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and applied. This paper first conducts current-status analy-
sis on distributions of headways throughout a route in San-
tiago by processing extensive raw GPS data from transit 
vehicles. Then, unique transit headway adherence indices 
are developed with respect to the expected passenger wait-
ing time and are presented in forms of two-dimensional 
tempo-spatial graphs. The analysis of real-life data col-
lected from bus GPS probes in Santiago, Chile indicates 
that GPS devices in transit buses can effectively provide the 
proposed performance measures throughout the route on a 
daily basis.

Keywords  Transit performance · Transit headway · 
Bunching · Transit schedule · GPS · Bus probes

1 � Introduction and Background

Traditionally, traffic monitoring-related applications often 
have required labor-intensive data collection processes in 
the forms of surveys. With the emergence of GPS devices, 
transportation engineers have started exploring the use of 
the newly available technology for various branches of 
transportation applications in efforts to replace the tra-
ditional means of data collection processes. Byon et  al. 
[1] dispatch GPS units with dedicated probe vehicles 
to occasionally monitor the traffic conditions hoping to 
replace traditional probing methods typically with a dedi-
cated driver and a data-logging employee. Herrera et al. 
[2] evaluate the traffic data obtained from GPS-enabled 
mobile phones. Work et  al. [3] develop a Kalman filter-
ing-based approach for highway traffic estimations using 
GPS-enabled mobile devices. Byon et  al. [4], and Byon 
and Liang [5] utilize the GPS embedded cell phones as 
traffic probes for gathering traffic conditions from cell 
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phones that are voluntarily hovering over road networks 
eliminating the need of having expensive dedicated 
probes. However, in order for such approaches to be fea-
sible, the mode of transportation of the cell phone users 
needs to be correctly identified as “auto” mode which 
refers to drivers or passengers of private vehicles. Instead 
of replacing the traditional methods from GPS entirely, 
Kwon et  al. [6] and Byon et  al. [7] propose using GPS 
devices as aids complementing loop detectors. Cathey 
and Dailey [8] and Kumar et  al. [9] develop algorithms 
that relate the speed of transit vehicles and general traffic 
for utilizing transit vehicles as traffic probes. The main 
idea is to utilize voluntarily moving transit vehicles for 
traffic monitoring purposes at no additional operating 
costs. However, at the time of their research, GPS was 
not widely available and they had to use fixed sensors on 
the road and interpolate the speed values between sensors 
for their estimations. Song et al. [10] install GPS devices 
on Bus Rapid Transit (BRT) vehicles and attempt to use 
them as traffic probes. Above-mentioned studies primar-
ily focus on applying the GPS technology for monitoring 
general traffic conditions.

For the public transit sector, Agarwal and Goel [11] 
apply the GPS technology as the main tool for the Auto-
matic Vehicle Location (AVL) system of the transit vehi-
cles for monitoring transit service performance measures. 
Ledwitz [12] proposes the initial approaches in utiliz-
ing GPS for the public transit and Wipke [13] focuses 
on more specific application of using GPS in transit-on-
demand applications for reducing vehicle miles traveled 
(VMTs). Munizaga et al. [14] use GPS data from transit 
vehicles to monitor the commercial speed of buses as a 
direct performance measure. One of the major issues 
with transit vehicles is that they tend to bunch up and 
increase the expected passenger waiting times. The corre-
lation between the speed of buses and the bunching itself 
needs further investigations as the speed value of buses 
is only one aspect various performance measures. Liao 
and Liu [15] propose a framework for transit performance 
analyses that incorporates the GPS-based transit probing 
and suggest that GPS may be able to help transit opera-
tors identify causes of bunching due to wheel-chair lift-
ing, traffic signaling, and mix of bus types. The authors 
only discuss the issue qualitatively and do not quantify 
the “bunching” with respect to the expected passenger 
waiting times. Daganzo and Pilachowski [16] propose 
an adaptive control scheme that adjusts transit vehicles’ 
speeds in efforts to reduce bunching. El-Geneidy et  al. 
[17] assume that the reliability of a transit system can 
be represented by the route-level variations of run times 
and headways. Chen et  al. [18] recognize that properly 
evaluating or monitoring transit performances requires 
discretization of route-level performance measures into 

stop-level performance measures. The authors collect 
data using a labor-intensive survey method.

