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Abstract
Stabilizing micropile groups is a light retaining structure constructed quickly and safely for slope reinforcement in practice. 
To carry out engineering design of any structure, a simplified analytical procedure for a micropile group with consideration 
of stability of the piled slope is presented. According to the upper bound theorem of kinematical limit analysis, an analytical 
method is proposed to evaluate the net thrust force on a micropile group with 3 × 3 layout of piles and the slip surface of the 
piled slope for a specified factor of safety. Then, internal forces of the micropile group can be computed using plane rigid 
frame model for the part of the structure above the slip surface under the net thrust force and beam-on-elastic-foundation 
model for the rest part. A laboratory model test and corresponding 3D-numerical simulation are conducted to verify the 
proposed method. Moreover, analysis of a practical slope shows that flexural rigidity of a micropile and micropile numbers 
of a group have a great effect on internal forces of micropiles. In particular, the internal forces are relatively sensitive to pile 
numbers in a group. However, micropile length and spacing in plane in a group have little effect on the internal forces, which 
is rather different from traditional stabilizing piles with a large cross section.

Keywords  Slope · Stabilizing micropile group · Limit analysis · Model test · Numerical simulation

1  Introduction

As a development of traditional piles, micropiles are small-
diameter, drilled and grouted piles, and it is generally 
assumed that the nominal diameter of a micropile is less than 
300 mm and its slenderness ratio is greater than 30 [1, 2]. 
The micropiles have been widely used for ground improve-
ment due to its great advantages [3–7]. Also, the combina-
tion of stabilizing micropiles has been applied successfully 
in slope engineering and proved to be an efficient measure, 
since the micropile groups can often be easily installed with-
out disturbing the natural slope [2, 8–11]. Some research on 
stabilization of slopes reinforced with the micropile groups 

has been described by earlier investigators [11–13]. They 
focused more on a micropile group with a top beam con-
nection and less attention was paid to the group with a rigid 
roof plate at the micropile top (see Fig. 1a–c).

In practice, reasonable and easily operated design meth-
ods for the stabilizing micropile groups are very significant 
for designers. Actually, stabilizing piles have been widely 
used to prevent landslides and improve slope stability in 
practical engineering, and various numerical and analytical 
methods have been successfully developed to analyze the 
stability of pile-slope systems [14–22].

Up to date, the numerical simulation method (NSM) is 
one of the most popular approaches for evaluating the sta-
bility of pile-slope systems, as it gives solutions to both the 
pile responses and the slope stability. However, the accuracy 
of this method is based on the choice of constitutive model, 
properties of slope mass and quality of mesh discretization 
of the domain of interest, which to some extent makes it 
subjective. The limit equilibrium method (LEM) has been 
extensively used to analyze slope stability [16, 23–25] 
because of its simplicity. Nevertheless, it is generally based 
on some simplified assumptions and the result obtained from 
the method is neither the upper bound nor the lower bound 
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solution in the light of kinematical limit analysis [26, 27]. 
In fact, the limit analysis method (LAM) can greatly supply 
a closed-form solution to a slope reinforced with stabilizing 
piles [18, 26, 28, 29].

Therefore, a simplified analytical method for the new-type 
stabilizing micropile group is proposed in this paper. The 
method is based on the upper bound theorem of kinematical 
limit analysis together with analysis models of plane rigid 
frame and beam on elastic foundation.

2 � Analytical Method

A typical model is shown in Fig. 1b. A micropile group con-
sisting of 9 micropiles arranged in three rows and three col-
umns is considered for study purpose. And these micropiles 
in the group are connected by a rigid roof plate at their tops. 
For convenience, the parts of the group above and below the 
slip surface are called the loaded segment and the embedded 
segment, respectively.

2.1 � Net Thrust Force on a Micropile Group

As shown in Fig. 2, if a potential slip surface in the slope 
mass is assumed to be logarithmic spiral (v is the velocity of 
any point on the log-spiral line, and θ is clockwise rotation 
angles from horizontal line), the formula of the log-spiral 
slip line can be expressed as [26]:

(1)r(�) = r0e
(�−�0)

tan�

Fs ,

where r(θ) and r0 are radii of the log-spiral with respect to θ 
and θ0, respectively. θ0 is the clockwise rotation angle of the 
start point on a log-spiral slip line. φ is the internal friction 
angle of the soil. Fs is the safety factor of the piled slope. 
And Fs is defined using the shear strength reduction method 
[30]. It is given by

where c is the cohesion of soil and subscript f denotes the 
reduced one. φf is the internal friction angle of the soil after 
reduction.

