
RESEARCH PAPER

Nonlinear Numerical Simulation of Reinforced Concrete Columns
Under Cyclic Biaxial Bending Moment and Axial Loading

Kabir Sadeghi1

Received: 10 August 2014 / Revised: 23 September 2015 / Accepted: 11 October 2015 / Published online: 2 June 2016

� Iran University of Science and Technology 2016

Abstract A nonlinear finite element algorithm is proposed

to analyze the reinforced concrete (RC) columns subjected

to cyclic biaxial bending moment and axial loading. In the

proposed algorithm, the following parameters are consid-

ered: uniaxial behavior of concrete and steel elements, the

pseudo-plastic hinge produced in the critical sections, and

global behavior of the columns. In the proposed numerical

simulation, the column is discretized into two macro-ele-

ments located between the pseudo-plastic hinges at critical

sections and the inflection point. The critical sections are

discretized into fixed rectangular finite elements. The basic

equilibrium is justified over a critical hypothetical cross

section assuming the kinematics Navier’s hypothesis with

an average curvature. The method used qualifies as a

‘‘strain plane control process’’ that requires the resolution

of a quasi-static simultaneous equation system using a

triple iteration process over the strains in each section. To

reach equilibrium, three main strain parameters (the strains

in the extreme compressive point, the strains in the extreme

tensile point and the strains in another corner of the sec-

tion) are used as the three main variables. The proposed

algorithm has been validated by the results of tests carried

out on full-scale RC columns. The application of the

components effects combination method is also compared

with the proposed simultaneous direct method. The results

obtained show the necessity of applying SDM for the post-

elastic phase, which occurs frequently during earthquake

loading.
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1 Introduction

A range of approaches has been used to analyze the

behavior of RC sections under biaxial bending moment and

axial loading (BBMAL). The simplified models of the

earlier approaches do not reflect the nonlinearity of mate-

rials. Richard Yen [1] has proposed a model to calculate

RC sections under biaxial bending moment (BBM) based

on the position of the neutral axis and the percentage of

longitudinal reinforcement. In this method, many simpli-

fications are used that have a detrimental effect on the

precision of the results. Yau et al. [2] have proposed a

method to calculate the ultimate strength of the sections

under BBM using the percentage of longitudinal rein-

forcement and the distance between the neutral axis and the

point with maximum compressive stress as main parame-

ters. Alnoury et al. [3] have proposed a method using the

tangent of the force–displacement curve and the local

stiffness in the section level. The model proposed by Hsu

et al. [4], which uses the developed Newton–Raphson

method and simplified models of strain–stress curves for

concrete and reinforcement, is not applicable for the

descending branch of the moment–curvature (M–/) curve.
Brondum-Nielsen [5] has proposed a method to calculate

the ultimate strength of the sections under BBM using the

developed Newton–Raphson method and simplified rect-

angular model of strain–stress for concrete recommended

by the CEB-FIP code. Zak [6] has also proposed a method

to calculate the ultimate strength of the sections under

BBM using the developed Newton–Raphson method. The

Newton–Raphson method yields a fast solution, but
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presents problems while passing the peak point of the

response curve and near the inflection point that causes

divergence of the solution. Newton’s method is well

adapted for monotonic curves and needs to be transformed

at each relative extreme point occurrence. The maxima

have to be evaluated anyway. The Ricks method is derived

from Newton’s and allows the user to cross over the peaks.

Newton and Ricks processes must be used with caution in

numerical simulation. Some methods such as those pro-

posed by Amziane [7] are applicable to RC structures

under uniaxial cyclic bending with axial load.

Among several existing techniques, used to analyze RC

sections under BBMAL, two are the most common. Direct

search procedures are used to determine either the strain

equilibrium plane or the location of the neutral axis.

Except for the case of the linear approach where exact

integration rules can be used, the section can be discretized

into parallel layers rotating parallel to the neutral axis. This

method can be applied only in the monotonic loading case.

Another approach is to discretize the cross section into

FRFE. This method can be used under any cyclic or

monotonic loading cases.

The aim of this paper is to present a numerical simu-

lation algorithm to assess the behavior of RC columns

under CBBMAL. This is achieved using ME and FRFE in

the discretization of the column and the sections based on

the local degradation of materials.

