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Abstract A fast converging and fairly accurate nonlinear

simulation method to assess the behavior of reinforced

concrete columns subjected to static-oriented pushover

force and axial loading (sections under biaxial-bending

moment and axial loading) is proposed. In the proposed

method, the sections of column are discretized into

‘‘Variable Oblique Finite Elements’’ (VOFE). By applying

the proposed oblique discretization method, the time of

calculation is significantly decreased, and since VOFE are

always parallel to neutral axis, a uniform stress distribution

along each oblique element is established. Consequently,

the variations of stress distribution across an element are

quite small which increases the accuracy of the calcula-

tions. In the discretization of section, the number of VOFE

is significantly smaller than the number of ‘‘Fixed Rect-

angular Finite Elements’’ (FRFE). The advantages of using

VOFE compared to FRFE are faster convergence and more

accurate results. The nonlinear local degradation of mate-

rials and the pseudo-plastic hinge produced in the critical

sections of the column are also considered in the proposed

simulation method. A computer program is developed to

calculate the local and global behavior of reinforced con-

crete columns under static-oriented pushover and cyclic

loading. The proposed simulation method is validated by

the results of tests carried out on the full-scale reinforced

concrete columns. The application of the ‘‘Components

Effects Combination Method’’ is compared with the pro-

posed ‘‘Simultaneous Direct Method’’ (SDM). The

obtained results show the necessity of applying SDM for

nonlinear calculations. Especially, during the post-elastic

phase, which occurs frequently during earthquake loading.

Keywords Nonlinear � Numerical simulation � Reinforced

concrete � Oblique finite elements � Pushover � Biaxial-

bending moment and axial loading

1 Introduction

In recent years, increased demand for using performance-

based design methods has made researchers to intensify

their efforts to modify and enhance the accuracy of non-

linear static procedures on a variety of structural models. A

number of those methods have been implemented in dif-

ferent design codes and guidelines. These procedures apply

constant load patterns, such as equivalent lateral force, first

mode shape and response combination load patterns in

performing pushover analyses [1].

The preliminary methods consist of decomposition of

axial force into two parts. Each part of the axial force is

considered with one of the moments which are applied in the

two main directions of the section. After separate sets of

calculations are made, the computed stresses are superim-

posed [2]. These simplified models do not reflect the non-

linearity of materials. Richard Yen [3] has proposed a model

to calculate ‘‘Reinforced Concrete’’ (RC) sections under

biaxial-bending moment based on the position of the neutral

axis and the percentage of longitudinal reinforcement. In this

method, many simplifications are used that have a detri-

mental effect on the precision of the results. Yau et al. [4]

have proposed a method to calculate the ultimate strength of

the sections under biaxial-bending moment using the per-

centage of longitudinal reinforcement and the distance

between the neutral axis and the point with maximum
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compressive stress, as main parameters. Alnoury et al. [5]

have proposed a method using the tangent of the force–

displacement curve and the local rigidity in the section level.

The model proposed by Hsu et al. [6], which uses the

developed Newton–Raphson method and simplified models

of strain–stress curves for concrete and reinforcement, is not

applicable for the descending branch of the ‘‘moment–cur-

vature’’ (M–/) curve. Brondum-Nielsen [7, 8] has proposed

a method to calculate the ultimate strength of the sections

under biaxial-bending moment using the developed New-

ton–Raphson method and the simplified rectangular model

of strain–stress for concrete recommended by the CEB-FIP

code. Zak [9] has also proposed a method to calculate the

ultimate strength of the sections under biaxial-bending

moment using the developed Newton–Raphson method. The

Newton–Raphson method yields a fast solution, but presents

problems while descending the response curve and near the

inflection point that causes the divergence of the solution.

Newton’s method, well adapted for monotonic curves, needs

to be transformed at each relative extreme point occurrence.

The maxima have to be evaluated anyway. The Ricks

method, derived from Newton’s, allows the user to cross

over the peaks. Newton and Ricks processes could be con-

sidered as ‘‘auto-blind methods’’, and must be used with

caution in the numerical simulation. Hashemi and Vaghefi

[10] have investigated the effect of bond-slip on the bearing

capacity of reinforced concrete columns subjected to axial

force and biaxial-bending moment. They concluded that,

although the ACI318-11 criteria is based on the perfect bond

assumption, the global results using ACI assumption are

conservative anyway due to the fact that the beneficial effect

of stirrups confinement on the concrete compressive strength

is neglected.