Based on existing researches, there is a need for a 
methodology that is economically feasible and can pro-
vide transit performance measures relating to the bunch-
ing phenomena with respect to the expected passenger 
waiting times, at both stop-level and route-level that 
utilizes automatically collected data with GPS devices 
throughout the route on a daily basis. Owais and Hassan 
[19] also recognize that incorporating stop-level simu-
lation helps transit assignment models. In rail transit, 
Jamili [20] and Tamannaei et  al. [21] solve rail transit 
rescheduling problems under perturbations and double-
track scenarios, respectively. In rail transit, a number of 
trains in operations are usually much smaller than fleet 
sizes in bus transit. By definition, they also have dedi-
cated tracks and multiple location determining sensors. 
By utilizing GPS as such sensors for bus transit as in this 
paper, it opens new opportunities for bus transit where 
monitoring strategies have been traditionally only avail-
able for rail transit.

Once the access to the massive amount of automati-
cally collected data is granted, there is no need to simu-
late such data [22]. After performance measures through-
out a route at all stops are available and causes of delays 
are identified, the newly available information can help 
determining optimal schedules, for example, through the 
determination method introduced by Furth and Muller 
[23].

2 � Transit System in Santiago, Chile 
(Transantiago)

Transantiago is the public transport system of Santiago, the 
capital of Chile, with a population of over 6 million peo-
ple. It was launched in February 2007 and is considered as 
“the most ambitious transport reform ever tried by a devel-
oping country”. (The Economist, London, U.K., February 
9th, 2008). It has over 200 km of dedicated bus lanes and 
reorganized the old bus route to integrate with the city’s 
metro. Since 2010, GPS devices have been installed on 
over 6000 buses operating on over 700 different routes, 
generating GPS data that are available every 30 s from all 
buses during the entire operation period. This is equivalent 
to 40,000,000 positions and speed values of buses during 1 
week period. The data collection mechanism is already in 
place and continuously the data are fed into the transpor-
tation research lab at the Universidad de Chile (Santiago, 
Chile), currently, for post-processing. Figure  1 shows the 
typical Transantiago bus in operation and a scene of a con-
gested street in downtown during the afternoon rush hour.
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3 � Bunching vs Adherence to Scheduled Headway

Munizaga et al. [14] focus on commercial speeds of buses 
assuming that a faster speed would indicate a better level 
of service (LOS), which is partially true. However, after 
all, the primary objective of any transit system is to satisfy 
their passengers. One of the most important passenger LOS 
performance measures is a time consumed by individuals 
during a trip, which is a sum of waiting time and travel time 
in buses. Therefore, a transit service, in general, should sat-
isfy its passengers by minimizing a combination of wait-
ing times at the bus stops and travel times of the buses on 
the road. Often, because of an accumulation of random-
ness in conjunction with traffic congestions, further down 
the route, buses tend to experience a phenomenon known 
as “bunching”. Bunching occurs when headways between 
consecutive buses become smaller than scheduled head-
ways. Since a fleet size is generally limited, the bunched 
group of buses consequently leaves large headways before 
and after them. Some studies [24, 25] in the past indicate 
that the expected passenger waiting time, W, is a function 
of average headway, µ, and headway variance, S2 [26]:

where � = mean headways between buses, and S2 = vari-
ances of headways between buses.

If a bunching occurs, inevitably, some of the buses devi-
ate from scheduled headways resulting in longer expected 
waiting times for passengers. The situation gets worse when 
multiple buses arrive at the same bus stop simultaneously 

(1)W = � ×

(
1 +

s2

�2

)

2

with a nearly zero headway. Passengers arriving at the 
bus stop after the bunched buses have left will most likely 
have to wait a much longer time period for the arrival of 
the next bus. In addition, the next bus will have a higher 
chance of getting fulfilled with a maximum number of pas-
sengers to its capacity forcing remaining passengers at the 
bus stop to wait for additional buses until the maximum-
capacity loading issue dissipates over time. In conjunction 
with Automatic Passenger Counting (APC) system and 
Automatic Fare Collection (AFC) system that are planned 
to be installed in near future, buses’ load information with 
some socio-economic variables can be included for com-
puting more detailed performance measures when the data 
become available.

