðtÞ ¼ f ða; b; c; . . .; tÞ; ð10Þ
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where a, b, c,… are the basic random variables, the prob-

abilistic information of which is (presumed) available and

t is the time. With this treatment, the statistics of S(t) can be

obtained using the technique of Monte Carlo simulation.

The basic procedure of Monte Carlo simulation is to take

samples from the known probability distribution functions

of basic random variables, i.e., a, b, c,… These samples are

then substituted into Eq. (10) to obtain a realization of

structural response S(t). This procedure is repeated several

times (known as the sample size) so that the statistics of

S(t), e.g., mean and standard deviation, and the probability

density function of S(t), if needed, can be obtained.

To develop a generic model for structural response, a

random variable, nS, is introduced. nS is defined in such a

way that its mean is unity, i.e., E(nS) = 1.0 and its coeffi-

cient of variation, kS, is a constant and can be estimated

from simulation results as described above. Thus, Eq. (10)

can be expressed as a stochastic process:

SðtÞ ¼ SSðtÞnS; ð11Þ

where SS(t) is treated as a deterministic function to be

obtained from research and/or design codes. The mean and

auto-covariance functions of S(t) are (see, e.g., [35])

lSðtÞ ¼ E½SðtÞ� ¼ SSðtÞE½nS� ¼ SSðtÞ; ð12Þ

CSSðti; tjÞ ¼ k2
SqSSSðtiÞSSðtjÞ; ð13Þ

where qS is (auto-)correlation coefficient for S(t) between

two points in times ti and tj. With lS and CSSðti; tjÞ,
Equations (30) to (35) can be used to determine all terms of

S(t) used in Eq. (9).

Evidently, the stochastic model of structural response,

i.e., S(t), is case specific. For the example of corrosion-

induced concrete cracking as measured by crack width,

w(t), Eq. (12) can be embodied as follows (for details refer

to [36]):

wðtÞ ¼ wcðtÞ � nw; ð14Þ

where wc(t) is treated as a deterministic time function and

nw is a random variable to account for all randomness of

the basic random variables contributing to crack width. In

Eq. (14), a model for wc has been developed in [37] which

can be expressed in terms of basic random variables as

follows:

wc ¼
4pds

ð1 � vcÞða=bÞ
ffiffi
a

p
þ ð1 þ vcÞðb=aÞ

ffiffi
a

p � 2pbft
Eef

; ð15Þ

where ds is the thickness of corrosion products, a and b are

the inner and outer radii of the thick-wall cylinder for

concrete cracking model (see Fig. 3), a is the stiffness

reduction factor, tc is Poisson’s ratio of concrete, ft is the

tensile strength of concrete and Eef is the effective elastic

modulus of concrete.

With the model of Eq. (14), the mean and auto-covari-

ance functions of w(t) can be determined accordingly as

demonstrated in the example. Other examples on the for-

mulation of deterioration process for different deterioration

processes can be found in the current literature [26, 36].

5 Algorithm for Risk–Cost Optimization

Although each term in Eq. (1) has been determined indi-

vidually, the optimization itself is computationally

involved and complex. In this paper, a numerical algorithm

is proposed for the optimization. The flowchart of the

proposed algorithm is presented in Fig. 4 and the opti-

mization steps are described as follows.

1. For a given lifetime, tL, identify all the failure modes

(Nm is the total number of failure modes) for each

component (Nc is the total number of structural

components). Then categorize the identified failure

modes into serviceability and ultimate limit states.

2. Establish limit state function for each failure mode as

per Eq. (3) and formulate stochastic models of S(t) as

per Eq. (11).

3. Set a number for the required maintenance actions,

Nr.

Fig. 3 Schematic representation of corrosion-induced concrete cracking
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4. For a given initial time t0 (usually zero), calculate the

probability of failure for all failure modes of each

component by Eq. (9) and the probability of failure

for component subsystem (consisting of all the

failure modes; see Fig. 1b) and for structural system

(consisting of all the structural components; see

Fig. 1a). The probability of structural system failure

is based on the configuration and correlation of

components and failure modes. Check if all the

constraints in Eq. (1) are satisfied.

5. Set the maintenance time for all failure modes of all

components as tr = t0.

