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Abstract The moisture transfer coefficient (MTC) is an

important parameter utilized in modeling of moisture

ingress into concrete. Test methods for estimating the MTC

are generally performed using time-consuming combined

experimental–numerical procedures. This paper presents a

simple and practical method for the determination of the

MTC using only water absorption test results. In this

regard, a comprehensive nomograph was constructed based

on finite element (FE) analysis of moisture transfer which

relates the MTC to the water absorption measurements of

concrete specimens. To validate the proposed method,

eight concrete mixtures were prepared and their MTCs

were obtained using the proposed nomograph and water

absorption measurements after 1 and 4 h of immersion.

Using the estimated MTCs, a numerical model was applied

to predict the water absorption. The subsequent water

absorption data resulting from the FE model were com-

pared with the laboratory test results at intervals of 8, 12,

24 and 72 h, with h standing for ‘‘hour’’. An observed error

level up to 5% confirmed the validity of the proposed

method.

Keywords Moisture transfer coefficient � Water

absorption � Nomograph � Numerical analysis

1 Introduction

Common deterioration problems in concrete structures

such as rebar corrosion are mainly associated with the

transfer of moisture into concrete during wetting. Modeling

of moisture transport in concrete and the subsequent life-

cycle analysis of concrete structures also necessitate the

prediction of the moisture distribution within unsaturated

concrete [1, 2].

Several test methods have been suggested for the

determination of the moisture diffusivity and permeability

of concrete. Those proposed for estimation of the water

absorption rate include measurement of sorptivity [3],

water absorption after 30 min [4], penetration depth of

water under pressure [5] and water permeability of con-

crete specimens at a specified pressure [6]. The results

obtained from these test methods, however, are not appli-

cable for prediction of the moisture distribution in concrete

as well as durability assessment [7–11]. To provide life-

cycle analysis and durability assessment, the moisture

transfer coefficient, Dw (m2/s), should be determined; the

coefficient is subsequently used as an input parameter in

the moisture transport modeling [12–14].

Dw can be calculated from the transient moisture dis-

tribution using profile method [14]. Several techniques

have been used to measure the moisture distribution pro-

files. These include slice–dry–weigh [14] and thermal

imaging [15] as destructive methods and gamma-ray

attenuation [16], neutron radiography [17], nuclear mag-

netic resonance [18], magnetic resonance imaging [19] and

electrical resistivity methods [20] as non-destructive tech-

niques. These non-destructive test methods are usually

expensive and difficult to perform. They also require

sophisticated facilities which are not available for every

contractor [21]. In some cases, the profiles were analyzed
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using a Boltzmann transformation [22, 23] or inverse

numerical modeling [24–26] to obtain Dw. In addition, the

cup method, according to ASTM E96, is the stationary

technique used for the study of water vapor diffusion

through a porous material [27, 28]. This technique, how-

ever, is time consuming and requires many parallel speci-

mens as the measurements are usually performed at various

relative humidity (RH) levels [29, 30].

Due to some disadvantages associated with these tech-

niques such as complexity, high cost, and being time

consuming, an alternative technique, namely the gravi-

metric method, is now a widespread method to follow Dw

[31]. In this method, the mass of a small specimen is

measured during the exposure to water [32]. An inverse

modeling technique is, then, used to evaluate the Dw in

porous building materials. The identification of parameters

is performed by minimizing the sum of square deviation

between the numerical and experimental values of the

average moisture content of a specimen at several time

intervals [33, 34]. Despite some advantages of this method,

a combined experimental–numerical approach is required.

The aim of this study is to develop a practical method

for the determination of Dw using a simple experimentation

and a nomograph obtained from a numerical analysis. In

order to validate the proposed method, an experimental

study on the field specimens was conducted. In this regard,

the approximated values of Dw of the specimens, obtained

from the nomograph, were utilized for the prediction of the

water absorption later on using numerical analyses. Then,

the predicted water absorption values were compared with

the experimental results to validate the accuracy of the

proposed method.