2 Proposed Numerical Simulation Approach

2.1 Description of the Proposed Algorithm

In the proposed simulation algorithm, the column is

decomposed into two ME positioned between the inflection

point (zero moment) and critical sections (maximum

moments). Then the nonlinear behavior of ME is analyzed.

In fact, a macro-element acts as a fixed bottom-free top

half-column under biaxial cyclic bending moment (i.e.,

cyclic lateral force in any direction) with axial load.

Finally, the two connected ME are assembled to determine

the global behavior of the column.

To find the status of the entire column, the applied loads

and also the secondary moments, due to P-D effect, are

considered in the simulation of the column.

In the proposed algorithm, for each concrete and rein-

forcement element, a uniaxial behavior is considered and

their strain distributions are assumed to form a plane which

remains a plane during deformation (kinematics Navier’s

hypothesis). The stresses of concrete and steel are expres-

sed as nonlinear functions of strains (e) in each (i, j) con-

crete and (k) steel elements (see Fig. 1). For compressive

confined and unconfined concrete elements, the author’s

cyclic stress–strain model [8–10] and for reinforcements

the expression proposed by Park and Kent [11] based on

the Ramberg–Osgood cyclic model have been used in the

proposed simulation algorithm. The concrete tensile stress

is assumed to be linear up to the concrete tensile strength.

To determine the maximum compression strain value (eCU)
of unconfined concrete, Eq. (1) given by the CEB Code

[12] was used. This equation is particularly applicable

when there is a loss of concrete cover outside the stirrups:

eCU ¼ 4� 0:02f 0c
� �

=1000 ðf 0c in MPa), ð1Þ

where f 0c represents 28 days’ compressive strength of

unconfined concrete.

To determine the failure of confined concrete situated

inside the stirrups, in the proposed simulation, Eq. (2)

proposed by Sheikh [13] was used:

eCCU ¼ 0:004þ 0:9qs � fyh
� �

=300 ðfyh in MPa), ð2Þ

where eCCU presents the maximum compression strain

value of confined concrete, qs the ratio of transversal

reinforcement volume per concrete volume situated inside

the stirrups and fyh the yielding stress of the stirrups.

The basic equilibrium is justified over a critical hypo-

thetical cross section, assuming the Navier law with an

average curvature. The method used qualifies as a ‘‘strain

plane control process’’ that requires the resolution of a

quasi-static simultaneous equation system using a triple

iteration process over the strains. The calculations are

based on the cyclic nonlinear stress–strain relationships for

concrete and reinforcement FE. To reach equilibrium, three

main strain parameters eC (the strains in the extreme
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Fig. 1 Discretization of a column’s section
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compressive point), eT (the strains in the extreme tensile

point) and eM (the strains in the point M located at another

corner of the section) are used as three main variables as

shown in Fig. 1. For non-rectangular sections, these points

C, T and M may be outside the actual cross sections and be

located on the discretizing mesh frontiers.

2.2 Discretization Principles

The critical sections are discretized into FRFE. Since to

follow up on the loading-unloading paths in the simulation,

the last three loading-unloading steps should be recorded,

the FRFE discretization with the fixed center of gravity

positions for elements has been employed.

2.3 Equilibrium Conditions

2.3.1 Quasi-static Equilibrium of the Section

The fundamental relationships determining the equilibrium

state of the sections are as follows:

a) equilibrium equation of axial forces in the center of

the column’s section,

b) equilibrium equations of bending moments at the

column’s section.

The general equilibrium system of each section consists

of three nonlinear relations equating the external and

internal effects:

Next ¼ Nint; ð3Þ
Mxext ¼ Mxint; ð4Þ
Myext ¼ Myint; ð5Þ

where:

Mext ¼ ½ Mxextð Þ2þðMyextÞ2�1=2; ð6Þ

Mint ¼ ½ Mxintð Þ2þðMyintÞ2�1=2; ð7Þ

in which Next and Nint represent the external and internal

axial forces, respectively; Mxext, Myext, Mxint and Myint
represent the external and internal bending moments

about the orthogonal x0 and y0 axes passing through the

centroid of the cross section, respectively (see Fig. 1);

Mext and Mint represent the total external and internal

bending moments. Mxint and Myint are defined in

Sect. 2.3.2 below.