6. At a given time t1 = t0 ? Dt1, in which Dt1[Dtmin,

repeat Step 4 for the probability of failure for all

failure modes, components and the structure (ps, pu,

psys) at time t1 - tr.

7. Check all the constraints shown in Eq. (1). If the

constraints are not satisfied, repeat Steps 6–7 until all

the constraints are satisfied; otherwise, go to Step 8.

8. Rank all components of the structure (system) based

on risk. Component with the highest contribution to

Fig. 4 Flowchart for risk–cost optimization
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risk is the critical component and needs to be fixed.

This gives where to maintain.

9. For the critical component identified in Step 8, rank

failure modes based on risk calculated using the

normalized probability of failure, i.e., p
pa
� Cost. The

failure mode with the highest risk is the critical

failure mode that needs to be fixed. This gives what

to fix.

10. For the critical component and failure mode identi-

fied in Steps 8 and 9, calculate the corresponding

cost formulated in Eq. (1) at time tr = t1.

11. Set t2 = t1 ? Dt2 (Dt2[Dtmin) and repeat Steps

6–10, until all the required number of maintenance

actions are completed, i.e., i = Nr.

12. Calculate the total cost for all the maintenance times

ti (i = 1, 2, …, Nr) using Eq. (1).

13. Iterate Steps 5–12 to minimize the total cost for

different sequences of time ti (i = 1, 2, …, Nr),

satisfying all the constraints of Eq. (1).

14. For different Nr, repeat Steps 3–13 to minimize the

objective function, until an optimum number of

maintenance actions, Nr
Opt, which has the minimum

cost for all Nr, is reached.

The outputs of the risk–cost optimization are the

maintenance action times (ti values). At each maintenance

time, the algorithm determines the critical component and

failure mode as output. In each optimization procedure, the

number of maintenance actions is given. The optimum

number of Nr, i.e., Nr
Opt, returns the minimum maintenance

cost. The influence of the number of maintenance actions

for each failure mode has been considered by solving the

optimization problem for several different values for the

number of maintenance actions and comparing the resulted

optimal costs. This method of dealing with the number of

maintenance actions is also used in other researchers, e.g.,

[8] and [9].

The search for optimum times ti with given constraints is

an iterative procedure. Different optimization algorithms

such as sequential quadratic programming (SQP) can be

employed for solving this nonlinear constraint optimization

problem. One of the issues in the gradient-based opti-

mization algorithms is that they rely on an initial point

input for finding the local minimum. Mori and Ellingwood

[8] have suggested that for testing the validity of a solution,

several different starting points be tried. On the other hand,

smart algorithms, e.g., the evolutionary algorithms [38] are

more robust and versatile in finding the optimum of com-

plex problems with nonlinear constrains. In this study, the

above flowchart was coded using the Genetic Algorithm.

6 Worked Examples

6.1 Example I

To illustrate the application of the developed algorithm for

the proposed maintenance strategy, a reinforced concrete

(RC) bridge girder with three spans is used as a worked

example. These spans, shown in Fig. 5, are the components

of the bridge girder which is considered as structural sys-

tem connected in series. For each component, four struc-

tural responses represented by four failure modes or limit

states are considered (as component subsystem). Two of

Fig. 5 System representation of the example structure

268 International Journal of Civil Engineering (2020) 18:261–278

123



these are shear and flexural failures which are ultimate

limit states, while the other two are excessive corrosion-

induced crack width and deflection, which are service-

ability limit states. For failure analysis, the ultimate limit

states are considered as series system and the serviceability

limit states as parallel system.

