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Abstract Optimum design of structures under time-vari-

able loadings is a difficult task. Time-dependent behavior

of constraints and cost of gradients calculations could be

mentioned when applying time history loadings in the

optimization problems. To overcome these difficulties, the

response spectra as a seismic demand are used instead of

using time history acceleration in the structural modeling.

In this paper, the P-Delta effects are considered in the

finite-element modeling of the frames. Furthermore, many

practical constraints are included in the optimization for-

mulation according to the Iranian national building code

(Standard N. 2800). The developed MATLAB-based

computer program is utilized for optimization of the low,

intermediate- and relatively high-rise braced and un-braced

steel frames. The obtained results of sequential quadratic

programing (SQP) method are compared with the results of

genetic algorithm (GA) technique for guarantying the

global optimal designs. Because of the inexpensive costs of

SQP method in comparison with genetic algorithm tech-

nique, SQP method could be confidently applied for

obtaining the global optimum designs of the steel frames.

Keywords Seismic optimum design � Steel frames �
Response spectrum analysis � Sequential quadratic
programming (SQP) � Genetic algorithm (GA)

1 Introduction

The optimum designs of steel frames are often cost mini-

mization with performance and construction criteria.

Optimization techniques in structural engineering could be

divided generally into three distinct methods: (1) mathe-

matical/gradient-based methods, (2) optimality criteria

methods and (3) stochastic search algorithms.

Mathematical techniques are based on the gradients of

functions in the solution space. Therefore, the algorithms

need continuous functions representing the objective and

constraint(s). Numerous researches have been conducted

using the mathematical optimization methods [1–5].

Memari and Madhkhan [6] applied the feasible directions

method to optimize the braced and un-braced steel frames

using equivalent static loading. They concluded that braced

frames are more economical than un-braced ones. Akbari

and Sadoughi [7] employed SQP method for finding the

optimum design of the structures under time history

acceleration. They transformed acceleration time histories

into the equivalent static loads (ESLs).

The optimality criteria (OC) method is based on the

combination of indirect Kuhn–Tucker conditions of non-

linear mathematical programming with Lagrangian multi-

pliers. The OC approach has been the subject of many

studies [8]. H.Moharrami and S.A.Alavinasab [9] proposed

an improved optimality criteria method for optimum design

of steel frames.

Due to the rapid development of computer facilities,

new techniques such as genetic algorithms (GA) have been

suggested in the field of structural optimization. One of the

most important advantages of GA in optimal design of steel

frames is using the discrete design variables and its capa-

bilities for finding the global optimums. Optimization using

GA has been successfully applied to structural optimization
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[10–13]. Papadrakakis et al. [14] proposed the Evolution

Strategies (ES) algorithm in the optimal design of struc-

tures under seismic loading. They used response spectrum

modal analysis to evaluate the structural response under

seismic loading. Kameshki and Saka [15] presented an

optimum design based on GA for the multi-story, non-sway

steel frames with different types of bracings. The algorithm

considers the serviceability and the strength constraints as

specified in the BS 5950, and it was shown that the lightest

frame is simple X-bracing system. De Castro [16] imple-

mented GA and obtained the minimum weight of frame

structures in free vibration analysis. Salajegheh et al. [17]

suggested hybrid RBF-BPSO method for optimal design of

structures. Gholizadeh and Salajegheh [18] applied swarm

intelligence and advanced meta-model for optimum design

of structures subjected to time history loading. Prendes

Gero et al. [19] developed an elitist genetic algorithm and

compared it with the common commercial solutions for

complex structural optimization. Keii and Ikago [20] sug-

gested a model to get optimum designs suitable for prac-

tical structural design within the framework of the Building

Standard Law of Japan. Chen and Kai Hu [21] presented a

GA-based program written in MATLAB for optimization

of portal frames. Kripakaran and Hall [22] suggested a

computational approach based on GA to implement a

decision support system for the design of moment-resisting

steel frames. Balogh and Vigh [23] developed a numerical

optimization algorithm in MATLAB to find the optimal

structural configuration.