Adherences to scheduled headway directly indicate the 
deviations of observed headways from scheduled head-
ways set by the transit authority, and bunching is the main 
“cause” of the deviation. It seems that they are very simi-
lar performance measures; however, one is monitoring the 
occurrence of the problem, while the other is referring to 
the cause of the problem. This paper develops scheduled 
headway adherence indices that, in turn, also indirectly 
capture the bunching phenomena.

It is important to note that a severity of bunching is not 
only a function of a number of vehicles in the bunched 
group, but also a function of the scheduled headway. In 
other words, if the scheduled headway is relatively short, 
and then even if buses are close to each other, the event is 
not considered as a bunching. In short,

It is a challenge to derive indices that can indicate an 
adherence to scheduled headways while also providing 
insights on severity of bunching.

4 � Study Objective

The objective of this paper is modeling indices and uti-
lizing a massive amount of GPS data collected by tran-
sit buses for monitoring transit performances throughout 
routes. The research is conducted in three phases and their 
respective objectives are:

1.	 To analyze the running time and headway distributions 
of a route using GPS data;

2.	 to develop an index of bunching with respect to the 
expected passenger waiting time and to provide tempo-
spatial graphical representations of the computed indi-
ces;

(2)

Severity of Bunching = f (number of vehicles in a bunched

group AND scheduled headway).

Fig. 1   Congested street with transit buses during the afternoon rush 
hour in Santiago, Chile (bottom left), a typical Transantiago bus oper-
ating on Las Condes line (401) in Santiago, Chile (top right)



650	 Int J Civ Eng (2018) 16:647–658

1 3

3.	 to develop an index of scheduled headway adherence 
associated with bus operations and tempo-spatial 
graphical representations of computed indices.

5 � Study Region and Data Collection

Route 506I in Fig.  2, that runs, from the west-end to the 
east-end of the central Santiago, is chosen for data collec-
tion, because it is one of the busiest major bus trunk lines 
of Transantiago with typical running time of 1.5  h. The 
route is considered to be a typical major route in terms of 
ridership, and it includes 1.5 km of exclusive bus lanes 
locally acting as BRT (Bus Rapid Transit) operations. In 
other words, the route experiences the most typical traffic 
conditions throughout the city with a short section with 
exclusive bus lanes. Even though this route is chosen due 
to the unique feature of having a short section of dedicated 
bus lane, it is not expected to significantly affect the analy-
ses when compared to the other sections of the route due to 
its relatively short length with respect to the entire route. 
The route generally experiences the bunching phenomena 
in the latter half of the route on the east side. The focus of 
this paper is to propose a methodology of how raw GPS 
data from buses can be processed and utilized for transit 
performance monitoring. For the period of 1 week, includ-
ing 5 weekdays and 2 weekend days, the GPS data from all 
buses on the Route 506I were collected and post-processed. 
It is noteworthy that the developed methods are applicable 
to all other buses operating on other routes.

6 � Required Sample Sizes

Li et al. [27] investigate general sample size requirements 
for establishing a consistent method for GPS-based net-
work monitoring. Their work focuses on determining 
how many probes on a given link are needed for reliably 
estimating traffic conditions on that link. This work con-
tributes towards resolving the “significant sampling chal-
lenges” that Smith et al. [28] refer to. Authors find that a 
reliable traffic monitoring usually requires 5–10 readings 
to estimate link travel time, delay, and work zone condi-
tions. Byon et  al. [4] recommend that, in an AGPS cell 
phone traffic monitoring system, for each desired road link, 
at least five AGPS cell phones need to be queried at once.

From a perspective of public transit monitoring, based 
on other relevant research works, it can be interpreted as 
there should at least be five sample readings between any 
particular pair of successive bus stops. Even though it is 
theoretically acceptable to have five sample readings from 
one bus for estimating conditions on a link over a longer 
time horizon, it would make sample observations more 
reliable if there are multiple buses operating between two 
stops. If achieving such high-frequency services of operat-
ing more than 1 bus between two successive stops is not 
economically feasible, at least the sections with multiple 
bus routes simultaneously operating on them can benefit by 
merging the data from multiple routes by post-processing 
the GPS data together.

7 � Phase 1: Run‑Time and Headway Distribution

In the first phase of this study, the current state of transit 
operating conditions is analyzed by observing some basic 
performance measures that are running times and head-
ways. First, the distribution of running times is analyzed 
for weekdays. Then, the headway distributions of the entire 
route for different days and periods are analyzed. The main 
purpose of this phase is to illustrate how the basic perfor-
mance measures can be found directly and solely from the 
raw GPS data from transit buses.