Decisions on maintenance actions for flexural and shear

strength limit states are based on the residual strength. If

the residual flexural or shear strength decreases below an

acceptable level, i.e., L in Eq. (3), a maintenance action is

required. Deflection is governed by the stiffness of each

span. Therefore, controlling the residual stiffness is an

appropriate means for limiting the deflection. Similar to

residual strength models, if the residual stiffness decreases

to an unacceptable level, the maintenance action is

required. Treatment of crack-induced crack width is

slightly different. An analytical time-dependent model is

utilized for predicting the crack width, in which excessive

crack width warrants a maintenance action. Due to dete-

rioration, residual flexural and shear strengths and stiffness

are decreasing gradually, while the crack width is

increasing. The deterioration models for the considered

failure modes, i.e., Ss(t) function in Eq. (12), are taken

from studies of Li and Melchers [35] and Li et al. [36] as an

example for illustration of the application of the proposed

framework. These are summarized in Table 1 for all

components and failure modes. Due to different environ-

mental and loading conditions, the deterioration processes

for different components and failure modes are generally

not the same. Therefore, in this example, to differentiate

the deterioration processes in each component and failure

mode, different rates of deterioration are assumed to each

component. In the application of the proposed framework

to real-world structures, the information of deterioration

rate can be collected from site condition assessment. In this

example, it is assumed that after each maintenance action,

the repaired component is reinstated to its original

condition.

It should be noted that the deterioration models for

flexural and shear strengths and the stiffness represents the

normalized (with respect to the initial value) residual val-

ues. It is assumed that if the residual strength or stiffness is

less than 70% of the initial value, ultimate failure would

occur. For the crack limit state, the deterioration function

represents growth of corrosion-induced crack over time. If

the crack width exceeds 0.30 mm, this serviceability limit

state is violated. In Fig. 11, the probability of failure for

each of the considered failure modes over the lifetime of

the bridge structure is shown. The bridge is designed for a

100-year service life, i.e., tL = 100.

These models are just used for illustration purpose to

demonstrate the application of the proposed framework.

For ultimate limit states, maintenance actions are per-

formed before the probability of failure exceeds an

acceptable level, i.e., pu,a, as is formulated in Eq. (1). For

serviceability limit states, if the probability of failure

exceeds an acceptable level, ps,a, maintenance action is

warranted. In this example, formulation of the limit states

is in a way that for failure modes 1–3, due to deterioration,

residual capacity is gradually decreasing, while for failure

mode 4, damage due to deterioration is increasing with

time. Therefore, decisions for maintenance action of each

failure mode can be formulated as follows:

Failure Mode 1 : pf1 ¼ P S1ðtÞ � L1 � 0½ � � pu;a; ð16aÞ

Failure Mode 2 : pf2 ¼ P S2ðtÞ � L2 � 0½ � � pu;a; ð16bÞ

Failure Mode 3 : pf3 ¼ P S3ðtÞ � L3 � 0½ � � ps;a; ð16cÞ

Failure Mode 4 : pf4 ¼ P S4ðtÞ � L4 � 0½ � � ps;a: ð16dÞ

In the application of the proposed framework to real-

world structures, the information of deterioration rate can

be collected from site condition assessment. In this

example, loading is assumed as lifetime maximum so that

failure is determined by resistance deterioration. In Fig. 6,

the probability of failure for each of the considered failure

modes over 100 years of lifetime is shown.

In the evaluation of the probability of system failure,

correlation among failure modes can be determined using

some analytical methods or the Monte Carlo simulation. In

the absence of real statistical data, engineering judgement

can be used to set the correlation amongst failure mode.

For instance, if some of the failure modes are due to cor-

rosion, they will be correlated. In this study, correlation

among failure modes is assumed. The following equation

shows the assumed correlation matrix for limit sates rep-

resenting different failure modes, i.e., Gm1–Gm4.

Table 1 Stochastic models for different components and failure modes

Component Flexure Shear Deflection Crack

Ss1(t) ks1 L1 Ss2(t) ks2 L2 Ss3(t) ks3 L3 Ss4(t) ks4 L4 (mm)

1 e-0.0009t 0.15 0.70 e-0.00035t 0.20 0.70 e-0.0020t 0.20 0.70 0.085 9 t0.25 0.18 0.30

2 e-0.0010t 0.15 0.70 e-0.00040t 0.20 0.70 e-0.0022t 0.20 0.70 0.087 9 t0.25 0.18 0.30

3 e-0.0012t 0.15 0.70 e-0.00045t 0.20 0.70 e-0.0024t 0.20 0.70 0.090 9 t0.25 0.18 0.30
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Gm1 Gm2 Gm3 Gm4 ;

Gm1

Gm2

Gm3

Gm4

1:0 0:2 0:5 0:5

1:0 0:2 0:2

Sym: 1:0 0:5

1:0

2

6664

3

7775;
ð17Þ

where Gm1, Gm2, Gm3 and Gm4 are the limit states for

failure modes 1–4 (see Fig. 5a). It is also assumed that the

correlation between components of the system is 0.50.

According to the method proposed by [9], the probability

of system failure for a series system with correlated com-

ponents can be calculated as follows:

pf ’ 1 � Un
�b; �q
� �

; ð18Þ

where �b ¼ ðb1; b2; . . .; bnÞ is the vector of reliability indi-

ces for all components of the series system and �q is the

correlation matrix for the components. Un is the n-dimen-

sional standardized normal distribution function. To

determine the probability of failure for the subsystem of

failure modes (refer to Fig. 5a), using some basic set theory

expressions, the probability of system failure is transferred

to the probability of failure for a set of series systems as

follows:

pf;mode ¼ P Gm1\0 [ Gm2\0 [ Gm3\0 \ Gm4ð Þ½ �; ð19aÞ

) pf;mode ¼ P Gm1\0 [ Gm2\0 [ Gm3\0ð Þ \ Gm1ð½
\0 [ Gm2\0 [ Gm4\0Þ�;

ð19bÞ

) pf;mode ¼P Gm1\0 [ Gm2\0 [ Gm3\0ð Þ
þ P Gm1\0 [ Gm2\0 [ Gm4\0ð Þ;
� P Gm1\0 [ Gm2\0 [ Gm3\0 [ Gm4\0ð Þ;

ð19cÞ

) pf;mode ’ 1 � U3 bm1; bm2;bm3Þ; �q123ð Þ½ �
þ 1 � U3 bm1; bm2; bm4Þ; �q124ð Þ½ �
� 1 � U4 b1; b2; b3; b4Þ; �q1234ð Þ½ �;

ð19dÞ

where pf,mode denotes the probability of system failure for

subsystem of failure modes. bm1, bm2, bm3 and bm4 are the

reliability indices for modes 1–4. �q123, �q124 and �q1234 are

the correlation matrices containing the correlation coeffi-

cients among the indexed failure modes. U3 and U4 are the

three and four-dimensional standardized normal distribu-

tion functions. The probability of system failure for the

whole bridge girder in this worked example is based on a

system of three components connected in series as is shown

in Fig. 5b). Considering the system shown in Fig. 5 and the

 Mode 1, Flexure Mode 2, Shear

Mode 3, Deflection Mode 4, Crack

(a) (b)

(c) (d)

Fig. 6 Probability of failure for different components and failure modes
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result of time-dependent reliability shown in Fig. 6a–d, the

probability of system failure can be calculated. In Fig. 7,

results of probability of system failure with and without

considering correlation over 100 years of structural life-

time are shown. For the case study considered in this

worked example, the effect of correlation amongst failure

modes and components on probability of system failure is

not considerable in the short term but becomes significant

in the longer term. The ignorance of correlation would

underestimate the risk of structural failures in longer term.

This vindicates the employment of the first passage prob-

ability method which allows for the correlation in the

system.

In the proposed framework, the maintenance actions

including repair, strengthening and instalment depend on

the failure mode. It is assumed that the cost of maintenance

for all components of the system is equal, with relative cost

of maintenance for ultimate failures being five times that of

serviceability failures. The acceptable upper limit

probability of failure for ultimate limit states is taken as

0.015. For serviceability limit states, an acceptable lower

limit of 0.10 is used. Furthermore, the failure probability of

structural system is limited to 0.10. The annual discount

rate is assumed to be 3%. It is also assumed that the

minimum number of years between successive mainte-

nance actions is 3. To investigate the sensitivity of opti-

mized maintenance strategy to different costs of failure,

three costs of failure to cost of maintenance ratios, CF/CP,

of 10, 100 and 200 are considered (refer to Eq. 1).

By substituting the stochastic models of S(t) and solu-

tion to the probability of failure in Eq. (1), the optimized

maintenance strategy can now be derived. To find the

optimized maintenance times, a generic computer code was

programmed in MATLAB [39]. The genetic algorithm

method is used to minimize the risk function defined in

Eq. (1). For a given number of maintenance actions, the

program can provide the maintenance times that minimize

the risk. Furthermore, the program also identifies the

component and failure mode that need maintenance at each

maintenance time. After conducting a sensitivity analysis,

it was considered appropriate to set the population size,

crossover probability and mutation probability as 500, 0.80

and 0.05, respectively, for the genetic algorithm solution.