(2)Fs =
tan�

tan�f

=
c

cf
,
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For the potential sliding mass, based on the upper bound 
theorem of plastic limit analysis [26], one obtains:

where Ẇ is the work rate of gravity of the potential slid-
ing mass, Ė is the work rate of the local surcharge on the 
slope top, Ėp is the work rate of the external force exerted 
by micropile groups, and Ḋ is the internal energy dissipa-
tion rate.

The work rate of gravity can be derived as [26]:

where γ is the unit weight of the soil and ẇ rotational angu-
lar velocity around random rotation center O in Fig. 2. fi 
(i = 1–6) are dimensionless coefficients of the gravity work 
rate, and they are described in the Appendix [see (23)–(28)].

When the slope is subjected to a surcharge boundary load 
[18], as shown in Fig. 2, the work rate done by the load is

where σ and τ are the normal and tangential component of 
the local surcharge on the slope top, respectively, L is the 
distance from the slope crest to the intersection between the 
potential slip surface and the slope top, L1 is the setback 
distance of local surcharge on the slope top from the slope 
crest, and δ is the dip angle of the slope top surface.

The work rate of the external force, which is exerted by 
the micropile group, can be derived as [18]:

where θF is the rotation angle of the intersection between the 
pile and the potential slip surface on a log-spiral slip line, P 
is the net thrust force on the micropile group per unit width 
out of plane, and Mu is the bending moment of a micropile 
group at the slip surface under a design factor of safety. And 
the corresponding moment Mu can be given by [18]

where n is the ratio of a vertical distance over the length of 
the loaded segment, and the vertical distance is from the 
action point of net slope pressure on the loaded segment of 
a micropile group to potential slip surface. ha is the average 
length of a micropile group above potential slip surface.

(3)Ẇ + Ė + Ėp = Ḋ ,

(4)Ẇ = 𝛾r3
0
𝜔̇
(
f1 − f2 − f3 − f4 − f5 − f6

)
,

(5a)
Ė = 𝜎

(
L − L1

)
𝜔̇

[
r0 cos

(
𝜃0 + 𝛿

)
−

L − L1

2

]

+ 𝜏
(
L − L1

)
𝜔̇r0 sin

(
𝜃0 + 𝛿

) (
L1 + LF ≥ L

)
,

(5b)
Ė = 𝜎LF𝜔̇

⎡
⎢⎢⎣

r0 cos
�
𝜃0 + 𝛿

�

−
1

2

�
2L − 2L1 − LF

�
⎤
⎥⎥⎦

+ 𝜏LF𝜔̇r0 sin
�
𝜃0 + 𝛿

� �
L1 + LF < L

�
,

(6)ĖP = −Pr0 sin 𝜃F𝜔̇e
(𝜃F−𝜃0)

tan𝜑

Fs +Mu𝜔̇,

(7)Mu = P
(
nha

)
,

In addition, the dissipation rate of internal energy [26] 
can be derived as:

where θh is the rotation angle of the end point on a log-spiral 
slip line.

Then, substituting Eqs. (4)–(8) into Eq. (3), one obtains:

where f is the dimensionless coefficient of the gravity work 
rate, f = f1 − (f2 + f3 + f4 + f5 + f6). Ė∕ẇ can be obtained from 
Eqs. (5a) and (5b).

Thus, the net thrust force on the micropile group under 
a prescribed factor of safety can be determined by Eq. (9).