Among several existing techniques, to analyze the RC

sections under ‘‘Biaxial-Bending Moment and Axial

Loading’’ (BBMAL), two of them are the most common:

direct search procedure to obtain the strain equilibrium

plane and direct search procedure to find the location of the

neutral axis.

The direct search procedure can be divided into two

main approaches. Except for the case of the linear approach

where exact integration rules can be used, the section is

generally discretized into parallel layers rotating with the

neutral axis. This method can be applied only in the

monotonic loading case. Another way consists in dis-

cretizing the cross section into FRFE. This method can be

used under any loading mode.

The aim of this paper is to propose a simulation method

to assess the RC columns under ‘‘Oriented Pushover Force

and Axial Loading’’ (OPFAL) in any direction (i.e., sec-

tions under BBMAL) using VOFE in the discretization of

the sections and the advantages of the nonlinear real

behavior of materials.

2 Mechanical Equilibrium of Sections

2.1 Basis of the Proposed Numerical Simulation

Method

The column is decomposed into two segments (Macro-

Elements) that are positioned between the inflection point

(zero moment) in the middle of the column and the critical

sections (maximum moments) at the column’s two ends.

The nonlinear behavior of each Macro-Element (as Base

Model) is analyzed. A Base Model is a half-column under

OPFAL applied in any direction. To find the status of a full-

scale column, the secondary moments due to P-D effect are

also considered in the analysis of the entire column.

2.2 Discretization Principles

In the proposed simulation, the sections of column are

discretized into VOFE that always stay parallel to the

neutral axis. Two different widths are adopted for VOFE in

a section. The frontier between two zones A and B which

can have different oblique element widths are selected to

pass a fixed point M at the corner of section, as shown in

Fig. 1. In this case, the number of elements is limited to

‘‘m ? n’’, while if using FRFE discretization, the section is

divided into ‘‘m�n’’ elements (m and n are numbers of

elements along the larger and smaller sides of the section,

respectively).

Since, zone A is usually under tension or under low

compression stresses and its contribution in resisting axial

force and bending moments is low, the width of elements

situated in zone A can be selected to be greater than the

width of elements situated in zone B. This reduces the

number of elements.

Using this type of VOFE discretization, the time of

calculation is significantly decreased, and since the
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Fig. 1 Discretization of a section into VOFE
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proposed oblique elements always stay parallel to the

neutral axis, there is a uniform stress distribution along

each oblique element, which increases the accuracy of the

results.

Figures 1, 4, 5, and 6 show schematically the principal

notations used in the proposed model.

In this method, the inclinations of the oblique finite ele-

ments and the position of their respective centers of gravity are

variable. To calculate structural members under monotonic

pushover loading, there is no need to save the previous steps of

loading, which significantly saves the calculation time.

As confirmed by Abbasnia et al. [11], it is to be noted

that VOFE and fiber discretization approaches are able to

consider the simultaneous effects of axial load and flexural

moment in more precise stress distribution along the

member length and cross-sectional area. In addition,

because materials in terms of steel and concrete are defined

as stress–strain constitutive behavior in these approaches,

the transverse confinement effect as a key factor in con-

crete deformability could conveniently be incorporated into

the analytical procedures.

2.3 Fundamental Assumptions

In the proposed method for each concrete and rein-

forcement element, a uniaxial behavior is considered

and their strain distributions are assumed to form a

plane, which remains a plane during deformation

(Kinematics Navier’s hypothesis). The basic equilibrium

is justified over a critical hypothetical cross section

assuming the Navier’s hypothesis with an average cur-

vature. A perfect bond condition between reinforcing

steel bars and surrounded concrete is assumed in the

proposed method.

2.4 Concrete Behavior Modeling

For compressive confined and unconfined concrete ele-

ments, the monotonic parts of cyclic stress–strain models

proposed by the author [12] have been used. Equations (1)

and (2) present the used models that are valid for concretes

with the strengths within the range of

20 MPa\ f 0c \ 50 MPa:

r ¼ f 0c

A e
e0

� �2

þB e
e0

� �
þ C þ D e

e0

� ��1

for unconfined concreteð Þ
ð1Þ

r ¼ f 0cc

AL
e
ec0

� �2

þBL
e
ec0

� �
þ CL þ DL

e
ec0

� ��1

for confined concreteð Þ:
ð2Þ

The values of f 0cc and ec0 [12, 13] are given as:

f
0

cc ¼ f
0

c 1:000 þ 2:5a:xwð Þ
for r=f 0c\0:05 or a:xw\0:1
� � ð3Þ

f
0

cc ¼ f
0

c 1:125 þ 1:25a:xwð Þ
for r=f 0c � 0:05 or a:xw � 0:1
� � ð4Þ

ec0 ¼ e0

f 0cc
f 0c

� �2

ð5Þ

with: xw ¼ k
At

bmax:St

� �
fyt

f
0
c

� �
ð6Þ

a ¼ an:as ð7Þ

an ¼ 1 � 8

3g
P:S.: an ¼ 1 for circular sectionsð Þ ð8Þ

as ¼ 1 � St

2b0

� �2

for rectangular and circular sectionsð Þ

ð9Þ

as ¼ 1� St

2b0

� �
for circular sections with spiralð

� transverse reinforcementsÞ
ð10Þ

where r represents the stress; e represents the strain; f
0

c

and f
0
cc represent compression strengths of unconfined

and confined concretes at 28 days, respectively; e0 and

ec0 represent the strains related to f
0

c and f
0

cc, respectively;

At represents the cross-sectional area of a transverse

reinforcement; fyt represents the yield stress of transverse

reinforcement; bmax represents the larger dimension of

the section; St represents the longitudinal spacing

between transverse reinforcements; a represents the

confinement efficiency factor defined as the ratio of the

confined area over the total area; an represents the

transverse reinforcement form factor; as represents the

transverse reinforcements spacing factor; b0 represents

the distance between extreme longitudinal reinforcements

in the two sides of the column section. The factors k and

g and also the method to find the unknown coefficients

A, B, C, D, AL, BL, CL, and DL are given in [12].

The concrete tensile stress is assumed to be linear up to

the concrete ultimate tensile strength.

Figure 2 shows an example of the application of the

compression stress–strain model proposed by the author

[12] for confined concrete (f
0

c = 42 MPa) under monotonic

loading.

2.5 Reinforcement Behavior Modeling

For the monotonic stress–strain model of reinforcements,

the following expressions have been used. Typical graph to
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determine the behavior of steel bars under monotonic

tension loading has the following four phases:

Phase 1—Linear elastic phase:

rs eð Þ ¼ Ese for e� ey

� �
ð11Þ

where ey represents the strain at starting point of plastic

phase (yielding); Es represents the modulus of elasticity of

steel bar.

Phase 2—Constant plastic phase:

rs eð Þ ¼ Fy for ey\ ej j � esh

� �
ð12Þ

where esh represents the strain at starting point of strain

hardening phase; Fy represents yielding stress of steel bar.

Phase 3—Strain hardening phase:

In this phase, a relationship is employed to obtain a

curve passing two known points A(x0, y0) and B(x1, y1) with

two slopes m0 and m1 as follows:

y ¼ y0 þ m0 x� x0ð Þ þ l x� x0ð Þb ð13Þ

with: l ¼ y1 � y0 � m0 x1 � x0ð Þ
x1 � x0ð Þb

ð14Þ

b ¼ ðx1 � x0Þ m1 � m0ð Þ
y1 � y0 � m0 x1 � x0ð Þ : ð15Þ

Therefore, for this phase, Eq. (16) is used [13]:

rs eð Þ ¼ Sign eð Þ Fy þ Esh e� eshj jð Þ � e� eshj j R1ð Þ

R1 eU � eshð Þ R1�1ð Þ

" #

ð16Þ

where FU represents ultimate strength of steel bar; eU
represents the strain at the peak point of the stress–strain

curve and R1 ¼ Esh eU�eshð Þ
FU�Fy�Esh eU�eshð Þ

���
���.

Phase 4—Final phase up to failure:

During this phase, in a monotonic loading case after

peak point (eU, FU), elongation increases up to failure

without increasing any load.

Figure 3 shows an example of application of the stress–

strain model used for reinforcements (Fy = 470 MPa)

under monotonic loading.

2.6 Materials Failure Criteria

For the maximum compression strain value (eCU) of

unconfined concrete of compression resistance f
0
c, Eq. (17)

given by CEB Code [14] is used. This equation is partic-

ularly applicable, where there is a loss of concrete cover

outside the stirrups:

eCU ¼ 4 � 0:02f
0

c

� �
=1000 f 0c in MPa

� �
: ð17Þ

For confined concrete constrained within stirrups, a dif-

ferent formula is used. In those cases in which the concrete

is efficiently confined by the stirrups, the maximum strain

of concrete is very big and failure normally occurs due to

the first fracture in a stirrup. Equation (18) proposed by

Sheikh [15] is used in the proposed simulation to determine

the failure of confined concrete:

eCU ¼ 0:004 þ 0:9qs:fyh

� �
=300 fyh in MPa

� �
ð18Þ

where qs represents the ratio of transversal reinforcement

volume per concrete volume situated inside the stirrups and

fyh represents the yielding stress of the stirrups.

2.7 Sections Equilibrium

The fundamental relationships determining the equilibrium

state of the sections are as follows:

a) Equilibrium equation of axial forces in the center of

the column section;

b) Equilibrium equations of bending moments at the

column section.

The general equilibrium system of each section consists

of three nonlinear relations equating external and internal

effects:
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Fig. 2 Example of monotonic stress–strain curve for confined
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Pext ¼ Pint ð19Þ
Mxext ¼ Mxint ð20Þ
Myext ¼ Myint ð21Þ

with: Pint ¼
Xm
i

riAi þ
Xn
j

rjAj þ
Xns
k

rskAsk ð22Þ

Mxint ¼
Xm
i

riAiyi þ
Xn
j

rjAjyj þ
Xns
k

rskAskyk ð23Þ

Myint ¼
Xm
i

riAixi þ
Xn
j

rjAjxj þ
Xns
k

rskAskxk ð24Þ

where Pext and Pint represent the external and internal axial

forces, respectively; Mxext and Myext represent the external

bending moments about x0 and y0 axes, respectively (see

Fig. 4); Mxint and Myint represent the internal bending

moments about x0 and y0 axes, respectively; Ai, Aj, and Ask
are the areas of concrete element i (at zone A), concrete

element j (at zone B), and steel elements, respectively (see

Fig. 1).

The moment equilibrium Eqs. (20), (21), (23), and (24)

are considered about the orthogonal x0 and y0 axes passing

through the center of the section [16] (see Fig. 4).

The proposed method requires the resolution of a

quasi-static simultaneous equations system using a triple

iteration process over the strains which depends on the

position of the neutral axis. It is based also on the

nonlinear stress–strain relationships for concrete finite

elements and reinforcements. To reach equilibrium, three

main characteristic parameters eC (the strains in the

extreme compression point of the section), Xn, and Yn
(coordinates of two points E and F at the intersections of

the neutral axis with X and Y axes located on two per-

pendicular edges of the section), as shown in Fig. 4, are

used as the three main variables.

2.8 Determination of Strains

The strain values of the elements are determined by taking

into consideration the Kinematics Navier’s hypothesis (see

Sect. 2.3). An equation is established for the strain plane

based on strains of three nonaligned characteristic points

on the section: C, the point representing maximum com-

pression stress, and two points E and F at the intersections

of the neutral axis with X and Y axes. The origin of XY

Cartesian coordinates system is located at point C (see

Fig. 4). The strain plane equation is given as follows:

e ¼ ec 1 � x

Xn

� y

Yn

� �
ð25Þ

where x and y represent the coordinates of any point on the

strain plane and e represents its strain; ec represents the

strain at point C; Xn and Yn represent coordinates of points

E and F, respectively (see Fig. 4).

The strains of concrete and steel elements are deter-

mined by applying Eq. (25).

2.9 Determination of Neutral Axis Position

To find the solution of the equilibrium Eqs. (19), (20) and

(21), four cases of movements for each position of neutral

axis, composed of two cases of displacement and two cases

of rotation, are considered (see Fig. 5). For two cases of

displacements, two sets of increments of (?Dx, ?Dy) and

(-Dx, -Dy) are applied, and for two cases of rotations, two

sets of increments of (?Dx, -Dy) and (-Dx, ?Dy) are

applied. Based on these four movements and by applying a

comparative step-by-step method during the successive

steps, the solution of equilibrium state for forces and

bending moments is found. To complete these steps, the

differences between external and internal forces and also

the differences between external and internal bending

moments are reduced to satisfy the acceptance criteria

given in Sect. 3, below. The minimum differences allow

one to determine the position of the neutral axis. To find

the minimum differences, a linear combination of the

resultant-bending moment and axial force which are nor-

malized to their maximal values are used.

Based on Mext k; lð Þ and / k; lð Þ (i.e., the applied external

moment and relative curvature on the section l for loading

step k), the parameters dM1 and dM2 (in the imposed force

case) or d/1 and d/2 (in the imposed displacement case)

are defined as follows:
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Fig. 4 Position and inclination of neutral axis on a section
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dM1 ¼ Mext k � 1; lð Þ �Mext k � 2; lð Þ or

d/1 ¼ / k � 1; lð Þ � / k � 2; lð Þ ð26Þ

dM2 ¼ Mext k; lð Þ �Mext k � 1; lð Þ or

d/2 ¼ / k; lð Þ � / k � 1; lð Þ: ð27Þ

These parameters enable one to follow up the different

phases of loading history on the sections. The typical tra-

jectory of static pushover loading is described by the fol-

lowing expression:

dM1� 0 and dM2[ 0½ � or d/1� 0 and d/2[ 0½ �:
ð28Þ

2.10 Determination of Curvatures

The strains at points 0, 1, and 2 (e0, e1 and e2) on the section

shown in Fig. 6 are calculated by applying the strain of

characteristic point C (eC), and Xn and Yn parameters of

neutral axis position in Eq. (25). Then, using these stras, the

curvatures in directions x and y are calculated as follows:

/x ¼
2 e2 � e0ð Þ

b
ð29Þ

/y ¼
2 e1 � e0ð Þ

h
: ð30Þ

The maximum curvature is given as:

/ ¼ eC
h0

ð31Þ

where h
0

represents the distance between extreme com-

pression point C and neutral axis.

It can be proved that this maximum curvature can also

be presented as:

/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2
x þ /2

y

q
: ð32Þ

3 Convergence Criteria

To achieve acceptable accuracy within a reasonable cal-

culation time, the convergence tolerances are considered

as:

Xext � Xintj j � 0:1� ð33Þ
Pext � Pintj j � 0:001Pext ð34Þ
Mext �Mintj j � 0:001Mext ð35Þ

where Xext ¼ X ¼ tan�1 Myext=Mxextð Þ; Xint ¼ tan�1

Myint=Mxintð Þ; Mext = [(Mxext)
2 ? (Myext)

2]1/2 and

Mint = [(Mxint)
2 ? (Myint)

2]1/2.

4 Calculation of Deflections

In general, two methods are used to calculate deflections:

‘‘Curvatures Numerical Double Integration Method’’

(CNDIM) and ‘‘Elasto-Plastic Method’’ (EPM). In the first

method, the equilibrium state is calculated in each cross

section discretized along the length of the column and then

a numerical double integration of curvatures ux and uy is

performed to evaluate the deflection. To apply CNDIM,

Eqs. (36)–(39) proposed by Lamirault and Bresse [17] are

used to calculate the deflections and rotations in two
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Fig. 5 Four cases depicting increments of neutral axis position
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principal directions of the sections along the length of the

column.

dxl ¼
Xi¼l

i¼1

dh hxi þ /xi þ 2/x i�1ð Þ

� �
dh=6

h i
ð36Þ

dyl ¼
Xi¼l

i¼1

dh hyi þ /yi þ 2/y i�1ð Þ

� �
dh=6

h i
ð37Þ

hxl ¼
Xi¼l

i¼1

dh /xi þ 2/x i�1ð Þ

� �
=2

h i
ð38Þ

hyl ¼
Xi¼l

i¼1

dh /yi þ 2/y i�1ð Þ

� �
=2

h i
ð39Þ

where dh = L/p; L represents the length of column; p rep-

resents the number of sections considered along the col-

umn); /xi and /yi represent the curvatures in two principal

directions of section i; dxl and dyl represent the deflections

of section l in x and y directions, respectively; hxl and hyl
represent rotations of section l in x and y directions,

respectively.

The deflections in two principal directions (dxl and dyl)
are calculated, and then, the resultant of their projections

on the applied force direction is calculated. This method is

time consuming in comparison with EPM.

The second method (EPM) is based on the evidence that

a column is highly affected in the critical zone when a

lateral load is applied. The main bending effect is due to

the curvature registered at critical sections.

In the proposed method, the column deflections are

determined using the EPM [18] considering mainly the

curvature at the critical section and the length of the col-

umn. Immediately following the peak value of the M–/
curve of the critical section, a very important local effect

occurs at the critical section where a pseudo-plastic hinge

appears. Once the peak has passed, curvature enhancement

is concentrated in the critical zone. While in the other

regions, the curvatures decrease rapidly to near zero. In

simulation, when applying EPM to calculate deflections,

Eqs. (40) and (41) are used:

d ¼ /
3
L2

� �
for /�/p

� �
ð40Þ

d ¼
/p

3
L2

� �
þ /� /p

� �
Lp
� �

L� 0:5Lp
� �

for /�/p

� �

ð41Þ

where d represents the deflection at the top of Macro-

Element (half-column); / represents the curvature at crit-

ical section and /p represents its value at the plastic hinge

performance phase, respectively; L and Lp represent the

lengths of Macro-Element (half column) and the length of

plastic hinge, respectively.

In Fig. 7, two methods of deflection calculation

(CNDIM and EPM) and experimental values for pushover

loading applied in the direction of X = 45� are compared.

In this figure, the numerical simulation results, obtained by

applying SADEP (see Sect. 5, below) and using FRFE

option are shown. For CNDIM, the calculation up to the

ultimate strength of the section is shown. As Fig. 7 shows,

there is good agreement between simulated deflections by

applying both mentioned methods and the experimental

results in the elastic phase. In post-elastic phase, CNDIM

underestimates the deflection values, while there is good

agreement between the experimental results and simulated

deflections using EPM.

5 Developed Computer Program

Computer program entitled ‘‘Structural Analysis and

Damage Evaluation Program’’ (SADEP) has been devel-

oped by the author [19] to simulate numerically the

behavior of RC structures under monotonic (pushover) and

cyclic loading. SADEP has some sub-programs, such as

BBCS (Biaxial-Bending Column Simulation), which is

used as the Base Model and considers FRFE in the dis-

cretization of sections, SOPA (Static-Oriented Pushover

Analysis) which is used as the Base Model and considers

VOFE in the discretization of sections, CCS (Confined

Concrete Simulation), UCS (Unconfined Concrete Simu-

lation), SBS (Steel Bars Simulation), NAPS (Neutral Axis

Position Simulation), DC (Deflection Calculation), and

DIC (Damage Index Calculation).

In the recently added sub-program SOPA, behavior

models for confined and unconfined concretes generated

using CCS and UCS are considered and the behavior

models of the columns are specified.

In SOPA, each section of the column is discretized into

VOFE. In fact, in SADEP, two options for discretization of

sections are applied: in BBCS, sections are discretized into

FRFE, and in SOPA, the sections are discretized into VOFE.
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Fig. 7 Comparison of deflections using CNDIM and EPM, X = 45�
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SADEP deals with the numerical simulation of RC

members under cyclic loading and OPFAL in any direction

(i.e., BBMAL applied on sections), considering the non-

linear behavior of materials.

For compressive confined and unconfined concrete ele-

ments, the monotonic and cyclic stress–strain models

proposed by the author [12], and for reinforcements, the

expressions proposed by Park and Kent [13] based on the

Ramberg–Osgood monotonic and cyclic models have been

used. The concrete tensile stress is assumed to be linear up

to the concrete tensile strength. The CEB code specifica-

tion [14] is used for the maximum compression strain value

of unconfined concrete, and the value proposed by Sheikh

[15] is employed for confined concrete.

The basic equilibrium is justified over a critical hypo-

thetical cross section, assuming the Kinematics Navier’s

hypothesis with an average curvature. The method used

qualifies as a ‘‘Strain Plane Control Process’’ that requires

the resolution of quasi-static simultaneous equations sys-

tem using a triple iteration process over the strains when

the FRFE option is applied [19] and an iteration process to

find the neutral axis position when the VOFE option is

applied.

The program takes into account the confining effect of

the transverse reinforcement and simulates the loss of the

concrete cover. It allows the determination of the failure,

the local internal behavior of critical sections (i.e., strains,

stresses, neutral axis position, moment–curvature curve,

cracks positions, loss of material, microscopic damage

index, etc.) and the global external behavior of the column

(deflection, average rigidity, equivalent viscous damping

ratio, macroscopic damage index, etc.). The simulated

results, obtained using SADEP, are confirmed by the full-

scale experimental results obtained by other researchers

[13, 20, 21].

6 Experimental Data and Reference Column

The proposed numerical simulation has mainly been vali-

dated by the experimental test results carried out at the

University of Nantes [20–22]. Over 20 tests performed by

Garcia Gonzalez [20] on full-scale columns under OPFAL

are used. The horizontal loads through different horizontal

directions of angles (orientations) X with the main axis of

cross section have been applied on the top of the columns.

In this paper, the column tested by Garcia Gonzalez [20]

is called ‘‘reference column’’ and its section is called

‘‘reference section’’. Column dimensions and characteris-

tics used in numerical simulations are as follows: rectan-

gular section (18 cm 9 25 cm), column height = 1.75 m,

four longitudinal reinforcement with a diameter of 12 mm

(/12), concrete of strength f
0
c = 42 MPa, stirrup ties of

diameter 6 mm with a longitudinal spacing of 9 cm (/
6@9cmc/c), yielding stress of steel bars: Fy = 470 MPa.

This column (i.e., Macro-Element, Base Model or half

column) is fixed at the bottom, free at the top and is under

an axial force of 500 kN and a monotonic or cyclic ori-

ented lateral force at the top.

7 Analysis of the Obtained Results

In Fig. 8, the results of the proposed numerical simulation

using VOFE and FRFE are compared with experimental

test results for OPFAL with the orientation of X = 45�. As

this figure shows for loading up to 85 % of the ultimate

strength of the section, there is a better agreement between

simulated results using VOFE discretization and experi-

mental results than when the FRFE discretization model is

employed.

Variations in neutral axis inclination (a) of the reference

section for different pushover force orientations (X) are

shown in Fig. 9. As this figure shows, the inclination of the

neutral axis is not equal to pushover force orientation,

except for the orientations of 0� and 90�. The neutral axis

inclination is constant for low pushover force values and it

has a deviation when approaching the maximum value of

the applied pushover force.

Figure 10 shows the variations of Xn and Yn as a func-

tion of oriented pushover force applied on the top of the

column with an orientation of X = 45�. As this fig-

ure shows by increasing pushover load, Xn and Yn are

reduced and Tan-1(Yn/Xn), which equals the inclination of

neutral axis (a), first remains constant and then varies when

ultimate pushover load is applied. This is reflected in

Fig. 9.

Figure 11 shows the variations of the position of the

neutral axis at the critical section of the reference column

when the oriented pushover force with the orientation of

X = 45� is increased to its maximum value. It should be
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Fig. 8 Comparison of experimental values, VOFE-based and FRFE-

based simulations, X = 45�
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noted that according to the coordinate systems shown in

Fig. 4, Xn values are positive, but for illustration purposes

only, they are shown in the negative form in Fig. 11. As

shown in this figure, by increasing the pushover load (or

moment), the neutral axis moves from outside the section

to point T (with an inclination of about a = 55�) and then

shifts toward the center of the section when the maximum

load is applied (ultimate strength of the section) with an

inclination of a = 60�. As it can be seen from Fig. 11,

when the load is increased, the neutral axis moves with an

approximately constant inclination up to the ultimate

strength of the section. This indicates that there is no

rotation of the section, while following the peak (ultimate

strength of the section), there is a deviation in the direction

of the neutral axis. This is mainly due to the loss of con-

crete cover and the yielding of compression steel. This

deviation indicates a slight rotation of the section that

occurs after the mentioned loading peak, which is normally

ignored in the calculations.

Based on the measurements on the full-scale experi-

mental tests of Garcia Gonzalez [20], the evaluated neutral

axis position when peak load is applied to the critical

section of the reference column is shown by the dashed

lines in Fig. 11. Garcia Gonzalez’s experimental results

showed an inclination of a = 59� for the neutral axis when

peak load was applied on the section for an orientation of

X = 45�. Figure 11 shows there is a good agreement

between simulated values and experimental results. Com-

parison of the simulated and experimental values shows a

slight dislocation that is mainly due to the experimental

procedure. The presence of only three strain gages in an

experimental test can be accepted, but they were not

positioned at the most sensitive points of the section to

determine the strains at point C ‘‘maximum compression’’

and point T ‘‘maximum tension’’.

The variations of the strains at the corners C, T, and

M versus the applied moment on the critical section of the

reference column under OPFAL of orientation X = 45� are

shown in Fig. 12. The variations of eM are very limited, and

the greatest variation is in eT.

Figure 13 shows the variations of the M–/ curves of the

critical section of the reference column under OPFAL for

different values of axial force ‘‘Pext’’ for the pushover

orientation of X = 30�. As this figure indicates, the rigidity

and ultimate strength of the column are increased by

increasing the axial force. In addition, it shows that the

failure of the column occurs earlier by increasing the axial
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force, meaning a heavy axial load makes the column

fragile, imposing a big loss of material, and reducing the

ductility of the column. This type of fragility, reduction of

ductility, and loss of material needs to be carefully con-

sidered in prestressed structural members design. Similarly,

care needs to be taken in the design of structures being

designed for seismic zones having a significant vertical

force component of earthquake loading.

Figure 14 shows the variations of M–/ curves of the

critical section of the reference column under OPFAL for

different values of longitudinal reinforcement for the

pushover orientation of X = 30�. As this figure indicates,

the rigidity and ultimate strength of the column are

increased by increasing the percentage of the longitudinal

reinforcements.

Figure 15 presents the axial force-moment interaction

diagram for the critical section of the reference column

under the applied pushover force with the orientation of

X = 0� for different slenderness ratios of the column.

8 Verification of the ‘‘Components Effects
Combination Method’’ (CECM)

In seismic zones, the building codes generally accept the

use of the combination of the components’ effects in linear

and equivalent linear calculations. As an example,

according to AFPS [23], in nonlinear calculations, the three

components are to be considered simultaneously in calcu-

lation, but in linear and equivalent linear calculations, the

maximum effect of each component can be determined

separately and then combined according to the following

formulation:

S ¼ 	Sx 	 kSy 	 lSz ð42Þ

S ¼ 	kSx 	 Sy 	 lSz ð43Þ

S ¼ 	kSx 	 lSy 	 Sz ð44Þ

where Sx, Sy, and Sz represent the deformations or loading

due to horizontal and vertical components, respectively;

and S represents their resultant values.

In general cases, k and l are taken equal to 0.4. The

effect of the vertical component can be neglected (l = 0

and the third equation ‘‘Eq. (44)’’ is neglected).
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The application of this simplified method (CECM) is

compared with the proposed ‘‘Simultaneous Direct

Method’’ (SDM). To carry out this comparison, the

responses of the critical section of the reference column

under OPFAL for different orientations have been studied.

Figure 16 shows the M–/ curves of the critical section of

the reference column under OPFAL with orientations of

X = 15�, 30�, and 60� for both the cases of calculation

methods: CECM (according to AFPS) and SDM. Note that

only the calculations up to the ultimate strength of the

section are shown in Fig. 16.

Table 1 and Fig. 17 show the differences between the

curvatures at peak points of the moment–curvature curves

(/max, Mmax) using SDM and CECM for different values of

pushover orientation X.

It can be seen from the polynomial best fit curve shown

in Fig. 17 that the maximum underestimation of the

response is observed when the pushover force is applied in

the direction of the diagonal of the section (diagonal ori-

entation of reference section: X = Tan-1 (h/b) = 36�).
The following conclusions are obtained from the simu-

lated columns (see also Figs. 16 and 17):

• In the linear phase, there is a very good agreement

between the results obtained from SDM and CECM for

all orientations of applied pushover loads (X) (as

confirmed by AFPS).

• In the post-elastic phase, the difference between the

calculated results using SDM and CECM increases

when the load is increased.

• In the post-elastic phase, CECM presents an underes-

timation of the response, which is not conservative.

This underestimation is maximum at the peak of the

M–/ curve for all orientations (X) of applied pushover

loads.

• In the case of applied force in the direction of the

diagonal of the section, CECM gives a maximum error

of around 50 %.

• The obtained results show the necessity of applying

SDM for nonlinear calculations. Especially, during the

post-elastic phase, which occurs frequently during

earthquake loading. In this case, the calculations

performed by CECM give non-conservative results.

9 Conclusions

A nonlinear numerical simulation method using VOFE to

simulate the behavior of RC columns subjected to OPFAL

(i.e., BBMAL on sections) is proposed. A sub-program

entitled SOPA, which employs VOFE, has been added to

SADEP. In the proposed method, sections of the column

are discretized into VOFE which always stay parallel to the

neutral axis. To minimize the number of elements, two

different widths are adopted for VOFE in a section. In this

case, the number of elements in each section is limited to

‘‘m ? n’’. While in the case of FRFE discretization, the

section is discretized into ‘‘m�n’’ elements. Using this type

of VOFE discretization, the time of calculation is signifi-

cantly decreased, and since VOFE always stay parallel to

the neutral axis, variations of stress distribution along the

element are significantly decreased. Therefore, the
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Table 1 Comparison of curvatures at peak point (/max, Mmax) when

applying CECM and SDM

X (�) Mmax

(N.m)

SDM

/max

(1/m)

SDM

/max

(1/m)

CECM

D/max (1/m)

(SDM-

CECM)

D/max//max

(Underestimation)

(%)

15 60.187 0.0251 0.0175 0.00760 32

30 53.328 0.0247 0.0110 0.0137 55

45 48.587 0.0271 0.0155 0.00116 42

60 46.324 0.0313 0.0220 0.0093 30

75 45.100 0.0370 0.0280 0.0090 24
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proposed method using VOFE presents more accurate

results and is faster compared to the method using FRFE.

The proposed numerical simulation method has been val-

idated by experimental test results obtained from full-scale

columns in the laboratory. The obtained results show that

there is a very good agreement between SDM and CECM,

in the elastic phase for all orientations of applied pushover

loads. In the post-elastic phase, CECM presents an

underestimated response and thus should be used with due

caution. The obtained results demonstrate the significant

benefits of applying SDM for nonlinear calculations.
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