The outputs of the optimization form the maintenance

strategy, that is, when, where and what to maintain for the

infrastructure at a minimum system risk and effective cost.

For the case of six maintenance actions and the cost of

failure to cost of maintenance ratio, CF/CP, of 100, the

optimized maintenance times for all components are shown

in Fig. 8. As it can be seen, all the system constraints

(upper limit of 0.10) are satisfied, and in each maintenance

action, the most critical component is fixed. It is worth

Fig. 7 Probability of system failure

Fig. 8 Optimized maintenance strategy for six maintenance actions, CF/CP = 100
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noting that all the failure modes satisfy the requirement of

serviceability and ultimate limit states as the constraints of

the optimization procedure (see Eq. 1).

As previously mentioned, the influence of the number of

maintenance actions can be considered by solving the

optimization problem for several different values of Nr.

The Nr value with the minimum cost is the optimal value.

In Fig. 9, the process of optimizing Nr for different cost of

failure to cost of maintenance ratios is shown. As it can be

seen, by increasing the cost of failure to achieve the min-

imum cost, more maintenance actions are required. It

should be noted that the optimization procedure shows that

to satisfy the constraints in Eq. (1), at least six maintenance

actions are required. Figure 9 effectively corroborates the

validity of the formulation of risk–cost optimization, i.e.,

Eq. (1) in which an optimal solution exists.

For instance, for the highest cost of failure to cost of

maintenance action, performing 13 maintenance actions is

the optimum number of maintenance actions. Results of the

optimum maintenance strategy for Nr = 13 are presented in

Table 2. As it can be seen, in some cases, a component is

fixed two times for a specific failure mode. For instance,

for failure mode 2, component number 2 is twice fixed at

11 and 63 years, respectively. On the other hand, for some

components, no maintenance action is required for some of

the failure modes. For example, component number 2

requires no maintenance action for failure mode 4 during

its whole lifetime. Clearly knowing when, where and what

to maintain for the structure will also provide economic

benefits in addition to the safety and serviceability of the

structure. This is the significance of the present paper.

6.2 Example II

In the second example, a deck from a bridge located in a

coastal area in Melbourne is considered. Geometry and

material properties of the cross section of the simply

supported deck girders and the reinforcement are shown in

Fig. 10. Due to corrosion, three of the girders in one span

of the bridge are degrading.

Analysis of the inspection data shows that these girders

degrade with different rates. The estimated corrosion cur-

rent densities in girders 1–3 are 0.25, 0.50 and 0.75 lA/

cm2, respectively. It should be noted that according to

Faraday’s law, a corrosion current density of 0.50 lA/cm2

corresponds to an expected steel loss of 11.6 lm/year. As

failure of one of these girders impairs function of the

bridge deck, for the reliability analysis, the girders in the

span can be connected in series. Each girder is subjected to

two ultimate failure modes that are flexural and shear. For

serviceability, two failure modes are excessive deflection

and corrosion-induced crack. According to the proposed

model in this study, the serviceability failure modes are

connected in parallel, and the resulted subsystem is con-

nected to the ultimate failure modes in series. This con-

stitutes the failure mode system (see Fig. 1).

To derive statistics of the resistance related to each of

the failure modes, some statistical models for geometry and

material properties are needed. In Table 3, all the required

statistics for the basic random variables are shown.

In what follows, formulation of the limit states required

for the considered failure modes is shown. Using the basic

statistics, shown in Table 3, and by employing the Monte

Carlo technique, time-dependent functions for the degra-

dation processes are obtained. These processes will then be

used to find the probability of failure within the proposed

maintenance strategy. The probabilistic procedure to derive

statistics of each stochatic process follows the models

presented in Eq. (11).

Fig. 9 Optimum number of maintenance actions for different cost of

failure to cost of repair ratios (C0 is a reference cost)

Table 2 The optimized maintenance strategy with CF/CP = 200 and

optimum Nr
Opt = 13

When (time), year Where (span) What (failure mode)

6 3 Shear

11 2 Shear

25 3 Flexure

38 1 Shear

41 2 Flexure

44 3 Shear

60 3 Deflection

63 2 Shear

66 1 Flexure

78 2 Deflection

81 3 Crack

94 1 Deflection

97 3 Flexure
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6.2.1 Flexural Strength Model

Due to the corrosion process, the rebar area is decreasing

over time. For the case of general corrosion, the reduced

area can be calculated as follows:

AsðtÞ ¼ As0 1 � 0:0232icorrt½ �2; ð20Þ

where As0 is the area of an uncorroded rebar, icorr is the

corrosion rate measured as a current density expressed in

lA/cm2 and t is time since corrosion initiation in years.

Following reduction of rebar area, the overall flexural

strength of the bridge girder is degrading with time. In this

study, the limit state function is based on the deterioration

of flexural strength of girder cross section and expressed as

follows:

gM ¼ Mmðb; h; c; f
0

c; fy; icorr; tÞnM �Ma; ð21Þ

where Mm() is the expected flexural strength as a function

of basic random variables and time. nM is a random vari-

able, which accounts for variability in the degradation

process of flexural strength [35]. The standard procedure

described in the ACI 318 [44] can be used to calculate this

strength. The variables b, h, c, f0c, fy, icorr are the basic

random variables (see Table 3). With this treatment,

statistics of the flexural strength can be obtained using the

technique of Monte Carlo technique.

Ma in Eq. (21) is the minimum acceptable strength. It

has been shown [26, 35] that it may be appropriate to take

the acceptable limit for strength deterioration as 70% of the

original strength, i.e., Ma/M0 = 0.70.

Fig. 10 Geometry and material properties of concrete girders

Table 3 Statistics of the basic random variables

Variable Mean COV Distribution References

h (mm) 1000 0.02 Normal Joint Committee on Structural Safety [40]

b (mm) 450 0.02 Normal

c (mm) 100 0.05 Normal

db (mm) 24 0.02 Normal

f0c (MPa) 47 0.15 Lognormal

ft (MPa) 3.0 0.30 Lognormal

Ec (MPa) 30.1 0.15 Lognormal

hM 1.2 0.15 Normal

hV 1.4 0.25 Normal

fy (MPa) 560 0.048 Beta Bournoville et al. [41]

Es (GPa) 205 0.033 Normal Mirza et al. [42]

icorr (lA/cm2) 0.25/0.50/0.75 0.20 Normal Vu and Stewart [43]
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6.2.2 Shear Strength Model

The limit state for shear strength, which is an ultimate limit

state, is similar to that of the flexural strength. Due to the

reduction of shear reinforcement and other factors such as

damage on concrete area due to corrosion-induced cracks,

the shear strength of reinforced concrete (RC) girder cross

section deteriorates over time. The limit state function for

the shear failure can be formulated as follows:

gV ¼ VðtÞ � Va; ð22Þ

where V(t) is the shear strength expressed as a function of

time and Va is the acceptable residual shear strength. It is

assumed that reduction of shear strength to more than 50%

of the original shear strength is not acceptable, i.e., Va/

V0 = 0.50. This is due to the fact that flexural strength

generally governs the design of RC beams, leading to

beams with higher reserve capacity in shear.

Higgins et al. [45] compared different models for pre-

dicting residual shear capacity of corrosion-damaged RC

cross sections due to rebar corrosion and deterioration of

concrete cross section. They showed that an analytical

model based on the ACI 318 code for shear strength was

able to conservatively predict the residual shear capacity of

the RC cross sections. They also found that average stirrup

area provided the best prediction of the shear strength. The

analytical model proposed by Higgins et al.is adopted in

this research. Damage to the RC cross section due to cor-

rosion-induced cracks, which leads to spalling of side

concrete, was considered through reduction of the cross-

section width. Based on empirical evidence and theoretical

computation from observed cover damage due to corrosion

Higgins et al. proposed the following expression for the

reduced cross section width:

beff ¼ b� 2ðds þ cÞ � s

5:5

h i
for s\5:5ðds þ cÞ; ð23Þ

where ds (12 mm in this study) is the diameter of stirrups, c

(100 mm in this study) is the concrete cover to stirrups and

s (200 mm in this study) is stirrups spacing. The above

expression represents the final reduced width. To have a

time-dependent cross section width and by assuming uni-

formly distributed, the following model for cross section

width of damaged RC sections results:

beffðtÞ ¼ b� 2ðds þ cÞ � s

5:5

h i t

tL
; ð24Þ

where tL is the lifetime of the structure. Combining the

traditional method of calculating the shear capacity based

on the ACI 318 code, the general corrosion models and

concrete cross-sectional damage, the residual shear

capacity of a RC cross section can be calculated as follows:

VðtÞ ¼ VmðtÞnV; ð25aÞ

VmðtÞ ¼ 0:33

ffiffiffiffi
f
0
c

q
beffðtÞd þ AvðtÞ

s
fyd; ð25bÞ

where Vm(t) is the mean shear strength function and nV

accounts for variability in the shear strength. Using the

Monte Carlo technique, statistics of the residual shear

strength over the lifetime of the structures can be

calculated.

6.2.3 Deflection Model

Controlling the maximum structural deflection is one of the

serviceability limit states. In general, the deflection of a

structural member can be expressed as follows:

D ¼ j � q; ð26Þ

where q is the distributed load applied on the structure and

c is a coefficient to convert load to deflection, i.e., load

effect, to be determined from structural analysis. For

example, for a simply supported reinforced concrete girder,

j ¼ 5l4

384Eeff Ie
, where l is the span length and K = EeffIe is the

effective flexural stiffness of the RC girder. For corrosion-

affected RC structures, the deflection increases even under

the constant load (q) due to corrosion-induced concrete

cracking, spalling and de-bonding between the reinforce-

ment and concrete (this is in addition to creep and

shrinkage). In this paper, reduction of effective structural

stiffness, which is directly related to increase of deflection,

is used for defining the deflection serviceability limit state.

In line with deterioration process models developed for the

residual flexural and shear strengths, a similar deterioration

model is developed for the residual stiffness. The limit

state function for deflection be expressed as follows:

gD ¼ KmðtÞnK � Ka; ð27Þ

where Ka is the acceptable residual stiffness. It is assumed

that reduction of flexural stiffness to 0.25 of the initial

stiffness is a violation to the deflection limit state, i.e., Ka/

K0 = 0.25. nK is a variable introduced to account for

variability in the stiffness and Km(t) is the mean of dete-

rioration function for deflection which is increasing with

time. Reduction of flexural rigidity over time would lead to

increase of deflection. In this study, a theoretical model, in

which the reduction in the rebar area contributes to the

reduction of cracked moment of inertia, is developed.

Considering a fully cracked section, the flexural stiffness

can be expressed as a function of time as follows:

KmðtÞ ¼ Ec

bdnðtÞ3

3
þ Es

Ec

AsðtÞ d � dnðtÞð Þ2

" #
; ð28Þ
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where dn(t) is the depth of the neutral axis, which is cal-

culated by balancing the second moment of area for top and

bottom sides of the neutral axis. Monte Carlo technique

was used to evaluate the mean and coefficient of variation

of the deterioration process for stiffness over time.

6.2.4 Crack Model

As may be appreciated, the cracking process of concrete is

a very random phenomenon, depending on many factors,

such as concrete properties, geometry, stress conditions,

defects in the concrete and so on. The problem becomes

worse when the crack is induced by the expansion of

corrosion products which itself is also very uncertain. To

define the related serviceability limit state, corrosion-in-

duced crack width, which is expressed as a function of

time, is compared with the acceptable crack width which is

taken from guidelines in design codes and standards:

gC ¼ wa � wðtÞ: ð29Þ

It is assumed that the acceptable crack width, wa, is

0.3 mm. Similar to other random processes, the corrosion-

induced crack width can be expressed as a product of a

mean crack function over time and a random variable

accounting for uncertainty (see Eq. 14). In Eq. (14), nw is a

random variable with a mean of 1.0 and a coefficient of

variation which is obtained using the Monte Carlo tech-

nique. In this study, an analytical model developed by Li

et al. [37], shown in Eq. (15), is used for estimating the

crack width as a function of time. It follows that the crack

width is a function of basic random variables as well as

time. With values of basic variables in Table 3, a realiza-

tion of the crack width can be generated.

6.2.5 Results

For service life prediction and derivation of optimal

maintenance strategy, 100-year time is considered. By

employing stochastic degradation models described in the

previous sections, the probability of failure for all the

structural components (concrete girders) and all the con-

sidered failure modes can be calculated as shown in

Fig. 11.

In the development of the optimal maintenance strategy,

it is assumed that the acceptable probability of failure for

the ultimate limit states is 0.05. Considering this limit, for

Fig. 11 Probability of failure for different girders and failure modes
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shear failure mode, all components need repair within the

100-year period. For the serviceability limit states, repair

action is warranted once the probability of failure exceeds

0.25. Furthermore, the acceptable probability of system

failure is taken as 0.15. The expected cost of failure to that

of repair is 1000, while it is assumed that the maintenance

and repair actions for ultimate limit states are 5 times those

for the serviceability limit states. As a constraint, repair

actions are set to be at least three years apart. The results of

the probability of system failure based on 7 repair actions

during the 100-year period are shown in Fig. 12.

From the results in Fig. 12, it can be clearly seen that

some structural components need multiple repairs, while

others need only one repair action. By changing the

number of repair actions, Nr, the optimum number of repair

actions that results in the minimum total cost can be

determined. In Fig. 13, results of the optimization for

number of repair actions are shown. As it can be seen,

performing 14 repair/maintenance actions results in the

minimum expected cost.

The components and the failure models requiring repairs

are shown in Table 4.

Results of the optimum maintenance strategy shown in

Table 4 show that the girder with higher degradation rate

requires more maintenance attention. Also, the shear fail-

ure mode is more critical than the flexural failure mode;

therefore, more repair is needed for shear.

7 Conclusion

A theoretical framework for developing a risk–cost-opti-

mized maintenance strategy for a structural system during

its whole service life has been formulated in this paper. In

this framework, the first-passage probability method has

been employed and a generic form of stochastic model for

structural responses has been developed to determine the

probability of structural failure. To facilitate the practical

application of the proposed framework, an algorithm has

been developed and programmed in a user-friendly manner

with two worked examples. The merit of the proposed

framework is that in predicting when, where and what

maintenance is required for the structure, all structural

Fig. 12 Typical optimized maintenance strategy for six maintenance actions, Nr = 7

Fig. 13 Optimum number of maintenance actions (CF/CR = 1000)

Table 4 The optimized maintenance strategy for the bridge deck (Nr
Opt = 14)

Action no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

When (time), year 12 27 30 36 39 43 47 50 57 60 63 69 73 88

Where (girder no.) 3 3 2 1 3 3 2 2 3 1 2 3 3 2

What (failure mode) F S S S C S C F S F S D F D

F flexure, S shear, C crack, D deflection
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components and multi-failure modes have been considered.

It has been found in the paper that, to ensure the safe and

serviceable operation of the structure as a whole, some

components need maintenance multiple times for different

failure modes, whilst other components need ‘‘do nothing’’.

The significance of this finding is that timely maintenance

on needed components for identified failure modes can

help prevent avoidable collapses and prolong the service

life of the structure, yielding economic benefits. It has also

been found that ignorance of correlation amongst compo-

nents and failure modes would underestimate the risk of

structural failures in longer term, and that the components

with higher cost of structural failures require more main-

tenance actions. It can be concluded that the proposed

framework provides a tool for structural engineers, opera-

tors and asset managers to develop a risk–cost-optimized

maintenance strategy for structures under their

management.
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Appendix

According to the theory of stochastic processes (Papoulis

and Pillai 2002), all variables in Eq. (9) can be determined,

for a given Gaussian stochastic process with mean function

lS(t), and auto-covariance function CSSðti; tjÞ, as follows:

l _SjS ¼ E½ _SjS ¼ L� ¼ l _S þ q
r _S

rS
ðL� lSÞ; ð30Þ

r _SjS ¼ r2
_S
ð1 � q2Þ

h i1=2

; ð31Þ

where

l _S ¼
dlSðtÞ

dt
; ð32Þ

r _S ¼
o2CSSðti; tjÞ

otiotj
ji¼j

� �1=2

; ð33Þ

q ¼ CS _Sðti; tjÞ
CSSðti; tjÞ � C _S _Sðti; tjÞ
	 
1=2

; ð34Þ

and the cross-covariance function is

CS _Sðti; tjÞ ¼
oCSSðti; tjÞ

otj
: ð35Þ

Based on the above relationships, all the variables in

Eq. (9) can be determined.
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