2.2 � Internal Forces of Micropiles

For simplicity, some assumptions are adopted according to 
the general geometric and loading characteristics of a micro-
pile group as follows:

(8)Ḋ =
cr2

0
𝜔̇

2 tan𝜑

[
e
2(𝜃h−𝜃0)

tan𝜑

Fs − 1
]
,

(9)P=

𝛾r0f +
Ė

𝜔̇r2
0

−
c

2 tan𝜑

[
e
2(𝜃h−𝜃0)

tan𝜑

Fs − 1
]

1

r0

[
sin 𝜃F ⋅ e

(𝜃F−𝜃0)
tan𝜑

Fs − nha ⋅
1

r0

] ,
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1.	 The loaded segment of the micropile group can be 
assumed as a plane rigid frame and the distribution of 
the slope pressure on the segment along the pile shaft is 
trapezoidal for the trailing row and triangle for the mid-
dle and leading row (see Fig. 3a).

2.	 Owing to the flexural rigidity of the roof plate that is much 
higher than that of a micropile in practice, the connections 
at the pile tops with the roof plate are assumed to be rigid.

3.	 The embedded segment of a micropile in the group is 
assumed as Winkler foundation beam [31]. Consider-
ing the homogeneous soil slope in Fig. 2, the founda-
tion coefficient can be assumed to increase linearly with 
depth from zero at the ground surface.

4.	 The restraint condition at the bottom of the embedded 
segment of a micropile in the group is assumed as free.

5.	 The micropile group is assumed to be axisymmetric out 
of plane. The net thrust force on a micropile group is 
averagely divided to each loaded segment of the three 
column micropiles out of plane.

Based on the first assumption, the simplified analysis 
model of the loaded segment of a micropile group can be 
illustrated in Fig. 3a. Then, Eq. (10) can be derived accord-
ing to structural mechanics [32]. Equation (11a) can be 
obtained in light of the static equilibrium conditions for joint 
B, D, F, and the roof plate. Meanwhile, according to the 
equilibrium conditions of the loaded segments of the three 
micropiles, Eq. (11b) can be obtained

(10)
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−
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,

where Mt is the bending moment of the loaded segment of 
a micropile group, in which the first subscript denotes the 
location of the internal forces and the second one represents 
the structural member of the group. q is the net linear load 
due to slope thrust force on the loaded segment of a micro-
pile group, in which the subscripts 2 and 3 denote the mid-
dle and the leading row, respectively, and the subscripts 1o 
and 1i represent the top and tip of the trailing row’s loaded 
segment, respectively. h is the length of a micropile above 
potential slip surface, where subscript i denote row number 
of micropiles in one group. b is the spacing between adjacent 
rows (in plane) in one micropile group. E1I1 is the flexural 
rigidity of a micropile. E2I2 is the equivalent flexural rigid-
ity of the roof plate. ψ is the rotation displacement of points 
on the roof plate, in which subscripts B, D, and F denote 
the joint B, D, and  F in Fig. 3. Δ is the translation displace-
ment of the rigid roof plate. x is the lateral displacement of 
micropiles at the slip surface, in which subscript i = 1, 2, and 
3 denote the trailing, middle and leading row of the group, 
respectively. η is the rotation displacement of the micropile 
cross section at the slip surface, in which subscripts 1, 2, and 
3 denote point A, C, and E in Fig. 3, respectively.
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where Qt is the shear force of the loaded segment of a micro-
pile group, in which the first subscript denotes the location 
of the internal forces and the second one represents the 
structural member of the group.

where y represents the distance from any cross section to the 
top of each micropile (see Fig. 3a).

Substituting Eq. (10) into (11a), one obtains Eq. (12):
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So, we can obtain expressions of ψB, ψD, ψF and Δ from 
Eq. (12). Further, the formula of moments and shear forces 
of each micropile at the slip surface can be derived accord-
ing to Eqs. (10)–(12). However, the formulas of these inter-

nal forces are involved in ten unknown variables q1o, q1i, q2, 
q3, x1, x2, x3, η1, η2, and η3, which can be solved using ten 
independent equations.
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Based on the second assumption, the joint rotation dis-
placements of points B, D, and F (see Fig. 3a) are identical 
and we can obtain two independent equations:

Based on the third assumption, the analysis model for 
the embedded segment of the micropile is shown in Fig. 3b. 
According to the static equilibrium conditions of the differ-
ential element of the embedded segment, differential equa-
tions for internal forces are described as Eq. (14a):

(13)

{
�B = �D

�D = �F

.
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Also based on the third assumption, the pressure of Win-
kler foundation acted on a pile along its shaft can be written 
as:

where k is the lateral Winkler foundation coefficient, Bp is 
the calculation width of a micropile, which is assumed to 
be the pile diameter, and m is the proportionality factor of 
lateral Winkler foundation coefficient varying with depth.