In the literature, comprehensive studies have been con-

ducted for optimal design of steel frames under static

loading; however, for dynamic loading, some of the

researchers [6, 9] applied the equivalent static loading

according to the Iranian building regulation [24, 25]. The

Codes are based on the translations of some chapters of

regulations such as US Building Officials and Code

Administrators (BOCA), National Building Code of

Canada (NBC), Building Standard Law of Japan (BSL) and

regulation of France.

We believe that the characteristics of seismic loadings

and quasi-static loads are not similar. The stiffness,

damping, and mass parameters of structures are usually

affected on the structural responses during dynamic exci-

tations. However, for quasi-static case, the system

responses are only influenced by the stiffness and the first

vibration mode of the systems. Therefore, direct seismic

analysis will lead to accurate results in compare with

equivalent static approach.

Many studies have been conducted for optimum design

of structures for direct time history loadings [26–28].

However, the single time history loading, e.g., acceleration

time history, could not be the suitable representative of the

seismic demand for a specific area. Therefore, seismic

analysis is carried out using the response spectrum analysis

because such analysis is more compatible with the struc-

tural design requirements under seismic excitations.

The P-Delta effects are usually a crucial issue for

intermediate- and high-rise steel frames. In this research,

these secondary effects are included in the linear static and

dynamic finite-element modeling by considering the geo-

metric stiffness of the structure.

Many constraints have been taken into account in the

optimization formulation according to the Iranian NBC

code [24]. In addition, optimal designs have been carried

out for the combination of dead, live and seismic loadings

due to their importance in the design criteria. Conse-

quently, the optimum designs of steel frames under seismic

demands are available using the proposed method.

2 Optimization Formulation

The aim in size optimization of steel frames is often weight

minimization under certain constraints using cross-sec-

tional areas as the design variables. Therefore, in these

cases, the structural optimization problems could be for-

mulated as follows:

minWðxÞ
subject to

gjðxÞ� 0; j¼ 1; nc

x1i � xi � xui

ð1Þ

where x is the vector of design variables, W(x) is the

objective function and gi(x) is the equality and inequality

constraint. Here, the size optimizations of multi-bay, multi-

story frames are investigated. The objective function is the

weight of the structure given below

W ¼
Xn

i¼1

qiLiAi ð2Þ

where Ai, Li and qi are the cross-sectional area, the

length and mass density of the ith member, respectively.

The constraints for allowable stress design requirements

specified by National Building Code [24] for frames with

rolled I-shapes, as shown in Fig. 1, are expressed as

follows. The constraints for slenderness ratios for all

members are

KL

rmin

� 200 � Compressive Members

L

rmin

� 300 � Tensile Members

KL

rmin

� 6025ffiffiffiffiffi
Fy

p � Braces

8
>>>>>>><

>>>>>>>:

ð3Þ
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where Fy is the yielding strength of steel and K is the

effective length factor. The effective length factors (K)

have been calculated for un-braced and braced frames [24].

Shear stress constraints could be written as

fvi

0:4Fy

� 1� 0 ð4Þ

Constraints for combined bending and axial stresses

could be given as

fai

0:6Fy

þ fbi

Fb

� 1� 0

fai

Fa

þ fbi

Fb

� 1� 0

8
>><

>>:
ð5Þ

As well, constraints for combined tensile and bending

stresses and inter-story drifts are expressed below

ft

Ft

þ fbi

Fb

� 1� 0

Di � Di�1

hi
� 1:5%

ð6Þ

where subscript i refers to ith member fa, ft, fb and fv are the

applied axial compressive, tensile, bending, and shear

stresses, respectively. In addition, Fa, Ft, Fb and Fv are the

allowable axial compressive, tensile, bending and the yield

stresses, respectively, rmin is the minimum radius of gyra-

tion of cross sections, Di is the ith story displacement and hi
is the height of ith story. Side constraints and the variations

of column size constraints along the height of the frames

could be expressed as follows:

AL
i �Ai �AU

i

ACi
�ACiþ1

ð7Þ

Ai
L, Ai

U are the lower and upper bounds of cross-sec-

tional areas, respectively. ACi
is the columns’ cross-

sectional area for ith story. Allowable axial stress in col-

umns is calculated using the following equation:

kmax �Cc Fa ¼
1

Fs

1� 1

2

k
Cc

� �2
" #

; Fs ¼ 1:67þ 0:375

k
Cc

� �
� 0:125

k
Cc

� �3

kmax �Cc Fa ¼
12p2E

23 kð Þ2
ð8Þ

where kmax is the maximum slenderness ratio of the

member, E is steel modulus and Cc = (2p2E/Fy)
0.5,

Ft = 0.6 Fy and Fb = 0.66 Fy. It is necessary to mention

that Eqs. (3, 4, 5, 6, 7, 8) are written for allowable stress

design method. However, nowadays LRFD method is

provided in the last version of NBC. Without losing the

generality, using small modification in the constraints the

proposed methodologies could be applied for LRFD design

approach.

3 Finite-Element Modeling

Finite-element modeling of the structures has been per-

formed using the frame elements with six D.O.F and truss

elements with two D.O.F. The numerical models have been

verified by S-FRAME [29] and SAP2000 [30]. The

S-FRAME software has been used for eigenvalue analyses

and static responses verifications. The commercial

SAP2000 software has been applied for verifying the

developed FEM code for the first mode vibration of the

frame. Here, soil structure interaction is not considered in

the numerical modeling. The linear behaviors of structures

for static and dynamic loadings have been taken into

account and the acceleration spectrum is applied in the

seismic analysis of the frames. The details of the geome-

tries and the material properties of numerical studies are

presented in Sects. 7.1 and 7.2.

In this paper, the P-delta effects have been included in

the finite-element modeling. The purpose of the P-delta

analysis is determining the displacements and the stresses

due to the time-independent loadings. The P-delta analysis,

specifically the Two-Cycle Iterative Method (Chen and

Lui, 1991) [31], requires a two-stage analysis procedure. In

the first phase, for all the user-selected load cases and load

combinations, the equilibrium equations for the linear

static analysis are solved for the nodal displacements. Once

the nodal displacements are obtained, the element mem-

brane forces are calculated and used to form the element

geometric stiffness matrices. In the second phase of anal-

ysis, the equilibrium equations of the P-delta analysis are

considered. Once the nodal displacements are obtained, the

Fig. 1 I-shape cross section as a design variable
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element stresses and nodal forces are computed. For the

elements at the boundaries, these nodal forces will be in

equilibrium with the reactions.

4 Design Under Seismic Loading

Response spectrum analysis is one of the most recom-

mended methods for analyzing or designing of structures

against earthquake loadings. In comparison with time his-

tory analysis, the advantage of this method is that the stress

constraints in the optimization procedure are independent

of time domain. Here, acceleration spectra have been uti-

lized and complete quadratic combination rule (CQC) has

been used to obtain the maximum responses of the struc-

tures. The equation of motion for a dynamic system can be

written as follows [32]:

M €Uþ C _UþKU ¼ P ð9Þ

where M, C and K are the mass, damping and stiffness

matrices of the system, respectively. P is the external load

vector U, _U and €U are the displacement, velocity and

acceleration vectors of system in time domain, respec-

tively. The response spectrum modal analysis is based on

the mode superposition approach. In the case of modal

analysis, Eq. (9) is modified according to the modal

superposition method [32]. The following steps summarize

the response spectrum analysis that is utilized in this study:

1. Determining the values of eigenvectors ui and eigen-

values xi and normalizing them to transform the

Eq. (9) into uncoupled equations.

2. Calculating the modal participation factors and effec-

tive modal mass according to the following:

C ¼ Ln

Mn

; Ln ¼ UTMr ; Mn ¼ UTMU ; meff ¼
L2n
Mn

ð10Þ

3. Computing the displacement–response spectrum in the

form of Sd = Sa/x
2 and correlation coefficient as

follows:

qij ¼
8n2 1þ rð Þr3=2

1� r2ð Þ2þ4n2r 1þ rð Þ2
; r ¼ xi

�
xj ð11Þ

4. Calculating the modal displacements xi,max = CUSd
and applying CQC rule to calculate the total maximum

displacements from the following:

Xmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

x2i þ
Xm

i¼1

Xm

j¼1

qijxixj

vuut ð12Þ

5 Solution of the Optimization Problem

In this study, both sequential quadratic programming

(SQP) and genetic algorithm (GA) techniques have been

utilized for optimal seismic design of steel frames. The

philosophy of applying both SQP and GA methods is

finding the global optimal designs. The main drawback

of the mathematics-based optimization techniques is that

the methods might be trapped in the local optimum

points. In spite of gradient-based optimization methods,

the heuristic approaches are able to find the global

optimum designs.

5.1 SQP Optimization Method

Sequential quadratic programming (SQP) is one of the

most effective methods for nonlinear constrained opti-

mization problems. The method generates steps by

solving quadratic sub-problems. The SQP method can be

viewed as a generalization of Newton’s method for

unconstrained optimization in that it finds a step away

from the current point by minimizing a quadratic model

of the problem [33]. The main steps of this algorithm are

as follows:

A. In the first step, the search direction (S) is obtained by

quadratic approximation of objective function and

linear approximation of the constrains using Eq. (13).

In this step, the Hessian matrix (H) is set to the unit

matrix.

minimize QðSÞ ¼ Fðx0Þ þ rFTðxÞSþ 1

2
STHS

s:t

rgTj ðxÞSþ djgjðx0Þ� 0 j ¼ 1;N

ð13Þ

where F(x) is the objective function, rgi(x) is ith

gradient of constraint and di is a constant for remaining

the algorithm at the feasible space.

B. After solving the sub-problem of Eq. (13) and finding

Lagrangian multipliers kj, minimization of the

Lagrange function (U) is carried out using
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minimize UðaÞ ¼ FðaÞ þ
XN

j¼1

ujmax½0; gjðaÞ�

uj ¼ kj
�� �� j ¼ 1;N first iteration

uj ¼ max½ kj
�� ��; 1

2
ðu�j þ kj

�� ��Þ�

j ¼ 1;N subsequent iterations

ð14Þ

C. From Eq. (14) the step length a is calculated. Then,

updating of H matrix is conducted using Eq. (15) and

convergence is controlled.

H� ¼ H�HddTH

dTHd
þ wwT

dTw

d ¼ xq � xq�1 ; w ¼ hyþ ð1� hÞHd ;

y ¼ rxU
q �rxU

q�1 ; U ¼ FðxÞ þ
XN

j¼1

kjgjðxÞ

h ¼
1:0 if dTy� 0:2dTHd

0:8dTHd

dTHd� dTy
if dTy� 0:2dTHd

8
><

>:

ð15Þ

5.2 Optimization Using GA

Genetic algorithms are based on Darwin’s theory of natural

selection. The basic idea of the approach is to start with a set

of designs, randomly generated using the allowable values

for each design variable. Each design is also assigned a fit-

ness value, usually using the cost function for unconstrained

problems or the penalty function for constrained problems.

From the current set of designs, a subset is selected randomly

with a bias allocated to more fit members of the set. Random

processes are used to generate new designs using the selected

subset of designs. The size of the set of designs is kept fixed.

Since more fit members of the set are used to create new

designs, the successive sets of designs have a higher proba-

bility of having designs with better fitness values. The pro-

cess is continued until a stopping criterion is met. According

to the above explanations, the main steps for this method are

listed as follows [33].

Step 1 Define a schema to represent different design

points. Randomly generate NP genetic strings (members of

the population) according to the schema, where NP is the

population size. Alternatively, use the seed designs to

generate the initial population. For constrained problems,

only the feasible strings are accepted when the penalty

function approach is not used. Set iteration counter K = 0.

Define a fitness function for the problem as below

Fi ¼ ð1þ eÞfmax � fi ð16Þ

where fi is the cost function (penalty function value for a

constrained problems) for the ith design, fmax is the largest

recorded cost (penalty) function value, and e is a small

value (e.g., 2 9 10-7) to prevent numerical difficulties

when fi becomes 0.

Step 2 Calculate the fitness values for all the designs in

the population. Set K = K ? 1, and the counter for the

number of crossovers Ic = 1.

Step 3 Reproduction: select designs from the current

population according to the roulette wheel selection pro-

cess for the mating pool (next generation) from which

members for crossover and mutation are selected.

Step 4 Crossover: select two designs from the mating

pool. Randomly choose two sites on the genetic strings and

swap strings of 0s and 1s between the two chosen sites. Set

Ic = Ic ? 1

Step 5 Mutation: choose a fraction (Pm) of the members

from the mating pool and switch a 0–1 or vice versa at a

randomly selected site on each chosen string. If, for the

past Ig consecutive generations, the member with the

lowest cost remains the same, the mutation fraction Pm is

doubled. Ig is an integer defined by the user.

Step 6 If the member with the lowest cost remains the

same for the past two consecutive generations, then

increase Imax. If Ic\ Imax, go to Step 4. Otherwise,

continue.

Step 7 Stopping criterion: if after the mutation fraction

Pm is doubled, the best value of the fitness is not updated

for the past Ig consecutive generations, then stop. Other-

wise, go to Step 2.

6 Organization of the Developed Program

The steps of the developed computer program are sum-

marized in the general flowchart (see Fig. 2). All the

required steps are programed in MATLAB environment.

Optimizations of frames using SQP and GA algorithms

have been accomplished using MATLAB toolboxes [34].

7 Numerical Examples

In this section, two examples have been considered for

obtaining the optimal designs. Braced and un-braced

frames are of interest to study from minimum weight point

of view. Two types of seismically resistant frame structures

are selected: (a) X-braced frame with moment resisting

connections, and (b) un-braced frame with moment

resisting connections. SQP and GA methods are utilized for

weight minimization of the frames, and the obtained results

are compared with each other. The horizontal components
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of El Centro earthquake as shown in Fig. 3 with the time

duration of 40s and PGA = 0.31 g are considered and

elastic response spectrum is calculated for this record.

Damping ratio is assumed to be constant and is set to 5 %

(see Fig. 4). The profiles of beams and columns are

selected IPB based on the German specifications Stahleisen

(1967) (Table 1). The cubic spline data interpolation has

been used for reducing the number of unknown design

A 

A 

Input

Calculate Elastic Response Spectra & Reduce Design Variables through Cubic 
Spline Data Interpolation for Optimization purposes

Linear-elastic Static Analysis Using 
Finite Element Method

P-Delta Analysis

Response Spectrum Modal Analysis

Total Load in each Member = Max (Static loads+RSA loads)

SQP or GA method in the case of SQP, sensitivity analysis required

Optimized?

Stop

No

Yes 

Return to  

Fig. 2 The flowchart of the

optimization procedure of this

research

Fig. 3 Horizontal component

of El Centro earthquake
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variables [35]. It is shown that this method is much more

accurate than the least square approach, which was used in

the previous studies (Table 2).

7.1 Case 1

This case is weight minimization of 4-story, 3-bay frame.

The members are divided into twelve groups for X-braced

frame and eight groups for the un-braced one. The geom-

etry of the frames is illustrated in Fig. 5.

Optimum designs are obtained for two types of load

combinations: (1) D ? L and (2) 0.75(D ? L ± E). The

gravity loading for roof includes dead load (D) = 22.2 kN/

m and live load (L) = 5.9 kN/m and for other stories dead

load = 20.2 kN/m and live load = 7.9 kN/m. The modulus

of elasticity is E = 2.1 9 108 kN/m2 and the weight density

of steel isq = 7850 kg/m3. The programgives the samefinal

optimum design when it is started from any design point. In

this case, initial cross-sectional areas are taken as 149 cm2

(IPB300 profile). SQP optimization results under both load

combinations are shown in Figs. 6 and 7.

Active constraints are: the lower bounds of the design

variables in the braced frame, combined bending and axial

stresses and the optional geometrical constraints of column

sizes in both frames. The sections with the closest prop-

erties will be selected based on the values of the optimum

design variables (cross-sectional areas), from the table of

available sections. The selected design is checked for sat-

isfying all of the constraints. If any of the constraints is

violated, the next best section is tested, and so on. This

constitutes one of the limitations of this methodology.

Design variables are automatically selected from the

available sections in the set of IPB profiles (Table 1).

The minimum weights of X-braced frame and un-braced

frame for four-story frame have been exhibited in Table 3.

The results show that braced systems are more economical

than un-braced ones

In discrete optimization using GA, the population size is

taken as 50, the elite numbers 10 and the crossover prob-

ability 0.80. The results are shown for (D ? L) and

0.75(D ? L ± E) in Figs. 8 and 9.

Figures 8, 9 show that for short-period systems, the

computational costs or number of iterations for un-braced

systems are less than braced ones. From optimization point

of view, reaching to the best design of flexural structural

systems is simpler than finding the final optimum points of

X-brace frames (flexural ? brace). The authors’s reason is

that the lateral stiffness of a braced frame is affected by

axial members (braces) that are not the design variables in

the optimization formulation. In Table 2, several data fit-

ting techniques have been compared for the profiles of

beams and columns. Therefore, reaching to the optimum

Fig. 4 Pseudo acceleration

spectrum of horizontal

component of El Centro

earthquake (n = 5 %)

Table 1 Properties of some of the IPB profiles from STAHL

IPB A (cm2) Ix (cm
4) Sx (cm

3) Iy (cm
4)

100 26 450 89.9 167

120 34 864 144 318

140 43 1510 216 550

160 54.3 2490 311 889

180 65.3 3830 426 1360

200 78.1 5700 570 2000

Table 2 Comparison of data

fitting methods using least

square approach and cubic

spline interpolation (Ix-cm
4)

Cross-sectional area (cm2) Ref. [6] Least square method Spline cubic data interpolation Table 1

78.1 5919.75 5776.23 5700 5700

54.3 2266.50 2504.63 2490 2490

40 1010.96 1240.44 1282.74 –
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Fig. 5 The 4-story, 3-bay steel

frame a braced frame, b un-

braced frame

Fig. 6 Variations of objective

function for (D ? L)
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designs is easier. As seen from Figs. 6, 7, 8 and 9, in both

SQP and GA methods for static loading (D ? L) un-braced

frames are lighter than the braced ones. In addition, as

observed from Figs. 7 and 9 in the loading case

0.75(D ? L ± E), the braced frames are more economic

than the un-braced frames. In Tables 4 and 5, the optimum

results of SQP and GA methods are summarized.

Fig. 7 Variations of objective

function for 0.75(D ? L ± E)

Table 3 Optimum results of SQP procedure for low-rise frames

Load combination 0.75(D ? L ± E) D ? L

Weight of X-braced frame (kN) 49.39 38.63

Weight of un-braced frame (kN) 96.63 29.94

Fig. 8 Fitness function’s

variations for (D ? L)

Fig. 9 Fitness function’s

variations for 0.75(D ? L ± E)
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It is seen that the optimum design for SQP and GA

procedures is same. Fortunately, the gradient-based opti-

mization method (SQP) has captured the global optimum

point for all loading cases. Under static load combination

(D ? L), the un-braced frame is 23.15 % lighter than the

X-braced frame but under the seismic load combination

0.75(D ? L ± E), the X-braced frame is 48.06 % lighter

than the un-braced one.

7.2 Case 2

This case is also weight minimization of 10-story, 5-bay

frame. The members are divided into 15 groups for

X-braced frame and 10 groups for the un-braced one. The

geometry of frames is shown in the Fig. 10

The gravity loading for roof includes dead

load = 26.2 kN/m and live load = 7.4 kN/m and for other

stories dead load = 23.8 kN/m and live load = 12.3 kN/

m. The rest of the assumptions are same as the previous

case. The results of SQP optimization for both load com-

binations are illustrated in Figs. 11 and 12.

In this case, active constraints are the lower and upper

bounds of the design variables. In the braced frame, combined

bending and axial stresses for both frames and the optional

geometrical constraints of column sizes in the braced frame

are active. In the discrete optimization (GA), all the parame-

ters are same except crossover probability is set to 0.85. In

Figs. 13 and 14, the histories of fitness function are depicted.

Design variables are automatically selected from the available

sections in the set of IPB profiles (Table 1).

For seismic loading case, the number of iterations for

un-braced systems is less than braced one. The reason of

authors is that the lateral stiffness of a X-braced frame is

influenced by braces rather than beams or columns. As

well, the braces directly are not the design variables in the

optimization process. In un-braced frames or flexural sys-

tems, the design variables are the profiles of beams and

columns, and they are direct design variables, and reaching

to the optimum design is faster.

Table 4 Comparison of the

final results of SQP

optimization and GA of

X-braced frame

Design variables IPB sections (D ? L) IPB sections 0.75(D ? L ± E)

SQP GA SQP GA

Column X1 IPB120 IPB120 IPB220 IPB220

Column X2 IPB120 IPB120 IPB180 IPB180

Column X3 IPB100 IPB100 IPB140 IPB140

Column X4 IPB100 IPB100 IPB100 IPB100

Beam X5 IPB160 IPB160 IPB160 IPB160

Beam X6 IPB160 IPB160 IPB160 IPB160

Beam X7 IPB160 IPB160 IPB160 IPB160

Beam X8 IPB160 IPB160 IPB160 IPB160

Brace X9 IPB120 IPB120 IPB120 IPB120

Brace X10 IPB120 IPB120 IPB120 IPB120

Brace X11 IPB120 IPB120 IPB120 IPB120

Brace X12 IPB120 IPB120 IPB120 IPB120

Weight (kN) 41.63 41.63 51.36 51.36

Table 5 Comparison of the

final results of SQP and GA for

un-braced frame

Design Variables IPB sections (D ? L) IPB sections 0.75(D ? L ± E)

SQP GA SQP GA

Column X1 IPB140 IPB140 IPB340 IPB340

Column X2 IPB120 IPB120 IPB300 IPB300

Column X3 IPB100 IPB100 IPB280 IPB280

Column X4 IPB100 IPB100 IPB220 IPB220

Beam X5 IPB160 IPB160 IPB340 IPB340

Beam X6 IPB160 IPB160 IPB320 IPB320

Beam X7 IPB160 IPB160 IPB260 IPB260

Beam X8 IPB160 IPB160 IPB200 IPB200

Weight (kN) 31.99 31.99 98.89 98.89
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The results of Table 6 indicate that unlike the low-rise

frames, for intermediate to high-rise frames, the un-braced

frames are economic than X-braced frames.

It is seen from Figs. 11, 12, 13, and 14 that in SQP and

GA methods for static loading (D ? L) un-braced frame is

lighter than the braced frame. In addition, for the loading

Fig. 10 The 10-story, 5-bay

steel frame a braced frame,

b un-braced frame

Fig. 11 History of objective

function for (D ? L)
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combination 0.75(D ? L ± E), the un-braced frame is

more economic than the braced one (see Figs. 11 and 14).

Additionally, in Tables 7 and 8, the optimum results of

SQP and GA methods are presented.

It is observed that the results of SQP and GAmethods are

same. Under gravity load combination (D ? L), the un-

Fig. 12 History of objective

function for combination of

0.75(D ? L ± E)

Fig. 13 Fitness function’s

history for combination of

(D ? L)

Fig. 14 Fitness function versus

generation 0.75(D ? L ± E)

Table 6 Optimum results of SQP procedure for high-rise frames

Load combination 0.75(D ? L ± E) D ? L

Weight of X-braced frame (kN) 774.22 359.74

Weight of un-braced frame (kN) 570.98 278.44
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braced frame is 24.65 % lighter than the X-braced frame and

also under the seismic load combination 0.75(D ? L ± E),

the un-braced frame is 26.48 % lighter than the X-braced

one. Fortunately, for this intermediate case study, the gra-

dient-based optimization method (SQP) has reached to the

global optimum point for all loading cases.

8 Conclusion

This study employs a systematic method for finding the

optimum designs of steel structures under seismic loadings.

Minimum weight of the steel frames subject to dead, live

and seismic loading is found successfully. The P-Delta

effects are included in the linear static and seismic response

spectrum analysis of intermediate- and high-rise frames.

Most important practical constraints have been included in

the optimization formulations according to the Iranian

national building code requirements. The proposed method

is efficient and has practical advantages. These method-

ologies could be easily applied to three-dimensional frame

structures, as well. All the presented methods have been

successfully programmed and tested. Based on the present

study, the following conclusions are drawn:

1. In low-rise frames, the results show the superiority of

X-braced frames with moment resisting connections in

comparison with the un-braced frames with moment

resisting connections. However, the superiority of the

un-braced frames is observed for intermediate- and

high-rise frames.

Table 7 Comparison of the

final results of SQP and GA for

X-braced frame

Design variables IPB sections (D ? L) IPB sections 0.75(D ? L ± E)

SQP GA SQP GA

Column X1 IPB280 IPB280 IPB1000 IPB1000

Column X2 IPB240 IPB240 IPB600 IPB600

Column X3 IPB200 IPB200 IPB360 IPB360

Column X4 IPB180 IPB180 IPB280 IPB280

Column X5 IPB160 IPB160 IPB200 IPB200

Beam X6 IPB220 IPB220 IPB450 IPB450

Beam X7 IPB220 IPB220 IPB400 IPB400

Beam X8 IPB220 IPB220 IPB400 IPB400

Beam X9 IPB200 IPB200 IPB400 IPB400

Beam X10 IPB200 IPB200 IPB260 IPB260

Brace X11 IPB140 IPB140 IPB180 IPB180

Brace X12 IPB140 IPB140 IPB140 IPB140

Brace X13 IPB140 IPB140 IPB140 IPB140

Brace X14 IPB140 IPB140 IPB140 IPB140

Brace X15 IPB140 IPB140 IPB140 IPB140

Weight (kN) 391.48 391.48 800.83 800.83

Table 8 Comparison of the

final results of SQP and GA for

un-braced frame

Design variables IPB sections (D ? L) IPB sections 0.75(D ? L ± E)

SQP GA SQP GA

Column X1 IPB280 IPB280 IPB550 IPB550

Column X2 IPB240 IPB240 IPB450 IPB450

Column X3 IPB200 IPB200 IPB340 IPB340

Column X4 IPB180 IPB180 IPB260 IPB260

Column X5 IPB160 IPB160 IPB220 IPB220

Beam X6 IPB200 IPB200 IPB360 IPB360

Beam X7 IPB200 IPB200 IPB340 IPB340

Beam X8 IPB200 IPB200 IPB320 IPB320

Beam X9 IPB200 IPB200 IPB300 IPB300

Beam X10 IPB200 IPB200 IPB280 IPB280

Weight (kN) 294.97 294.97 588.78 588.78
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2. The results of optimum designs for all frames showed

that SQP method has enough capability to find the

global optimum points. Therefore, it could be confi-

dently applied to optimize the steel frame structures.

3. In compare with SQP method, the costs of computa-

tions in GA are relatively significant; especially for

high-rise frames, the costs of calculations are too

expensive. Therefore, gradient-based algorithms could

be applied instead of the heuristic methods to optimize

such systems.

4. Characteristics of the seismic loadings and the equiva-

lent static loads are not same. Dynamic loads are usually

exerted at the foundations of structures, and stiffness,

damping, and mass matrixes influenced the responses.

However, the responses are only affected by the stiffness

of the system in quasi-static loads. To the best of our

knowledge, the optimization results for response spectra

are compatible with structural behavior of the buildings.

Therefore, acceleration response spectrum has been

applied in the optimum design of frames.
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