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Abstract Resource allocation project scheduling problem

(RCPSP) has been one of the challenging subjects amongst

researchers in the past decades. Most of the researchers in

this area have used deterministic variables; however, in a

real project, activities are exposed to risks and uncertainties

that cause delay in project’s duration. There are some

researchers that have considered the risks for scheduling;

however, new metahuristics are available to solve this

problem for finding better solution with less computational

time. In this paper, two new metahuristic algorithms are

applied for solving fuzzy resource allocation project

scheduling problem (FRCPSP), known as charged system

search (CSS) and colliding body optimization (CBO). The

results show that both of these algorithms find reasonable

solutions; however, CBO finds the results in a less com-

putational time, with a better quality. A case study is

conducted to evaluate the performance and applicability of

the proposed algorithms.

Keywords Resource allocation � Fuzzy logic �
Optimization � CBO � CSS

1 Introduction

Project management is the application of knowledge, skills,

tools, and techniques to project activities to meet the pro-

ject requirements [1]. The activity networks of the

construction projects are conducted on the basis of prece-

dence relationships. The main project’s goals are almost

time, cost, and quality. Project managers severely try to

achieve the project’s goal and finish their projects within

minimum duration, minimum cost, and maximum quality.

For achieving these goals, any project manager needs a

reliable scheduling program considering the project’s spe-

cial circumstances. Therefore, many researchers focused

on techniques and optimization methods for project

scheduling. The results of these studies in the literature can

be classified into four categories: resource constraint

scheduling, time cost trade-off, resource leveling, and

resource allocation [2]. The main problem type in this

study is the well-known resource-constrained project

scheduling problem (RCPSP).

This problem type aims at minimizing the total duration

or makespan of a project subject to precedence relations

between the activities and the limited renewable resource

availabilities and is known to be NP-hard [3]. Moreover, if

there is more than one nonrenewable resource, the problem

of finding a feasible solution for the RCPSP is NP-com-

plete [4]; thus the exact methods could not find the best

solution in this kind of problems, especially in the large-

scale problems. Several searching methods including exact

methods [5–7] (as dynamic programming, enumeration

algorithm, branch and bound algorithms), heuristic [8, 9]

(as Lagrangian heuristic) and meta-heuristic [11–15] (as

genetic algorithm, simulated annealing, particle swarm

optimization, and ant colony algorithm) procedures have

been suggested to solve this problem with many different

assumptions [16]. Also several researchers have tried to

improve the results of RCPSP; however, there are few

researches about the non-deterministic scheduling problem.

Milene et al. [17] showed the results of a research on using

the Bellman–Zadeh approach to decision making in a fuzzy
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environment for solving multi-objective optimization

problems. Wang and Lin [18] developed an intelligent

resource allocation model using genetic algorithm and

fuzzy inference for reducing lateness of orders with

specific due dates. While the genetic algorithm is respon-

sible for arranging and selecting the sequence of orders, the

fuzzy inference module conveys how resources are allo-

cated to each order. Zhang and Xing [19] presented a

fuzzy-multi-objective particle swarm optimization to solve

the fuzzy time–cost–quality trade-off (TCQT) problem.

The time, cost and quality are described by fuzzy numbers

and a fuzzy multi-attribute utility methodology incorpo-

rated with constrained fuzzy arithmetic operations is

adopted to evaluate the selected construction methods.

Although limited researches have been conducted in the

non-deterministic RCPSP, new metahuristics are available

to solve this problem for finding better solution with less

computational time.

In this paper, a fuzzy resource constrained project

scheduling problem (FRCPSP) is developed that considers

RCPSP, risks, and uncertainties simultaneously based on

recent researches. For this purpose, two newly developed

metahuristics are employed and the findings are compared

together and with the previous algorithms. One of the goals

of this paper was to utilize two new and efficient algo-

rithms for these problems and compare the quality of the

solutions. Charged System Search (CSS) developed by

Kaveh and Talatahari [20] and Colliding Body Optimiza-

tion (CBO) developed by Kaveh and Mahdavi [21] are the

proposed models. Then two case studies are conducted to

evaluate the performance and applicability of the proposed

algorithms.

The remainder of the paper is organized as follows: in

Sect. 2, the problem is described briefly and the mathe-

matical model of the problem is presented. In Sect. 3, the

algorithms used, CSS and CBO are explained briefly.

Section 4 shows the computational results, and finally the

concluding remarks are detailed in Sect. 5.

2 Problem Formulation

2.1 RCPSP

The problem studied in this paper is a resource-constrained

project scheduling problem which is defined as below [16]:

A project involves the scheduling of j = 1, …, J activi-

ties that are described in an activity-on-node (AON) net-

work G = (V, E), where the nodes and arcs represent the

set of activities V and finish-to-start precedence relation-

ship (with lag 0) E, respectively. The counter of the

activities in the project network is from 0 to J ? 1, where

activities 0 and J ? 1 are dummy activities specifying the

start and finish of the project and these do not take any

durations. Precedence relationships between some of the

activities in the project necessitate that an activity j cannot

be started before all its predecessors Pj are finished due to

the technological requirements. Activity j, requires rj
renewable resource k for each period of execution. The

time that activity j needs to be executed, dj, is supposed to

be a discrete and non-increasing function of the amount of

resource allocated to it. When the activity j starts its exe-

cution, any interruption, such as changing the duration or

amount of resource cannot happen, and it must be contin-

ued in dj consecutive periods.

Moreover, the availability of the resource k is given by

Rk.

The first aim of this paper was to solve RCPSP opti-

mization model using charged system search (CSS) [20]

and colliding body optimization (CBO) [21] algorithms

introduced by Kaveh et al. (see Kaveh [22] as well). The

purpose was to achieve a solution with the minimum total

time, considering precedence relations between different

activities and resource constraints at the same time. The

objective functions of the RCPSP model are formulated to

minimize the total project time with allocation of resources

in the entire project makespan, simultaneously.

When an activity is selected, the corresponding activity

duration and resource requirement will be assigned.

Afterwards, a feasible schedule based on activity infor-

mation and given constraints will be produced. The out-

come of the resulting schedule is the determination of the

total project time.

The objective of RCPSP model is to minimize the

duration of the project, which is the finish time of the last

activity fj?1 in a project. Therefore, the total project

duration Ft is

minFt ð1Þ

In the above formulation, the objective function mini-

mizes the project time Ft.

The constrained is explained as

fj � dj � fi 8 i; jð Þ 2 E ð2Þ

This constraint guarantees the consideration of the

precedence relationships. In this formula fj is the finish time

of the activity j, dj is the duration of activity j and fi is the

finish time of the predecessor of activity j that is called i.
X

j2At

rjk �Rk k ¼ 1; . . .;K; At ¼ fjjfj � dj\t� fjg

ð3Þ

Constraint set Eq. (3) indicates that for each time instant

t and for each resource type k, the renewable resource

amounts required by the activities which are currently

processed (i.e., At) cannot exceed the resource availability,
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where rjk is the amount of resource k required by the

activity j.

fi � 0 i ¼ 0; 1; . . .; jþ 1 ð4Þ

Finally, constraint set Eq. (4) ensures that every output

has been positive and the schedule logic will be true.

2.2 Fuzzy Logic

For the time being, little historical data are available that

we cannot use for calculation, or when the estimation is not

detailed, fuzzy logic will be used increasingly. Conven-

tional sets mainly are kind of sets whose membership is

defined on a white/black basis, while in fuzzy set theory;

members are not precise phenomena and they take uncer-

tain values that are defined on gray basis. Fuzzy Sets have

been designed to deal with a wide range of real-world

domains involving linguistic descriptions [23]. Fuzzy set

theory has been developed for uncertainties that cannot be

quantified due to their qualitative and subjective nature.

Fuzzy logic is derived from fuzzy set theory to deal with a

set of membership functions that assign to each object a

grade of membership ranging between zero (no member-

ship) and unity (full membership). In the classical theory,

an element x does or does not belong to a set X. In the

fuzzy-set theory, an element may more or less belong to a

set: lX(x) 2 [0, 1] and also it may belong to more than a

set. In the fuzzy logic, the values are fuzzy numbers and

have a specific distribution [24]. For example fuzzy num-

bers can be introduced as a single, rectangular, trapezoidal,

or triangular number, as shown in Fig. 1.

2.3 FRCPSP

Algebraic operations on real numbers can be extended to

fuzzy numbers, i.e., fuzzy variables defined on the real

line, by means of the extension principle [24–26]. A

method based on the a-cut representation of fuzzy sets

and interval analysis is used in extension principle [24].

After determination of the input factors affecting the

duration and resource needed by each activity as fuzzy

numbers, Extension principle is employed to determine

the project makespan. The extension principle state that

if f:R*R ? R be a binary operation over real numbers,

then it can be extended to the operation of fuzzy num-

bers. The concept of the extension principle is presented

as follows:

1. Select a particular a-cut value, where 0 B a B 1.

2. The associated crisp values of the input fuzzy numbers

corresponding to a is determined as (aa, ba).

3. Using the values obtained in the previous step, and

interval operations, compute the value of the project

duration which correspond to those input factors.

4. Steps 1–3 are repeated for as many values of a that are

needed to refine the solution. Coverage of the entire range

of a-cut makes the output of the model a fuzzy number.

In the case that there is more than one parameter

affecting the value of the output (project makespan in

this example), different combination of associated crisp

values obtained in Step 2 must be considered and the

output of the model must be simulated for different

a
0

1

0 80
X (million $)

µ 
(x

)

b

0

1

0 50 100
X (million $)

µ 
(x

)

c

0

1

0 30 60 90 120
X (million $)

µ 
(x

)

d

0

1

0 30 60 90 120
X (million $)

µ 
(x

)

Fig. 1 Different types of fuzzy numbers: a single value; b rectangular distribution; c triangular distribution; d trapezoidal distribution Extracted

from [24]
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combinations of crisp values of this factor at each a-cut.

The output obtained from Step 2 is given by: [xa, ya],

where xa, ya represents the minimum and maximum of

outputs resulting from different combination of crisp

values at each a-cut, respectively [24, 27].

The proposed model for FRCPSP is explained in the

flow diagram of Fig. 2.

3 Metahuristic Algorithms

RCPCP aims at minimizing the total duration or makespan

of a project subject to precedence relations between the

activities and the limited renewable resource availabilities

and is known to be NP-hard [3]. Moreover, if there is more

than one nonrenewable resource, the problem of finding a

feasible solution for the RCPSP is NP-complete [4], so the

exact method could not find the best solution in a logical

time. For these reasons meta-heuristic algorithms has been

used to solve this kind of problems. Although meta-

heuristics may not always find the optimal solution, they

can find a close to best solution or the best depending on

the ability of the utilized meta-heuristic algorithm.

The main purpose of this paper is the optimization of RCPSP

and FRCPSP. These two problems deal with scheduling of the

projects with resource limitations. The best solution of these

problems corresponds to the minimum duration of the project.

To search for solution, two new meta-heuristic algorithms

(Charged System Search (CSS) and Colliding Body Opti-

mization (CBO)) are implemented for the optimization. The

CSS and CBO, developed by Kaveh and Talatahari [20], and

Kaveh and Mahdavi [21], respectively, are two efficient

methods that have not been used for this problem up to now

[16]. The main algorithms of the proposed meta-heuristics

are explained briefly in the following:

3.1 Charged System Search

The charged System Search (CSS) is a population-based

meta-heuristic algorithm proposed by Kaveh and Talatahari

[21], which is based on laws from electrostatics and Newto-

nian mechanics laws. This method is extensively used in

optimization problem examples which can be found in

[28–30]. The following explanation about this method,

including definitions and formulas, is extracted from [16, 21].

The Coulomb and Gauss laws provide the magnitude of

the electric field at a point inside and outside a charged

insulating solid sphere, respectively.

In CSS, each solution is considered as a charged particle

(CP)in an n-dimensional space, where n is the number of

decision variables. The convergence process is carried out

through the movements of these particles in the search space.

The electrostatics and mechanics laws govern the forces

between these CPs and their movements. The pseudo-code of

the CSS algorithm is summarized as follows:

Level 1: initialization.

Step 1 Initialization: in this step, the parameters of the

CSS algorithm are initialized as follows: Initialize an array

of charged particles (CPs) with random positions. The

initial velocities of the CPs are considered as zero. Each CP

has a charge of magnitude qi whose value is calculated as

Input data

-cut =0

Determine left and right 
value

Apply predecessors

Apply resources

Scheduling and 
optimization

Defuzzification

-cut <1

-cut = 
-cut 
+

Fuzzy number of project 
duration

Yes

No

Fig. 2 Flowchart of proposed model of FRCPSP
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qi ¼
fit ið Þ � fitworst

fitbest � fitworst

; i ¼ 1 ; 2 ; . . . ; N; ð5Þ

where fitbest and fitworst are the best and the worst fitness of

all the particles; fit(i) represents the fitness of particle i. The

separation distance (rij) between two charged particles is

defined as

rij ¼
Xi � Xj

����
ðXiþXjÞ

2
� Xbest

���
��� þ e

; ð6Þ

where Xi and Xj are the positions of the i-th and j-th CPs,

respectively; Xbest is the position of the best current CP, and

e is a small positive number to avoid singularities.

Step 2 CP ranking. Evaluate the values of the fitness

function for the CPs, compare, and sort them in an

increasing order.

Step 3 Charged memory (CM) creation. Store the

number of the first CPs equal to the charged memory size

(CMs) and their related values of the fitness functions in

the (CM).

Level 2: search.

Step 1 Attracting force determination. Determine the

probability of moving each CP toward the others consid-

ering the following probability function:

pij ¼ 1
fit ið Þ � fitbest

fit jð Þ � fitðiÞ [ rand _ fitðiÞ[ fitðjÞ
0 else

8
<

: ; ð7Þ

and calculate the attracting force vector for each CP as

follows:

Fij ¼ qj

X

i;i 6¼j

ðqi
a3

rij � i1 þ
qi

r2
ij

� i2ÞpijðXi � XjÞ

�
j ¼ 1; 2; . . .;N

i1 ¼ 1; i2 ¼ 0 $ rij\a

i1 ¼ 0; i2 ¼ 1 $ rij � a

8
><

>:
;

ð8Þ

where Fj is the resultant force affecting the jth CP, and a is

the acceleration of the CP after absorption that can be

obtained from Eq. (9).

V ¼ rnew � rold

Dt

a ¼ vnew � vold

Dt

ð9Þ

where rold and rnew are the initial and final positions of the

particle, respectively, V is the velocity of the particle, a is

the acceleration of the particle, and Dt is the time step.

Combining the above equations and using the Newton’s

second law, the displacement of any object as a function of

time is obtained as [21]:

rnew ¼ 1

2

F

M
� Dt2 þ vold þ rold ð10Þ

Step 2 Solution construction. Move each CP to the new

position and find its velocity using the following

equations:

Xj;new ¼ randj1 � ka �
Fj

mj

� t2 þ randj2 � kv � Vj;old

� t þ Xj;old ð11Þ

Vj;new ¼ Xj;new � Xj;old

Dt
; ð12Þ

where randj1 and randj2 are two random numbers uniformly

distributed in the range (1, 0); mj is the mass of the CPs,

which is equal to qj in this paper. Dt is the time step, and it

is set to 1. ka is the acceleration coefficient; kv is the

velocity coefficient to control the influence of the previous

velocity. In this paper, kv and ka are taken as

ka ¼ c1 1 þ iter=itermaxð Þ ð13Þ
kv ¼ c2 1 � iter=itermaxð Þ; ð14Þ

where c1 and c2 are two constants to control the exploita-

tion and exploration of the algorithm, iter is the iteration

number, and itermax is the maximum number of iterations.

Step 3 CP position correction. If each CP exits from the

allowable search space, correct its position.

Step 4 CP ranking. Evaluate and compare the values of

the fitness function for the new CPs and sort them in an

increasing order.

Step 5 CM updating. If some new CP vectors are better

than the worst ones in the CM, in terms of their objective

function values, include the better vectors in the CM and

exclude the worst ones from the CM.

Level 3: Controlling the terminating criterion. Repeat

the search level steps until a terminating criterion is sat-

isfied (Fig. 3a).

3.2 Colliding Body Optimization

The Colliding Body Optimization (CBO) algorithm is

developed based on one-dimensional collision laws [22].

Consider two moving bodies with masses of m1, m2 and

velocities of v1, v2. These two bodies collide with one

another. All of the following explanation about this

method, including definitions and formulas, are those of

[16, 22]. According to the laws of physics, the total

momentum and energy of the system after and before the

collision are conserved.

In CBO, each solution candidate Xi containing a number

of variables [i.e., Xi = (Xi,j)] is considered as a colliding

body (CB). The CBs are composed of two equal main

groups, namely stationary and moving objects, in which the

moving objects move to follow the stationary objects, and a

collision occurs between pairs of objects. This is done for

two purposes: (1) to improve the moving of the objects
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positions and (2) to push stationary objects towards better

positions. The pseudo-code of the CBO algorithm can be

summarized as follows:

1. The initial positions of CBs are determined with

random initialization in the search space:

x0
i ¼ xmin þ rand xmax � xminð Þ i ¼ 1; 2; . . .; 2n;

ð15Þ

where xi
0 determines the initial value of the i-th CB,

xmin and xmax are the minimum and the maximum

allowable values vector for the variables, rand is a

random number in the interval [0, 1], and 2n is the

number of CBs.

2. The magnitude of the body mass for each CB is

defined as

mk ¼
1

fitðkÞPn
i¼1

1

fitðiÞ
k ¼ 1; 2; . . .; 2n; ð16Þ

where fit(i) represents the fitness of the i-th agent, and

2n is the number of population size. Clearly a CB with

good values has a larger mass than the bad ones.

3. The arrangement of the CBs fitness values is per-

formed in an ascending order. The sorted CBs are

divided into two equal groups.

The lower half of CBs are stationary bodies. These

CBs are good agents and velocity of these bodies

before collision is zero. Thus

vi ¼ 0 i ¼ 1; . . .; n ð17Þ

The upper half of the CBs are moving bodies, which

move toward the lower half. The better and worse CBs,

i.e., bodies with upper and lower fitness values of each

group will collide together. The velocity of these

bodies before collision is

vi ¼ xi � xi�n i ¼ n þ 1; . . .; 2n; ð18Þ

where xi is position vector of the i-th CB in this group

and xi-n is the i-th CB pair position of xi in the pre-

vious group.

4. After the collision, the velocity of bodies in each group

is calculated using aforementioned equations. The

velocity of moving CBs after the collision is

v0i ¼
ðmi � emi�nÞvi
mi þ mi�n

i ¼ nþ 1; . . .; 2n; ð19Þ

where mi is the mass of the i-th CB and mi-n is the

mass of the i-thCB pair. Also, the velocity of stationary

CBs after the collision is

v0i ¼
ðmiþn þ emiþnÞviþn

mi þ miþn

i ¼ nþ 1; . . .; n; ð20Þ

where mi is the mass of the i-th CB, miþn is the mass of

the i-th moving CB pair, and e is COR and is defined as

the ratio of the separation velocity of two bodies after

collision to approach velocity of the two bodies before

collision. In this algorithm, the index is defined to

control of the exploration and exploitation rates. For

this purpose, the COR decreases linearly from unit

value to zero. Thus, e is defined as

e ¼ 1 � iter

itermax

; ð21Þ

where iter is the current iteration number and itermax is

the maximum number of iterations. COR equal to unit

and zero represent the global and local search,

respectively. In this way a good balance between the

global and local search is achieved by increasing the

iteration.

5. The new positions of CBs are obtained using the

generated velocities after the collision in position of

stationary CBs. The new positions of the moving CBs

are

xnew
i ¼ xi�n þ rand�v0i i ¼ nþ 1; . . .; 2n; ð22Þ

where xi
new and v0i are new position and the velocity

after the collision of the i-th moving CB, respectively,

and xi-n is the old position of the i-th stationary CB

pair. Also, the new position of each stationary CB is

xnew
i ¼ xi�n þ rand�v0i i ¼ n þ 1; . . .; n, ð23Þ

where xj
new, xi, and v0i are the new position, old position,

and the velocity after the collision of the i-th stationary

CB, respectively. Here rand is a random vector uni-

formly distributed in the range (-1, 1) and the sign �
denotes an element-by-element multiplication.

6. The optimization is repeated from Step 2 until a

termination criterion, specified as the maximum num-

ber of iterations, is fulfilled (Fig. 3b).

4 Model Application and Discussion of the Results

Two case studies are chosen for verification and to show

the effectiveness of the proposed RCPSP and FRCPSP

models using CSS and CBO. The first case study is a

simple project, which is adapted from Kolisch and Spre-

cher (PSPLIB) [10] for RCPSP model verification and the

second one is a simplified real construction project for

demonstration of FRCPSP model application. The algo-

rithms are coded in MATLAB R2013a language and the

experiment are performed on a personal computer with

Intel� CoreTM 2 Duo CPU with 4 GB RAM under the

windows 7 Ultimate 64-bit operating system. The detailed

case studies and the results are as follows:
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4.1 Case Study 1: Verification of the RCPSP Model

The network of this project is shown in Fig. 4 and the

information of the activities including durations, resource

requirements in each type of resources, and predecessors

are given in Table 1. In this case study, there are four

renewable resources and their availabilities are 12, 13, 4,

12, respectively. Due date of the project is 38 days.

As mentioned in the problem formulation section, there

is a main objective function stated by Eq. (1) that will

                       (a)                                 (b)    

Initialize the specification of 
the problem, and initial 

positions and velocities of CPs

Analysis the CPs' vectors

Store some of the best solution 
vectors in CM

Calculate the resultant force 
vector for each CP

Construct new position and 
velocities

Correct the position of the CPs

Analyze the CPs vectors

Handle the new CP’s position 
if it is infeasible

Update CM

Termination 
criterion

Stop

Yes

No

Initialization

Search

Yes

No

Initialize N colliding bodies 
(CB’s) randomly

Evaluate the CBs position and 
compare with other CBs and 

sort them in an ascending order 

Divide the CBs into two groups 
and determine the mass and old 

velocities of CBs 

Determine the new velocity 
and new position of CBs 

Termination 
criterion

Stop

Initialization

Search

Fig. 3 a The flowchart of the CSS algorithm [21]; b the flowchart of the CBO algorithm [22]
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model the search space. In this case example, the problem

is solved by exact method, and the entire search space is

checked. The result of the examination illustrates that the

best solution for this case considering both objective

functions is 43 days. The schedule of the best solution is

shown in Fig. 5.

In the present models, the number of population size is

considered as 200 and the number of iteration is set to 50.

The CSS model obtained the best solution in 0.2 s and the

CBO model obtained this result in 0.1 s. The process of

optimization is shown in Fig. 6.

In this figure, it is shown that the CBO model could find

the best solution in the 10th iteration and the SCC model

has found it in the 19th iteration. Also the total time needed

for finding the best solution in the CBO method is about

half of that of the CSS approach, although both methods

have found the best solutions.

The results of the case example 1 are compared in

Table 2. As can be seen in this table, all models can find

the best solution; however, the CPU time needed is dif-

ferent from one model to another. Although in small type

of example the CPU time is not very important, in the

large- and very large-scale projects the CPU time has a

meaningful impact on selecting a model.

4.2 Case Study 2: FRCPSP

This case is a small housing construction project consisting

of 27 activities. The case is used to show the application of

the proposed models in a real environment considering risk

and uncertainties using fuzzy logic. The problem is mod-

ified according to the model structure. Activity details of

the project are shown in the Table 3. In this case example

there is one renewable resource and its availability is six

persons per day. The purpose of this case example is to

solve the RCPSP using CSS and CBO and make a com-

parison between models. In both proposed CSS and CBO

algorithm of this research, the population size and number

of iterations are considered 200 and 100, respectively.

The activity network of this project is shown in Fig. 7.

The algorithm is coded in MATLAB R2013a software

and the experiment is performed on a personal computer

with Intel� CoreTM 2 Duo CPU with 4 GB RAM under the

windows 7 Ultimate 64-bit operating system.

Table 4 shows the results of models according to dif-

ferent a-cut. Also it is important to mention that the CBO

model finds the best solution faster than the CSS model and

genetic algorithm.

Table 4 shows that the CBO and Genetic algorithm

could find the best solution for this problem; however, CSS

result is also close to the optimal solution. Moreover, the

CBO model needed a less computational time compared to

the CSS model and Genetic algorithm. Figure 8 shows the

fuzzy project makespan in CBO and CSS models.

4.3 Defuzzification

Final step of the proposed FRCPSP is defuzzification.

Since the project makespan obtained from this research is a

fuzzy number, to use this number in real environment, it

Fig. 4 Activity network of project instance adapted from Kolisch and Sprecher [10]
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should be defuzzified. Defuzzification is a process that can

transform the resulting fuzzy values into a crisp value. The

center of area (COA), also called center of centroid or

center of gravity, is utilized for defuzzification. The center

of area method employs the following equation [23, 26]:

uCOA ¼
R
u
u� lconseqðuÞduR
u
lconseqðuÞdu ð24Þ

The center of area method is used in this research to

convert the fuzzy number of project makespan into a crisp

number.

Table 5 shows crisp values for project makespan in

different methods.

5 Conclusion

In this study, the application of two meta-heuristic algo-

rithms, namely charged system search (CSS) and colliding

body optimization (CBO), are discussed and these are used

to solve the resource-constrained project scheduling prob-

lem (RCPSP) and fuzzy resource-constrained project

scheduling problem (FRCPSP). RCPSP has been one of the

challenging problems among the researchers in the past

decades.

To validate the models, first a case example adapted

from PSPLIB [10] is employed. The results verified the

effectiveness of the proposed models. The result shows that

Table 1 Activity data of case study 1 adapted from Kolisch and Sprecher [10]

Act ID Duration

(days)

Predecessors Resource

requirement

Type 1

Resource

requirement

Type 2

Resource

requirement

Type 3

Resource

requirement

Type 4

1 0 – – – – –

2 8 1 4 – – –

3 4 1 10 – – –

4 6 1 – – – 3

5 3 4 3 – – –

6 8 2 – – – 8

7 5 3 4 – – –

8 9 3 – 1 – –

9 2 4 6 – – –

10 7 4 – – – 1

11 9 2 – 5 – –

12 2 8 – 7 – –

13 6 3 4 – – –

14 3 9, 12 – 8 – –

15 9 2 3 – – –

16 10 10 – – – 5

17 6 13, 14 – – – 8

18 5 13 – – – 7

19 3 8 – 1 – –

20 7 5, 11, 18 – 10 – –

21 2 16 – – – 6

22 7 16, 17, 18 2 – – –

23 2 20, 22 3 – – –

24 3 19, 23 – 9 – –

25 3 10, 15, 20 4 – – –

26 7 11 – – 4 –

27 8 7, 8 – – – 7

28 3 21, 27 – 8 – –

29 7 19 – 7 – –

30 2 6, 24, 25 – 7 – –

31 2 26, 28 – – 2 –

32 0 29, 30, 31 – – – –
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Fig. 5 Schedule of the best solution

Fig. 6 Optimization process of a CSS model, b CBO model

Table 2 The average project

makespan and the used CPU

times by PSPLIB [10], CSS,

CBO and MS project software

package for the testing the

problem instances

Model Best solution for project

makespan (days)

CPU

time (s)

PSPLIB [10] 43 0.3

MS project software package 43 1

CSS 43 0.2

CBO 43 0.1
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Table 3 Activity data of the

case study 2
ID Act description Duration (days) Labor requirement Predecessor

Minimum Normal Maximum

1 Planning 22 25 31 2

2 Testing the site soil 9 11 14 2

3 Soil loading 12 15 18 2 2

4 Constructing the structure 8 10 14 5

5 Foundation 9 10 13 4 3

6 Structure assembly 11 12 15 5 4,5

7 Column welding 8 10 13 4 6

8 Roof beam welding 9 10 12 5 7

9 Slab formwork 12 14 17 5 8

10 Slab casting 6 7 8 4 9

11 Construction of the wall 6 7 8 3 10

12 Door and window frame 5 7 8 4 11

13 First plastering work 8 10 12 4 11

14 Ceiling skimming 6 7 8 4 10

15 Drain work 9 10 12 4 13

16 Apron slab casting 8 9 11 5 14

17 Door and window 6 7 9 5 12,15,16

18 Final plastering 12 14 16 4 17

19 Painting 14 16 19 5 18

20 Electrical final fix 5 6 8 2 19

21 Main gate installation 3 3 5 3 18

22 Mechanical installation 10 12 15 4 19

23 Building the view 4 5 7 2 11,17

24 Landscape work 8 10 11 2 23

25 Control and checking 6 7 9 1 20,22,21,23,24

26 Defect work 12 14 17 1 25

27 Project delivery 1 1 1 1 26

Fig. 7 Activity network of the case study 2
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in small projects CSS and CBO could find the best solution

although CBO model can do it in a less computational

time. Then for applying the model on the FRCPSP a case

example is used by 27 activities and the activity duration

considered as fuzzy numbers. The results of this case study

show that the CBO model and Genetic algorithm obtain

better solutions in comparison to the CSS model. Also the

proposed CBO model can find the best solution in a faster

process, in comparison to the genetic algorithm and CSS

model.

In summary, findings also elaborate that both proposed

metahuristics in the considered problems are capable of

solving the RCPSP and FRCPSP.
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