According to the Bernoulli beam theory [32], one obtains

Combining Eqs. (14a)–(14c), one obtains:

Then, according to the solving method of the dif-
ferential equations, Eq.  (14d) can be solved by the 
power series [33]. By further arrangement, the bending 
moments and shear forces of the embedded segment can 
be written as:

where α is the deformation coefficient of a micropile, 
α = (mBp/E1I1)1/5. Qi, Mi is the shear force and bending 
moment at the top of the embedded segment of a micropile 
group, in which subscript i (i = 1, 2 and 3) denotes the num-
ber of each pile row. A, B, C, and D are the calculation coef-
ficients of internal forces, in which the former subscripts M 
and Q denote bending moment and shear force calculation, 
respectively, and the latter subscript i (i = 1, 2 and 3) denotes 
the number of each pile row in a micropile group. These cal-
culation coefficients of internal forces are given as follows:
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where ye i is the y coordinate of any cross section (see 
Fig. 3b).

Based on the fourth assumption, we can get six independ-
ent equations [Eq. (16)] about the ten variables:

where Qb
i
 and Mb

i
 are the shear force and bending moment at 

the bottom of micropiles, in which subscript i (i = 1, 2 and 
3) denotes the pile row number. Qb and Mb satisfy Eq. (16a) 
according to Eq. (15):
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(16)

{
Mb

i
= 0(i = 1, 2, 3)

Qb
i
= 0(i = 1, 2, 3)

,

(16a)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
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= xiAMi +
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�
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where A, B, C, and D can be obtained from Eq. (15a) with 
setting ye

i
 as he

i
 ( he

i
 is the length of a micropile below poten-

tial slip surface, in which subscript i denotes row number of 
micropiles in one group).

Based on the continuity of internal forces of a micro-
pile, the internal forces at the bottom of the loaded segment 
should be equal to those at the top of the embedded segment. 
Thus, one obtains:

At the same time, the sum of the moments and shear 
forces of the three micropiles at the slip surface should be 
equal to those obtained using LAM mentioned above for the 
micropile group, respectively. Based on the fifth assumption, 
we can also get the other two independent equations:

where S is the center-to-center spacing between adjacent two 
micropile groups.

So the ten variables q1o, q1i, q2, q3, x1, x2, x3, η1, η2, and η3 
can be determined by Eqs. (13), (16) and (17). Naturally, the 

(16b)M1 = Mt
AB
,M2 = Mt

CD
,M3 = Mt

EF
,

(16c)Q1 = Qt
AB
,Q2 = Qt

CD
,Q3 = Qt

EF
.

(17)

⎧⎪⎨⎪⎩

M
t

AB
+M

t

CD
+M

t

EF
=

M
u
⋅ S

3

Q
t

AB
+ Q

t

CD
+ Q

t

EF
=

P ⋅ S

3

,

internal forces of each micropile of the group can be easily 
calculated. The computation procedure for responses of a 
micropile group can be carried out via a computer program 
such as Matlab. The corresponding flow chart is schemati-
cally illustrated in Fig. 4, which can be elaborated as follows:

Step 1:	� Calculation of net thrust force on the group

	� Input main physical properties of the slope, the 
local surcharge on the slope top and design factor 
of safety of the piled slope (β1, β2, κ1, κ2, H, Y; 
σ, τ, L1, LF; n, and Fs), calculate P and ha using 
Eq. (9), and calculate Mu using Eq. (7).

