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Abstract
In this survey, the stability of input-constrained control for a widely used class of second-order systems is investigated. A

continuous prediction-based approach is utilized to calculate the limited current control input by minimizing the next

tracking error of nonlinear second-order system. The Karush–Kuhn–Tucker theorem is used to analytically solve the

resulting constrained optimization problem. The constrained stability is analyzed by equating the constrained solution with

the solution obtained from an optimal controller with time-varying weight on the control input. The proposed constrained

controller adapts itself to real conditions by using information about the perturbations obtained from an extended state

observer (ESO). Simulation studies for a lever arm indicates that the constrained controller presented in the closed form is

much faster than the common nonlinear model predictive control method which requires an online dynamic optimization at

each sampling time. Accordingly, experimental implementation of the proposed controller is conducted on a fabricated

platform consisting of a lever arm. The results show that the proposed constrained controller can successfully track

different time-varying positions for the arm by admissible torques generated by a DC motor. The comparative results with

an adaptive backstepping controller indicate higher performance for the proposed ESO-based controller in compensating

for the perturbations and external disturbance.
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1 Introduction

Nonlinear second-order systems include a widely used

mechanical and electromechanical systems such as robot

manipulator, spacecraft, underwater vehicle, wind turbine

and vibrating systems (Colombo et al. 2020; Jiang et al.

2022; He et al. 2022; Nguyen et al. 2020). The variety of

applications has motivated many researchers in the last

decades to control the second order systems by different

strategies (Li et al. 2021; Jimenez-Rodriguez et al. 2019;

Bartolini et al. 1997; Li et al. 2022). Bartolini et al. (1997)

solved the tracking problem of nonlinear second-order

systems by classical minimum-time optimal control

method. A tracking control scheme using reinforcement

learning is proposed to steer both position and velocity of a

class of second-order systems (Li et al. 2022). A multi-

agent second-order system is controlled by a neural net-

work-based controller which can ensure that the tracking

errors between the following agent and leader will con-

verge to a narrow neighborhood of zero (Wen et al. 2015).

A velocity observer-based feedback controller is developed

for second-order systems with the application to a robot

(Homayounzade and Keshmiri 2011). A finite-time sliding

mode control that employs a disturbance observer is pre-

sented for second-order systems (Miranda-Colorado 2019).

Most research conducted on the control of second-order

systems tried to solve the tracking problem without atten-

tion to the practical limitations (Ghiasi et al. 2010). In this

respect, the limitation on the control input plays a signifi-

cant role in finding the feasible control signal. This

restriction results from the limited capacity of actuators

like DC motors, which can just generate a finite amount of

torque. Neglecting the input constraint in designing the

controllers has a negative effect on the closed-loop system

performance. To address this problem, various methods
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have been employed for input-constrained control by tak-

ing into consideration one or multiple requirements like

stability, practical implementations, simplicity in compu-

tations, robustness, optimality and generality. One solution

incorporates static or dynamic nonlinear models to repre-

sent the saturation within the system model (Gui et al.

2015). Another solution is to use anti-windup schemes

jointed to the main controllers to counteract the impact of

input saturation within the control systems (Tsai et al.

2011). Proportional derivative controller integrated with a

dynamic compensation (Su and Swevers 2014) and intel-

ligent methods plus Barrier Lyapunov functions (Ma and

Huang 2020) are also proposed as alternative solutions for

the saturated control problems. Ding and Zheng (2016)

designed terminal sliding mode control for nonlinear sec-

ond-order systems with input saturation. In all of the

reviewed methods, optimization is not the primary proce-

dure to solve the constraint issue for finding the control

laws. Meanwhile, the stability and universality of the pre-

viously mentioned approaches might still lack clarity.

The optimality of solutions for constrained nonlinear

systems can be achieved through dynamic programming or

calculus of variation as the classical optimal control

methods (Kirk 2004). Because of high computations of

these methods, some approximation methods based on

piecewise functions (Loxton et al. 2009) Haar functions

(Marzban and Razzaghi 2010), adaptive dynamic pro-

gramming (ADP) (Liu et al. 2013), hybrid functions

(Mashayekhi et al. 2012) and adaptive neural network

approaches (Li et al. 2017) are applied to approximate the

control input. Alternatively, modern optimal methods such

as model predictive control (MPC) have been introduced to

find the constrained control inputs at each sampling time by

solving an optimization problem online (Silva et al. 2019).

Although MPC strategies are suitable for linear systems,

extending them to nonlinear systems introduces new

challenges. It is difficult or impossible to find analytical

solution for the optimization problem in the nonlinear

problems. The numerical solutions also involve high

computations, making them unsuitable for online imple-

mentations. Importantly, the stability analysis of NMPC

methods in the presence of constraints requires further

research.

In the current paper, in order to overcome the time-

consuming problem in the optimization-based nonlinear

methods reviewed above, a control strategy is proposed for

the second-order systems based on a continuous predictive

approach. This approach, unlike the conventional discrete

predictive control, leads to the closed form control laws

with no need to the optimization process at each sampling

time. The proposed approach leads to feedback lineariza-

tion-like method when the constraints are dropped and the

uncertainties of the system are ignored (Moradi Nerbin

et al. 2017; Lu 1995; Abdi et al. 2018; Rafatnia and Mir-

zaei 2022). For the uncertain systems, the tracking error is

decreased by selecting small values for the prediction time

as a free parameter of the controller (Mirzaeinejad et al.

2016; Rafatnia and Mirzaei 2022). In the present study, the

constrained version of the continuous predictive approach

is developed by minimizing the expanded performance

index in the presence of input constraints. The Karush–

Kuhn–Tucker (KKT) theorem is used to analytically solve

the resultant constrained optimization problem. How to

solve the KKT conditions in a straight-forward manner for

the second-order system is demonstrated in this paper.

Importantly, the boundedness of the tracking error and its

derivative for the second order system is provided by

equating the constrained solution with the solution

obtained from an optimal controller with a time-varying

weight on the control input.

It is important to note that the constrained controller,

developed for the second order system, requires a precise

mathematical model to reach the desired performance.

However, there are various sources of perturbations,

including un-modelled dynamics, uncertain parameters and

external disturbances, deteriorating the performance of

model-based control system (Razmjooei et al. 2022). Dif-

ferent control methods have been suggested by the

researchers to deal with uncertainties and disturbances.

Among these studies, two commonly used techniques can

be distinguished as robust and adaptive control methods

(Yi and Zhai 2019; Hu et al. 2022; Cruz-Ortiz et al. 2022).

In the paper, an extended state observer (ESO) is utilized to

enhance the nominal model considered for the second-

order systems (Xiong et al. 2015). The ESO has been

applied in various applications like robot control (Yue

et al. 2014) and flight control (Li et al. 2014). The paper

integrates the constrained controller with the ESO to

develop an adaptive constrained controller. The resultant

control system can continuously adapt itself by using the

observer information about the perturbations without

increasing the order of main system.

For a case study, the position control problem of a lever

arm as a second-order system is selected to examine the

proposed controller. In the simulation study, the NMPC has

been used as a comparative method to show the perfor-

mance and applicability of the proposed constrained con-

troller. For experimental implementation, a platform for

lever arm control is fabricated to verify the proposed

controller under various maneuvers of trajectory tracking.

An experimental assessment is conducted to compare the

efficiency of a constrained controller with and without an

observer, considering different trajectories. Also, an

adaptive backstepping controller is implemented to be

compared with the ESO-based constrained controller in the

presence of perturbations.
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The paper is organized as follows: In Sect. 2, the

problem formulation in a general form is presented and the

design and analysis of the control system are proposed. In

this section, the constrained controller is firstly design,

supposing that the perturbation term in the model of the

second order system is known. Then, the ESO algorithm is

presented to estimate the perturbation term. In Sect. 3, the

results of the proposed control method are presented for a

lever arm under computer simulations and experimental

implementations. Finally, Sect. 4 gives the conclusion.

2 Control Problem Definition

The aim of this study is controlling a widely used class of

second-order systems in the presence of input constraint

caused by limited capacity of actuators, and perturbations

caused by model uncertainties and external disturbances.

The dynamic of the many practical systems like Euler–

Lagrange systems is derived as Jiang et al. (2022); Li et al.

(2022); Miranda-Colorado (2019)

€x ¼ f ðx; _xÞ þ buþ d: ð1Þ

where x 2 R is the generalized position and _x 2 R is the

generalized velocity. u 2 R is the control input that is

manipulated to control the generalized position with the

bounded generalized velocity. In addition, d is the unex-

pected external disturbance, respectively. Considering

gðx; _x; dÞ ¼ f ðx; _xÞ þ d as the perturbation term, and x1 ¼ x

and x2 ¼ _x as the states of the system, the state-space form

of (1) is represented as follows:

_x1 ¼ x2;

_x2 ¼ gðx; _x; dÞ þ bu;

y ¼ x1:

8
><

>:
ð2Þ

Assumption: It is supposed that gðx; _x; dÞ is a bounded

function, and also b 6¼ 0 is a constant (Li et al. 2021, 2022;

Miranda-Colorado 2019).

There is often a constraint on the control input of the

system due to the limited capacity of the onboard actuators.

In this study, the admissible range for the control input is

considered as follows

u ¼
�
u 2 R j Umin � u�Umin

�
: ð3Þ

The other challenge with the state space Eq. (2) is the

perturbations existing in gðx; _x; dÞ, making the system

model improper for the constrained controller design. One

strategy to deal with this challenge is using the estimation

methods. In this paper, the ESO is used to upgrade the

nominal model toward the actual system. In this high-gain

observer, y ¼ x1 is considered as the system output.

The structure of the ESO-based constrained control

system is shown in Fig. 1. By using the information of

measurable output, the ESO aims to estimate the uncer-

tainty term gðx; _x; dÞ to minimize the difference between

the nominal model and the actual model. Consequently,

assuming an reliable dynamic model for the system, the

constrained controller is initially designed based on the

model outlined in (2). Subsequently, the supervisor updates

the control law by utilizing information received from the

observer. Therefore, the ESO-based constrained controller

adapts itself with reality to track the desired trajectories.

2.1 Constrained Controller Design

In this section, the control law is developed using an

optimization approach by assuming that the perturbation

term gðx; _x; dÞ is known. In this approach, the quadratic

point-wise performance index defined as a weighted com-

bination of the current control signal and the next tracking

error is considered to be minimized as Mirzaeinejad and

Mirzaei (2011); Jafari et al. (2015)

J ¼ 1

2
½x1ðt þ hÞ � x1dðt þ hÞ�2 þ 1

2
wu2; ð4Þ

in which h is the prediction time, and x1d is the desired

output. The weighting factor w shows the relative impor-

tance of control energy and tracking accuracy. By

increasing w, the control input is reduced at the cost of

decreasing the tracking accuracy. The term x1 t þ hð Þ is

approximated by the qth-order Taylor series expansion at

the present time t

x1ðt þ hÞ ¼ x1ðtÞ þ h _x1ðtÞ þ
h2

2!
€x1ðtÞ þ :::þ hq

q!
x
ðqÞ
1 ðtÞ:

ð5Þ

For the control algorithm, the order of Taylor series

expansion in (5) is limited to the relative degree of the

expanded control variable (Moradi Nerbin et al. 2017; Lu

1995). The second-order system has the relative degree,

q ¼ 2, for x1 because the control input u appears explicitly

in the second derivative of x1 for the first time according to

the system model defined by (1) and (2).

Fig. 1 Block diagram of the ESO-based controller
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Remark 1 By limiting the expansion order equal to the

relative degree of the control variable, the control input is

supposed to be constant in the predictive interval between t

and t þ h. This means zero control order and is sufficient

for control variables with low relative degrees. Increasing

the control order causes complexity in the calculation of

the control input (Mirzaeinejad et al. 2016; Malekshahi and

Mirzaei 2012).

By considering the perturbation term g as a known

factor, in the following, the output and its desired value is

expanded by the second-order Taylor series:

x1ðt þ hÞ ¼ x1ðtÞ þ hx2ðtÞ þ
h2

2
ðgþ buÞ: ð6Þ

x1dðt þ hÞ ¼ x1dðtÞ þ h _x1dðtÞ þ
h2

2
€x1dðtÞ: ð7Þ

By substituting Eqs. (6) and (7) into (4), the performance

index is rewritten in terms of current states and variables as

J ¼ 1

2
ðx1 � x1dÞ þ hðx2 � _x1dÞ þ

h2

2
ðgþ bu� €x1dÞ

� �2

þ 1

2
wu2:

ð8Þ

By using the system dynamics described by Eq. (1), the

performance index (8) is written in terms of the system

states and input in the present time. Accordingly, the

optimal control law for a second-order system is obtained

by applying the subsequent necessary condition for opti-

mality, which relates to the quadratic performance index

(8):

oJ

ou
¼ 0; ð9Þ

which leads to

u ¼ � 2j
bh2

e1 þ hðx2 � _x1dÞ þ
h2

2
ðg� €x1dÞ

� �

; ð10Þ

where eðtÞ ¼ x1 � x1d, and the reduction factor, which

incorporates the control weighting factor, is defined as

follows:

j ¼ 1

1 þ 4h�4b�2w
; ð11Þ

where 0� j� 1 for w� 0. By increasing the weighting

factor w, the reduction factor j is reduced to limit the

control input. When w ¼ 0, then j ¼ 1. In this case, the

control input with no intentional reduction is given as

u ¼ � 2

bh2
e1 þ hðx2 � _x1dÞ þ

h2

2
ðg� €x1dÞ

� �

: ð12Þ

Using the control law (12) in the model (2), the closed loop

dynamics is achieved as

_x2 ¼ f � 2

h2
e1 þ hðx2 � _x1dÞ þ

h2

2
ðg� €x1dÞ

� �

; ð13Þ

that leads to the following error dynamics:

€e1 þ
2

h
_e1 þ

2

h2
e1 ¼ 0: ð14Þ

Remark 2 By deriving the control laws (10) and (12) in the

closed forms, the prediction time h is considered as a free

parameter of the control law, not a step size of integration.

This free parameter should be adjusted to achieve a desired

behaviour for the closed loop system. Since the parameter

h is selected positive, the linear error dynamics (14) is

exponentially stable. This result indicates that the trunca-

tion error in Taylor series expansion with the order limited

to the relative degree does not influence the control per-

formance as mentioned in Remark 1. The parameter h also

influences the time constant of the closed-loop system (14).

The poles of the closed loop system (14) are determined as
�1
h ð1 þ jÞ. It is seen that, h affects the place of poles and

consequently the system response. Faster responses are

achieved with smaller values of h.

For the constrained control problem, the performance

index (8) is minimized subject to the satisfaction of

constraints (3). One strategy for restricting the control input

within a specified range is the increasing of the weighting

factor w in the control law (10). For a constant value of w,

the control input is decreased during the process at the cost

of increased tracking errors at all times even when the

control input is within the range.

As an alternative optimal approach, the constrained

controller is developed in which the input constraint is

considered in finding the control law. To achieve this aim,

the expanded performance index (8) with w ¼ 0 has to be

minimized in the presence of the input constraints (3). As a

result, the following constrained optimization problem

needs to be solved to determine the optimal control law:

minimize JðuðtÞ; xðtÞ; h;w ¼ 0Þ

subject to Umin � u�Umax:
ð15Þ

The analytical solution to the constrained optimization

problem (15) is achieved by applying the KKT theorem.

Accordingly, the input constraint with upper and lower

bounds is written as two constraints in the following

standard form:
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p1ðuÞ ¼ u� Umax;

p2ðuÞ ¼ �uþ Umin:
ð16Þ

Then, the KKT conditions for optimality can be expressed

as Rao (2019):

oJ

ou
þ
X2

i¼0

ki
opi
ou

¼ 0; i ¼ 1; 2 ð17Þ

kipi ¼ 0 i ¼ 1; 2 ð18Þ

pi � 0 i ¼ 1; 2 ð19Þ

ki � 0 i ¼ 1; 2 ð20Þ

where k1 and k2 denote Lagrange multipliers.

Theorem 1 For the affine system (1)–(2) having single

input, u 2 R, with upper and lower constraints, the con-

strained solution leads to the simple saturation of the

unconstrained control.

Proof The KKT conditions (17) to (20) include some

equalities and inequalities that are solved simultaneously

by considering activity or inactivity of constraints.

According to (18), the inactive constraints imply pi � 0 and

ki ¼ 0, while for active constraints ki 6¼ 0 and pi ¼ 0. In

the mentioned problem, both constraints cannot be active

simultaneously. Therefore, when one of the constraints

becomes active, its Lagrange multiplier takes a non-zero

value, and the control input is readily determined using the

constraint equation with equality sign ðpi ¼ 0Þ, as specified

in (18). Accordingly, the non-zero Lagrange multiplier

corresponding to inactive constraint can be calculated by

solving Eq. (17). During instances when none of the con-

straints are active, all Lagrange multipliers are zero,

resulting in an optimal solution without constraints. Con-

sequently, the constrained control law for the second-order

system is derived as follows:

ucons ¼
Umax if p1 � 0; p2\0

uunc if p1 � 0; p2 � 0

Umin if p1\0; p2 � 0

8
><

>:
ð21Þ

where uunc is the unconstrained control law presented in

(12). Note that for the second-order system (1)–(2), the

form of performance index (4) or (8) is parabolic having a

single minimum. Therefore, a feasible solution with

bounded Lagrange multipliers exist for KKT conditions.

According to the error dynamics (14), the unconstrained

control system with w ¼ 0 is exponentially stable. On the

other hand, from Theorem 1, the optimal constrained

solution given in (21) is a simple saturation of the

unconstrained optimal control law with w ¼ 0. This

solution can be achieved, equivalently, by online regulating

of the weighting factor w in the control law (10). In other

words, the saturated control input (21) can be achieved by

tuning the reduction factor in the unconstrained control law

(10). Consequently, the coefficient j is occasionally

reduced from 1 to avoid surpassing the allowable input

value. The coefficient j corresponding to the maximum

input is derived from (10) as follows:

j ¼ �ucons

bh2

2
e1 þ hðx2 � _x1dÞ þ

h2

2
ðg� €x1dÞ

� ��1

:

ð22Þ

For other times when the control input is within the

admissible range, the coefficient j will be equal to 1, that

means no reduction on the control input.

In the following, two different approaches are conducted

to show the boundedness of tracking error under the control

input (21) when the control input is weighted with a time-

varying variable to decrease j. Equivalently, the bound-

edness of saturation solution is provided.

Theorem 2 The tracking error of generalized position and

its derivative in the closed-loop system under the control

law (10) are uniformly bounded for any 0� j� 1.

Proof The closed loop dynamics in terms of j is derived

by applying Eq. (10) into Eq. (1) as follows:

€e1 þ
2j
h

_e1 þ
2j
h2

e1 ¼ ð1 � jÞðg� €x1dÞ: ð23Þ

The right hand-side of Eq. (23) is created due to the lim-

iting of the control input that causes some tracking errors.

For j ¼ 1, the closed loop dynamics (23) is changed to

Eq. (14) indicating no constraint case. Assuming that the

function g in (2) is bounded and considering jg� €x1dj\C,

Eq. (23) can be written as

€e1ðtÞ þ
2j
h

_e1 þ
2j
h2

e1\ð1 � jÞC: ð24Þ

By using the solution of the second-order differential

equation, followed by the application of the comparison

lemma (Khalil 2001), it is established that

e1 �Ae
�j
h t sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2 � jÞ

p

h
t þ /

 !

þ ð1 � jÞCh2

2j
: ð25Þ

The positive value of h indicates that

lim
t!1

e1ðtÞ ¼
ð1 � jÞCh2

2j
: ð26Þ

Substituting Eq. (11) in (26) leads to

lim
t!1

e1ðtÞ ¼
2Cw
h2b2

: ð27Þ

From equation (27), it can be deduced that, for any spec-

ified �[ 0, selecting the prediction time h as h2 [ 2wC
b2�
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guarantees the convergence of e1 towards the following

compact set:

je1j\�: ð28Þ

To assess the boundedness of _e1ðtÞ for the second-order

system, one can examine a potential candidate for the

Lyapunov function in the form of

V ¼ j
h2

e2
1 þ

1

2
_e2
1 [ 0: ð29Þ

The first time derivative of V gives

_V ¼ _j
h2

e2
1 þ

2j
h2

e1 _e1 þ _e1 €e1: ð30Þ

When the control input reaches the constraint, j is equiv-

alently reduced from 1 to decrease the control input, so _j in

Eq. (30) becomes negative until the saturation is removed

and the system returns to the unconstrained solution. For

the un-constrained solution, j ¼ 1 and _j ¼ 0. Therefore,

Eq. (30) is simplified to

_V ¼ � 2

h
_e2
1\0; ð31Þ

that indicates the asymptotic stability of closed loop sys-

tem. For the saturated times, considering a negative value

for _j and replacing Eq. (23) into (30) gives

_V ¼ _e1ð 1 � jð Þ g� €x1dð ÞÞ � _jj j
h2

e2
1 þ

2j
h

_e2
1

� �

: ð32Þ

Considering the upper bound for ðg� €x1dÞj j\C, gives

_V � j _e1jð1 � jÞC� _jj j
h2

e2
1 þ

2j
h

_e2
1

� �

� j _e1jð1 � jÞC� 2j
h

_e2
1: ð33Þ

Further investigation on the inequality (33) is done by

applying the inequality ab� na2 þ b2

4n for any real a, b and

n[ 0. By considering n ¼ j
h [ 0

_V � j
h
_e2
1 þ

hC2 1 � j2ð Þ
4j

� 2j
h

_e2
1; ð34Þ

_V � hC2ð1 � jÞ2

4j
� j

h
_e2
1: ð35Þ

Using (28) and (29), the inequality (35) is rewritten as

_V � � 2j
h
V þ 2j2

h3
�2 þ hC2ð1 � jÞ2

4j
: ð36Þ

By taking 2j2

h3 j�j2 þ hC2ð1�jÞ2

4j ¼ N, the inequality (36) is

written as

_V � � 2j
h
V þ N: ð37Þ

Applying the comparison lemma, the solution of the first-

order differential equation results in:

VðtÞ� Vð0Þ � hN

2j

� �

e
�2j
h t þ hN

2j
: ð38Þ

Due to the positive values of j and h, the Lyapunov

function remains bounded as can be observed

lim
t!1

VðtÞ ¼ hN

2j
: ð39Þ

The boundedness of the Lyapunov function (29), coupled

with the convergence of the error e1 within a compact set

as indicated by (28) result the boundedness of _e1.

Remark 3 As deduced from Theorem 2, it is imperative to

avoid selecting an overly small prediction time h to ensure

the system’s tracking error remains within accept-

able bounds under input constraints. On the other hand, the

smaller value for h leads to the faster response of the

systems as indicated in Remark 2. Therefore, a reasonable

value for the prediction time should be selected. This issue

will be investigated in the results section.

2.2 Design of ESO

In this section, the ESO algorithm is utilized to estimate the

perturbation term gðx; _x; dÞ for using in the constrained

control law developed in the previous section. By defining

the perturbation term as an extera state x3 ¼ gðx; _x; dÞ, the

augmented state-space model of the system can be

rewritten as

_x1 ¼ x2;

_x2 ¼ x3 þ bu;

_x3 ¼ !ðtÞ;
y ¼ x1

8
>>><

>>>:

ð40Þ

The equations of ESO are presented as

_̂x1 ¼ x̂2 � X1ðx̂1 � yÞ
_̂x2 ¼ x̂3 � X2ðx̂1 � yÞ;
_̂x3 ¼ �X3ðx̂1 � yÞ;

8
><

>:
ð41Þ

in which Xi ði¼1;2;3Þ represent the observer gains. With the

appropriate selection of gains, the observer provides a good

estimate for the system states, encompassing the additional

state x3. The error dynamics is derived by subtracting (41)

from (40) as

_~e1 ¼ ~e2 � X1 ~e1;

_~e2 ¼ ~e3 � X2 ~e1;

_~e3 ¼ �X3 ~e1 þ !ðtÞ;

8
><

>:
ð42Þ

in which ~ei ¼ x̂i � xi ði ¼ 1; 2; 3Þ represents the error of

estimation. According to Eq. (42), the error dynamics is

linear. Therefore, by selecting appropriate gains, the

observer stability is assured, assuming that !ðtÞ ¼ _g
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remains bounded. The following theorem gives a

scheme for selecting the gains Xi ði¼1;2;3Þ to produce the

desired response.

Theorem 3 By selecting X1 ¼ 3=�, X2 ¼ 3=�2 and

X3 ¼ 1=�3, in which �[ 0 is an adjustable parameter, the

estimation error dynamics described by (42) remains

bounded under the condition of bounded !ðtÞ.

Proof By selecting X1 ¼ 3=�, X2 ¼ 3=�2 and X3 ¼ 1=�3

in (42), the resulting dynamics can be expressed as

_~e1

_~e2

_~e3

2

6
4

3

7
5 ¼ W

~e1

~e2

~e3

2

6
4

3

7
5� G!ðtÞ; ð43Þ

where

W ¼
�3=� 1 0

�3=�2 0 1

�1=�3 0 0

2

4

3

5

and G ¼
0

0

1

2

4

3

5. The eigenvalues of W are found as ki ¼

�1=� ði ¼ 1; 2; 3Þ. Consequently, the matrix W will be

Hurwitz for a given positive �, ensuring the bounded-input

bounded output (BIBO) stability for the error dynamics.

Solving (43) yields

~eðtÞ ¼ eEt ~eð0Þ þ
Z t

0

eEðt�sÞG!ðsÞds; ð44Þ

where ~e ¼ ½~e1 ~e2 ~e3�T . Since � is a positive value

lim
t!1

~eðtÞ ¼
Z t

0

eEðt�sÞG!ðsÞds: ð45Þ

Based on Eq. (45), for any given �[ 0 and under the

assumption of bounded !ðuÞ, the estimation error con-

verges to a compact set Chen (1984).

Remark 4 The positioning of eigenvalues and the con-

vergence speed of the ESO as a high-gain observer, are

impacted by the adjustable parameter �. Any decrease in

the value of � leads to a fast response for the observer.

However, decreasing the adjustable parameter � increases

the sensitivity to modeling errors and measurement noise,

potentially resulting in increased estimation errors. More-

over, there is a risk of numerical errors during the solution

of the set of differential equations at each sampling time

for smaller values of �.

3 Case Study (A Lever Arm)

According to Fig. 2, a lever arm consisting of a massless

arm with two lumped masses at the end-points is examined

as a case study for the second-order system.

In this structure, the kinematic and potential energies are

obtained as follows:

T ¼ 1

2
Io _h

2
; ð46Þ

Vg ¼ ðm1r1 � m2r2Þg sin h: ð47Þ

Here, Io represents the moment of inertia, m1 and m2 are

the lumped masses located at the end points of the arm, and

h represents the angular displacement of the arm. The

governing equation for the lever arm using the Lagrange

method is given as

d

dt

oT

o _h

� �

� oT

oh
þ oVg

oh
¼ s; ð48Þ

which leads to

Io€hþ GðhÞ ¼ s; ð49Þ

where Io ¼ m1r
2
1 þ m2r

2
2 is the lever arm inertia and G ¼

ðm1gr1 � m2gr2Þcosh denotes the gravity term. s represents

the torque of motor. By defining h ¼ x1, _h ¼ x2, the state-

space model of the lever arm is formulated as

_x1 ¼ x2;

_x2 ¼ f ðxÞ þ as;

	

ð50Þ

where

f ðxÞ ¼ �I�1
o G; a ¼ I�1

o : ð51Þ

3.1 Simulation Results

In the simulation study, the dynamic model of the lever

arm system is assumed to be accurate. Therefore, the

Fig. 2 The schematic of the lever arm
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constrained controller is examined without the ESO

observer. The parameters of the lever arm are taken as

m1 ¼ 0:5 (kg), m2 ¼ 0:6 (kg), r1 ¼ 0:14 (m), r2 ¼ 0:15

(m). Also, the admissible range for the control input is

considered as �0:98� s� 0:98 (N m). Three distinct pre-

diction times, including h ¼ 0:05, h ¼ 0:2, and h ¼ 0:4,

are examined for the proposed control system.

At first, the outcomes of the unconstrained control

strategy for three distinct prediction times are illustrated in

Fig. 3. Note that, the input constraint is dropped in these

results. As mentioned before, the unconstrained version of

the control strategy performs as a feedback linearization

control. The results confirm that a reduction in the pre-

diction time h leads to a decrease in both settling time and

the speed of responses. However, this reduction is

accompanied by an increase in torque magnitudes. The

settling time for h ¼ 0:05 is considerably smaller compared

to the other cases at the cost of higher control inputs. The

obtained results are in full alignment with the outcomes of

Remark 2 in Sect. 2 for the unconstrained control. How-

ever, the computed torques for the unconstrained controller

exceed admissible ranges and are unfeasible for practical

realization. To decrease the applied torques, the prediction

time h seems to be increased. However, it negatively affect

the speed of the response. According to the results of

Fig. 3, the settling time for h ¼ 0:4 is high while the

control input is still out of the specified range.

Consequently, the unconstrained controller with high val-

ues of h is found to be inefficient for limiting the control

input and the application of the constrained controller is

required. Note that, h ¼ 0:4 is removed at the rest of the

results because of its high settling time.

The constrained controller is evaluated in the simulation

results, considering the maximum allowable torques that

the actuator can apply. The results for h ¼ 0:05 and 0.2 are

shown in Fig. 4. Since the unconstrained controller

demands larger control input for lower prediction time

value ðh ¼ 0:05Þ, the constrained controller often encoun-

ters more saturations. This result is in complete agrement

with the result of Theorem 2. Consequently, it is crucial to

choose a suitable prediction time that is neither too large

nor too small. The suitable value for the simulated system

can be found h ¼ 0:2. The system slows down for higher

values like h ¼ 0:4, and the control input becomes more

saturated for smaller values like h ¼ 0:05. Equivalently, it

is obvious that the reduction factor is changed between 0

and 1 according to Fig. 4d. When j ¼ 1, there is no limi-

tation on the control signal. However, during saturation, the

factor j is decreased to reduce the control input s.

To assess the effectiveness of the suggested constrained

control approach in comparison to alternative constrained

strategies, the achieved outcomes are contrasted with those

of the conventional NMPC outlined in Appendix 1, con-

sidering time-varying trajectories. Both control methods
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Fig. 3 The simulation results of the unconstrained control for step trajectory, a Angular displacement, b Tracking error, c Control input
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utilize identical non-linear lever arm models and con-

straints. According to Fig. 5, the performance of two

methods in satisfying the constraints are similar. However,

the simulation times for the proposed controller and NMPC

running on the same PC are 1.75 (sec) and 72.8 (sec),

respectively. This result indicates that the proposed con-

strained controller is much faster than the NMPC. This is

for the reason that the NMPC, unlike the proposed method,

uses the online optimization for calculation of the control

inputs at each sampling time. These comparative results

indicate the capability of the proposed method for online

implementation.

In order to show the independency of the proposed

constrained controller on the selected value for the pre-

diction time (h ¼ 0:2), the controller is tested under the

harmonic trajectories according to Fig. 6. The results

indicate the superior performance of the proposed method

in tracking the mentioned trajectory with admissible con-

trol inputs. Also, the simulation times are 1.73 (s) and

85.05 (s) for the proposed method and NMPC, respec-

tively. Therefore, the proposed method is fast and easy to

implement compared to the common NMPC method.

3.2 Experimental Evaluation of the Proposed
Control System

To implement the proposed control system in the real

environment, a platform for a lever arm is designed and

fabricated. The fabricated platform containing a lever-arm

with two end-point masses is shown in Fig. 7. The derive

pulleys and conveyor tail connect the DC motor to the arm.

The MEMS-grade MPU6050 inertial measurement unit

(IMU) is employed to measure the angular velocity of the

arm at a frequency of 50 Hz, as depicted in Fig. 7. Addi-

tionally, the HN3806 two-phase encoder provides the

angular displacement of the arm with an accuracy of 0.3

degrees. The measured data sent to the Simulink software

through the serial connection, is used to calculate the

control signal. Finally, the pulse-width modulation (PWM)

input is sent to a 12-volt DC motor to complete the hard-

ware in the loop structure. In this setup, two Arduino UNO

boards serve as input–output (IO) hardware, while the

analysis and calculation of the control input are executed

on a laptop computer equipped with an Intel(R) Core(TM)

i7 CPU 6500U running at 2.50 GHz and 4 MB cache. Note

that, the admissible range of the control input due to the
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Fig. 4 The simulation results of the constrained control for step trajectory, a Angular displacement, b Tracking error, c Control input,

d Reduction factor
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Fig. 5 The simulation results of the constrained control for time-varying trajectory in comparing with NMPC, a Angular displacement,

b Tracking error, c Control input
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Fig. 6 The simulation results of the constrained control for harmonic trajectory in comparing with NMPC, a Angular displacement, b Tracking

error, c Control input
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limited capacity of actuator is considered as

�0:98� s� 0:98 (N m). On the another hand, in simula-

tion studies, the impact of the time-delay is dropped.

However in the real system, time delay from the sensor

signal and control input can be clearly seen.

3.2.1 Results Without Perturbations

In this section, the results of the proposed controller are

presented by assuming no external disturbances and para-

metric uncertainties. Additionally, the gyroscope data is

incorporated in these results to provide the angular velocity

of the lever-arm. Figures 8 and 9 show the obtained results

of the proposed control method during two desired trajec-

tories. The results clearly show a good performance in

tracking the desired trajectories by the proposed control

method. It is necessary to say that when the reduction

factor is equal to one, the control input is in the admissible

range, and there is no reduction in the control input.

However, the reduction factor is reduced during saturation

to limit the control input s. The NMPC algorithm used as a

comparative method in the simulation studies is not

applicable for the online implementation in the experi-

mental setup because of its too high running time.

3.2.2 Results with Perturbations

In the following, the effectiveness of the proposed ESO-

based constrained controller is assessed by incorporating

20% parametric uncertainty in the lever arm lengths and an

Fig. 7 Experimental setup
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Fig. 8 The experimental results of the constrained control for the periodic path, a Angular displacement, b Tracking error, c Control input,

d Reduction factor
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Fig. 9 The experimental results of the constrained control for time-varying path, a Angular displacement, b Tracking error, c Control input,

d Reduction factor
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Fig. 10 The experimental results of the ESO-based controller for different �, a Angular displacement, b Tracking error, c Control input,

d Reduction factor
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external disturbance d ¼ 0:3 sinð0:5tÞ. The pseudo-code of

the proposed hardware in the loop mechanization is out-

lined in Algorithm 1. The results of the ESO-based con-

strained controller for three values of the free parameter �

in the observer are compared in Fig. 10. As illustrated in

Fig. 10, for a higher value for � ¼ 0:1, the controller

couldn’t properly follow the desired path. This shows that

larger values of � may not effectively provides the

dynamics of lever-arm behavior. Based on Remark 4, a

decrease in the free parameter � leads to a substantial

reduction in the estimation error; nevertheless, there is

some flexibility in reducing the value of �. When the value

of � is much smaller, as in the case of � ¼ 0:01, the system

becomes sensitive to modeling and measurement errors,

resulting in fluctuations as illustrated in Fig. 10b. Numer-

ical errors may also arise when employing much smaller

values for the observer gain. The control inputs associated

with three different values of � are depicted in Fig. 10c.

The outcomes shows that the fluctuations observed for � ¼
0:01 result in a more saturated control input. Therefore, �

should be chosen appropriately, avoiding both excessively

large and excessively small to mitigate substantial errors

and fluctuations in the system responses and control input.

Based on the results, the choice of � ¼ 0:02 is considered

reasonable for the present application.

Algorithm 1 The proposed control method pseudo-code

Figure 11 illustrates a comparison among the estimated

states and the unknown term (x̂3) for three different free

parameters of �. It is clearly seen that, reducing the

parameter � until an acceptable range can reduce the esti-

mation errors. Note that, the gyroscope data is used to

calculate the estimation error of the second state ~e2.

To evaluate the proposed method under various condi-

tions, a time-varying reference trajectory is used. The

outcomes are then compared with those obtained from the

controller without utilizing the estimated unknown term.

Figure 12 illustrates that the ESO-based controller out-

performs the controller without ESO, demonstrating sig-

nificantly enhanced performance. This is attributed to the

fact that the estimator tries to improve the precision of the

controller by incorporating the perturbation term. There-

fore, the ESO-based controller, employing the ESO,

demonstrates superior performance in reducing the track-

ing error. In addition, the controller without ESO brings

high control input to compensate for the perturbations.

Therefore, the difference between the ESO-based con-

troller and the controller without ESO is emphasized in the

tracking accuracy of the reference path with lower control

efforts. This is because the ESO-based method, as an

adaptive control approach, utilizes perturbation informa-

tion to calculate the control input at each sampling time. In

contrast, the controller without ESO attempts to reduce the

tracking error by increasing the control effort.

To assess the efficiency of the proposed observer-based

controller in compensating for the perturbations, the

obtained results are compared with those extracted by an

adaptive back-stepping controller (ABSC), addressed in the

Appendix. In this case, the periodic path is determined.

Note that, the amplitude and frequency of the external

disturbance are unknown for both controller. According to

Fig. 13, the tracking error of the proposed ESO-based

controller is lower than that of the ABSC. The ABSC

controller couldn’t estimate the perturbation term accu-

rately, unlike the ESO. Note that the adaptive control laws

like ABSC often require primary information of the

unknown terms.

4 Conclusion

In this study, a nonlinear optimal controller with input

constraints is analytically designed for a class of second-

order systems. The optimality of the constrained solution is
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Fig. 11 The estimation results for different �, a Angular displacement error, b Angular velocity error, c Unknown term
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Fig. 12 The comparative experimental results of the controller with and without ESO for time-varying path, a Angular displacement, b Tracking

error, c Control input, d Reduction factor
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provided by solving an optimization problem based on the

response prediction of nonlinear systems. The stability of

the constrained controller is analyzed to show the conver-

gence of the tracking errors towards the compact sets in

terms of the prediction time. Consequently, it is essential to

strike a balance when selecting the prediction time,

avoiding both excessively large and excessively small

values. Opting for a prediction time that is too large leads

to slow responses, while choosing a prediction time that is

too small results in more saturated control input, deterio-

rating the responses of the system. The ESO is employed to

compensate for uncertainties and external disturbances,

updating the proposed constrained controller to match real

conditions. Simulation studies are carried out for a lever

arm, and the proposed control schemes have been com-

pared with NMPC. The results show that the proposed

controller is much faster than NMPC. Therefore, it is able

to be online implemented on a fabricated platform con-

taining a lever arm. The proposed control method is veri-

fied with different tests. The results demonstrate the

efficacy of the proposed control method in minimizing

tracking errors in the presence of input limitations. The

comparative results with the ABSC indicate superior

performance for the proposed method in compensating for

uncertainties and external disturbances. The extension of

the proposed methodology to address more complex sec-

ond-order systems with multi inputs opens avenues for

future research and improvements.

Appendix 1: Nonlinear Model Predictive
Control Algorithm

The nonlinear model predictive control (NMPC) is an

conventional effective method to constrained control of

nonlinear systems. In order to show the performance of the

proposed constrained controller for the lever arm, the

results are compared with a constrained NMPC. The

overall structure of constrained NMPC algorithm is shown

in Fig. 14. According to Fig. 14, the NMPC algorithm

includes, prediction block predicts the future states, cost

function block, and minimization block that minimize the

cost function in the presence of state constraints. The dis-

crete model of lever arm is used in this algorithm.

According to Fig. 15, the control and predictive horizon of

the NMPC algorithm is chosen 5 and 10 steps, respectively.
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Fig. 13 The comparative experimental results between the proposed method and ABSC for the time-varying path, a Angular displacement,

b Tracking error, c Control input
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Consequently, when k ¼ 0, the control horizon will be

from k ¼ 0 to k ¼ 4 and the predictive horizon will be

from k ¼ 1 to k ¼ 10.

Appendix 2: Adaptive Back-stepping
with Tuning Function for Strict Feedback
System

An adaptive controller is formulated by combining a

parameter estimator, which furnishes estimations of

unknown parameters, with a control law.

_x1 ¼ x2 þ /T
1 ðx1Þhþ w1ðx1Þ;

_x2 ¼ auþ /T
2 ðxÞhþ w2ðxÞ;

(

ð52Þ

where h is unknown constant, /i and wi, i ¼ 1; 2 are known

functions, sign(a) is known but a is an unknown function.

Step 1 defining the change of coordinates as

z1 ¼ x1 � xr; ð53Þ

z2 ¼ x2 � a1 � _xr; ð54Þ

which a1 is virtual control. Derivative of the tracking error

z1 is calculated as

_z1 ¼ _x1 � _xr ¼ x2 þ /T
1hþ w1 � _xr

¼ z2 þ a1 þ /T
1hþ w1:

ð55Þ

First Lyapunov function is defined as

V1 ¼ 1

2
z2

1 þ
1

2
~h
T
C�1~h; ð56Þ

where ~h ¼ h� ĥ and C is an arbitrary positive definite

matrix.

_V1 ¼ z1 _z1 � ~h
T
C�1 _̂h: ð57Þ

Substituting (55) in (57)

_V1 ¼ z1 z2 þ a1 þ /T
1 ĥþ w1


 �
� ~h

T
C�1 _̂h: ð58Þ

Choosing
_̂h ¼ C/1z1 and a1 ¼ �c1z1 � /T

1 ĥ� w1 leads to

_V1 � 0, where c1 and ĥ are a positive constant and an

estimate of h, respectively.

Considering s1 ¼ C/1z1 as first tuning function, first

derivative of Lyapunov function is rewritten as

_V1 ¼ z1z2 � c1z
2
1 � ~h

T
C�1 _̂h� s1


 �
: ð59Þ

Step 2 Derivative of the second tracking error z2 is cal-

culated as

_z2 ¼ _x2 � _a1 � €xr

¼ auþ /T
2hþ w2 �

oa1

ox1

ðx2 þ w1Þ

� oa1

ox1

/T
1h�

oa1

oĥ

_̂h� €xr:

ð60Þ

Second lyapunov function is proposed as

V2 ¼ V1 þ
1

2
z2

2 þ
jaj
c

~p2 ð61Þ

where ~p ¼ p� p̂ and p ¼ 1
a and c is a constant value. First

derivative of this Lyapunov function is written as

_V2 ¼ _V1 þ z2 _z2 �
jaj
c

~p _̂p

¼ z1z2 � c1z
2
1 � ~h

T
C�1 _̂h� s1


 �

þ z2 auþ /T
2hþ w2 �

oa1

ox1

ðx2 þ w1Þ �
oa1

ox1

/T
1h�

oa1

oĥ

_̂h� €xr

� �

þ ~h
T
C�1ðs1 � _̂hÞ:

ð62Þ

The aim is to make _V2 � 0. The stabilizing function a2 is

selected as

Fig. 14 The overall structure of NMPC algorithm for a lever arm

Fig. 15 A discrete NMPC approach
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a2 ¼ �c2z2 � z1 � w2 þ
oa1

ox1

ðx2 þ w1Þ

� /2 �
oa1

ox1

/1

� �

ĥ

þ oa1

oĥ
s2;

ð63Þ

where s2 is second tuning function. It is determined as

below

s2 ¼ s1 þ C /2 �
oa1

ox1

/1

� �

z2: ð64Þ

First derivative of error variable can be rewritten as

_z2 ¼ �c2z2 � z1 þ /2 �
oa1

ox1

/1

� �T

~h

þ oa1

oĥ
s2 � _̂h

 �

� a~p�u:

ð65Þ

Substituting (65) in (62) is resulted in

_V2 ¼ �c1z
2
1 � c2z

2
2 þ ~h

T
C�1 s2 � _̂h


 �

� jaj
c

csignðaÞ�uz2 þ _̂p
� 
 ð66Þ

Considering

u ¼ p̂�u; �u ¼ a2 þ €xr ð67Þ
_̂h ¼ s2

ð68Þ

_̂p ¼ �csignðaÞ�uz2; ð69Þ

lead to _V2 � 0:

Declarations

Conflict of interest The authors confirm no conflict of interest in the

research study made and its publishing.

References

Abdi B, Mirzaei M, Mojed Gharamaleki R (2018) A new approach to

optimal control of nonlinear vehicle suspension system with

input constraint. J Vib Control 24(15):3307–3320. https://doi.

org/10.1177/1077546317704598

Bartolini G, Ferrara A, Usai E (1997) Output tracking control of

uncertain nonlinear second-order systems. Automatica

33(12):2203–2212. https://doi.org/10.1016/S0005-

1098(97)00147-7

Chen CT (1984) Linear system theory and design. Saunders college

publishing, Philadelphia

Colombo L, Corradini ML, Ippoliti G, Orlando G (2020) Pitch angle

control of a wind turbine operating above the rated wind speed:

A sliding mode control approach. ISA Trans 96:95–102. https://

doi.org/10.1016/j.isatra.2019.07.002

Cruz-Ortiz D, Chairez I, Poznyak A (2022) Non-singular terminal

sliding-mode control for a manipulator robot using a barrier

Lyapunov function. ISA Trans 121:268–283. https://doi.org/10.

1016/j.isatra.2021.04.001

Ding S, Zheng WX (2016) Nonsingular terminal sliding mode control

of nonlinear second-order systems with input saturation. Int J

Robust Nonlinear Control 26(9):1857–1872. https://doi.org/10.

1002/rnc.3381

Ghiasi AR, Alizadeh G, Mirzaei M (2010) Simultaneous design of

optimal gait pattern and controller for a bipedal robot. Multibody

Syst Dyn 23(4):401–429. https://doi.org/10.1007/s11044-009-

9185-z

Gui H, Jin L, Xu S (2015) Simple finite-time attitude stabilization

laws for rigid spacecraft with bounded inputs. Aerosp Sci

Technol 42:176–186. https://doi.org/10.1016/j.ast.2015.01.020

He D, Li Y, Meng X, Si Q (2022) Anti-slip control for unmanned

underwater tracked bulldozer based on active disturbance

rejection control. Mechatronics 84:102803. https://doi.org/10.

1016/j.mechatronics.2022.102803

Homayounzade M, Keshmiri M (2011) Velocity observer based

controller design for second order systems, with application to

constrained robotic systems. In: 2011 IEEE/ASME international

conference on advanced intelligent mechatronics (AIM). IEEE,

pp 588–593

Hu J, Wang P, Xu C, Zhou H, Yao J (2022) High accuracy adaptive

motion control for a robotic manipulator with model uncertain-

ties based on multilayer neural network. Asian J Control

24(3):1503–1514. https://doi.org/10.1002/asjc.2546

Jafari M, Mirzaei M, Mirzaeinejad H (2015) Optimal nonlinear

control of vehicle braking torques to generate practical stabiliz-

ing yaw moments. Int J Automot Mech Eng 11(1):2639–2653.

https://doi.org/10.15282/ijame.11.2015.41.0222

Jiang B, Chen H, