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Abstract Complex nature of diagonal tension accompa-

nied by the formation of new cracks as well as closing and

propagating preexisting cracks has deterred researchers to

achieve an analytical and mathematical procedure for

accurate predicting shear behavior of reinforced concrete,

and there is the lack of a unique theory accepted univer-

sally. Shear behavior of reinforced concrete is studied in

this paper based on recently developed constitutive laws

for normal strength concrete and mild steel bars using the

nonlinear finite element method. The salient feature of

these stress–strain relations is to account the interactive

effects of concrete and embedded bars on each other in a

smeared rotating crack approach. Implementing the con-

sidered constitutive laws into an efficient secant-stiffness-

based finite element algorithm, a procedure for the non-

linear analysis of reinforced concrete is achieved. The

resulted procedure is capable of predicting load-deforma-

tion behavior, cracking pattern, and failure mode of rein-

forced concrete. Corroboration with data from shear-

critical beam test specimens with a wide range of proper-

ties showed the model to predict responses with a good

accuracy. The results were also compared with those from

the well-known theory of modified compression field and

its extension called disturbed stress field model which

revealed the present study to provide more accurate

predictions.

Keywords Reinforced concrete � Interactive constitutive

laws � Smeared crack model � Finite element model � Load-
deformation response � Shear-critical beams

1 Introduction

Predicting load-deformation behavior, cracking pattern,

strength, and stiffness of shear-critical reinforced concrete

(RC) members has been the focus of a lot of research over

the last century [1, 2]. However, complex nature of diag-

onal tension accompanied by the formation of new cracks

as well as closing and propagating preexisting cracks has

deterred researchers to achieve an analytical and mathe-

matical solution.

A part of the literature in this field contains the studies

aimed to obtain cracking shear strength or ultimate shear

strength of RC structural elements regardless their com-

plete load-deformation response. These studies are usually

based upon simplified physical models—considering clas-

sical mechanics of material [3–11] or fracture mechanics

[12–16] and experimental data fitting. Therefore, each of

these models is applicable for a certain range of specifi-

cations that they crystalized and calibrated for. Another

part of the literature contains the studies aimed to achieve

full load-deformation response of reinforced concrete in a

general 2D or 3D loading condition. To achieve such

response, one needs to consider constitutive, equilibrium,

and compatibility equations, simultaneously. These studies

can be divided into smeared crack and discrete crack

approaches. The former category models the cracks by

applying an equivalent theory of continuum mechanics and

assumes the cracks as rotating or fixed [17–31]. The dif-

ference of these procedures is mainly due to, first, the

different constitutive laws they adopted, and second, the
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numerical approach that they used to solve the aforemen-

tioned equations. The latter category is based on fracture

mechanics principles and models the cracks as geometric

discontinuities [32–36].

This paper reports the second part of a study aiming to

capture the full load-deformation response of RC beams. In

the first part, a set of constitutive laws for normal strength

concrete and embedded steel bars was developed to predict

the response of cracked reinforced concrete subjected to in-

plane stresses [28]. An interesting property of these stress–

strain relations is to account the interactive effects of

concrete and embedded bars on each other. In this model,

the amount of reinforcement ratio is supposed to affect

average stress–strain relation of cracked concrete in tension

and compression. On the other hand, the model accounts

for the effect of concrete on the average behavior of rein-

forcing bars. This model is categorized as an orthotropic

smeared rotating crack model. Orthotropic models present

uniaxial stress–strain relations in the axes of orthotropy.

The aim of this paper is to implement the aforemen-

tioned constitutive laws into finite element method, FEM,

and to validate the model with experimental data. The

numerical algorithm used here is based on the procedure

proposed by Vecchio [19] and it is an iterative, secant-

stiffness formulation. Simplicity of implementing due to

applying some modifications on linear FEM and possibility

of using low-order elements is two salient characteristics of

this approach.

To assess the robustness of the proposed method, it is

implemented on several reinforced concrete shear-critical

beams. The results are corroborated with the experimental

data. In addition, for the sake of comparison, the results of

modified compression field theory, MCFT, [18, 19] and its

extension disturbed stress field model, DSFM, [20–22] are

included in the paper. It is observed from the results that

the proposed approach provides load-deformation behav-

ior, cracking pattern, and failure mode prediction with an

excellent agreement with the experimental data; further-

more, it has more accuracy than MCFT and DSFM. More

interestingly, in beams containing no transverse rein-

forcement and subjected to a high shear span-to-depth ratio

in which MCFT, DSFM, and other prevailing methods

show a considerable deficiency, the present study provides

good predictions.

2 Materials and Methods

2.1 Constitutive Laws

The basic information needed for analyzing every structure

is stress–strain relations under various conditions of load-

ing, and reinforced concrete structures are not exceptional.

In this paper, the stress–strain relations proposed in a recent

research [28] are utilized for nonlinear finite element

modeling of reinforced concrete beams. This approach is

based on smeared crack concept, and it is an orthotropic

model which considers different uniaxial stress–strain

relations in the axes of orthotropy. In what follows, a

detailed description of compressive and tensile stress–

strain relation is presented.

2.1.1 Average Stress–Strain Relationship of Steel

Since it is assumed in many studies that reinforcing bars

can only transmit axial forces, a bilinear uniaxial stress–

strain relationship, as shown in Fig. 1a, is adopted to model

the behavior of embedded reinforcing steels in the con-

crete. However, the behavior of an embedded bar in con-

crete is different from a bare one. When a crack initiates,

the concrete fails to carry tensile stresses at the location of

the crack; therefore, the tensile stress of reinforcing steel is

more than its value in midway between two cracks where

concrete resists moderate amount of tension. Hence, steel

yielding initiates from a section in which the concrete is

cracked, and then it propagates along its length by

increasing the amount of loads. As a result, after the

occurrence of the first yielding in steel, stiffness reduces

gradually in the average stress–strain of the embedded steel

in concrete until the whole bar yields. It has been showed

that if a stress–strain curve of the bare steel reinforcement

is used for analyzing behavior of reinforced concrete, the

results will be considerably overestimated [24].

In this research, a trilinear stress–strain relationship, as

shown in Fig. 1b, is utilized to model the reinforcing bars.

The first line of this stress–strain curve has the slope of Es,

which is steel modulus of elasticity, up to a critical point

corresponding to the initial yielding of steel. Then, it

continues with a reduced slope until the whole reinforce-

ment yields at the average stress of fyield which is the yield

stress of a bare steel bar. Then, the stress remains constant

until failure. The strains corresponding to the initial

yielding and yielding of the whole steel are equal to

0.8eyield and 4eyield, respectively, where eyield is the yield

strain of the bare steel bars.

2.1.2 Average Compressive Stress–Strain Relationship

of Concrete

It is now evident that concrete in compression subjected to

transverse tensile strain has less strength and stiffness than

a uniaxially compressed concrete. This phenomenon is

called compression softening, and it is quantified by

incorporating softening coefficients into stress–strain curve

of concrete [18, 37, 38]. A second-degree parabola, such as

Hognestad curve [39], is widely used function for
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ascending portion of the basic compressive stress–strain

curve which is used in this study. The descending part of

the curve is also a parabola limited by ef, which is the strain

when stress falls to zero (Fig. 2). Based on Kent and Park

research [40], the following relation for this strain is pro-

posed [28]:

ef ¼
f
0
c þ 7
� �

e
0
c � 0:042

f
0
c � 7

ð1Þ

where f 0c is uniaxial compressive strength of the concrete in

MPa, and e0c, which is a negative quantity, is the strain of

the concrete cylinder at the point corresponding to f 0c. If psi

unit is used for stresses, 7 and 0.042 should be replaced by

1000 and 6, respectively. The suggested curve for falling

branch reflects the phenomenon of low strength concrete

has low-slope descending portion. As shown in Fig. 2, the

last part of the compression curve is assumed to be a pla-

teau at 0:2f 0c.

It should be noted that the employed model is calibrated

for reinforced concrete specimens 890 9 890 mm2 square

with 70 mm thickness (35 inch 9 35 inch 9 2.75 inch)

[28]. To use the constitutive laws for elements with dif-

ferent sizes, a localization limiter should be employed [33].

There are several kinds of localization limiters, and the

simplest method which is employed in this study is crack

band method, CBM [34]. CBM proposes a correlation

between the element size and the constitutive laws in a way

that the total fracture energy of concrete GF remains

constant. This is performed by adjusting the value of ef
with the element size. For this purpose, the value of ef
should be decreased by increasing the size of element. In

Fig. 3, the shaded area is equal to Gf/h0, where h0 is the

size of element (in this study 890 mm or 35 inch). Thus,

for a square element with different sizes of h, the value of

ef is modified as follows, and it is denoted by �ef :

�ef ¼
h0

h
ef � e1
� �

þ e1 ð2Þ

where e1 is the plastic strain corresponding to the peak

point of stress–strain relation, as shown in Fig. 3.

The previous study [28] showed that maximum attain-

able compressive stress in concrete and its corresponding

strain increase by increasing the reinforcement ratio. To

consider this phenomenon in stress–strain curve of con-

crete, two modification factors, including a and l, were
introduced to adjust the values of f 0c and e0c and denoted by

f 00c and e00c , respectively:

f 00c ¼ af 0c; a ¼ 1þ 0:03 100qxð Þ2 100qy
� �2 ð3Þ

e00c ¼ le0c; l ¼ 1þ 0:04 100qxð Þ2 100qy
� �2 ð4Þ

where qx and qy are reinforcement ratios of the orthogo-

nally reinforced concrete panel in x- and y-directions,

respectively.

To describe the softening effect of the basic curve

which was defined above, a factor proposed by Vecchio

Fig. 1 a Bilinear behavior of

steel bars; b proposed trilinear

behavior of steel bars

Fig. 2 Proposed compressive average stress–strain model for

concrete Fig. 3 Fracture energy of compressive concrete
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and Collins [18] in the following form is applied to the

curve to modify the maximum attainable compressive

stress:

b ¼ 1

0:8� 0:34ec1=e0c
� 1 ð5Þ

in which ec1 is the principal tensile strain of concrete. As a

result, the compression curve of reinforced concrete panels

will be obtained in the form of Fig. 2 and formulated as

follows:

fc2 ¼ bf 00c
ec2 � e00c

e00c

� �2

�1

" #

;
ec2
e00c

� 1 ð6aÞ

fc2 ¼ bf 00c
ec2 � e00c
e00f � e00c

 !2

�1

2

4

3

5;
ec2
e00c

[ 1 ð6bÞ

where fc2 and ec2 represent the average principal com-

pressive stress and strain in cracked concrete, respectively,

and ec1 is the coexisting tensile strain.

2.2 Average Tensile Stress–Strain Relationship

of Concrete

Neglecting concrete tensile stiffness can result in signifi-

cant overestimating of the post-cracking deformation in

reinforced concrete structures [18]. An experimental

investigation to examine the cracking behavior of rein-

forced concrete panels conducted by Wollrab et al. [41].

According to their work, it can be concluded that rein-

forcement spacing does not have a significant impact on the

post-cracking contribution of concrete, while increasing the

reinforcement ratio has a clear influence, and it makes the

post-peak branch be steeper; as a result, the average con-

tribution of concrete decreases. In addition, the result of

their experiment showed that there are three distinct

branches in tensile stress–strain curve of concrete: (1) a

linearly ascending branch of uncracked concrete; (2) a

crack formation phase; (3) the descending branch with

stable crack pattern. According to this conceptual model,

the average tensile stress–strain relation of cracked

concrete is depicted in Fig. 4 and branches of this curve are

formulated as follows:

fc1 ¼ Ecec1 ec1\ecr ð7aÞ

fc1 ¼ fcr ecr\ec1\e
0

cr ð7bÞ

fc1 ¼
fcr

1þ
ffiffiffiffiffiffiffiffi
kec1

p
�

ffiffiffiffiffiffiffiffi
ke0cr

p e
0

cr\ec1 ð7cÞ

where fc1 represents the average tensile stress in cracked

concrete; Ec is the elastic modulus of concrete in tension

which can be taken as 2f 0c=e
0
c; fcr is the average tensile stress

of concrete in the crack formation phase; and k is defined

as follows:

k ¼ 300þ 250 100qxð Þ 100qy
� �

: ð8Þ

The previous research [28] showed that f 0c and reinforce-

ment ratio are two parameters influencing the value of fcr
and the following relation in MPa was proposed:

fcr ¼ 0:3a
0
ffiffiffiffiffiffiffiffiffiffiffiffi
f
0
c þ 8

q
ð9Þ

where a0 is interestingly equal to a as defined in Eq. (3).

For psi units, 0.3 and 8 should be replaced by 3.6 and 1150,

respectively. In Eq. (7a, 7b, 7c), ecr is the average tensile

strain at which concrete initiates cracking, and e0c is the

strain corresponding to the end of crack formation phase.

The experimental database illustrates that e0c has a direct

relationship with the reinforcement ratio, and the following

correlation is proposed for this parameter [27]:

e
0

cr ¼ gecr; g ¼ 1þ 6 100qxð Þ 100qy
� �

: ð10Þ

2.3 Nonlinear Analysis Procedure

In this study, it is aimed to apply the above-mentioned

constitutive laws, obtained from the previous research

based on some available test results of RC panels [28], for

the analysis of RC beams. Therefore, each element in the

FEM mesh is considered to be a membrane element, as

shown in Fig. 5. The reinforcement and forces on each

element in x- and y-directions are delineated in Fig. 5. To

Fig. 4 Proposed tensile average stress–strain model for concrete Fig. 5 FEM model of RC elements and its forces
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construct global and local stiffness matrices of elements

and the whole structure, two other sets of equations are

needed: (1) compatibility equations and (2) equilibrium

equations. Assuming that steel bars carry no shear stresses,

the equilibrium equations can be written as follows:

fx ¼ fcx þ qxfsx ð11aÞ
fy ¼ fcy þ qyfsy ð11bÞ

where fx and fy are longitudinal and transverse stresses

applied in the x- and y-directions, respectively; fcx and fcy

Table 1 Cross-sectional

properties of Bresler–Scordelis

beams

Beam no. b, mm h, mm d, mm L, mm Span, mm Bott. steel Top steel Stirrups

OA1 310 556 461 4100 3660 4 No. 9 – –

OA2 305 561 466 5010 4570 5 No. 9 – –

OA3 307 556 462 6840 6400 6 No. 9 – –

A1 307 561 466 4100 3660 4 No. 9 2 No. 4 No. 2@ 210

A2 305 559 464 5010 4570 5 No. 9 2 No. 4 No. 2@ 210

A3 307 561 466 6840 6400 6 No. 9 2 No. 4 No. 2@ 210

B1 231 556 461 4100 3660 4 No. 9 2 No. 4 No. 2@ 190

B2 229 561 466 5010 4570 4 No. 9 2 No. 4 No. 2@ 190

B3 229 556 461 6840 6400 5 No. 9 2 No. 4 No. 2@ 190

C1 155 559 464 4100 3660 2 No. 9 2 No. 4 No. 2@ 210

C2 152 559 464 5010 4570 4 No. 9 2 No. 4 No. 2@ 210

C3 155 554 459 6840 6400 4 No. 9 2 No. 4 No. 2@ 210

1 mm % 0.04 inch % 0.0033 ft

Table 2 Material properties of

Bresler–Scordelis beams
Reinforcement Concrete

Beam no. f’c, MPa fr, MPa

Bar size No. 2 No. 4 No. 9 OA1 22.6 3.97

OA2 23.7 4.34

Diameter, mm 6.4 12.7 28.7 OA3 37.6 4.14

A1 24.1 3.86

Area, mm2 32.2 127 645 A2 24.3 3.73

A3 35.1 4.34

fy, MPa 325 345 555 B1 24.8 3.99

B2 23.2 3.76

fu, MPa 430 542 933 B3 38.8 4.22

C1 29.6 4.22

Es, MPa 190,000 201,000 218,000 C2 23.8 3.93

C3 35.1 3.86

1 MPa % 145 psi, 1 mm % 0.04 inch

Fig. 6 FEM model of without

stirrup beams of Bresler–

Scordelis
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are the corresponding stresses in concrete; and fsx and fsy
are the corresponding values for reinforcement.

Assuming that there is no slip between reinforcement

and concrete, the compatibility leads to the same longitu-

dinal and transversal average strain for both steel and

concrete. Another assumption considered in this model is

that the principal stresses and strains have the same axes.

The described constitutive laws along with equilibrium and

compatibility provide a set of nonlinear equation which

should be solved numerically.

2.4 Finite Element Procedure

A reinforced concrete structure, such as a beam or shear

wall, under a given loading can be considered as an

assemblage of some membrane elements. Thus, simulta-

neous solving the equilibrium, compatibility, and nonlinear

constitutive laws governing all the elements yields the load-

deformation response of the whole structure. Fortunately,

with the current advances in the finite element methods, this

task is feasible easily in an approximate manner with a

desirable accuracy. An efficient FEM algorithm for the

nonlinear analysis of reinforced concrete structures is sug-

gested by Vecchio [16] which is briefly explained as fol-

lows. Based on this procedure, some modifications are

made in linear elastic FEM to incorporate nonlinear con-

stitutive laws. Therefore, the stress–strain relationships

presented previously in this study can be utilized in exam-

ining nonlinear behavior of reinforced concrete structures.

Table 3 Longitudinal

reinforcement of no stirrup

beams of Bresler–Scordelis in

different zones

Beam number Zone

1 2

OA1 9.19 0

OA2 11.7 0

OA3 14.2 0

Zone 10

Zone5Zone4 Zone 6

Zone 7

Zone1 Zone3

Zone 9Zone 8

Zone2

Fig. 7 FEM model of with

stirrup beams of Bresler–

Scordelis

Table 4 Reinforcement of with

stirrup beams of Bresler–

Scordelis in different zones

(top: qx %, bottom: qy %)

Beam number Zone

1 2 3 4 5 6 7 8 9 10

A1 6.43 6.43 6.43 0 0 0 2.06 2.06 2.06 0

0.21 0.1 0.16 0.21 0.1 0.16 0.21 0.1 0.16 0

A2 5.53 5.53 5.53 0 0 0 0.83 0.83 0.83 0

0.21 0.11 0.16 0.21 0.11 0.16 0.21 0.11 0.16 0

A3 6.6 6.6 6.6 0 0 0 0.83 0.83 0.83 0

0.21 0.1 0.16 0.21 0.1 0.16 0.21 0.1 0.16 0

B1 8.54 8.54 8.54 0 0 0 1.1 1.1 1.1 0

0.29 0.15 0.22 0.29 0.15 0.22 0.29 0.15 0.22 0

B2 8.62 8.62 8.62 0 0 0 1.11 1.11 1.11 0

0.29 0.16 0.22 0.29 0.16 0.22 0.29 0.16 0.22 0

B3 10.77 10.77 10.77 0 0 0 1.11 1.11 1.11 0

0.29 0.16 0.22 0.29 0.16 0.22 0.29 0.16 0.22 0

C1 6.37 6.37 6.37 0 0 0 1.63 1.63 1.63 0

0.42 0.2 0.32 0.42 0.2 0.32 0.42 0.2 0.32 0

C2 12.98 12.98 12.98 0 0 0 1.67 1.67 1.67 0

0.43 0.22 0.32 0.43 0.22 0.32 0.43 0.22 0.32 0

C3 12.73 12.73 12.73 0 0 0 1.63 1.63 1.63 0

0.42 0.21 0.32 0.42 0.21 0.32 0.42 0.21 0.32 0
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In the finite element method, material stiffness matrix

[D] is employed to relate the stresses to strains:

ff g ¼ D½ � ef g ð12Þ

where ffg ¼ fx fy
�� ��vxy

� 	
represents the stresses vector and

feg ¼ exjeyjcxy
� 	

is the strain vector according to plain

stress theory, in which fx and fy are normal stresses in x-

and y-directions, respectively, vxy shear stress, and ex, ey,
and cxy are the corresponding strains.

The material stiffness matrix is defined by combining

component stiffness matrices using appropriate transfor-

mation to incorporate directional dependence of materials.

According to the material model, cracked concrete element

is considered as an orthotropic material with its principal

axes corresponding to the direction of principal compres-

sive and tensile strains. Moreover, the effect of Poisson’s

ratio can be neglected after cracking; therefore, the con-

crete material stiffness matrix with respect to principal axes

1 and 2 can be stated in terms of �Ec1 ¼ fc1=ec1,
�Ec2 ¼ fc2=ec2, and �Gc ¼ �Ec1

�Ec2=ð�Ec1 þ �Ec2Þ which are

secant moduli of cracked concrete. For each reinforcing

bar, the material stiffness matrix is defined in terms of
�Esx ¼ fsx=ex and �Esy ¼ fsy=ey which are the secant moduli

of reinforcement in x- and y-directions.

Having determined the material stiffness matrix [D], the

stiffness matrix of element [k] can be evaluated as follows:

Fig. 8 Comparison of load-deformation curves of the present study, MCFT [23], and the tests [43]
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k½ � ¼
Z

B½ �T D½ � B½ �dV : ð13Þ

Now, the steps of a nonlinear analysis are as follows. At

first, topological properties of the structure (e.g., node

coordinates, element indices, support conditions, etc.) and

material properties (e.g., concrete and steel stiffness

matrices, reinforcement orientation, etc.) are determined.

Next, nodal loads and distributed loads are input and form

a nodal force vector {R}. In the next step, secant material

stiffness of each material is calculated (i.e., �Ec1, �Ec2, �Esx,

and �Esy), and [D] is computed. The element stiffness

matrices [k] are calculated and assembled in the global

stiffness matrix of the structure [K]. Then, the structure

stiffness matrix is inverted, and joint displacements {r} are

found as follows:

rf g ¼ K½ ��1
Rf g: ð14Þ

Using the joint displacement, the element strains and

stresses can be determined as follows:

ef g ¼ B½ � rf g ð15Þ
ff g ¼ D½ � ef g: ð16Þ

Knowing the strains and stresses of each element, new

material stiffness matrices [D] are calculated, and it is used

for the next iteration. This procedure is repeated until

convergence is achieved.

Fig. 8 continued

514 Int J Civ Eng (2016) 14:507–519

123



3 Results and Discussion

To assess the proposed model, the results of some experi-

mental tests on beams are compared with the present

model. The test experiments conducted by Bresler and

Scordelis [42] and their replicates by Vecchio and Shim

[43], including a set of beams with a wide range of span-to-

depth ratios and longitudinal and transversal reinforcement

ratios which encompass various types of failure, are

selected to evaluate the predictions of the proposed model

by comparing the results.

3.1 Characteristics of Experimental Specimens

A four series of three beams tested by Bresler and Scordelis

[42] named OA, A, B, and C have a different longitudinal

reinforcement ratio, transverse reinforcement ratio, length

of span, cross sectional size, and concrete compressive

(and consequently tensile) resistance. All the beams are

simply supported having a single-concentrated load at the

mid-span. The span-to-depth ratios vary from 3.3 to 5.8.

The ratio of shear reinforcements ranged from 0 to 0.002.

Detailed properties of the beams are presented in Table 1.

Fig. 9 Predicted crack pattern of the Bresler–Scordelis beams
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The longitudinal reinforcements of beams are all No. 4

bars, while shear reinforcement in the form of stirrups is

No. 2 bars. OA beams have no shear reinforcement. To

impose the shear failure mode to the beams, all the beams

are constructed with high ratios of longitudinal bars.

Geometrical and mechanical properties of concrete, lon-

gitudinal bars, and transverse bars are included in Table 2.

The maximum aggregate size used in the beams is 20 mm.

All the beams were loaded by a monotonic load control

mechanism at the mid-span.

3.2 Corroborating the Results with Experimental

Database

A 2D nonlinear finite element analysis based on the dis-

cussed procedure is performed to study the load-deforma-

tion behavior and crack propagation of Bresler–Scordelis

beams. Because of the symmetry of beams, only a half of

beams are modeled. FEM mesh is constructed using four-

node quadrilateral elements of 80 mm 9 80 mm

(3.15 inch 9 3.15 inch). Longitudinal and transverse

reinforcements are modeled in a smeared manner. Sche-

matic view of beam models along with smeared rein-

forcement percent for beams without stirrups is presented

in Fig. 6 and Table 3, and the ones for beams with stirrups

are depicted in Fig. 7 and Table 4. The models are studied

under displacement-control monotonic loading by impos-

ing 0.5 mm (0.02 inch) displacement steps on OA and A

beams and 1.0 mm (0.04 inch) steps on B and C beams.

In Fig. 8, load-deformation curves of the present study

are compared with the results of the experimental tests25

and also with the results of MCFT [28]. From this figure, it

can be concluded that the proposed method predicts non-

linear behavior of the beams with an acceptable accuracy

for both beams with and without stirrups.

To delineate the fracture mode of the beams, a graphical

ability is added to the FEM code which shows the shear-

critical cracks in a different color seen darker in Fig. 9. In

addition, the Gaussian points at which compressive failure

occurs are shown by bold points. According to Fig. 9, the

predicted cracking patterns and failure modes of the beams

are in a good agreement with the experimental test results,

as shown in Fig. 10.

In Table 5, the ultimate loads, Pu, of the present study

are compared with those of the experimental tests, MCFT

[23] and DSFM [20–22]. DSFM is a newer version of

MCFT aiming to reduce the deficiency of MCFT in pre-

dicting load-deformation behavior of RC beams with low

stirrups or without stirrups. According to Table 5, the ratio

of prediction to experimental ultimate loads has a mean of

1.02 and covariance of 5 % for the proposed method, while

these values for DSFM approach are 1.15 and 11 %, and

for MCFT, they are 1.42 and 55 %, respectively. As seen in

Table 5, the strength of beams containing no stirrups is

significantly underestimated by MCFT.

In Table 6, computational results for the mid-span dis-

placements at peak load, d0, of the present study are

compared with those of the experimental tests, MCFT and

Fig. 10 Cracking pattern and failure mode for experimental tests [43] (D-T diagonal tension, V-C shear-compression, F–C flexure-compression)
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DSFM. According to this table, the ratio of prediction to

experimental ultimate displacements has a mean of 0.98

and covariance of 9 % for the proposed method, while

these values for MCFT are 0.97 and 40 % and for DSFM

approach are 0.95 and 24 %, respectively.

4 Conclusions

Recently developed interactive constitutive laws for nor-

mal strength concrete and reinforcing steel were integrated

with a nonlinear finite element procedure to predict the

shear behavior of reinforced concrete structures. The con-

stitutive laws were used to obtain the secant stiffness of

elements which is needed for nonlinear analysis. Conclu-

sions derived from the present work can be summarized as

follows:

1. Interactive effects of concrete and reinforcing bars on

the average stress–strain relations of each other are an

important phenomenon that must be considered in

constitutive laws.

2. The response of shear-critical reinforced concrete

beams with or without stirrups can be predicted with

Table 5 Ultimate load

obtained by the present study,

MCFT [23], DSFM [43], and

the tests [43]

Beam number Pu, kN Pu-test/Pu-calc

Test Present study MCFT DSFM Present study MCFT DSFM

OA1 334 348 250 316 096 1.34 1.06

OA2 356 333 135 270 1.07 2.64 1.32

OA3 378 344 110 294 1.10 3.44 1.29

A1 467 509 500 472 0.92 0.93 0.99

A2 489 499 400 399 0.98 1.22 1.23

A3 467 456 380 366 1.02 1.23 1.28

B1 445 432 460 423 1.03 0.97 1.05

B2 400 376 352 327 1.06 1.14 1.22

B3 356 371 350 355 0.96 1.02 1.00

C1 311 304 340 307 1.02 0.91 1.01

C2 325 296 275 258 1.10 1.18 1.26

C3 269 271 255 255 0.99 1.05 1.05

Mean 1.02 1.42 1.15

C.o.V % 6 55 11

1 kN % 0.225 kips

Table 6 Mid-span deflection at

peak load obtained by the

present study, MCFT [23],

DSFM [43], and the tests [43]

Beam number d0, mm d0�test=d0�calc

Test Present study MCFT DSFM Present study MCFT DSFM

OA1 6.6 7.75 8 12.0 0.85 0.80 0.55

OA2 11.7 11.7 6 18.5 1.00 1.95 0.63

OA3 27.9 26.0 18 20.8 1.07 1.55 1.34

A1 14.2 14.0 18 15.8 1.01 0.79 0.90

A2 22.6 21.0 21 19.5 1.08 1.08 1.16

A3 35.8 38.0 40 44.6 0.94 0.90 0.80

B1 13.7 13.0 18 15.3 1.05 0.76 0.90

B2 20.8 19.0 24 19.5 1.09 0.87 1.07

B3 35.3 40.0 49 39.0 0.88 0.72 0.91

C1 17.8 17.0 24 18.3 1.05 0.74 0.97

C2 20.1 20.0 24 17.3 1.01 0.84 1.16

C3 36.8 37.5 55 36.3 0.98 0.67 1.01

Mean 1.00 0.97 0.95

C.o.V % 8 40 24

1 mm % 0.04 inch
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a good accuracy using the proposed interactive

constitutive laws.

3. The nonlinear finite element formulation based on

secant-stiffness approach can provide acceptable re-

sults, and low-order elements can be used for the

analysis which makes the procedure very efficient and

simple.

4. Corroboration with experimental data, including shear-

critical beams with a wide range of properties, showed

that the model can predict the cracking patterns, shear

capacity, load-deformation response, and failure mode

with an excellent agreement with reality.

5. The accuracy of response prediction based on the

interactive constitutive laws is more than MCFT and

DSFM when they are compared with the experimental

test results.
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