Step 2:	� Calculation of shear force and bending moment 
at the ends of the loaded segment of a micropile 
group

	� Obtain the expression of [ΨB, ΨD, ΨF, Δ]T using 
Eq. (12), and gain the expression of Mt

AB
 , Mt

BA
 , 

Mt
CD

 , Mt
DC

 , Mt
EF

 , and Mt
FE

 by substituting the 
expression of [ΨB, ΨD, ΨF, Δ]T into Eq. (10); then 
obtain the expression of Qt

AB
 , Qt

BA
 , Qt

CD
 , Qt

DC
 , Qt

EF
 , 

and Qt
FE

 by substituting the expression of Mt
AB

 , 
Mt

BA
 , Mt

CD
 , Mt

DC
 , Mt

EF
 , and Mt

FE
 into Eq. (11b).

Step 3:	� Calculation of shear force and bending moment at 
the top of the embedded segment

Fig. 4   Computation flow chart for responses of a micropile group
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	� Based on the results from step 2, calculate the 
expression of M1, M2, M3, Q1, Q2, and Q3 by sub-
stituting the expression of Mt

AB
 , Mt

CD
 , Mt

EF
 , Qt

AB
 , 

Qt
CD

 , and Qt
EF

into Eqs. (16b) and (16c).
Step 4:	� Calculation of the ten unknown variables q1o, q1i, 

q2, q3, x1, x2, x3, η1, η2, and η3

	� Based on the results from step 3, substitute the 
expression of M1, M2, M3, Q1, Q2, and Q3 into 
Eq. (16a) and then substitute Eq. (16a) into (16); 
based on the results from step 2, substitute the 
expression of [ΨB, ΨD, ΨF, Δ]T into Eq. (13), and 
substitute the expression of Mt

AB
 , Mt

CD
 , Mt

EF
 , Qt

AB
 , 

Qt
CD

 , and Qt
EF

 , P and Mu into Eq. (17); then calcu-
late the 10 unknown variables q1o, q1i, q2, q3, x1, 
x2, x3, η1, η2, and η3 using Eqs. (13), (16) and (17).

Step 5:	� Calculation of responses of the loaded segment of 
a micropile group

	� Substitute the solutions of q1o, q1i, q2, q3, x1, x2, x3, 
η1, η2, and η3 into Eq. (10), then obtain Mt

AB
 , Mt

CD
 , 

Mt
EF

 , Qt
AB

 , Qt
CD

 , and Qt
EF

 ; further substitute these 
solutions into Eq. (11b), and figure out Mt

AB
(y) , 

Mt
CD

(y) , Mt
EF
(y) , Qt

AB
(y) , Qt

CD
(y) , and Qt

EF
(y).

Step 6:	� Calculation of responses of the embedded segment 
of a micropile group

	� Based on the results from steps 4 and 5, substitute 
the solutions of Mt

AB
 , Mt

CD
 , Mt

EF
 , Qt

AB
 , Qt

CD
 , and 

Qt
EF

 into Eqs. (16b) and (16c), then gain M1, M2, 
M3, Q1, Q2, and Q3; then substitute the solutions 
of M1, M2, M3, Q1, Q2, Q3, x1, x2, x3, η1, η2, and η3 
into Eq. (15), and determine Me

i
 and Qe

i
(i = 1, 2, 3).

Thus, internal forces of each pile in one group can be 
obtained.

3 � Verifications

To demonstrate the rationality of the proposed method, a 
large-scale geotechnical laboratory model test and corre-
sponding 3D-numerical simulation have been conducted.

A piled slope test model with 0.94 m width out of plane is 
shown in Figs. 5a and 6a. There are three micropile groups 
with 0.2 m center-to-center spacing out of plane arranged 
in the test model (see Fig. 5b). The slope soil was prepared 
with fine quartz sand, pottery clay, and water at the ratio 
of 50:3:2. The roof plates of the model micropile groups 
were made of hardwood plates, and the model piles with 
0.67 m length were made of hollow aluminum tubes with 8 

and 7 mm outer and inner diameters, respectively. The main 
properties of the model slope soil and micropile group are 
shown in Table 1.

As shown in Figs. 5c and 6b, three model piles in the 
middle group (see Fig.  5d) were instrumented with 42 
strain gauges along their shafts for measuring their bending 
moments (see Eq. (18)). And 48 soil pressure cells were laid 
out on both sides of the piles for measuring slope pressure 
on the piles (see Fig. 6b). To measure lateral displacements 
of the slope and the micropile group, three dial gauges were 
installed at the crest, toe of the slope and the front side of 
the roof plate, respectively (see Fig. 6c).