7.1 � Run‑Time Distribution

Figure 3 shows the distribution of running times of Route 
506I on weekdays of all buses aggregating all opera-
tion time periods. Durations of most trips are found to be 
between 80 and 120 min. It is noted that run times can eas-
ily be computed at the final bus stop, since the dispatch-
ing times at the first bus stop is known. GPS-based data 
have great advantages when the information throughout the 
route is of interest.

Fig. 2   Transit bus route 506I of Transantiago in Santiago, Chile 
(Accessed https://www.openstreetmap.org in December 10th 2016)

https://www.openstreetmap.org
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7.2 � Headway Distribution

Passengers perceive a level of service of a transit system 
directly from the observed headways. Equation 1 empha-
sizes that observed headways are major variables for 
determining an expected passenger waiting time. How-
ever, to manually collect such information, one employee 
per each bus stop is required to log the observations. GPS 

devices on transit buses can replace such labor-intensive 
approaches. In this section, current headway distributions 
at different time periods on weekdays and weekends are 
analyzed.

Figure  4 shows observed headway distributions of 
the Route 506I on weekdays at four different time peri-
ods; 7–9 AM, 2–4 PM, 6–8 PM, and 9–11 PM. The dot-
ted lines indicate the respective scheduled headways that 

Fig. 3   Distribution of run times of 506I on weekdays
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Transantiago desires. On weekdays, for all four time 
slots, mean observed headways are lower than sched-
uled headways. However, it is noted that still a consider-
able amount of headway observations are higher than the 
desired headways that may make the level of service of 
the transit system worse.

Figure 5 shows the headway distributions of weekend 
days. For the first two time periods of 7–9 AM and 2–4 
PM, mean observed headways are longer than the sched-
uled headways, while the other time periods resulted in 
lower observed headways than the scheduled headways. 
Comparing to the weekday results in Fig. 4, the headway 
performance measures are generally found to be worse on 
weekends.

8 � Phase 2: Bunching Analysis

In this phase, an index that indicates a severity of bunch-
ing with respect to expected passenger waiting times is 
derived and analyzed. It is noted that the bunching is not 
directly measured but rather indirectly captured.

8.1 � Derivation of a Bunching Index

A bunching phenomenon can occur anywhere along a 
route. From a passenger’s standpoint, a passenger who is 
waiting at a bus stop will recognize the bunching phenom-
enon regardless of where the bunching had originated from. 
By keeping that in mind, typically bus stops in Santiago are 

separated by only 200–500 m. Therefore, the bus stops that 
are finely distributed along routes can act as good sensors 
for detecting the bunching phenomena. At a bus stop level, 
if a passenger waits longer due to bunching (or variations 
from scheduled headways due to bunching), the bunching 
index should capture the incident and increase the index 
value. As a starting point, the following relative waiting 
time ratio (namely RWTR) is considered as follows:

where OWT is an observed waiting time, and IWT indi-
cates an ideal and perfect condition waiting time with no 
bunching (i.e., perfect scheduled headway adherence).

In Santiago, transit buses operate based on scheduled 
headways instead of scheduled arrivals at bus stops. There-
fore, passengers do not know exactly when a bus should 
arrive; they just know the schedule frequency and, conse-
quently, the scheduled headway. Therefore, if passenger 
arrivals are uniformly distributed at a bus stop i, the total 
waiting time of all passengers at a bus stop i (TWi) as a 
function of an arbitrary headway of h will be computed as 
follows:

where hi,j presents an observed headway for vehicle j at 
bus stop i, and k is a constant arrival rate of passenger. In 
Eq. (3), hi,j

2
 represents an expected average waiting time during 

the headway (hi,j), and (hi,j ∗ k) indicates a total number of 

(3)RWTR =
OWT

IWT

(4)TWi =

n∑
j=1

(
hi,j

2
∗ hi,j ∗ k

)
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passengers during the headway (hi,j). Thus, the total observed 
waiting times of all passengers at a bus stop i during the 
observed headway hi,j reduce down to 

∑n

j=1

h2
i,j
∗k

2
.

