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Abstract
It is one of invariable main challenges in charging scheduling for WRSNs to improve charging efficiency by using charging

capability of wireless charging vehicles (WCVs) efficiently. Proactive charging-enabled on-demand charging scheme is

developed through solving such challenges. While replying to on-demand charging requests (CRs) preferentially, SoC

scheme includes proactive charging for the potential Bottleneck Nodes (pBNs), although sensor nodes do not generate CRs,

so long as WCV has redundant capability. The existing scheme, however, not only fails to predict the pBNs exactly owing

to use of a fixed deadline threshold, but also selects the proactive charging nodes randomly among the predicted pBNs, thus

leaving space for improving charging and network performance further. This paper proposes a new SoC scheduling

algorithm using FAHP-VWA and Q-Learning to solve these issues. The proposed algorithm applies FAHP-VWA to assign

the weights to multi-criteria characterizing the pBNs and then predict the pBNs being homologous to WCV’s charging

capability based on these weights exactly. Then, in optimal proactive charging node selection with Q-Learning, these

weights are also used to design the reward function and select the most suitable pBNs that would be included in a charging

round. Extensive experiment results verify that the proposed scheme improves the whole charging and network perfor-

mance in comparison to other existing scheme.

Keywords Wireless rechargeable sensor network � Semi-on-demand charging � FAHP-VWA � Q-Learning �
Charging scheduling � Mobile charger

Abbreviations
AHP Analytic hierarchy process

BS Base station

CR Charging request

ECR Energy consumption rate

FAHP Fuzzy analytic hierarchy process

MCDM Multi-criteria decision making

NLID Node location importance degree

NRID Node role importance degree

pBN Potential bottleneck node

RE Residual energy

SoC Semi-on-demand charging

TOPSIS Technique for order preference by similarity to

ideal solution

VWA Variable weight analysis

WCV Wireless charging vehicle

WRSN Wireless rechargeable sensor network

1 Introduction

In a wireless rechargeable sensor network (WRSN), energy

provisioning to sensor nodes is performed by a wireless

charging vehicle (WCV). Subject to charging capability

constraint such as WCV’s battery capacity, however,

determining an efficient order in which sensor nodes should

be charged, is a challenging problem to be solved (Ma et al.

2018). Existing charging schemes can be classified in two

kinds of periodic and on-demand charging.

In periodic charging schemes, WCV replenishes energy

to sensor nodes traveling along the pre-prepared charging

path. On the other hand, sensor nodes adopting on-demand

scheme monitor their own energy state actively and send

charging requests (CRs) to the BS or WCV once their

energy is lower than the predefined threshold (Cheng and
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Yu 2020). This means that it doesn’t need a fixed charging

schedule and that it has the capability to cope with change

of uneven and dynamic energy consumption rate of nodes,

thus many researches have been made in this field.

WCV charges sensor nodes in two schemes of single-

node charging scheme and multi-node charging one. In the

single-node charging, only one sensor node can be

recharged at a time. But in the multi-node charging, several

sensors fallen within the charging range can be recharged

at the same time to reduce waiting time caused in each

sensor and to improve charging efficiency. Besides, which

would be used among single-WCV and multi-WCV

schemes is decided according to the size of monitoring area

or the density of sensor nodes. In the single-WCV scheme,

only one WCV is responsible for energy provisioning.

With the multi-WCV scheme, more than two WCVs charge

all sensor nodes, thus it is more favorable for prolonging

the network lifetime. In special, it can make the energy

usage efficiency maximal by adopting the cooperative

charging schemes between WCVs (Zhang et al. 2015; Lin

et al. 2018a, 2016a; Madhja et al. 2016).

So far, various charging scheduling schemes using sin-

gle-WCV and multi-WCV with single-node and multi-node

charging methods have been studied in WRSNs, each with

its own advantages and disadvantages. The common dis-

advantage of charging schemes except single WCV-single

node ones is that they did not adopt proactive charging

scheme that charges the potential-to-be-bottlenecked nodes

(pBNs) preferentially, though they did not issue CRs yet, as

long as WCV has redundant charging capability with

respect to battery power and time. Recently, intelligent on-

demand charging schemes which make charging schedul-

ing decisions by jointly considering multi-criteria charac-

terizing CR nodes, have been proposed (Tomar et al.

2019, 2021; Tomar and Jana 2021; Nguyen 2021; Mangun

et al. 2023). There are fuzzy logic-based schemes (Tomar

et al. 2019; Tomar and Jana 2021), an integrated AHP-

TOPSIS with analytic hierarchy process (AHP) and tech-

nique for order preference by similarity to ideal solution

(TOPSIS) (Lin et al. 2016a), Fuzzy Q-charging using fuzzy

logic and Q-Learning (Nguyen 2021), an integrated Fuzzy

AHP (FAHP)-variable weight analysis (VWA)-TOPSIS-

based schemes (Mangun et al. 2023) in the MCDM-based

on-demand charging scheduling schemes proposed so far.

Meanwhile, Cheng et al. (Cheng and Yu 2020) have

proposed proactive charging scheme for single WCV-sin-

gle node scheme. They convert time and distance-based

charging scheduling into only distance-based charging

scheduling by adopting a bottleneck prediction and

removal mechanism (BP&R). This leads to improvement

of network performance. However, the deadline estimation

and BP&R mechanisms have following disadvantages.

First, in the deadline estimation, each sensor node uses a

fixed predefined deadline threshold. In reality, if energy

consumption rate of each node is changed by occurrence of

an accidental event and etc., CR issuing frequency is also

changed. This means that an allowable error range

threshold, deadline threshold should be changed dynami-

cally according to the CR issuing frequency. Next, this

scheme makes WCV charge the pBNs randomly selected

within the bottleneck window. As a result, special nodes

that occupy the important locations (such as roads or battle

fields) and play the important roles (i.e. backbone nodes

such as cluster head nodes) in the network may be excluded

from this random selection. In order to resolve these

problems, the authors proposed a novel approach which

exploits an integrated FAHP-VWA-TOPSIS through the

overall charging scheduling, where a SoC scheduling is

accompanied by when the WCV has the redundant capa-

bility recently (Mangun et al. 2023). This approach does

not use the deadline estimation and BP&R mechanisms in

Cheng and Yu (2020) at all to solve the above problems.

However, the exploitation of intelligent algorithms such as

Q-Learning have not been considered in any stage of

charging scheduling for WRSNs and have been left room

of possibility which can apply several intelligent algo-

rithms in charging scheduling.

The goal of this work is to find all possible ways to

improve the proactive charging performance in a semi-on-

demand scheme by single WCV-single node scheme of full

charging and to develop those algorithms. The main con-

tributions of our work are as follows:

• Up to the authors’ knowledge, we are the first to

conceive a novel design method which makes the best

use of FAHP-VWA and Q-Learning in SoC scheduling.

• We propose a method to determine the exact weights of

multi-criteria which characterize the pBNs, with FAHP-

VWA and predict the pBNs corresponding to WCV’s

charging capability exactly based on these weights.

• A methodology to design the reward function for

updating Q-value based on weights of multi-criteria by

FAHP-VWA, is proposed. Based on it, we propose a

method to select the most suitable pBNs, proactive

charging nodes that would be included in a charging

round, with Q-Learning.

• Extensive simulations are proceeded and it is demon-

strated that the proposed algorithm predominates over

other existing algorithms.

The remainder of this article is organized as follows:

Sect. 2 gives a brief survey of prior works. Section 3

includes preliminaries including problem description and

Sect. 4 presents the proposed algorithm. Expensive

experiment results of the proposed scheme and analysis of

them are included in Sect. 5. Finally, this work is con-

cluded in Sect. 6.
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2 Related Works

Various algorithms on charging scheduling in WRSNs

have been developed. Here, we give brief overview on-

demand charging scheduling schemes according to the

number of WCVs in the network and the number of nodes

charged at a time.

Charging scheduling methods focusing on a single

WCV-single node scheme have studied in Lin et al.

(2018b), He et al. (2015), Fu et al. (2016), Kaswan et al.

(2018), Lin et al. (2016b), Shu et al. (2015). This

scheme covers majority of charging scheduling methods

already reported. Lin et al. (2016b) developed a time–space

priority scheduling method and in Lin et al. (2018b), the

authors proposed a time–space charging method aiming at

finding the optimal charging path to minimize the number

of dead nodes. He et al. (2015) proposed a preemptive on-

demand charging scheme that recharges the nearest node

from service queue firstly. The authors in Fu et al. (2016)

have found an approximated solution by using the con-

ception of smallest enclosure disk and determined optimal

charging locations for WCV. In (Kaswan et al. 2018), the

researchers presented linear programming of charging

scheduling problem in the single WCV-multi node

scheme and proposed an on-demand charging method

based on gravitational research algorithm (GSA).

In order to solve the problem that a single WCV-single

node scheme degrades the energy usage efficiency, some

works (Ma et al. 2018; Tomar et al. 2019; Nguyen 2021;

Xie et al. 2015; Khelladi et al. 2017) tried to study a single

WCV-multi node charging scheme. Ma et al. (Ma et al.

2018) developed a multi-node charging scheme using a

single WCV that schedules sensor nodes according to the

charging utility gain only relied on residual energy of each

node. Literature (Khelladi et al. 2017) considered a multi-

node charging for energy replenishment to the CR nodes

but they did not achieve the goal of minimizing the

charging latency. Xie et al. (2015) developed a formal

optimization framework by jointly optimizing traveling

path, flow routing, and charging time at each cell. In

(Tomar et al. 2019), the authors developed a fuzzy logic-

based charging algorithm to blend network parameters

such as residual energy, distance to WCV and critical node

density to determine the next-to-be-charged node. Tomar

and Jana (2021) proposed a scheduling scheme which is

based on two multi-criteria decision making (MCDM)

methods, namely AHP and TOPSIS that is able to choose

the most suitable node for charging by evaluating several

network criteria. In (Nguyen 2021), the Fuzzy Q-Charging

was developed, in which the partial charging time is

determined by fuzzy logic, while the next sojourn point of

WCV is selected with Q-Learning. In this scheme, fuzzy

logic was used to determine the partial charging time

corresponding to the safe energy level at each sojourn point

and the reward function in charging ranking using

Q-Learning is designed from three factors such as energy

severity, node priority and target monitoring. An approach

which exploits an integrated FAHP-VWA-TOPSIS through

the overall charging scheduling was developed by the

authors (Mangun et al. 2023). Here, a SoC scheduling is

performed when the WCV has the redundant charging

capability. In this SoC scheduling, the potential nodes that

may be bottlenecked in the future among non-CR nodes are

predicted using the relative weights assigned by FAHP-

VWA, and the most suitable proactive charging nodes

among the predicted potential nodes are selected by

TOPSIS.

Also, multi WCV-single node charging scheduling

problems have studied in Xu et al. (2016), Gharaei et al.

(2020), Hu et al. (2018), Jiang et al. (2014), Liang et al.

(2016), Mo et al. (2019). In (Lin et al. 2018a), Xu et al.

solved the multi WCV-single node charging scheduling

problem by minimizing the total traveling distance in large-

scale WRSN with nodes densely deployed. Gharaei et al.

(2020) developed a route optimization algorithm of WCV

to determine the optimal charging path of WCV to travel

along sensor nodes so that the balanced energy exhaustion

time of nodes can be attained. In (Hu et al. 2018), a gap-

based periodic charging scheduling algorithm and a

charging path planning algorithm is proposed, while in

Jiang et al. (2014), three heuristics are proposed to study

the problem of on-demand charging scheduling that max-

imizes the coverage of event monitoring. Liang et al.

(Liang et al. 2016) formulated the problem of minimizing

the number of WCVs charging sensor nodes and developed

an approximate algorithm for it. In (Mo et al. 2019), the

authors have solved the adjustment problem of multiple

WCVs with a goal to minimize the whole energy con-

sumption of WCVs by adjusting their traveling and

charging time.

On the other hand, study on multi WCV-multi node

charging schemes to increase the energy usage efficiency

of multiple WCVs in multi-WCV operating environment

has been carried out in Tomar et al. (2021), Xu et al.

(2021), Han et al. (2019), Rault (2019). In (Xu et al. 2021),

authors newly formulated a charging scheduling for mini-

mizing the longest delay and obtained a closed charging

path for each WCV while preventing two or more WCVs

from charging one sensor node at the same time. Tomar

et al. (Tomar et al. 2021) proposed a new on-demand

charging scheme based on a fuzzy logic that blends mul-

tiple network criteria including residual energy of nodes,

distance to WCV, crucial node density, and energy con-

sumption rate to balance the network traffic load evenly, so

that each WCV finds the next charging node location
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within its domain and simultaneously charges the nodes

within the charging range. In (Han et al. 2019), the authors

proposed a charging scheme that first clusters the sensor

nodes into unequal clusters and then draws up the charging

schedule for WCVs. (Rault 2019) proposed to balance the

charging load evenly between multiple WCVs by dividing

the energy CRs of nodes. The problem of drawing up

optimal charging schedule for multiple WCVs in the

heterogynous WRSNs has studied by Priyadarshani et al.

(2021) and integrated as a popular MCDM method (AHP-

TOPSIS) with non-dominated sorting genetic algorithm

(NSGA-II) which secures pareto-optimal solution.

The common disadvantage of a large number of

charging schemes categorized according to the number of

WCVs used in WRSN and the number of sensor nodes that

one WCV charges at a time is that they did not take into

account the proactive charging scheme where nodes, which

could potentially cause a charging bottleneck though they

did not issue CRs yet, are charged preferentially so long as

WCV has redundant capability. Under such circumstance,

the authors focused on the on-demand charging scheduling

to design a novel scheme which may be accompanied by a

SoC scheme (Mangun et al. 2023). In this article, we focus

on a SoC scheduling and further enrich the contents of the

SoC in such a way that choose the most suitable pBNs

among the predicted pBNs with Q-Learning unlike TOP-

SIS used in Mangun et al. (2023), based on weights of

multi-criteria assigned by FAHP-VWA like (Mangun et al.

2023). Comparisons between the existing charging

scheduling schemes considered above and the proposed

scheme are presented in Table 1.

3 Preliminaries

3.1 Symbols and Definitions

The main symbols used in this article are shown in Table 2.

Also, some terms and criteria to describe the proposed

algorithm are defined below.

Definition 1 Node location importance degree: This cri-

terion is reflective of importance degree of voronoi region

which each node locates when the whole monitoring area is

divided into m� n discrete grids with its own impact

factor, D ¼ fgijgm�n (Xiao et al. 2018). The importance of

each grid is defined as an advent frequency of the moni-

tored object appearing within the grid and can be obtained

mostly through prior knowledge. It can be seen that loca-

tion importance degree of each node is directly related to

the importance of each grid. The location importance

degree of node i, NLIDiðtÞ, is denoted as follows:

NLIDiðtÞ ¼ min C � wiðtÞ � N=u; 1f g ð1Þ

where N denotes the number of sensor nodes, wi is the

weight of the voronoi region of the grid gij , u is the total

amount of maximum monitoring efficiency of each grid, C

(C 2 ½0; 10�) is the perspective factor that takes into

account the influence of the environmental changes such as

topology, node failure, etc., and the wrong prior knowledge

of each grid, respectively. They are expressed as follows:

wiðtÞ ¼
X

gij2Ni

/ijðtÞ ð2Þ

u ¼
X

gij2D
maxð/ijðtÞÞ ð3Þ

C ¼ 10� h

N

� �4

ð4Þ

In above equations, /ijðtÞ ¼ 1� e�aij ½1� /ijðt � 1Þ�
(where aij is the importance degree of the grid gij ) is

surveillance efficiency of the grid, h is the frequency

detected during t.

Definition 2 Node role importance degree: It reflects

importance degree related to role of each node in the net-

work. The role of each node is evaluated with the traffic

load which it forwards. Using the concept of edge

betweenness (EB), this criterion is calculated as follows

(Cuzzocrea et al. 2012);

NRID ¼ EBðyÞ ¼
X

x 6¼y 6¼z

rxzðyÞ
rxz

ð5Þ

where EBðyÞ is EB of network edge y, rxzðyÞ is the

aggregate number of the shortest paths between node x and

node z which go through y, rxz the aggregate number of the

shortest paths between node x and node z. This criterion is

the same as the concept of node centrality in Zhong et al.

(2018).

Definition 3 Proactive charging nodes: It refers to pBNs

selected to be included in a charging round among the

pBNs being homologous to WCV’s charging capability.

Definition 4 Charging capability of WCV: We define this

criterion as the number of CR nodes which a single WCV

with the limited energy can charge within a charging

round. In this article, we consider the average number of

CR nodes which a WCV can give service as WCV’s

charging capability. The sum of energy consumed for

WCV travelling including returning back to BS from the

final charging node and energy consumed for charging the

naverage of request nodes which is regarded as WCV’s

charging capability, should not exceed WCV capacity. If

we consider that all the sensor nodes have the same

capacity Ecap and the same CR threshold Ecr thres during
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one charging round, the feasibility condition for WCV is

formulated as.

ðnaverage þ 1Þ � daverage � ECRMC þ naverage

� ðEcap � Ecr thres þ 1

naverage

Xnaverage

i¼1
ECRi

� 1

naverage

Xnaverage

i¼1
tcompletei Þ�Ecap

MC

ð6Þ

The average of distance between any two sensor nodes

daverage and time from when a CR of request node i is

issued to when charging service is completed for request

node i tcompletei are calculated as follows, respectively:

daverage ¼
1

N � ðN þ 1Þ
XNþ1

i¼1

XNþ1

j¼1;i 6¼j
di;j ð7Þ

tcompletei ¼ tarrivali � trequesti þ tch arg ei ð8Þ

tarrivali ¼
dBS;1 þ

Pi
j¼1 dj;jþ1

vMC

þ
Xi�1

j¼1
t
ch arg e
j ð9Þ

In the above equations, N is the total number of nodes in

the network, N þ 1 is the total number of nodes consid-

ering BS, and di;j is the Euclidean distance between node i

and j. The first and second items in Eq. (9) denote time

which WCV arrives at node i and the sum of time taken to

charge (i� 1) of request nodes, respectively.

In this article, we simply evaluate naverage, WCV’s

charging capability, assuming that when WCV arrives at

each request node, the request nodes run out of energy. At

this time, Eq. (6) is denoted as follows:

ðnaverage þ 1Þ � daverage � ECRMC þ naverage � Ecap�Ecap
MC

ð10Þ

It is noted that naverage obtained from Eq. (6) can be

varied between nmax and nmin calculated by using Dmin ¼
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� 2Þ

p
þ 4L (Wang et al. 2016) and dmax ¼

ffiffiffi
2
p

L for

a square area of L� L[m2], respectively, where Dmin is the

Table 1 Summary of the existing on-demand charging schemes

Article Number

of

WCVs

Multi-

node

charging

Scheduling

with multi-

criteria

MCDM and

intelligent

method

Charging

method

SoC

predicting

pBNs

Selecting

pBNs

Lin et al. (2018b), He et al. (2015), Fu et al. (2016),

Kaswan et al. (2018), Lin et al. (2016b), Shu et al.

(2015)

Single No No – Full – –

Ma et al. (2018), Xie et al. (2015), Khelladi et al.

(2017)

Single Yes No – Full – –

Tomar et al. (2019) Single Yes Yes Fuzzy logic Full – –

Tomar and Jana (2021) Single Yes Yes AHP-

TOPSIS

Full – –

Nguyen (2021) Single Yes Yes Fuzzy

logic&Q-

Learning

Partial – –

Lin et al. (2018a), Xu et al. (2016), Gharaei et al.

(2020), Hu et al. (2018), Jiang et al. (2014), Liang

et al. (2016), Mo et al. (2019)

Multiple No No – Full – –

Tomar et al. (2021) Multiple Yes Yes Fuzzy logic Full

Xu et al. (2021), Han et al. (2019), Rault (2019) Multiple Yes No – Full – –

Priyadarshani et al. (2021) Multiple Yes Yes NSGA-

II&AHP-

TOPSIS

Partial – –

Cheng and Yu (2020) Single No No – Full Deadline

estimation

Random

Mangun et al. (2023) Single Yes/

No(for

SoC)

Yes FAHP-

VWA-

TOPSIS

Partial/

Full(for

SoC)

FAHP-

VWA

TOPSIS

The proposed Single Yes/

No(for

SoC)

Yes FAHP-

VWA&Q-

Learning

Partial/

Full(for

SoC)

FAHP-

VWA

Q-

Learning
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shortest charging path length and dmax is the maximum

distance between any two nodes in the network.

Definition 5 SoC: This reflects on-demand charging-en-

abled proactive charging of request nodes which did not

generate CRs but may be the pBN. If the number of CR

nodes generated does not exceed a WCV’s charging

capability, the introduction of SoC can bring more increase

of energy usage efficiency and improvement of network

lifetime.

3.2 System Model

A WRSN consists of three main components: a WCV, a

fixed base station (BS) and sensor nodes. Sensor nodes

with a rechargeable battery are randomly deployed in a 2

dimensional monitoring region. The BS is fixed at the

center of the square surveillance area. It can collect data

sensed, communicate with the WCV directly, and replace

the WCV’s battery in a disregardful time. It is assumed that

the BS knows exactly where sensor nodes are in the entire

network. Also, we assume that no sensor nodes are isolated

and that connectivity between sensor nodes always exists.

We assume that sensor nodes with energy capacity of Ecap
i

consume energy for data sensing, data transmission, and

data reception, and have different energy consumption

rates due to different traffic loads. The WCV with energy

capacity of Ecap
MC moves to the location of the CR node and

charges the nodes in a single-node scheme. Using the

charging capability of the WCV of definition 4, the max-

imum allowable latency of CR nodes Tupper is about set to

time to finish the current charging round including nmax

charging tasks. Using Tupper , the CR threshold Ecr thres
i is

expressed as follows, where energy consumption rate of

node i is denoted as ECRi.

Ecr thres
i ¼ ECRi � Tupper ð11Þ

The main operation of system is as follows: The BS

maintains the CRs of sensor nodes in its service queue.

When the residual energy of sensor nodes reaches a

threshold expressed by Eq. (11), they send the CR mes-

sages formed as\ IDi, Eres
i ,NLIDi,NRIDi,TSi [ to BS

through a single hop or multiple hops, where IDi, E
res
i ,

NLIDi, NRIDi and TSi denote a identifier, residual energy,

node location importance degree, node role importance

degree and time stamp of a CR node i, respectively. Var-

ious criteria except the indicated criteria may be used to

Table 2 Symbols and their

definitions
Symbols Definitions

RN Set of CRs in current charging round

BN Set of the pBNs in one current charging round

Ecap
i Battery capacity of sensor node i

Eres
i Residual energy of sensor node i

Ecap
MC Battery capacity of WCV

Ecr thres
i

CR threshold of sensor node i

ECRi Energy consumption rate of sensor node i

ECRMC Moving energy consumption rate of WCV in the unit of meter

vMC Moving speed of WCV

Tupper Maximum allowable latency of CR nodes

di;j Distance between sensor node i and node j in the network

dmax Maximum distance between any two sensor nodes

Dmin Shortest path length which WCV can traverse in one charging round

naverage Average number of nodes that WCV can charge for one charging round

nmax Maximum number of nodes that WCV can charge in the time of a charging mission

nmin Minimum number of nodes that WCV can charge during one charging round

non�demand Number of current CR nodes

trequesti
Time at which node i issues CR

tch arg ei
Time taken to charge node i

tcompletei
Time taken from request issuing to charging service completion

NLIDi Node location importance degree of node i

NRIDi Node role importance degree of node i

CPk k th closed path including proactive charging nodes scheduled by proposed algorithm
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characterize nodes. For example, when routing and data

gathering algorithm not considering cross-coverage prob-

lem (Xuegang et al. 2017) is adopted, a criterion named

node cross-coverage degree can be further introduced to

characterize member nodes within cross-coverage formed

by two or more clusters in distinction from other member

nodes, and node forwarding degree which characterizes

traffic load on each node as the number of son nodes that

relay their data through it, may be specified. We also

assume that sensor nodes which do not yet generate a CR

periodically send the sensed data containing these multiple

criteria values to BS. The BS draws up an on-demand

charging schedule if the number of CR nodes reaches the

WCV’s charging capability naverage. However, when the

number of CRs does not exceed the WCV’s charging

capability, scheduling is performed in a SoC scheme. Then,

the BS passes the drawn up schedule to the WCV. The

WCV leaves BS and travels to CR nodes, and charges CR

nodes within the charging radius. After recharging for

naverage CR nodes, WCV returns to BS, replenishes energy,

and awaits the next charging round. SoC beginning by BS

is also performed when latency is one charging round

interval, even though the number of CRs in a service queue

did not reach naverage. When more CRs are generated and

exceed the WCV’s charging capacity, the BS allows the

sensor nodes, which their residual energy reaches the

threshold determined by the increased maximum allowable

waiting time, to generate CRs. The system uses a charging

model like (Zhu et al. 2018).

4 Proposed Scheme

The main process of the proposed scheme is shown in

Fig. 1. The BS assigns relative weights to multi-criteria

used in charging scheduling of not only CR nodes but also

sensor nodes that did not generate CRs. For this, FAHP-

VWA is employed to assign weights to multi-criteria

including residual energy, energy consumption rate, node

location importance, and node role importance degree for a

SoC scheme. Based on these weights, the BS predicts the

pBNs being homologous to WCV’s charging capability in

advance and ranks them with Q-Learning. When the

number of CRs, non�demand, is more than WCV’s charging

capability, charging scheduling is performed in the same

scheme as in Mangun et al. (2023) proposed by the authors.

If the number of CRs generated does not exceed the

WCV’s charging capability, that is,

naverage [ non�demand � 0, a charging schedule is drawn up

in a SoC scheme. The BS includes non�demand of CR nodes

to the charging round preferentially and then selects

naverage � non�demand of the most suitable pBNs. naverage of

the chosen charging tasks are scheduled by using the NJNP

charging scheduling algorithm (Xie et al. 2015).

NJNP only takes into account a distance factor, thus it

provides the shortest charging path length for the whole

charging scheduling. Namely, after selecting non�demand
request nodes and (naverage � non�demand) pBNs, charging

prioritization is performed at once to make a charging

schedule by considering only distance between WCV and

request nodes and pBNs of naverage The completed schedule

is transferred to WCV by BS. WCV receives the charging

schedule from BS and arrives at the target node location in

near job first scheme based on distance only, charges the

sensor nodes in single-node charging scheme and returns to

BS to immediately replace or recharge its battery for the

next charging round.

4.1 Overview of FAHP-VWA and Q-Learning

4.1.1 Weighting Multi-Criteria with FAHP

A weight is allotted to each criterion from the paired

comparison of the importance evaluation of the criteria

using a triangular fuzzy number (Metaxas et al. 2016;

Calabrese et al. 2016).

~aij ¼ ðlij;mij; uijÞ;
1

9
�mij� 9 ð12Þ

where lij and uij are calculated for mij� 1 as follows:

lij ¼
mij �

d

2
; mij �

d

2
� 1

1; mij �
d

2
\1

8
><

>:
; 0� d� 8 ð13Þ

uij ¼
mij þ

d

2
; mij þ

d

2
� 9

9; mij þ
d

2
[ 9

8
><

>:
; 0� d� 8 ð14Þ

~aji ¼
1

~aij
¼ ð 1

uij
;
1

mij
;
1

lij
Þ ð15Þ

~aij ¼ ð1; 1; 1Þ; for i ¼ j ð16Þ

mij is a pliant value which measures how significant cri-

terion i is related to criterion j. The triangular fuzzy number

associated to mij has a pliant width d, a dispersal value

which measures the lack of confidence in the value allotted

to mij. The lower the value of a pliant width d, the higher

the level of certitude in the value allotted to mij. To smooth

the consistency conservation, we will use the dispersal

value as only one value of d for each comparison matrix.

To guarantee the certitude of the allotted values, the below

conditions must be obeyed:

mij ¼ miðj�1Þ � mðj�1Þj; i� 1; j� iþ 2 ð17Þ
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If Eq. (17) is used to allot the fuzzy value, it does not

perform consistency verification. In this way, a comparison

matrix is obtained by the paired comparison of the criteria.

From comparison of fuzzy values, we obtain fuzzy weights

for each criterion. The value of crisp weight for each cri-

terion is computed from the paired comparison matrix and

Fig. 1 The main operating flow

diagram of the system
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normalized. The crisp weight values are represented by the

column vector as below:

w ¼ ðw1;w2; � � � ;wMÞT ð18Þ

The decision matrix X normalized in the same way as in

Chang et al. (2017) is composed as below and will be used

to input to VWA and Q-Learning.

X ¼

x11 x12 � � � x1M

x21 x22 � � � x2M

..

. ..
. . .

. ..
.

xN1 xN2 � � � xNM

2
666664

3
777775

ð19Þ

4.1.2 Weight Compensation by VWA

The weights of criteria represented as Eq. (18) by FAHP

are compensated as follows (Li and Li 2004; Zeng et al.

2016):

w0j ¼
sðxjÞwjPM
j¼1 sðxjÞwj

ð20Þ

where sðxjÞ is exponent type state variable weight vector

with penalty for the criterion j and wj is the weight cal-

culated by Eq. (18). This weight vector is represented as

follows:

sðxjÞ ¼ e
a

rj

xjj j; a� 0 ð21Þ

where a is the variable level of weights and r is the stan-

dard deviation, i.e., variance. If a ¼ 0, weight compensa-

tion is not done. That is, w0j ¼ wj.

4.1.3 Overview of Q-Learning

Q-learning (Barto and Sutton 1999) is a model-free rein-

forcement learning (RL) technique that find the optimal

policy, which is a broadly applied one. Moreover, this RL

requires the lightest computational resources. Thus, it is

appropriate that this RL method is applied to energy-lim-

ited networks such as WRSNs. More ceremoniously, it

learns to calculate Q values, the quality of any state-action

combination. We define Q: S 9 A ? R as Q function,

where S, A and R denote the sets of all possible states, all

possible actions and all possible rewards, respectively.

Before learning, the Q function returns undetermined fixed

values represented by policy p, which are defined by the

designer. In the learning process, the agent chooses an

action at in a given state st at each time t. Then, it makes

observation of the new state st?1 and a reward rt?1 obtained

by this new state, and based on these observations, it

renews the Q value. Finally, after several iterations, the

agent will find an optimal policy p * . This policy offers to

the agent the knowledge to select the optimal action in a

given state to achieve its goal. The renewing rule for the Q-

learning is denoted as follows:

Qðst; atÞ  ð1� aÞQðst; atÞ þ a½rt þ cmax
a

Qðst; aÞ�

¼ Qðst; atÞ þ a½rt þ cmax
a

Qðstþ1; aÞ � Qðst; atÞ�

ð22Þ

where a is the learning rate and c represents the discount

factor of future rewards, with all a, c [ [0, 1]. where Q(st,

at) is the Q-value when the action at is chosen at a given

state st. rt is the reward got if accomplishing action in the

state st. Furthermore, max
a

Qðst; aÞ is the maximal Q-value

in the next state st?1 for all of possible actions a.

4.2 SoC Scheduling Using FAHP-VWA and Q-
Learning

4.2.1 Weight Determination of Four Multi-Criteria

Residual energy (RE), energy consumption rate (ECR),

node location importance degree (NLID), and node role

importance degree (NRID) are used as four multi-criteria in

the current charging round. These multi-criteria are

weighted using FAHP-VWA. First, the triangular fuzzy

number as shown in Table 3 is assigned to each criterion

by FAHP as relative weights. For all of paired compar-

isons, it is chosen d ¼ 2.

Weights of each evaluation criteria are calculated as

shown in Table 4.

VWA compensates the weights of criteria by FAHP.

The used value of a is 0.2. The compensated weights are

shown in Table 5.

4.2.2 Selection of Proactive Charging Nodes
among the pBNs by Q-Learning

When performing the SoC scheduling, the BS includes

non�demand of CR nodes to the charging schedule to be

generated preferentially and then selects naverage �
non�demand of the most suitable pBNs with Q-learning.

In our WRSN using Q-learning, the network and the

WCV are regarded as the environment and the agent,

respectively. A state correspond to the current charging

location of the WCV and an action is defined by a move-

ment to the next charging location. The WCV maintains its

Q-table that is constructed as a 2D array. Each row and

each column represent a state and an action, respectively.

An item Q(j, i) in the jth row and ith column denotes the Q-

function value being homologues to an action when the

WCV travels from the current charging location j to the
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next location i. The Q-value decision matrix is constructed

as follows:

Q ¼

q11 q12 � � � q1m

q21 q22 � � � q2m

..

. ..
. . .

. ..
.

qm1 qm2 � � � qmm

2
666664

3
777775

ð23Þ

where qij i.e., Qði; jÞ is the Q-value when the WCV moves

from pBN i ði ¼ 1;mÞ to pBN jðj ¼ 1;mÞ. This is updated
as follows:

qij ¼ Qði; jÞ  ð1� aÞQði; jÞ þ a½rðjÞ þ c max
1� k�m

Qðj; kÞ�

¼ Qði; jÞ þ a½rðjÞ þ c max
1� k�m

Qðj; kÞ � Qði; jÞ�

ð24Þ

where i and j denote the current pBN and the next one,

respectively. Qði; jÞ and rðjÞ denote the Q-value and the

reward value when the WCV travels from the current pBN

to the next one, respectively, a and c are the learning rate

and the future reward discount factor set to the values

between 0 and 1, respectively. From Eq. (24), we can see

that the current Q-value is updated to the Q-value corre-

sponding to the temporal difference, which means the

interval between the estimated target Q-value

(rðjÞ þ c max
1� k�m

Qðj; kÞ) and the current Q-value (Qði; jÞ).

In the target Q-value, max
1� k�m

Qðj; kÞ represents the largest

value of Q-values when all possible pBNs k become the

next pBN. In a word, the new Q-value is computed from

the current Q-value, the reward value, and the estimated

maximum Q-value.

The reward value for updating the Q-value is calculated

as follows:

To do this, normalization of the data dimensions of m

pBNs characterized by four multi-criteria is done in the

same way as (Chang et al. 2017) and decision matrix X ¼
½xij i ¼ 1;m; j ¼ 1; 4

�� � is obtained. Using the criteria

weights in Table 5 obtained from FAHP-VWA and

Eq. (23), the weighted decision matrix Y is obtained as

follows:

Y ¼

y11 y12 y13 y14

y21 y22 y23 y24

..

. ..
. ..

. ..
.

ym1 ym2 ym3 ym4

2
666664

3
777775

ð25Þ

where yij ¼ wj � xij; i ¼ 1;m; j ¼ 1; 4.

Using the weighted decision matrix Y , the reward value

r1ðjÞðj ¼ 1;mÞ when moving from the current pBN to the

next one is calculated as follows:

r1ðjÞ ¼
1� yj1
Pm

i¼1
yi1

þ
yj2

Pm

i¼1
yi2

þ yj3
Pm

i¼1
yi3

þ yi4
Pm

i¼1
yi4

; j ¼ 1;m ð26Þ

The obtained reward value then is renormalized as a

value between interval [0,1].

rðjÞ ¼ r1ðjÞ
max
j2BN

r1ðjÞ
; j ¼ 1;m ð27Þ

where yjiði ¼ 1; 4Þ are the weighted normalized decision

values of four multi-criteria such as RE, ECR, NLID and

NEW for criterion j, respectively. ð1� yjiÞði ¼ 1;mÞ is the
weighted normalized decision value for criterion such as

RE, which should give higher priority when it has smaller

value. From Eq. (26), we can see that in case of four multi-

criteria such as RE, ECR, NLID and NRID, the lower

residual energy, the higher energy consumption rate, the

higher node location importance degree and the higher

node role importance degree, then the higher reward value

a CR node would have.

Using this reward value, in the charging prioritization, if

the pBN of each row in Q-value decision matrix of Eq. (25)

becomes the current one, the BS selects the pBN for the

column with the largest Q-value in that row as the next one.

This selection process is repeated till the number of the

Table 3 Pairwise comparison matrix between evaluation criteria

RE ECR NLID NRID

RE (1 1 1) (1 1 2) (2 3 4) (1, 9/5, 14/5)

ECR (1 1 2) (1 1 1) (2 3 4) (1 9/5 14/5)

NLID (1/4 1/3 1/2) (1/4 1/3 1/2) (1 1 1) (3/8 3/5 1)

NRID (5/14 5/9 1) (5/14 5/9 1) (1 5/3 8/3) (1 1 1)

Table 4 Weight of each

criterion
Evaluation criteria Weight

RE 0.3459

ECR 0.3459

NLID 0.1122

NRID 0.1960

Table 5 Compensated weights for evaluation criteria

Evaluation criteria Weight Compensated weight

RE 0.3459 0.3394

ECR 0.3459 0.3432

NLID 0.1122 0.1144

NRID 0.1960 0.2030
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pBNs becomes naverage � non�demand . Table 6 shows an

example of the Q-value decision matrix values for 6

proactive charging nodes selected from naverage of the

predicted pBNs when the charging capability of WCV

naverage is 10 and the number of CR nodes is 4. Assume that

request node 4 (RN4) is the last CR node. BS first includes

pBN5 with the highest Q-value among 6 pBNs in RN4 row

of Table 6 in the charging round and makes Q-value at the

crossing point of pBN5 row and pBN5 column ‘0’. Con-

tinuously, moving to pBN5 row, repeat the above action.

Such action is repeated until naverage � non�demand pBNs are

included in the charging round. Out of this, it can be seen

that selecting order of 6 pBNs is pBN5 ? pBN6 ?
pBN2 ? pBN1 ? pBN3 ? pBN4. After all, a charging

schedule including 4 CR nodes preferentially is obtained

after electing above 6 selected pBNs with Q-learning.

The BS estimates the energy consumption rate in the

same way as (Zhu et al. 2018) and updates Q-value deci-

sion matrix using the received or measured information of

multi-criteria for the pBNs including it.

The pseudo code of the SoC scheme using FAHP-VWA

and Q-Learning considered above is shown in Algorithm 1.

Algorithm 1 SoC scheduling using FAHP-VWA and Q-Learning

5 Performance Evaluation

In this section, we present results of an extensive simula-

tion of the proposed scheme and their analysis. To this end,

we compare to the performance of the following four
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schemes, including BP&R proposed in Cheng and Yu

(2020), and perform a comparative analysis.

• BP&R: a scheme that uses a fixed deadline threshold-

based pBNs prediction method and selects the proactive

charging nodes among the predicted pBNs randomly

• FL-based: a scheme that uses the same pBNs prediction

method as the BP&R and selects the proactive charging

nodes among the predicted pBNs with fuzzy logic

(Tomar et al. 2019)

• AHP&TOPSIS: a scheme that assigns weights to multi-

criteria with AHP, predicts the pBNs among non-CR

nodes using these weights and selects the proactive

charging nodes among the predicted pBNs with

TOPSIS (Tomar and Jana 2021)

• FAHP-VWA-TOPSIS: a scheme that primarily assigns

weights to multi-criteria with FAHP, then compensates

the weights by VWA, predicts the pBNs among non-CR

nodes using the these weights assigned by FAHP-

VWA, and selects the proactive charging nodes among

the predicted pBNs with TOPSIS (Mangun et al. 2023)

To avoid an unfair comparison, the compared schemes

are partially corrected. That is, the same four criteria as the

proposed scheme are used in prediction and selection of the

pBNs for the AHP&TOPSIS and FAHP-VWA-TOPSIS,

and in the pBNs selection for the FL-based scheme.

Performance metrics include energy usage efficiency,

density of high efficiency nodes, proactive charging rate of

backbone nodes, received packet rate, and network life-

time. Since the performance of SoC schemes is strongly

related to CR frequency, we only evaluate the impact of the

CR frequency f on the above performance metrics although

several parameters such as the number of sensor nodes,

simulation time, and moving speed of WCV affect charg-

ing and network performance.

5.1 Simulation Environment

Simulation is conducted in MATLAB version R2016a on a

HP 6360t with 4 GB RAM and Intel Core i5 processor.

Simulation environment is a 1000 m 9 1000 m area with

2000 nodes uniformly and randomly arranged. BS settles in

the bottom left corner at coordinates (0,0) and other

parameters are set as described in Table 7 with reference to

Cheng and Yu (2020). Batterycapacity of each sensor node

and WCV is 100 J and 200000 J, respectively. We set the

maximum charging capability of WCV, i.e., nmax to 30.

Then, the upper bound of the CR issuing frequency that

NJNP can safely control becomes 0.012 for

1000 m 9 1000 m area. Namely, WCV can charge the

nodes in a SoC scheme if and only if the CR frequency is

less than 0.012. In experiments, CR frequency is repre-

sented as the number of CR issued per 1000 s to avoid

confusion and misinterpretation. At this time, it is noted

Table 6 Q-values of 6 pBNs

RN4 pBN1 pBN2 pBN3 pBN4 pBN5 pBN6

RN4 0 0.4307 0.4639 0.3427 0.4564 0.4954 0.4711

pBN1 0 0 0 0.4257 0.4615 0 0

pBN2 0 0.5140 0 0.4100 0.3792 0 0

pBN3 0 0 0 0 0.3686 0 0

pBN4 0 0.5412 0.5815 0.4989 0 0.4977 0.4785

pBN5 0 0.4686 0.5349 0.4643 0.5116 0 0.5437

pBN6 0 0.4971 0.6022 0.4631 0.5458 0 0

Table 7 Simulation parameters

Parameter Value

Network area 1000 m 9 1000 m

Number of sensor nodes 2000

Battery capacity of node 100 J

Energy consumption rate of node 10-4 J/s * 10-2 J/s

Battery capacity of WCV 200000 J

Moving energy consumption rate of WCV 10 J/m

Moving speed of WCV 5 m/s

Charging rate of WCV 5 J/s

Learning rate a = 0.5

Discount factor c = 0.5

Simulation time 140 h

Fig. 2 Simulation network with nodes’ voronoi diagram and impor-

tant locations figured as green points
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that the upper bound of the CR issuing frequency becomes

12. WCV moves with a fixed speed of 5 m/s at a moving

energy consumption rate of 10 J/m. Each node is allowed

to have a standard energy consumption rate of 10-3 J/s for

normal data sensing, processing, and transmitting and

receiving, and to vary randomly between 10-4 J/s and

10-2 J/s considering the occurrence of an incident. A

polygon prescribed by the voronoi diagram denotes the

grid that is the actual are monitored by each sensor node.

When representing the whole monitoring area as D, Fig. 2

shows the important grids within D figured as green points.

In Fig. 2, green points called G. indicate important loca-

tions, i.e. locations like roads or battle fields. In our sim-

ulation, assuming that the sensing task needs to be detected

at t1 = 2.5 s intervals for grids within G, and t2 = 5 s

intervals for other grids, we compute the importance degree

of each grid as follows:

aij ¼
1=t1; gij 2 G

1=t2; gij 2 D� G

(
ð28Þ

From this, /ijðtÞ and wiðtÞ can be calculated. The

monitoring objects appear in G two times more frequently

than in other locations.

For the heterogeneous traffic load of nodes in sensing

data collection or target tracking, we used the equal hier-

archical cluster-based method in Man Gun Ri Aug. (2022).

In selection of the proactive charging nodes among the

pBNs by Q-Learning, a and c, the learning rate and the

discount factor of future reward are set to 0.5, respectively.

For the fairness of the comparison, we plotted simulation

results with the average of 20 random cases.

5.2 Simulation Results and Analysis

5.2.1 Energy Usage Efficiency

It is defined as the ratio between energy obtained by sensor

nodes and the total energy transferred from BS to WCV

(Zhu et al. 2018). Figure 3 shows simulation results. From

simulation results, it can be seen that the proposed

scheme and FAHP-VWA-TOPSIS have higher energy

usage efficiency than three compared schemes. The BP&R

scheme shows the most woeful energy usage efficiency

among five schemes and the next in order with respect to

the woeful energy usage efficiency is the FL-based. It is

because in the BP&R and FL-based schemes, a pBN is

estimated with more energy left, since the deadline is

always calculated using the largest fixed threshold unre-

lated to increase of CR frequency. Consequently, under the

same condition of energy consumed by the travel of WCV,

the charging energy transferred to the proactive charging

nodes is actually less than the proposed scheme or FAHP-

VWA-TOPSIS and AHP&TOPSIS based on the prediction

of the pBNs within a charging round, thereby resulting in a

higher amount of energy left in WCV, which leads to a

lower energy usage efficiency. The AHP&TOPSIS

scheme not only does not use fuzzy number, but also does

not compensate the assigned weights. However, the pro-

posed scheme and FAHP-VWA-TOPSIS predict the pBNs

corresponding to WCV’s charging capability more exactly

based on multi-criteria weights which assigned with FAHP

and compensated by VWA, so it always has higher energy

usage efficiency than the AHP&TOPSIS scheme.

Meanwhile, the pBNs selection algorithms also influ-

ence energy usage efficiency performance. Among five

compared schemes, the BP&R scheme only uses the ran-

dom pBNs selection algorithm, so it influences this metric

most woefully. For the proposed scheme, its performance

depends on the proactive charging node selection method.

That is, it depends on the optimality of the proactive

charging node selection by Q-Learning. Since the proposed

scheme takes into account four multi-criteria jointly to

select nproactive ¼ naverage � non�demand pBNs as proactive

charging nodes, this metric shows a progressively

increasing trend with increasing f. The energy usage effi-

ciency performance of FAHP-VWA-TOPSIS scheme is

almost equal to the proposed scheme or a little better than

the proposed scheme. When the CR frequency increases,

more CRs are issued to BS. In the end, the average trav-

eling distance can be further reduced through scheduling

method that only consider the distance factor, thus reducing

the average of energy consumption for WCV movement

between nodes, which leads to better energy usage effi-

ciency. On the other hand, if the CR frequency increases,

Fig. 3 Energy usage efficiency in terms of f
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the number of proactive charging nodes is reduced, so the

improvement in charging usage efficiency also is reduced.

5.2.1.1 Density of High Efficient Nodes Density of high

efficient nodes (Zhang et al. 2015) is defined as the density

of nodes with energy higher than the certain threshold. This

performance of the proposed scheme and FAHP-VWA-

TOPSIS are the highest and the BP&R scheme shows the

lowest density of high efficient nodes. The next orders of

the proposed scheme are the AHP&TOPSIS and FL-based

schemes, respectively. Like the analysis of the former

metric, the simulation results in terms of this metric also

show that the pBNs prediction and selection algorithms

influence the performance greatly.

In contrast to the simulation results for the case that

energy consumption rate of nodes are constant, this metric

shows a higher performance of 5% on average in the

overall frequency varying range used in the simulation than

BP&R scheme for the proposed scheme and FAHP-VWA-

TOPSIS as shown in Fig. 4. In other words, the proposed

scheme includes more 100 nodes with a higher energy level

than the specified threshold. The FAHP-VWA-TOPSIS

scheme also shows almost similar performance with the

proposed scheme. Thus, there are nodes of higher energy

level in the proposed scheme and FAHP-VWA-TOPSIS,

indicating that the scheduling algorithms for SoC can well

maintain the energy charging on nodes so that WCV can

operate in equilibrium for longer periods of time. For the

proposed scheme and FAHP-VWA-TOPSIS, this metric

shows a relatively similar opposite behavior as in the for-

mer energy usage efficiency simulation within the overall

frequency ranging where the proactive charging set up in

the simulation is possible. Namely, if the CR frequency

which reflects increase of the number of on-demand

charging nodes increases, the number of proactive charging

nodes which always have energy higher than the certain

threshold is reduced, so the density of high efficient nodes

also is reduced.

5.2.1.2 Proactive Charging Rate of Backbone Nodes This

metric, which is represented by the number of successfully

proactive-charged backbone nodes over the total number of

backbone nodes predicted as potential bottlenecks, can be

considered as one of the important metrics to evaluate the

proactive charging characteristics of the SoC scheme. From

these results in Fig. 5, it can be seen that the BP&R and

FL-based schemes provide the proactive charging rate of

100% up to 14 and 15 of CR issuing frequency beyond 12

of the upper bound frequency respectively, but the proac-

tive charging rate of 100% up to 16 in the proposed, FAHP-

VWA-TOPSIS and AHP&TOPSIS schemes.

Fig. 4 Density of high efficient nodes in terms of f

Fig. 5 Proactive charging rate of backbone nodes in terms of f Fig. 6 Received packet rate in terms of f

1430 Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2024) 48:1417–1433

123



This is because the proposed, FAHP-VWA-TOPSIS and

AHP&TOPSIS schemes have the potential to preferentially

charge the backbone nodes, taking into account node

location importance degree (NLID) and node role impor-

tance degree (NRID), even when the number of proactive

charging nodes decreases with increasing frequency

f. NLID is evaluated by prioritizing the pBNs located in the

monitoring area with higher frequency of occurrence of the

target and NRID prioritizing the pBNs with heavier traffic

load such as cluster head nodes. As a result, proactive

charging rate of backbone nodes significantly is improved

in comparison with the BP&R scheme. The proposed

scheme and FAHP-VWA-TOPSIS show almost similar

performance in terms of this metric. The FL-based

scheme also uses the NLID and NRID criteria to select the

pBNs, and thus it has higher proactive charging rate of

backbone nodes than the BP&R scheme selecting the pBNs

randomly.

5.2.1.3 Received Packet Rate This metric is defined as the

ratio of the number of packets received by BS to the total

number of packets generated by sensor nodes in the net-

work. From the simulation results in Fig. 6, it can be seen

that the received packet rates of the proposed scheme and

FAHP-VWA-TOPSIS are higher than the other compared

schemes. In the proposed scheme and FAHP-VWA-TOP-

SIS, in addition to introducing the fuzzy number in

assigning the weights to multi-criteria, weights compen-

sation are performed, so that more than 80% of the

received packet rate may be achieved for 18 of the CR

issuing frequency operating in the pure on-demand charg-

ing. It is natural that since the BP&R scheme uses the fixed

deadline threshold-based deadline estimation method and

random pBNs selection algorithm, it has the lowest

received packet rate among five schemes.

When the CR issuing frequency becomes 18, the

AHP&TOPSIS and FL-based schemes provide 73% and

70% of the received packet rate, respectively. Although

these two schemes use the same four criteria as the pro-

posed scheme and FAHP-VWA-TOPSIS in selecting the

pBNs, they adopt AHP and a fixed deadline threshold-

based pBNs prediction respectively, the low-grade methods

than the proposed and FAHP-VWA-TOPSIS schemes in

predicting the pBNs. Thus the received packet rate is low

compared to the proposed scheme and FAHP-VWA-

TOPSIS.

5.2.1.4 Network Lifetime Simulation results of the net-

work lifetime denoted as the time till the first sensor node

dies, are shown in Fig. 7. These results indicate that among

five compared schemes, the proposed scheme and FAHP-

VWA-TOPSIS improve the network lifetime of WRSN

greatly, since both of them predict exactly the pBNs with

FAHP-VWA and use Q-Learning and TOPSIS respectively

for selecting the optimal proactive charging nodes. It is

because the proposed scheme and FAHP-VWA-TOPSIS

remarkably improve all charging performance such as

energy usage efficiency, density of high efficiency nodes,

and proactive charging rate of backbone nodes as shown in

the former simulation results. The FAHP-VWA-TOPSIS

scheme becomes a little higher than the proposed

scheme beginning from when the CR issuing frequency

becomes 17. This means that when operating in the pure

on-demand scheme, TOPSIS is superior to Q-Learning in

selecting the CR nodes. The next in order with respect to

network lifetime is the AHP&TOPSIS scheme. This

scheme also predicts the pBNs with the AHP and selects

the proactive charging nodes among the predicted pBNs

with TOPSIS, thus achieving more high network lifetime

than the FL-based and BP&R schemes. In BP&R and FL-

based schemes, a dead node begins to occur since the CR

issuing frequency is 15, while 16 in the proposed and

AHP&TOPSIS schemes. Unlike the BP&R and FL-based

schemes only using one deadline criterion with a fixed

deadline threshold, the proposed and AHP&TOPSIS

schemes use NLID and NRID criteria as well as deadline

criterion, thereby calculating the dynamic change of energy

consumption rate by occurrence of an accidental event and

the heterogeneous traffic load of the pBNs without the

deadline estimation mechanism, which leads to extension

of the network lifetime.

Also, unlike the BP&R scheme randomly selecting the

proactive charging nodes among the predicted pBNs, the

proposed, FAHP-VWA-TOPSIS, AHP&TOPSIS and FL-

based schemes use four multi-criteria including NLID and

NRID to select the suitable pBNs including cluster headFig. 7 Network lifetime in terms of f
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nodes as the proactive charging nodes with Q-Learning,

TOPSIS and fuzzy logic, respectively. Especially, the

proposed scheme exactly assigns four criteria’s weights

with FAHP-VWA and based on it, computes Q-values by

considering the correct state of each pBN with Q-Learning,

thereby selecting the most suitable pBNs as the proactive

charging nodes, which further extends the network

lifetime.

Till now, we mainly considered a scenario that the

number of CRs does not exceed WCV’s charging capa-

bility. In such a practical scenario that the number of CRs

exceeds WCV’s charging capability, it is natural that a

single WCV-based method is not scalable. At this time, the

entire network is divided by using k–means or fuzzy

c-means (FCM) to balance CR workload and one WCV

may be assigned to each sub-area. Then, a charging

schedule is made by using on-demand charging scheme or

SoC scheme proposed in this article according to CR

workload in each sub-area and WCV’s charging capability.

6 Conclusion

The key to SoC scheduling is the accurate prediction of the

pBNs according to the CR issuing frequency in the network

and the optimal selection of proactive charging nodes to be

included in a charging round among the predicted pBNs.

A SoC scheme using FAHP-VWA and Q-Learning pro-

posed in this article, allows BS to accurately predict the

pBNs with FAHP-VWA according to CR issuing fre-

quency, and the optimal proactive charging node selection

method based on Q-Learning makes optimal selection of

proactive charging nodes possible by jointly using multi-

criteria such as residual energy, energy consumption rate,

node location importance degree, and node role importance

degree. Simulative experiment results show that the pro-

posed scheme greatly improves the network performance

compared to the previous method in terms of energy usage

efficiency, density of high efficient nodes, proactive

charging rate of backbone nodes, received packet rate, and

network lifetime. The proposed scheme assigns weight to

multi-criteria by FAHP weight-compensated. However,

since FAHP uses fuzzy paired ratio scale, it may still

evaluate weights of criteria exaggeratively. In addition, a

comprehensive comparison on which MCDM is the best

method for selecting the proactive charging nodes among

the predicted pBNs, has not been yet investigated for

several MCDMs such as TOPSIS, VIKOR, ELECTRE, and

PROMETHEE including Q-Learning. Moreover, we only

focus on a SoC scheduling in this article.

In the future, we firstly will extend the proposed design

idea into entire process of on-demand charging scheduling

using an integrated FAHP-VWA&Q-Learning and then

combine a MCDM that adopts fuzzy paired interval scale

with the best method among the above-mentioned several

MCDMs.
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