The loading test was conducted by placing concrete 
blocks on the top of the model slope (see Figs. 5a, 6a). The 
surcharge is 24.7 kPa in the test to observe responses of the 
piled slope distinctly.

Figure 7 shows net slope pressure on the leading, mid-
dle, and trailing loaded segments of the micropiles in the 
instrumented group. It can be seen that distributions of the 
net slope pressure are bidirectional and getting weaker from 
top to bottom along the shaft of the loaded segments of the 
piles. The corresponding analysis results of a 3D-numerical 
simulation using FLAC3D for the test model (see Fig. 8) are 
also given in Fig. 7. The net slope pressure on the measured 
micropiles in the test is close to those obtained using the 
numerical simulation method (NSM).

In addition, Fig. 9 shows the critical slip surface of the 
model slope computed using the proposed method and the 
NSM with shear strength reduction strategy and yielded a 
factor of safety value of 1.31. The corresponding net thrust 
force per unit width P is calculated to be 0.785 kN/m using 
the proposed method. It can be seen that the critical slip 
surfaces of the piled slope obtained by the two methods are 
almost identical.

Bending moments and shear forces of micropiles obtained 
by the model test, the proposed method, and the NSM are 
also shown in Fig. 10a–f, in which the measured bending 
moments Mi and shear forces Qi of the three model piles are 
obtained by Eq. (18) [32]:

where εi+ and εi− are strain measured on the front and 
rear side of model piles, respectively, in which subscript i 
(i = 1–7) denotes row number of micropiles in one group. 
D is the outer diameter of the model piles. d is the distance 
between two adjacent strain measuring points (see Fig. 5c).

It can be seen from Fig. 10 that the distribution tendency 
of bending moment and shear force of each measured micro-
pile observed in the test is similar to that computed using 

(18)

{
Mi = E1I1

(
�i+ − �i−

)
∕D

Qi =
(
dMi∕dy

)
≈
(
Mi+1 −Mi

)
∕(2d)

,
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the proposed method and the NSM. But it should be noted 
that the analytical calculation and numerical simulation are 
carried out under the condition that the piled slope is in the 

critical state with a factor of safety. However, the model 
test of the piled slope is not in the critical state due to the 
actual loading limitation in the laboratory. Therefore, there 

(a) (b)

(c) (d)

Fig. 5   Layout of the test model: a cross section; b plane diagram; c layout of measuring points; d arrangement of micropiles in the middle group

Fig. 6   Model test photos: a side view; b arrangement of soil pressure cells on the sides of the piles; c front view
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are distinct differences of the values of the internal forces 
between the test and the proposed method as well as the 
NSM. Additionally, although the results obtained by the 
proposed method and NSM are relatively close, there are 
local differences of the results between the two computa-
tion methods. The possible reason is that some assumptions 

introduced in the proposed method are likely not identical 
with the conditions in the related numerical models.

For the leading and trailing pile, the maximum positive 
bending moment above the slip surface by the proposed 
method is nearly located at the middle point of the loaded 
segment (see Fig. 10a, e). Meanwhile, the maximum nega-
tive bending moment below the slip surface by the pro-
posed method is nearly located at the upper third point of 
the embedded segment. The values and locations of the two 
maximum bending moments obtained using the proposed 
method are fairly close to those by the NSM.

For the middle micropile, the maximum positive bending 
moment above the slip surface by the proposed method is at 
the top of the pile (see Fig. 10c). Its location is above that 
by the NSM, and its value is higher than that by the NSM. 
The location of the maximum negative bending moment by 
the proposed method is also nearly located at the upper third 
point of the embedded segment. And both its location and 
value are close to those by the NSM.

But for the three micropiles, the maximum shear forces 
obtained by the proposed method and the NSM are both 
located nearly at the slip surface (Fig. 10b, d, f). And the 
value of the maximum shear force by the proposed method 
is about 40% larger than that by the NSM for the leading and 
trailing micropiles and about 15% less than that by the NSM 
for the middle micropile.