The proposed method requires the resolution of a

quasi-static simultaneous equations system using a triple

iteration process over the strains which depends on the

position of the neutral axis. It is based also on the non-

linear stress–strain relationships for concrete and rein-

forcement FE.

2.3.2 Quasi-static Equilibrium of the Section

The internal efforts are as follows:

Nint ¼
Xm

i

Xn

j

Kccij � rccij � Aij þ
Xm

i

Xn

j

Kcij:rcij � Aij

þ
Xns

k

rsk � Ask; ð8Þ

Mxint ¼
Xm

i

Xn

j

Kccij � rccij � yij � Aij

þ
Xm

i

Xn

j

Kcij � rcij � yij � Aij þ
Xns

k

rsk � yk � Ask;

ð9Þ

Myint ¼
Xm

i

Xn

j

Kccij � rccij � xij � Aij

þ
Xm

i

Xn

j

Kcij � rcij � xij � Aij þ
Xns

k

rsk � xk � Ask;

ð10Þ

where rccij, rcij and rsk represent the stresses of confined

concrete, unconfined concrete and steel FE, respectively; Aij

and Ask represent the concrete and steel element areas. The

Kccij and Kcij factors are used to indicate whether the (i,

j) element belongs to the confined concrete, unconfined con-

crete or a virtual part of the section and also show the status of

concrete cover.Kccij = 1, for a confined concrete element and

Kcij = 1, for an unconfined concrete element. Kccij = 0 and

Kcij = 0 for the other virtual elements in the case of non-

rectangular section, or for the elementswhen fail; ns is the total

number of longitudinal reinforcement in the section;m = imax

and n = jmax. For a nonrectangular section, a virtual rectan-

gular grid section is assumed [9] (see Fig. 1).

To reach equilibrium, three main characteristic param-

eters eC, eT and eM are used as the three main unknown

variables.

2.4 Determination of Strains

The strains in the concrete and steel FE are calculated by

applying the following equations:

eij ¼ e0 þ /x xij � x0
� �

þ /y yij � y0
� �

; ð11Þ

esk ¼ e0 þ /x xsk � x0ð Þ þ /y ysk � y0ð Þ; ð12Þ

with:

e0 ¼
eC þ eT

2
; ð13Þ

where e0 represents the strain of the section’s centroid with

coordinates of x0; y0ð Þ; /x and /y represent the curvatures

in the two main axes of the section (see Sect. 2.5 below).
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2.5 Determination of Curvatures

The curvatures in directions x and y are calculated as

follows:

/x ¼
e2 � e0ð Þ
ðb=2Þ ; ð14Þ

/y ¼
e1 � e0ð Þ
h=2ð Þ ; ð15Þ

with:

e2 ¼
eC þ eM

2
; ð16Þ

e1 ¼ eC þ eT
2
� eM

2
; ð17Þ

where b and h represent the smaller and larger dimensions

of the section, respectively.

The maximum curvature is given as:

/ ¼ eC
h0
; ð18Þ

where h
0
represents the distance between the extreme

compression point C and the neutral axis.

It can be proved that this maximum curvature can be

also presented as:

/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2
x þ /2

y

q
: ð19Þ

2.6 Determination of the Neutral Axis Position

The coordinates of the neutral axis intersections with x0
and y0 axes are found from Eqs. (20) and (21):

xn ¼
b

2
þ h

2

� �
/y

/x

� �
� eC
/x

; ð20Þ

yn ¼
h

2
þ b

2

� �
/x

/y

 !

� eC
/y

: ð21Þ

2.7 Loading and Stress–Strain Histories

The loading history of concrete and steel FE on the stress–

strain curves are saved and compared. This is not only

related to the loading history, but also to the position of the

FE on the sections. Each step of loading of ME, concrete

FE and steel FE are saved to compare with the two pre-

vious steps.

2.7.1 Loading History on Sections and ME

Based on the applied external moment or applied relative

curvature on the section l for loading step k

‘‘Mext k; lð Þor / k; lð Þ’’, the parameters ‘‘dM1 and dM2’’ or

‘‘d/1 and d/2’’ are defined as follows.

For the imposed force case:

dM1 ¼ Mext k � 1; lð Þ �Mext k � 2; lð Þ; ð22Þ
dM2 ¼ Mext k; lð Þ �Mext k � 1; lð Þ: ð23Þ

For the imposed curvature (or imposed displacement)

case:

d/1 ¼ / k � 1; lð Þ � / k � 2; lð Þ; ð24Þ
d/2 ¼ / k � 1; lð Þ � / k � 2; lð Þ: ð25Þ

These parameters allow following up the different

phases of loading history on the sections. The four different

typical trajectories are as follows:

Phase 1—loading:

For the imposed force case:

½dM1� 0 and dM2[ 0�: ð26Þ

For the imposed curvature (or imposed displacement)

case:

½d/1� 0 and d/2[ 0�: ð27Þ

Phase 2—unloading after loading:

For the imposed force case:

½dM1� 0 and dM2\0�: ð28Þ

For the imposed curvature (or imposed displacement)

case:

½d/1� 0 and d/2\0�: ð29Þ

Phase 3—Unloading:

For the imposed force case:

½dM1\0 and dM2\0�: ð30Þ

For the imposed curvature (or imposed displacement)

case:

½d/1\0 and d/2\0�: ð31Þ

Phase 4—reloading after unloading:

For the imposed force case:

½dM1\0 and dM2[ 0�: ð32Þ

For the imposed curvature (or imposed displacement)

case:

½d/1\0 and d/2[ 0�: ð33Þ

2.7.2 Loading History of Concrete and Steel FE

Each concrete or steel FE has its own proper loading his-

tory. For example, on a section, some FE may be under

loading, and at the same time some other FE may be under

the unloading or reloading phase.
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Based on the strain of finite element ij of section l for the

step k of the loading ‘‘e k; l; i; jð Þ’’, the parameters of de1
and de2 are defined as follows:

de1 ¼ e k � 1; l; i; jð Þ � e k � 2; l; i; jð Þ; ð34Þ
de2 ¼ e k; l; i; jð Þ � e k � 1; l; i; jð Þ: ð35Þ

These parameters allow fixing the limits given for the

iteration process to research the equilibrium parameters.

The four different typical phases are as follows:

Loading phase:

de1� 0 and de2[ 0�: ð36Þ

Unloading after loading phase:

de1� 0 and de2\0�: ð37Þ

Unloading phase:

de1\0 and de2\0�: ð38Þ

Reloading after unloading phase:

de1\0 and de2[ 0�: ð39Þ

An example of loading–unloading path for confined

concrete FE is shown in Fig. 2.

The same procedure is used for the loading history of

steel FE.

An example of loading–unloading path for steel FE is

shown in Fig. 3.

2.8 Determination of the Equilibrium Parameters

Limits

In each step of loading for a fixed value of eC, the value of
eT is situated between eTmin and eTmax, while eM is always

between eC and eT.

eTmin � eT � eTmax; ð40Þ
eCmin � eC � eCmax: ð41Þ

In loading or reloading cases:

eT � eM � eC: ð42Þ

In unloading cases:

eT � eM � eC: ð43Þ

The determination of these terminal iterations is per-

formed based on the loading history in the following

manner:

For the initial loading:

eCmax ¼ þ0:003; ð44Þ
eCmin ¼ �0:020; ð45Þ
eTmax ¼ þ0:003; ð46Þ
eTmin ¼ �0:020: ð47Þ

For the loading or reloading cases:

eCmax ¼ þ0:003; ð48Þ
eCmin ¼ �0:050 or eCðk � 1Þ; ð49Þ
eTmax ¼ þ0:030 or eTðk � 1Þ; ð50Þ
eTmin ¼ �0:050: ð51Þ

For the unloading cases:

eCmax ¼ þ0:003 or eCðk � 1Þ; ð52Þ
eCmin ¼ �0:050; ð53Þ
eTmax ¼ þ0:030; ð54Þ
eTmin ¼ �0:050 or eTðk � 1Þ: ð55Þ

2.9 Determination of the Equilibrium Parameters

(eC, eT and eM)

For the strain in the extreme compression point of the

section:

eC ¼ ðeCmin þ eCmaxÞ=2: ð56Þ
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For the strain in the extreme tension point of the section:

eT ¼ ðeTmin þ eTmaxÞ=2: ð57Þ

For the strain in point M:

eM ¼ ðeMmin þ eMmaxÞ=2: ð58Þ

The initial values for eMmin and eMmax can be considered

as eT and eC, respectively.

2.10 Verification of the Equilibrium Between

the External and Internal Efforts

To follow up on the verification procedure of the equilib-

rium between the external and internal orientation angles X
[X equals the angle between the resultant moment M and

the moment component Mx, see Eq. (63)], axial forces and

moments (see the main part of the simulation flowchart in

Fig. 4), an iteration process over the strains is carried out as

follows.

2.10.1 Verification of the Equilibrium Between

the External and Internal Orientation Angles

The equilibrium between the imposed external and internal

orientation angles X is verified by performing an iteration

process over the strains of point M on the section (eM) for
the given values of eC and eT as follows:

eMmin ¼ eM ðfor Xext [XintÞ; ð59Þ
eMmax ¼ eM ðfor Xext\XintÞ: ð60Þ

In the next iteration (i ? 1)th, the following equation is

applied:

eM iþ1ð Þ ¼ ðeMmin ið Þ þ eMmax ið ÞÞ=2: ð61Þ

By calculating the strains and stresses of concrete and

steel FE, internal moments and orientation angles, and

verification of the equilibrium of external and internal

efforts during a set of the successive iteration process, this

should conform to the following equilibrium condition:

Xext ¼ Xint; ð62Þ

where:

Xext ¼ Tan�1 Myext=Mxextð Þ; ð63Þ

Xint ¼ Tan�1 Myint=Mxintð Þ: ð64Þ

2.10.2 Verification of the Equilibrium Between

the External and Internal Axial Forces

The equilibrium between the imposed external and internal

axial forces is verified by performing an iteration process

over the strains of extreme tension point T on the section

(eT) for the given value of eC as follows:

eTmin ¼ eT ðfor Next [NintÞ; ð65Þ
eTmax ¼ eT ðfor Next\NintÞ: ð66Þ

In the next iteration (i ? 1)th, the following equation is

applied:

eT iþ1ð Þ ¼ ðeTmin ið Þ þ eTmax ið ÞÞ=2: ð67Þ

By calculating the strains and stresses of concrete and

steel FE, the internal moments, the internal orientation

angles and the internal axial forces are calculated. Then, the

equilibrium of external and internal efforts, employing a set

of the successive iteration process, is verified. This should

conform to the following equilibrium condition:

Next ¼ Nint: ð68Þ

2.10.3 Verification of the Equilibrium Between

the External and Internal Moments

The equilibrium between the imposed external and internal

moments is verified by performing an iteration process

over the strains of extreme compression point C as follows:

eCmin ¼ eC ðfor Mint [MextÞ; ð69Þ
eCmax ¼ eC ðfor Mint\MextÞ: ð70Þ

In the next iteration (i ? 1)th, the following equation is

applied:

eC iþ1ð Þ ¼ ðeCmin ið Þ þ eCmax ið ÞÞ=2: ð71Þ

By calculating the strains and stresses of concrete and

steel FE, the internal moments, the internal orientation

angles and the internal axial forces are calculated. Then the

equilibrium of external and internal efforts, employing a

set of the successive iteration process, is verified. This

should conform to the following equilibrium condition:

Mext ¼ Mint: ð72Þ

3 Convergence Criteria

To achieve an acceptable accuracy within a reasonable

calculation time, the convergence tolerances are considered

as:

Xext � Xintj j � 0:1�; ð73Þ
Next � Nintj j � 0:001 Nextj j; ð74Þ
Mext �Mintj j � 0:001 Mextj j: ð75Þ

3.1 Calculation of Deflections

In the proposed simulation, two methods are used to cal-

culate the deflections: curvatures numerical double
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Fig. 4 Flowchart of the main parts of the simulation of columns under CBBMAL

Int J Civ Eng (2017) 15:113–124 119

123



integration method (CNDIM) and elasto-plastic method

(EPM). In CNDIM, the equilibrium state is found in each

cross section discretized along the length of the column and

then a numerical double integration of curvatures /x and /y

is performed. To apply CNDIM, Eqs. (76) and (77), pro-

posed by Lamirault and Bresse [14], are used to calculate

the deflections and rotations in two principal directions of

the sections along the length of the column.

dxl ¼
Xp¼l

p¼1
hxp þ /xp þ 2/x p�1ð Þ

� �
dh=6

h i
dh, ð76Þ

dyl ¼
Xp¼l

p¼1
hyp þ /yp þ 2/y p�1ð Þ

� �
dh=6

h i
dh; ð77Þ

hxl ¼
Xp¼l

p¼1
/xp þ 2/x p�1ð Þ

� �
=2

h i
dh; ð78Þ

hyl ¼
Xp¼l

p¼1
/yp þ 2/y p�1ð Þ

� �
=2

h i
dh; ð79Þ

where dh = L/p; L represents the length of column; p rep-

resents the number of sections considered along the col-

umn; /xp and /yp represent the curvatures in two principal

directions of section number p; dxl and dyl represent the
deflections of section l in the x and y directions, respec-

tively; hxl and hyl represent rotations of section l in the

x and y directions, respectively.

The deflections in two principal directions (dxl and dyl)
are calculated and then, the deflection resultant is

calculated.

The second option (EPM) is based on the evidence that a

column is highly affected in the critical zone when a lateral

load is applied. Immediately following the peak value of

the M–/ curve of the critical section, a very important

local effect occurs at the critical section where a pseudo-

plastic hinge appears. Once the peak has passed, curvature

enhancement is concentrated in the critical zone. While in

the other regions, the curvatures decrease rapidly to near

zero.

In this paper, the column’s deflections are calculated

using EPM [15]. When applying EPM to calculate deflec-

tions, Eqs. (80) and (81) are used:

d ¼ /
3
L2

� �
for /�/p

� �
; ð80Þ

d ¼
/p

3
L2

� �
þ /� /p

� �
Lp
� �

L� 0:5Lp
� �

for /�/p

� �
;

ð81Þ

where d represents the deflection at the top of ME (half-

column); / represents the curvature at the critical section

and /p represents its value at the plastic hinge performance

phase, respectively; L and Lp represent the lengths of ME

and the length of plastic hinge, respectively.

There is a good agreement between simulated deflec-

tions by applying both mentioned methods and the

experimental results in the elastic phase. In the post-elastic

phase, CNDIM underestimates the deflection values, while

there is good agreement between the experimental results

and simulated deflections using EPM.

3.2 Computer Programming

A computer program entitled Cyclic Biaxial Bending

Column Simulation (CBBCS) has been developed by the

author to simulate numerically the behavior of RC columns

under CBBMAL, considering the nonlinear behavior of

materials. CBBCS takes into account the confining effect

of the transverse reinforcements and simulates the loss of

the concrete cover. It allows the determination of the

failure, the internal local behavior of critical sections

(strains, stresses, neutral axis position, cracks positions,

loss of material, microscopic damage index, etc.) and the

external global behavior of the column (curvature, deflec-

tion, stiffness, damping ratio, macroscopic damage index

[16], etc.).

Figure 4 shows a flowchart of the main parts of the

proposed simulation method.

4 Experimental Data and Reference Column

The proposed numerical simulation has mainly been vali-

dated by the experimental test results of Garcia Gonzalez

performed on the full-scale columns [17–19] and the

experimental tests/simulation of Park [11].

The dimensions and characteristics of the columns tes-

ted by Garcia Gonzalez are as follows: rectangular sec-

tions 18 cm 9 25 cm, height of 1.75 m, four longitudinal

reinforcement with a diameter of 12 mm, concrete of

strength of 42 MPa, stirrup ties of diameter 6 mm with a

longitudinal spacing of 9 cm, yielding stress of steel bars

470 MPa. This column is fixed at the bottom, free at the top

and is under an axial force of 500 kN and cyclic or

monotonic lateral force at the top. The horizontal loads

through different orientation angles X have been applied on

the top of the columns. In this paper, Garcia Gonzalez’s

column is called ‘‘reference column’’ and its section is

called ‘‘reference section’’.

5 Assessment of the Obtained Results

Comparison of numerically simulated results using the

proposed simulation algorithm and experimental tests on

full-scale RC members is reflected in Figs. 5, 6, 7, 8 and 9.

The comparison indicates a good agreement between the

proposed simulation and the experimental test results.
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In Fig. 5, the results of the proposed simulation and

experimental test/simulation of Park for a cyclic bending

moment (CBM) loading case are compared. As this fig-

ure shows, there is a good agreement between the simu-

lated and experimental results.

In Fig. 6, the results of the proposed simulation are

compared with the experimental test results [17] on the

reference column under bending moment and axial loading

(BMAL) with the orientation angle of X = 0�.
Figure 7 shows the variations of the position of the

neutral axis at the critical section of the reference column

when BBM loading with the orientation angle of X = 45�
is increased to its maximum value. Note that only for

illustration purposes, the values on x axis are shown in the

negative form in Fig. 7. As shown in this figure, by

increasing BBM, the neutral axis moves from outside the

section to point T with an inclination of about a = 55� and
then shifts toward the center of the section with an incli-

nation of a = 60� when the maximum load is applied.

When the load is increased, the neutral axis moves with

an approximately constant inclination up to the ultimate

strength of the section. The results of measurements on the

full-scale experimental tests [17] for the neutral axis

position, when peak load is applied on the critical section

of the reference column, are shown by the dashed lines in

Fig. 7. Experimental test results showed an inclination of

a = 59� for the neutral axis when peak load was applied on
the section for an orientation angle of X = 45�. As Fig. 7
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shows, there is a good agreement between the simulated

values and experimental results.

Figures 8 and 9 compare the simulated values and

experimental test results [17] of average stiffness and

equivalent viscous damping ratio for CBBMAL.

Figure 10 shows the variations of the M–/ curves of the

critical section of the reference column under BBMAL for

different values of axial force ‘‘Next’’ for the pushover

orientation angle of X = 30�. As this figure indicates, the

stiffness and ultimate strength of the column are increased

by increasing the axial force. Also, it shows that the failure

of the column occurs earlier by increasing the axial force,

meaning a heavy axial load makes the column fragile,

imposing a big loss of material and reducing the ductility of

the column. This type of fragility, reduction of ductility and

loss of material need to be carefully considered in prestress

structural member design. Similarly, care needs to be taken

in the design of structures being designed for seismic zones

having a significant vertical force component of earthquake

loading.

Figure 11 presents the axial force–moment interaction

diagram of the reference section under different orientation

angles X. Figure 12 presents the axial force–moment

interaction diagram for the critical section of the reference

column under BMAL with the orientation angle of X = 0�
for different slenderness ratios (h/L) of the column. As

these figures indicate, the function of axial force in com-

bination with flexural moment in the damage of the section

located beyond or below the balance point in the interac-

tion diagram is principally different. For the latter condi-

tion, axial load progresses damage more due to reduction

of capacity terms. However, sometimes the influence of

axial load compensates reduction of capacity and conse-

quently the damage decreases. In compression control

region of interaction diagram, as far as yield strength is not

attained, damage is not obtained, whereas beyond this

margin, increase in axial load definitely leads to sudden

failure of element, as confirmed by Abbasnia et al. [20].

6 Verification of the Components Effects
Combination Method (CECM)

In seismic zones, the building codes generally accept the

use of the combination of the components’ effects in linear

and equivalent linear calculations. As an example,

according to French earthquake code (AFPS) [21], in

nonlinear calculations, the three components are to be

considered simultaneously in calculation, but in linear and

equivalent linear calculations, the maximum effect of each

component can be determined separately and then com-

bined according to the following formulation:

S ¼ �Sx � kSy � lSz; ð82Þ

S ¼ �kSx � Sy � lSz; ð83Þ

S ¼ �kSx � lSy � Sz; ð84Þ

where Sx, Sy and Sz represent the deformations or loading

due to the horizontal and vertical components, respectively,

and S represents their resultant values.
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In general cases, k and l are taken equal to 0.4. The

effect of the vertical component can be neglected (l = 0

and the third equation, i.e., Equation (84) is neglected).

The application of this simplified method (CECM) is

compared with the proposed simultaneous direct method

(SDM). To carry out this comparison, the responses of the

critical section of the reference column under BBMAL for

different orientation angles have been studied.

Figure 13 shows the M–/ curves of the critical section

of the reference column under BBMAL with orientation

angles of X = 15�, 30� and 60� for both cases of calcula-

tion methods: CECM (according to AFPS) and SDM. Note

that only the calculations up to the ultimate strength of the

section are shown in Fig. 13.

In the linear phase, there is a very good agreement

between the results obtained from SDM and CECM for all

orientation angles (X.) (i.e., different ratios of My and Mx),

as confirmed by AFPS.

In the post-elastic phase, CECM presents an underesti-

mation of the response, which is not conservative. The

maximum underestimation of the response is observed

when the resultant moment is applied in the diagonal

direction of the section.

The obtained results show the necessity of applying

SDM for nonlinear calculations, especially during the post-

elastic phase, which occurs frequently during earthquake

loading.

7 Conclusions

A nonlinear numerical simulation algorithm has been

proposed to simulate the behavior of RC columns subjected

to CBBMAL. In the proposed simulation algorithm, the

column is decomposed into two ME positioned between

the inflection point and critical sections. Then the nonlinear

behavior of ME is analyzed and, finally, the two connected

ME are assembled to determine the global behavior of the

column. To find the status of the entire column, the applied

loads and also the secondary moments, due to P-D effect,

are considered in the simulation of the column.

A computer program has been developed to simulate

numerically the behavior of RC columns under CBBMAL,

considering the nonlinear behavior of the materials. It takes

into account the confining effect of the transverse rein-

forcements and simulates the loss of the concrete cover,

and allows the determination of the failure, the internal

local behavior of critical sections and the external global

behavior of the column.

The proposed nonlinear numerical solution has been

validated by experimental test results. A comparison of the

numerically simulated results using the proposed simula-

tion algorithm and the experimental tests on full-scale RC

members indicates a good agreement between the proposed

simulation and the experimental test results.

The comparison between SDM and CECM shows that

in the elastic phase, for all the values of applied resultant

moment in BBMAL cases, there is a very good agree-

ment between SDM and CECM, as confirmed by AFPS.

In the post-elastic phase, CECM presents an underesti-

mated response, which is not conservative and as such

should be used with due caution. The maximum under-

estimation of the response is observed when the resultant

moment is applied in the diagonal direction of the sec-

tion. The obtained results show the necessity of applying

SDM for nonlinear calculations, especially during the

post-elastic phase, which occurs frequently during

earthquake loading.

Acknowledgments The financial and technical supports of the Near

East University and University of Nantes/Ecole Central de Nantes are

appreciated.

References

1. Richard Yen JY (1991) Quasi-Newton method for reinforced

concrete column analysis and design. J Struct Struct Div ASCE

117(3):657–666

2. Yau CY, Chan SL, So AKW (1993) Biaxial bending of arbitrarily

shaped reinforced concrete column. Struct J ACI Tech Paper

90(3):269–273 Title no. 90-S28
3. Alnoury SI, Chen WF (1982) Behavior and design of reinforced

and composite concrete sections. J Struct Div ASCE

108(ST6):1266–1284

4. Hsu CT, Mirza S (1973) Structural concrete biaxial bending and

compression. J Struct Div ASCE 99(ST2):2317–2335

5. Brondum-Nielsen T (1985) Ultimate flexural capacity of cracked

polygonal concrete sections under biaxial bending. J ACI

82–80:863–869 Technical Paper, no. 82–80
6. Zak L (1993) Computer analysis of reinforced concrete sections

under biaxial bending and longitudinal load. S J ACI

90(2):163–169

0

10

20

30

40

50

60

70

0 0.01 0.02 0.03 0.04

M
om

en
t (

kN
.m

) 

Curvature (1/m) 

CECM, 15 Degrees
SDM, 15 Degrees
CECM, 30 Degrees
SDM, 30 Degrees
CECM, 60 Degrees
SDM,60 Degrees

Fig. 13 Comparison of CECM and SDM for orientation angles X of

15�, 30� and 60�

Int J Civ Eng (2017) 15:113–124 123

123
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