2 Moisture Transfer

2.1 Formulation and Background

Several theories have been developed, during the past few

decades, for the description of liquid transfer or vapor

diffusion through a porous matrix. These were mainly

based on the mass, momentum, and energy conservation

laws expressed by Darcy’s law and Fick’s second law of

diffusion [35–38]. Depending on the dominant mechanism

during water transport, the moisture movement can be

expressed in two ways: (a) in the form of the pore evap-

orable water or (b) in the form of the pore relative humidity

[39]. Liquid and vapor flows usually occur in the same

direction and are hardly separated in an experiment.

However, it is more practical to use one mechanism of

moisture transfer, preferably water movement, in the state

of water absorption, especially for the modeling of the ion

transfer [40]. The major cause of water flow into a porous

material during the water absorption is known to be the

capillary forces [41–43]. Capillary action should, therefore,

be considered as a liquid form of moisture transport.

Although the described water transport is due to the cap-

illary potential gradient and not strictly due to the diffusion

process, the diffusion form of the governing differential

equation on water transport, for isothermal cases, is as

follows [44]:

qm ¼ �Dwrw; ð1Þ

where qm, w and Dw represent the total moisture flow (m/s),

the pore water saturation degree, and the equivalent total

moisture transfer coefficients (m2/s) in the form of liquid,

respectively.

Neglecting gravitational effects and moisture loss due to

hydration, and also considering the mass conservation of

water in the concrete pores [45], the rate of moisture

transfer per unit area in a certain direction is proportional

to the gradient of the moisture concentration in that

direction. Consequently, the water saturation degree of

concrete or cement paste, w, should satisfy the following

partial differential equation [46]:

ow

ot
þr � qmð Þ � Qw ¼ 0; ð2Þ

where Qw represents a sink term of evaporable water due to

hydration or another chemical reaction. In the present

study, assuming no chemical reaction occurs between

water and the solid phase of pore structure, a constant

solution density, and isothermal conditions, the substitution

of Eq. (1) into (2) yields [47, 48]:

ow

ot
¼ Dwr2w: ð3Þ

The major problem in the accurate determination of Dw

is that the moisture movement through cementitious

materials considerably depends on the pore moisture con-

tent. Some empirical correlations have been proposed to

provide an approximation of Dw during moisture gain [49].

Among the proposed correlations, Eq. (4) is more common

for modeling the variation of Dw with the value of w of

pores in the wetting process [50]:

Dw ¼ Dd
w e�bw; ð4Þ

where Dw
d is the dried-state moisture transfer coefficient

during moisture gain (m2/s) and b is a model parameter that

must be determined. According to Eq. (4), Dw decreases

during the wetting process of concrete.

2.2 Numerical Modeling of Moisture Transfer

To solve Eq. (3), the residual weight (Galerkin) method

was employed using the finite element (FE) technique.
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Applying the Galerkin weighted residual method to Eq. (3)

yields:

Kw½ � wj

� �
þ Cw½ � _wj

� �
¼ fwf g; ð5Þ

where

Kw½ � ¼ Dw

Z

V

B½ �T B½ � dv þ Bw

Z

S

Nj

� �T
ds;

Cw½ � ¼
Z

V

Nj

� �T
Nj

� �
dv;

fwf g ¼ Bw

Z

S

Nj

� �T
wenvf g ds;

and Nj, S and V are the shape function, boundary and main

domain, respectively. [B] is equal to r{Nj}, and j is the

number of shape function. Equation (5) is integrated over

time using a finite difference approximation [51, 52]. Bw is

the surface moisture transfer coefficient (m/s) [53], and

wenv is the value of w at the surface of the concrete. wenv is

equal to 1 when concrete is exposed to water.

Bw is calculated using the equivalent thickness (le) of the

concrete adjacent to the real exposed surface from

Bw = Dw/le. Bazant and Najjar [39] suggested, based on

the comparison of some analytical data with the experi-

mental results, that the value of the equivalent surface

thickness was approximately 0.75 mm. Bw is, therefore,

calculated as follows:

Bw m=sð Þ ¼ Dw m2=sð Þ
0:75 � 10�3ðmÞ : ð6Þ

3 Proposed Test Method

3.1 Theoretical Approach

The distribution of water in concrete due to the moisture

flux, Jm, at time ti (Fig. 1a) is presented by the curve shown

in Fig. 1b when the moisture ingress into concrete occurs

only through the two exposed sides of the specimens in one

direction. If the water saturation degree (w) is obtained at

several points along the concrete depth using the profile

method, the value of Dw can be approximated by fitting

Fick’s second law of diffusion to the experimental data

using Eq. (3).

As an alternative approach, a simple mass measurement

was used in the present study to obtain Dw. w
ave at time ti

was calculated from the area under the curve of water

saturation degree (w). This method is based on the fact that,

theoretically, only one definite curve (Fig. 1c) exists [12],

which can be exactly fitted on wave at t1 and t2 using the

governing differential equation (Eq. 3) and the moisture

transfer coefficient (Eq. 4). In other words, moisture

ingress into each specimen of the given Dw
d and b results in

the definite values of wave (t1) and wave (t2) as well as

X = wave (t1) and Y = [wave (t2)]/[(w
ave (t1)]. Therefore,

output sets X–Y can be determined using numerical anal-

ysis of one dimensional (1-D) moisture ingress into the

concrete test specimen with the specified values of Dw
d , b
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Fig. 1 Typical moisture distribution in concrete: a typical 1-D model

for moisture transfer into concrete; b moisture (w) profile at time ti;

c average water saturation degree (wave) in the total pores over time
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and the length of specimen. The relationship between each

set X–Y and Dw
d - b can be shown by the nomograph. The

moisture transfer coefficient can, therefore, be inversely

obtained only from the nomograph presented in Fig. 2

using the water absorption of the specimens at t1 and t2 and

by assuming 1-D moisture transfer, the moisture depen-

dency of Dw according to Eq. (4) and isothermal

conditions.

A pair of times t1 and t2 should be selected considering

the following remarks:
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Fig. 2 Nomograph of the water absorption (1-D exposure of a concrete specimen of 50 mm length)
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• t1 should be greater than the minimum extent in order to

eliminate the possible effect of boundary condition and

exposure surfaces on the test results.

• t2 becomes in the range of common daily work time,

wherein wave (t2) is meaningfully greater in comparison

with wave (t1).

In this paper, 1 and 4 h were selected as t1 and t2,

respectively.

3.2 Developing the Nomograph of Water

Absorption

To develop the data required for the nomograph of the

water absorption, a finite element-based numerical study

was conducted. The FE model solved the governing

equation of the moisture transport during the wetting.

Because the wetting process affects two faces of the con-

crete specimens, it was necessary to consider the moisture

flux to exposed faces of the specimen as the boundary

condition. Moreover, the concrete material was assumed to

be isotropic. The effect of hydration was neglected during

the tests.

A numerical analysis was performed using a 1-D FE

model. The input parameters of the model are presented in

Table 1. As schematically shown in Fig. 1a, a concrete

cylindrical specimen with a length of 50 mm was modeled

as a reference. In Eqs. (7 and 8), X and Y of the specimen

were computed using different parameters of Dw and then

presented in the form of a nomograph (Fig. 2). Parameters

Dw
d and b were varied from 5 9 10-9 to 1 9 10-7 m2/s

and from zero to 10, respectively, in order to obtain a

nomograph covering a wide range of moisture transfer

coefficient parameters:

X ¼ wave
1�h ¼

A1

At

; ð7Þ

Y ¼ wave
4�h

wave
1�h

¼ A2

A1

; ð8Þ

where A1, A2 and At are the 1 h, 4 h and total water

absorption (%) values, respectively.

Each blue graph (with constant Dw
d ) was drawn using

X and Y resulting from a series of analyses, wherein Dw
d

was constant and b varied from zero to 10. Similarly, each

red graph (with constant b) was drawn using X and Y re-

sulting from a series of analyses, wherein b was constant

and Dw
d varied from 5 9 10-9 to 1 9 10-7 m2/s.

These graphs demonstrate a nonlinear interaction of

input and output variables on the water absorption. It is

suggested, based on the nomograph of Fig. 2, that in gen-

eral, variations of Dw
d and b are directly related to those of

X and Y. Therefore, an increase in b (at a constant value of

Dw
d ) results in a decrease of the values of both X and Y. In

addition, an increase in Dw
d (at a constant value of b) causes

an increase in X and a drop in Y. In the range of analyses

performed in this study, Y is lower than 1.5 when b is

greater than 8. The increase in Y-value would be negligible

for high values of b. It is due to the considerable decrease

of Dw by increasing b values.

For the approximation of the values of Dw
d and b, the

values of X and Y were first calculated using the 1 h, 4 h

and total water absorption values. A vertical line perpen-

dicular to the X axis and a horizontal line perpendicular to

the Y axis were then drawn on the nomograph, and their

intersection point (P) was determined. Two curves parallel

to the blue and red curves were drawn so that their inter-

section occurs at point P. The values of Dw
d and b are then

determined by an interpolation.

Variation of the length of specimen likely affects the

amount of absorbed water at t1 and t2. A correction of the

water absorption values of specimens with the length of li
(mm) is, therefore, required to obtain the water absorption

values of an equivalent 50-mm-long (l50) specimen. The

specimens with lengths of 25, 40, 45, 47.5, 52.5, 55, 60 and

75 mm were analyzed in addition to the reference speci-

men (with a length of 50 mm). The average length cor-

rection factors (LCF) of wave were calculated (Table 2),

and the correlated equations were established (Eq. 9). The

high correlation (R2[ 0.99) for these relationships indi-

cated a linear dependency of LCF to li/l50 in the range of

the present analyses.

LCF ¼
0:953

li

l50

� �
þ 0:050 for w1�h

0:795
li

l50

� �
þ 0:210 for w4�h

8
>><

>>:
ð9Þ

Table 1 Inputs and outputs of the numerical model

Parameters Value

Input variables

Dd
w
a 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 9 10-8 m2/s

bb 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Bw Dw (m2/s) in exposed surface/0.75 (mm)

w (t = 0) 0.0

wenv 1.0

Model output

w (x = xi, t = ti) TBD

wave (t = ti) TBD

TBD to be determined
ab was varied between 0 and 10 in steps of 0.1 for each specified Dw

d

bDd
w was varied between 0.5 and 10 9 10-8 m2/s in steps of 0.1 for

each specified b
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The lower standard deviation of LCF (LCFSD) obtained

from more than 200 analyses indicates that LCFs of

specimens with different Dw
d and b were not considerable.

Therefore, the value of wave (t = 1 and 4 h) of a specimen

of a length between 25 and 75 mm can be transformed to

wave (t = 1 and 4 h) of a 50-mm-long specimen. For

example, if the 1 h, 4 h and total water absorptions of a 50-

mm-long specimen are 0.98, 1.62 and 4.97%, respectively,

then Dd
w and b can be approximated from the nomograph

shown in Fig. 2. In this example, X and Y are 0.179 and

1.65, respectively. Considering an X-value of 0.179 on the

horizontal axis and a Y-value of 1.65 on the vertical axis of

Fig. 2, Dd
w and b could be estimated as 4.1 9 10-8 m2/s

and 5.6, respectively.

3.3 Sensitivity Analysis

The variation of specimen sizes and balance accuracies is

likely to result in some errors in X and Y and consequently

in the estimation of Dd
w and b. A sensitivity analysis was

performed to estimate the effect of variations in X and Y on

the values of Dd
w and b. The study was based on the cal-

culation of the elasticity of the required parameters. The

elasticity provides an estimation of the relative importance

(g) of the variations of parameters on the method output.

The elasticity is calculated as [12]:

g ¼ DY
DP

�
�P
�Y
; ð10Þ

where �Y is the output of the proposed method estimated by

parameter �P. DY is the variation in the output of the

method due to the input parameter variation (DP).

Data provided in the previous example (see Sect. 3.3)

were utilized for the sensitivity analysis. The input

parameters were considered as X and Y, each with a vari-

ation of ±5%. The ratio of �P=DP = 10.0 was also

assumed. The parameters of the moisture transfer coeffi-

cient, including Dd
w and b, were considered as the output

parameters. The results of the sensitivity analysis are pre-

sented in Table 3. It is suggested, based on the results, that

the model is significantly sensitive to the Y values. It was,

however, less sensitive to the variations of X values. A 5%

variation in Y values resulted in 16 and 15% differences in

Dw
d and b, respectively. A similar variation in the X values,

however, resulted in 7 and 1% differences in Dw
d and b,

respectively. The significant dependence on the Y values

indicates that special attention must be directed to the

estimation of this parameter during the water absorption

measurements.

4 Validation Procedure of the Method

4.1 Experimentation

An experimental study was conducted on concrete speci-

mens hydrated for 4 years in order to demonstrate the

feasibility of the proposed method. Concrete specimens

with various mixture proportions were considered. These

include plain concrete mixtures and those containing silica

fume and natural zeolite. The mixture constituents of all

proportions as well as the fresh and hardened properties of

the concrete mixes are presented in Tables 4 and 5,

respectively. The chemical analysis of cementitious mate-

rials is also provided in Table 6. Fine and coarse

Table 2 Specimen length correction factors for the average degree of saturation

Specimen length, li (mm) li/l50 Length correction factor (averagea), LCF Length correction factor (standard deviationb), LCFSD

wave
1�h wave

4�h wave
1�h wave

4�h

25.0 0.5 0.537 0.617 0.047 0.047

40.0 0.8 0.809 0.845 0.012 0.042

45.0 0.9 0.904 0.921 0.005 0.021

47.5 0.95 0.952 0.960 0.002 0.010

50.0c 1 1.000 1.000 – –

52.5 1.05 1.048 1.041 0.002 0.010

55.0 1.1 1.097 1.089 0.004 0.012

60.0 1.2 1.194 1.165 0.007 0.037

75.0 1.5 1.487 1.409 0.016 0.043

aAverage correction factors calculated based on more than 200 numerical analyses
bStandard deviation of the correction factors for more than 200 numerical analyses
cReference length of the concrete specimen
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aggregates were prepared from siliceous–calcareous riv-

erbed aggregate with values of the saturated surface dried

(SSD) specific gravity and the water absorption of 2.55 and

2.8%, respectively, for the fine aggregate, and 2.57 and

1.6%, respectively, for the coarse aggregate.

A total of 24 concrete cores with a diameter of 69 mm

and a length between 45 and 55 mm were drilled and then

trimmed for measuring the water absorption at specified

times. The side areas of the specimens were sealed with

epoxy coat to simulate the 1-D moisture transport

conditions.

All specimens were first saturated and then oven-dried

to a constant mass at a temperature of 110 ± 5 �C,
followed by cooling in a desiccator to a temperature of

23 ± 2 �C. The drying conditions of the specimens were

assured by comparing the weight of the dried specimens

at a temperature of 110 ± 5 �C with the weight of the

cooled specimens at a temperature of 23 ± 2 �C. The

difference between the weight of the oven-dried speci-

men and that of the cooled specimen was very small in

all cases. The specimens were then immersed in water at

a temperature of 23 ± 2 �C, and the weights of the

specimens were measured after 1 and 4 h. The average

pore water saturation degree (wave) was calculated from

the amount of water available in the concrete divided by

the total water required to saturate the dried specimen.

The water absorption test results of the specimens are

presented in Table 7.

Table 3 Results of the sensitivity analysis

Parameter Input parameters Method outputs

Dw
d b

�P �P- 5% �P ? 5% �Y DY DY= �Y g 5% 9 g �Y DY DY= �Y g 5% 9 g

X 0.179 0.170 0.188 4.1 0.6 0.146 1.46 7 5.6 0.1 0.018 0.18 1

Y 1.65 1.57 1.73 4.1 1.3 0.317 3.17 16 5.6 1.7 0.304 3.04 15

Table 4 Concrete mixture proportions

Code T1-45 T2-40 T2-45 T2-50 T2-55 T5-45 SF7.5 Z10

Cement (kg/m3) 350 350 350 350 350 350 324 315

Cement type I II II II II V II II

Silica fume (kg/m3) – – – – – – 26 –

Zeolite (kg/m3) – – – – – – – 35

Water (kg/m3) 158 140 158 175 193 158 158 158

w/cm 0.45 0.40 0.45 0.50 0.55 0.45 0.45 0.45

Fine aggregatea (kg/m3) 936 956 936 913 890 936 936 936

Coarse aggregatea (Dmax = 19 mm) (kg/m3) 864 884 864 842 821 864 864 864

Super-plasticizer (kg/m3) 0.70 0.70 0.28 – – 0.35 1.19 1.05

aAggregates were saturated surface dry

Table 5 Fresh and hardened

concrete test results
Code T1-45 T2-40 T2-45 T2-50 T2-55 T5-45 SF7.5 Z10

Slump (cm) 9.5 11.0 12.0 16.0 22.0 9.0 12.0 10.5

Air content (%) 2.2 3.0 3.2 3.2 3.3 1.9 2.2 3.4

Compressive strength (MPa)

7 days 33.1 30.4 28.0 22.4 17.3 23.1 31.0 25.9

28 days 40.0 42.7 39.1 34.1 31.1 24.9 47.4 39.2

90 days 46.9 49.0 44.6 40.3 35.2 31.8 52.1 44.7

1 year 53.1 51.0 48.9 45.4 41.3 43.2 58.6 52.2

4 years 54.8 53.1 51.7 47.7 42.6 45.3 62.3 56.3
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Table 6 Chemical composition

of cementitious materials
Composition (wt.%) Cement type I Cement type II Cement type V Silica fume Natural zeolite

CaO 65.7 63.8 60.5 3.1 3.8

SiO2 20.3 24.4 20.5 86.2 63.1

Al2O3 5.7 3.8 3.6 1.4 11.0

Fe2O3 3.3 3.1 4.2 0.2 0.4

SO3 1.8 1.5 2.0 0.3 0.1

MgO 1.6 4.4 5.4 1.3 1.6

K2O 0.75 0.79 0.69 – –

Na2O 0.12 0.08 0.01 – –

LOI 1.1 1.1 3.0 1.2 8.5

IR 0.45 0.32 0.74

C3S 65 55 55 – –

C2S 9 23 18 – –

C3A 9 5 2 – –

C4AF 5 9 13 – –

LOI loss on ignition, IR insoluble residue

Table 7 Water absorption test results

Specimen

no.

Mixture

code

Saturated weight

(g)

Dried weight

(g)

Total water absorption

(%)

Specimen length

(mm)

wave

(t1 = 1 h)

wave

(t2 = 4 h)

1 T1-45 475.6 447.0 6.40 54.6 0.196 0.346

2 T1-45 467.9 437.0 7.07 54.0 0.219 0.424

3 T1-45 479.6 446.5 7.41 55.9 0.214 0.411

4 T2-40 409.3 389.4 5.11 47.5 0.128 0.244

5 T2-40 409.2 391.0 4.65 48.7 0.127 0.238

6 T2-40 423.0 405.9 4.21 50.2 0.129 0.245

7 T2-45 410.6 385.5 6.51 48.0 0.152 0.279

8 T2-45 436.5 411.2 6.15 50.4 0.167 0.306

9 T2-45 441.4 417.1 5.83 51.8 0.179 0.309

10 T2-50 434.0 408.4 6.27 50.1 0.195 0.395

11 T2-50 443.3 417.4 6.21 51.6 0.219 0.440

12 T2-50 443.5 416.4 6.51 51.8 0.224 0.432

13 T2-55 414.2 387.9 6.78 48.3 0.306 0.570

14 T2-55 481.7 452.1 6.55 55.4 0.298 0.544

15 T2-55 463.0 433.9 6.71 53.5 0.332 0.625

16 T5-45 472.6 444.6 6.30 54.4 0.206 0.379

17 T5-45 460.7 434.0 6.15 53.4 0.257 0.453

18 T5-45 439.3 411.5 6.76 51.7 0.260 0.482

19 SF7.5 455.1 435.8 4.43 54.6 0.127 0.233

20 SF7.5 470.1 454.5 3.43 55.0 0.164 0.288

21 SF7.5 462.7 441.6 4.78 55.1 0.126 0.234

22 Z10 444.4 431.9 2.89 52.9 0.162 0.280

23 Z10 441.5 432.3 2.13 53.7 0.168 0.278

24 Z10 443.1 434.4 2.00 53.0 0.158 0.276
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4.2 Estimation of the Moisture Transfer Coefficient

Using the Nomograph

The LCFs of the specimens were calculated using the

correlated equation presented in Eq. (9). Dw
d and b were

then approximated using the nomograph (Fig. 2) and the

corrected wave at t1 = 1 h and t2 = 4 h (Table 8). In this

study, the values of Dd
w and b related to the tested speci-

mens varied from 0.8 9 10-8 to 4.7 9 10-8 m2/s and from

1.0 to 5.5, respectively. The average values of Dw
d and b for

Portland cement concrete mixtures were approximately

2.4 9 10-8 m2/s and 2.5, respectively. However, the

average values of Dd
w and b obtained for the specimens

containing silica fume or natural zeolite were

2.7 9 10-8 m2/s and 4.5, respectively. This difference is

likely due to the smaller pore diameter as well as lower

porosity of the interfacial transition zone in the mixtures

containing silica fume or natural zeolite.

The average saturated state Dw of the specimens con-

taining silica fume or natural zeolite was significantly

lower than the ones without pozzolanic materials. This

result is consistent with those suggested by Morgan [54]

and Roy et al. [55]. These researchers reported that silica

fume concrete had a lower rate of water absorption com-

pared to the mixtures without silica fume.

4.3 Validation of the Proposed Method

The approximated parameters of the moisture transfer

coefficient were applied to predict wave of each specimen

later using an FE numerical analysis. The water absorption

values were measured after 8, 12, 24 and 72 h. The com-

parison of the experimentally measured values of wave after

t2 = 4 h with the numerical predictions is presented in

Table 9. The differences between the model predictions

and experimental test results of all tested specimens were

Table 8 Approximated moisture diffusion coefficients

Specimen no. Correction factors (LCF) Corrected degree of saturation Dd
w (910-8 m2/s) b Dw (910-10 m2/s) (saturated state)

wave
1�h wave

4�h wave
1�h wave

4�h

1 1.090 1.078 0.214 0.373 3.6 3.9 7.3

2 1.080 1.069 0.236 0.453 2.0 1.7 36.5

3 1.116 1.099 0.239 0.452 2.1 1.9 31.4

4 0.956 0.966 0.122 0.236 0.8 2.8 4.9

5 0.979 0.985 0.124 0.234 1.0 3.2 4.1

6 1.006 1.007 0.130 0.247 1.0 2.9 5.5

7 0.966 0.974 0.147 0.272 1.6 3.7 4.0

8 1.010 1.011 0.169 0.309 1.7 3.0 8.5

9 1.038 1.034 0.186 0.319 3.6 4.7 3.3

10 1.005 1.007 0.196 0.397 1.0 1.0 36.8

11 1.033 1.030 0.226 0.453 1.4 1.0 51.5

12 1.036 1.033 0.232 0.446 2.0 1.8 33.1

13 0.970 0.977 0.297 0.557 3.3 1.9 49.4

14 1.107 1.091 0.330 0.594 4.1 1.9 61.3

15 1.070 1.061 0.355 0.664 3.3 1.1 109.8

16 1.087 1.075 0.224 0.407 2.9 3.0 14.4

17 1.067 1.059 0.274 0.480 4.7 3.2 19.2

18 1.035 1.032 0.269 0.497 3.2 2.3 32.1

Average—Portland cement 2.4 2.5 28.5

19 1.090 1.077 0.138 0.251 1.5 3.8 3.4

20 1.099 1.085 0.180 0.313 3.0 4.4 3.7

21 1.100 1.086 0.139 0.254 1.4 3.5 4.2

22 1.058 1.051 0.171 0.294 3.1 4.8 2.6

23 1.074 1.064 0.180 0.296 4.0 5.5 1.6

24 1.060 1.052 0.167 0.290 2.9 4.7 2.6

Average—Portland cement and silica fume or natural zeolite 2.7 4.5 3.0
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equal or lower than 5%. This result demonstrates that the

approximated Dw
d and b had an acceptable precision and

that the proposed method is able to accurately estimate the

values of Dw
d and b and consequently Dw. The slight dif-

ferences observed in the calculated errors may be related to

the lower water absorption of the mixtures containing silica

fume or natural zeolite as well as the inherent error in the

experimental measurements.

5 Discussion

The proposed method for the estimation of MTC is asso-

ciated with some errors. Comparison of the test results to

the ones obtained from FEM model showed that the

average error is lower than 3%. However, other methods

based on the combined experimental–numerical procedures

like the traditional method encountered similar errors as

well. The method applied by Samson et al. [12] resulted in

errors up to 5% and more in some measurements.

Minimizing the sum of square of differences between the

numerical and measured data was where the error arises.

Since the ability for employing the specimens with dif-

ferent dimensions was a strong point of the method utilized

by Samson et al. [12], a relationship was presented in the

proposed method to correct the measurements of cylindri-

cal specimens of different thickness values.

Comparison of the proposed method with traditional

combined experimental–numerical method like the one in

Ref. [12] showed an acceptable level of accuracy and

flexibility. Moreover, the estimation needed in the pro-

posed method is more rapid and economical in comparison

with the traditional methods.

6 Conclusion

In the present paper, a practical method was proposed to

estimate the moisture transfer coefficient of concrete (Dw)

using water absorption measurements of concrete

Table 9 Comparison of the

experimental results with the

numerical prediction

Specimen no. Average degree of saturation (wave) Error (%)

Experimental results Numerical prediction

8 h 12 h 24 h 72 h 8 h 12 h 24 h 72 h 8 h 12 h 24 h 72 h

1 0.343 0.404 0.533 0.792 0.332 0.402 0.540 0.771 3 1 1 3

2 0.322 0.398 0.517 0.771 0.331 0.398 0.531 0.753 3 0 3 2

3 0.349 0.409 0.534 0.798 0.344 0.414 0.553 0.780 2 1 4 2

4 0.372 0.435 0.560 0.838 0.376 0.446 0.576 0.799 1 2 3 5

5 0.406 0.468 0.596 0.860 0.414 0.489 0.624 0.825 2 4 5 4

6 0.402 0.463 0.583 0.811 0.412 0.477 0.593 0.774 2 3 2 5

7 0.538 0.635 0.808 0.969 0.546 0.652 0.829 0.982 2 3 3 1

8 0.598 0.701 0.865 0.970 0.619 0.726 0.888 0.993 4 4 3 2

9 0.580 0.680 0.857 0.976 0.591 0.688 0.843 0.979 2 1 2 0

10 0.731 0.824 0.930 0.983 0.730 0.817 0.934 0.997 0 1 0 1

11 0.701 0.790 0.914 0.981 0.730 0.817 0.934 0.997 4 3 2 2

12 0.808 0.898 0.949 0.982 0.806 0.890 0.977 1.000 0 1 3 2

13 0.453 0.525 0.655 0.896 0.458 0.531 0.660 0.855 1 1 1 5

14 0.557 0.654 0.814 0.975 0.584 0.682 0.840 0.979 5 4 3 0

15 0.545 0.636 0.804 0.976 0.552 0.648 0.807 0.966 1 2 0 1

16 0.499 0.578 0.732 0.946 0.505 0.588 0.730 0.912 1 2 0 4

17 0.573 0.652 0.792 0.954 0.590 0.672 0.803 0.950 3 3 1 0

18 0.625 0.711 0.857 0.973 0.634 0.724 0.862 0.981 1 2 1 1

Average 2

19 0.314 0.371 0.498 0.752 0.318 0.381 0.504 0.712 1 3 1 5

20 0.373 0.428 0.542 0.787 0.384 0.443 0.561 0.759 3 4 4 4

21 0.316 0.372 0.498 0.767 0.324 0.390 0.517 0.732 3 5 4 5

22 0.365 0.420 0.528 0.766 0.374 0.437 0.551 0.734 3 4 4 4

23 0.370 0.418 0.535 0.731 0.365 0.422 0.527 0.697 1 1 2 5

24 0.356 0.418 0.527 0.765 0.370 0.433 0.548 0.733 4 4 4 4

Average 3
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specimens after 1 and 4 h of immersion in water as well as

the proposed nomograph. The sensitivity analysis of the

proposed method indicated that the estimated Dw was

significantly sensitive to the ratio of the water absorption

obtained after 4 h to those obtained after 1 h. It was,

however, less sensitive to the variation of 1 h water

absorption measurements as an input parameter. A com-

parison between the water absorption measurements after

4 h of immersion with those obtained from the numerical

simulation using the estimated Dw validated the method

accuracy.
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