In general, bending moments and shear forces obtained 
by the proposed method agree well with those by the NSM. 
However, it is noteworthy that the values by the model test 
are far less than those computed by the other two methods. 
The reason lies in the fact that in the model test they are 
captured under the condition that the piled slope is far away 
from the limit state. But the related theoretical or numerical 
values are computed in the limit state of the piled slope with 
the factor of safety 1.31.

Table 1   Main properties of the model slope soil and micropile group

Material Unit 
weight 
(kN/m3)

Cohe-
sion 
(kPa)

Internal 
friction 
angle (°)

Elastic 
modulus 
(MPa)

Poisson’s 
ratio

Slope 18 5 13 6 0.3
Pile 27 – – 42,000 0.3
Roof plate 10 – – 5000 0.2
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Fig. 7   Net slope pressure on the loaded segments of the measured 
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Fig. 8   3D-Numerical simulation model of the test slope
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b, d, and f shear force of the leading, middle, and trailing micropile, respectively
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4 � Parameter Study and Discussion

The practical soil slope [18] reinforced with traditional sta-
bilizing piles by Austilo et al. shown in Fig. 11 is taken 
herein as an example. The slope height is 13.7 m, and the 
slope angle is 30°. Unit weight, cohesion, and internal fric-
tion angle of the slope soil are 19.63 kN/m3, 23.94 kPa, and 
10°, respectively. The slope is reinforced here with micropile 
groups 7.8 m away from the slope toe. Meanwhile, a micro-
pile group consists of nine micropiles in three rows and three 
columns connected by a roof plate at their tops (see Fig. 12). 
Three 40 mm-diameter steel bars are used for each micro-
pile. The elastic modulus and equivalent flexural rigidity of 
a single micropile are 200 GPa and 276.46 kN m2, respec-
tively. Each micropile hole has a diameter of 130 mm and 
is injected with M20 cement mortar. The center-to-center 
spacing between two adjacent groups is 3 m. The spacing 
between two micropiles in one group is 0.6 m in plane and 
0.5 m out of plane. The roof plate has 0.2 m cantilever length 
over border micropiles of the group.

The net thrust force P under the design safety factor 1.2 
is 105.2 kN/m computed by the proposed method. And the 
corresponding slip surface of the piled slope is simultane-
ously obtained (see Fig. 11). Therefore, both the loaded and 
embedded segment lengths of the micropiles are adopted 
as 6.1 m.

4.1 � Flexural Rigidity of a Micropile

Figure 13 shows internal forces of the trailing micropile in 
the practical example under four various flexural rigidities 
including 0.41 E1I1 (E1I1 = 276.46 kN m2 mentioned above), 
0.66 E1I1, 1.00 E1I1, and 2.44 E1I1 which are correspond-
ing to 32, 36, 40, and 50 mm diameter steel bars, respec-
tively. The results indicate that bending moment of the pile 
increases marginally with increasing its flexural rigidity (see 
Fig. 13a), and the shear force decreases slightly with the 
increase of the flexural rigidity (see Fig. 13b). But distri-
bution characteristics of the internal forces are almost not 
changed with flexural rigidity of the micropile.

Pile
Slip surface

H=13.7m
xP=7.8m

30 6.1m

6.1m

γ=19.63kN/m3

c=23.94kPa
φ=10°

Fig. 11   A slope example
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Fig. 12   Layout of micropile groups in the slope example
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4.2 � Micropile Length

To simply discuss the effect of micropile length on its inter-
nal forces, embedding ratio (denoted by Rh) is defined herein 
as a ratio of the embedded segment length over the loaded 
segment length of the micropile. Figure 14 shows internal 
forces of the trailing micropile in the example under five 
various embedding ratios Rh including 0.5, 0.8, 1.0, 1.2, and 
1.5, respectively. Both the bending moment and the shear 
force of the micropile are nearly not influenced by the ratio 
(see Fig. 14a, b). The result is somewhat different from that 
of the traditional stabilizing pile with a large cross section. 
The reason is that the micropile is generally of much higher 
slenderness ratio than the traditional pile.

4.3 � Micropile Spacing in Plane

As shown in Fig. 15a, b, RS is the ratio of micropile spac-
ing in plane over the pile diameter, the ratio RS has almost 
no effect on bending moment and shear force of the trailing 
micropile in the example. It is because relative rigidity of the 
roof plate E2I2/b is far more than that of micropiles E1I1/hi 
(i = 1, 2, 3), and the relative rigidity of the roof plate influ-
ences to great extent internal forces of micropiles according 
to structural mechanics principle when the ratio RS is altered 
from 3.0 to 8.0 [see Eqs. (10)–(12)].

(a)

(b)

D
ep

th
 b

el
ow

 th
e 

pi
le

 to
p(

m
)

0

2

4

6

8

10

12

14

16

Bending moment(kN·m)
-60 -40 -20 0 20 40 60

Rh

0.5
0.8
1.0
1.2
1.5

D
ep

th
 b

el
ow

 th
e 

pi
le

 to
p(

m
)

0

2

4

6

8

10

12

14

16

Shear force(kN)
-50 -25 0 25 50

Rh

0.5
0.8
1.0
1.2
1.5

Fig. 14   Effect of micropile length on its internal forces: a bending 
moment; b shear force

(a)

(b)

D
ep

th
 b

el
ow

 th
e 

pi
le

 to
p(

m
)

0

2

4

6

8

10

12

14

Bending moment(kN·m)
-60 -40 -20 0 20 40 60

Rs
3.0
4.6
5.0
6.0
8.0

D
ep

th
 b

el
ow

 th
e 

pi
le

 to
p(

m
)

0

2

4

6

8

10

12

14

Shear force(kN)
-50 -25 0 25 50

Rs
3.0
4.6
5.0
6.0
8.0

Fig. 15   Effect of micropile spacing in plane on its internal forces: a 
bending moment; b shear force



212	 International Journal of Civil Engineering (2020) 18:199–214

1 3

4.4 � Micropile Numbers

Figure 16 shows that internal forces of the trailing micropile 
in the example are remarkably influenced by total numbers 
of micropiles in one group including 2 × 2, 2 × 3, and 3 × 3 
layout, respectively. Bending moment and shear force of the 
micropile are decreasing as expected with increasing the 
pile numbers (see Fig. 16a, b). But the distribution mode of 
internal forces is hardly varied with the pile numbers.

5 � Conclusions

A new simplified analytical method for combined stabiliz-
ing micropile groups used to reinforce slopes or landslides 
is presented. Internal forces of a micropile group can be 

calculated by dividing it into two parts with the boundary 
of the design slip surface. The upper and lower parts can be 
regarded as a plane rigid frame model and an elastic founda-
tion beam model, respectively.

For a specified factor of safety of a piled slope, resistance 
at the design slip surface provided by a micropile group can 
be computed via a series of formulas derived in light of kin-
ematical limit analysis method. The resistance should then 
be adopted as boundary conditions used in analyzing the 
upper part of the micropile group.

Flexural rigidity of a micropile and total numbers of 
micropiles in one group have a substantial effect on bend-
ing moment and shear force of the micropile. In particular, 
the internal forces are relatively sensitive to pile numbers 
in a group.

However, micropile length and micropile spacing in plane 
in a group have both little effects on internal forces of the 
micropile, which is rather different from traditional stabi-
lizing piles with large cross section because of fairly high 
flexibility of the micropile.
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Appendix

In Fig. 2, there are following geometric relationships:

where X is the horizontal distance from the slope toe to the 
intersection between the log-spiral slip line and the ground 
outside the toe. H is the height of the slope. β and β′ are dip 
angles of line JN and JN′ in Fig. 2, respectively.

where κ and β are the ratio of local slope height over the 
whole slope height and the dip angle of the slope face, 
respectively. And the subscripts 1 and 2 denote the upslope 
and downslope in Fig. 2, respectively. Y is the width of 
bench of the slope.
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Fig. 16   Effect of micropile numbers in one group on its internal 
forces: a bending moment; b shear force



213International Journal of Civil Engineering (2020) 18:199–214	

1 3

According to the concept of the gravity work rate [26], 
the coefficients of the gravity work rate can be derived and 
expressed as follows:
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