Similarly, if no bunching is observed (which means no 
deviations of headways from the scheduled one due to bunch-
ing), the total waiting times of all passengers at bus stop i 
should equal to 

∑n

j=1

h∗2
i,j
∗k

2
, where h∗

i,j
is a scheduled headway 

for vehicle j at bus stop i.
Therefore, the summation of RWTR reduces down to an 

index that captures the severity of bunching, which increases 
the expected passenger waiting times with respect to the ideal 
case waiting times:

Once the summation of the ratio for each tempo-spatial 
cell is computed, it can either be divided by the monitoring 
time duration or a certain arbitrary time unit. We then differ-
entiate the Index per Hour (IPH) from the Index per Obser-
vation (IPO). The former is divided by the monitoring time, 
while the latter is a normalized measure as it is divided by the 
number of observed buses, n. In this paper, a time window 
frame of 30 min (0.5 h) is arbitrarily chosen and consistently 
used in all the computations. Analytically,

It is worth noting that the proposed indices, IPH and IPO, 
are similar to the Percentage Regularity Deviation Mean 
(PRDM), which is a popular index for describing the regular-
ity of a bus transport service. The PRDM [29] is expressed as 
follows:

A lower value of PRDM means better regularity of a 
bus service. However, the PRDM does not recognize the 
polarity of the differences. In practice, for passengers, 
hi,j > h∗

i,j
 (waiting longer than scheduled) is more signifi-

cant than hi,j < h∗
i,j

 (waiting less than scheduled) with 
regard to the bus service regularity. Thus, it is needed to 
develop a regularity index to distinguish between the two 

(5)Indexi =

n�
j=1

⎛
⎜⎜⎝

h2
i,j

2
∗ k

h∗2
i,j

2
∗ k

⎞
⎟⎟⎠
=

n�
j=1

�
hi,j

h∗
i,j

�2

.

(6)
IPHi =

n∑
j=1

�
hi,j

h∗
i,j

�2

0.5

(7)
IPOi =

n∑
j=1

�
hi,j

h∗
i,j

�2

n
.

(8)
PRDMi =

n∑
j=1

���h∗i,j − hi,j
���

n
.

cases. Unlike the PRDM, our proposed indices can cap-
ture the transit operation states as in the following:

Figure  6 illustrates how normalized index values can 
be assigned to a confined tempo-spatial cell resulting in 
a grid-like graph that provides a visual representation of 
one day’s performance measuring indices.

8.2 � Results of Bunching Indices

8.2.1 � Index Per Hour (IPH)

The IPH indices are computed for a typical weekday and 
a weekend day in a same week. The IPH indices are found 
to be generally higher on the weekday than the weekend 
day. Due to high congestions throughout the route and 
throughout the day, as expected, the IPH values turned 
out to be higher during a weekday than on a weekend day.

Each cell in Fig.  7 is colored with a corresponding 
IPH value according to the scale shown at the top of the 
diagram. It is noted that long horizontal blue bars indi-
cate missing data that results from technical errors on 
the field. On the weekday, more cells show yellow-to-red 
colors indicating poor adherences to scheduled headways, 
which, in turn, give insights on the bunching phenom-
ena occurring more often and throughout the route when 
compared with the weekend day which shows more blue-
to-green cells representing less bunching occurring. In 
practice, transit operators can easily detect the problem-
atic sections, so that they can consider re-positioning bus 
stops to avoid consistently congested sections.

(9)IPHi(or IPOi)

⎧
⎪⎨⎪⎩
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8.2.2 � Index Per Observation (IPO)

The IPO values for a typical weekday and a weekend 
day are computed and presented in Fig. 8. It is noted that 
IPO values are higher in the morning and afternoon peak 

hours on the weekday as expected. It seems that IPO and 
IPH follow similar patterns validating that both indices 
are behaving as expected, that is IPH and IPO should 
intuitively be higher on weekdays than weekend days due 
to generally heavier congestions.

Fig. 7   Comparison of the indi-
ces per hour (IPH) of a weekday 
and a weekend day
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9 � Phase 3: Scheduled Headway Adherence 
Analysis

In Phase 2, bunching indices have been developed and 
are functions of observed headways and scheduled head-
ways. In Phase 3, slightly different performance measures 
that monitor a scheduled headway adherence are devel-
oped. Deviations from scheduled headways occur due to 
bunching, which, in turn, are affected by traffic condi-
tions, such as congestions and traffic-signal optimization 
issues. Therefore, in addition to the proposed bunching 
indices in Phase 2, transit operators may also be simply 
interested in a tempo-spatial status of a route with respect 
to the scheduled headway adherence performance meas-
ures. Scheduled headway adherence monitoring can be 
approached from two different perspectives:

1.	 Adherence with respect to the scheduled headway;
2.	 adherence with respect to a variable headway 

demanded by passengers.

The formulations are shown below. The first perspec-
tive is to compare the observed headway against the 
scheduled headway to capture the deviation of observed 
headways with respect to what has been scheduled as 
promised by the transit authority to the public. The 
second perspective is to compare the observed head-
way against a variable headway that may be arbitrarily 
demanded by the public, which evaluates the current sta-
tus of the transit service against the desired headway of 
the public. The second perspective is not a monitoring 
tool but rather a stress-testing evaluation tool to compare 
the current status of operation to presumably changing 
demands from the public, through time and space. Such 
tool would reveal critical sections of a route with low 
performances that need to be checked for enhancements 
and it may also reveal surprisingly well-performing sec-
tions even with newly demanded shorter headways.

Formulation of adherence indices with respect to 
scheduled headway:

•	 SAschedule for a single observation 
(SASOschedule) = Observed Headway – Scheduled 
Headway.

•	 Absolute SAschedule for a single observation (ABS 
SASOschedule) = |Observed Headway − Scheduled Head-
way|.

•	 SAschedule for a bus stop = Average of all SASOschedule 
values at a stop.

•	 Absolute SAschedule for a bus stop = Average of all Abso-
lute SASOschedule values at a stop.

•	 SAschedule of a day = Average of all SASOschedule values 
at all stops of all day.

•	 Absolute SAschedule of a day = Average of all Absolute 
SASOschedule values at all stops of all day.

Formulation of adherence indices with respect to desired 
headway set

•	 SAx for a single observation (SASOx) = Observed Head-
way − Passenger Desired Headway, X.

•	 Absolute SAx for a single observation (ABS SASOx) = 
|Observed Headway − X|.

•	 SAx for a bus stop = Average of all SASOx values at a 
stop.

•	 Absolute SAx for a bus stop = Average of all Absolute 
SISOx values at a stop.

•	 SAx of a day = Average of all SASOx values at all stops 
of all day.

•	 Absolute SAx of a day = Average of all Absolute SASOx 
values at all stops of all day.

9.1 � Adherence Results

Figure  9 shows schedule adherence-related indices for 
a same weekday. The top two graphs show the sched-
ule adherence indices computed against the scheduled 
headways. The first graph is based on the summation of 
SAschedule which adds the positives and negatives, some-
times cancelling out each other. The second graph is based 
on the |SAschedule| which penalizes both the early and late 
arrival of buses with respect to the scheduled headways. 
The |SAschedule| graph shows higher values with a high con-
trast, so that transit operators can easily identify the prob-
lematic locations and times.

The bottom 5 graphs in Fig.  9 show the adherence 
graphs computed against a set of varying headways arbi-
trarily defined that passengers may demand. Some studies 
in the past [15, 17, 18, 22] indicate that passenger arrival 
patterns switch from random arrivals to an organized pat-
tern when the headways are larger than 10 ~ 12  min. The 
bottom 5 graphs are intentionally designed to include the 
10 ~ 12  min scenario. The intention of these measures is 
to test the current transit operations, quantifying how it 
would perform when passengers demand a certain headway 
threshold as a minimum acceptable level of service. As 
intuitively expected, the adherence indices increase (more 
red and green cells) as passengers demand for shorter head-
ways. In the “With Set Headway” section of Fig. 9, “8 min” 
scenario represents a case where passengers demand 8 min 
or shorter headway to be acceptable. However, because 
there are more red/green cells than other scenarios, the cur-
rent operating condition is not satisfactory on certain sec-
tions at certain time slots. In this case, the transit operator 
should assign more buses in this route to increase the level 
of service. In the other extreme case, the “16 min” scenario 
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has more cells with blue which means that the current sys-
tem is generally satisfying the passengers’ demand. In this 
case, the transit operator can pull out some fleets from the 
route to reduce costs. Figure  9 is a collection of zoomed 
out graphs for a quick visual comparison purpose only. The 
developed and implemented code displays each graph in 
high resolutions that are sufficient for quick visual inspec-
tions of the current state of bus operations.

10 � Dedicated Bus Lane

The chosen route 506I does have a 1.5 km of relatively very 
short section of dedicated bus lane. After visually analyz-
ing the results at the bus stops in the vicinity of the dedi-
cated bus lane, it is found that the indices did not signifi-
cantly behave differently.

Provided that we have access to the significantly long 
section of dedicated bus lanes, our initial hypothesis would 
be that dedicated bus lanes would result in a better adher-
ence to scheduled headways. However, it is not guaranteed 
that such trend will actually be observed, since the transit 
performance degrades over the route in a cumulative fash-
ion. For example, if a bus is delayed heavily by congestions 
in an upstream of a section with dedicated bus lanes, the 
bus would still arrive off schedule, yet possibly operate 
with constant headways that are shifted from the scheduled 
arrivals (if Transantiago adopts scheduled arrival policy in 

the future) at bus stops. Until a longer section of dedicated 
bus lane becomes available, it is not yet possible to conduct 
such analyses.

11 � Conclusions

With newly available massive GPS data from transit buses 
operating in Santiago, Chile, this paper develops various 
transit performance measures useful for transit operators 
and planners.

•	 In the first phase, the running times of buses are 
extracted from the GPS data. Then, the distribution of 
headways on a weekday and a weekend day for different 
time slots of the day is found.

•	 In the second phase, a new index that captures the 
increase in expected passenger waiting times due to the 
bunching phenomena is developed and their respective 
tempo-spatial graphs are produced for a weekday as 
well as for a weekend day.

•	 In the final phase of this paper, it is recognized that 
the adherence to scheduled headway is slightly differ-
ent from bunching in a sense that bunching “causes” 
deviations of observed headways from the scheduled 
headways. Therefore, a schedule adherence monitor-
ing method is presented along with a stress-testing case 
study for a varying headway demand from the public.
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•	 It is found that equipping transit vehicles with GPS 
devices can provide enormous amount of data that are 
sufficient for continuously monitoring various transit 
performance measures throughout the route daily.

12 � Future Works

In this paper, public transit buses installed with GPS 
devices are used to collect data on a typical week and 
weekend days for monitoring bunching and headway adher-
ences. This paper is unique and contributes to the field of 
study as a case study in a public transit system with GPS 
bus probes in a capital city in Latin America (Chile). This 
initial study can be extended to more in-depth analyses as 
the database size expands with continued GPS data collec-
tion efforts with Transantiago.

In the near future, when multiple years’ worth of data 
will be available, it is likely that we will eventually have 
significant number of unusual week and weekend days that 
include the days with natural distractions, such as rainfall, 
snowfall, and minor earthquakes (as earthquakes are quite 
common in Chile). It will be interesting to see how public 
transit performances react to such phenomena.

This paper develops mainly from observing collected 
GPS data and analyzing them in the dimensions of bus 
stops (distance) and time. However, each vehicle (bus) has 
capacity limitations and each bus stop is associated with 
typical passenger arrival patterns. If a particular bus stop 
attracts significantly more passengers than others, there is a 
higher chance that the next arriving bus will not be able to 
board all passengers at the stop forcing left-over passengers 
to wait longer for following successive buses. Procedures 
developed in this paper would only capture abnormal inci-
dents in public transit operations and alert transit operators. 
However, it is also important to develop mechanisms to 
resolve such issues. If observed indices indicate certain bus 
stops consistently performing poorly, the bus route itself, 
location, and the number of bus stops before and after the 
problematic stops can be modified. Integrating automatic 
passenger counters (APC) would also help providing transit 
load information to further aid with monitoring bus capac-
ity limitations and related level of service measures.

Dedicated bus lanes would help achieving higher sched-
ule adherences to scheduled headways or arrivals, in gen-
eral. Constructing new or newly assigning existing lanes as 
bus dedicated lanes would result in enormous financial and 
social costs, and there is a research need for a careful con-
sideration of practical potential benefits per dollar invested 
in such mega construction projects. It is possible to con-
duct a simulation-based study in the near future that may 
show reductions in travel times of passengers with respect 

to capital costs of such projects. It is also a research chal-
lenge to consider and model dynamic assignments of cer-
tain roads as timed dedicated bus lanes. Such efforts may 
maximize the utility of the existing road networks for both 
automobile and transit users.
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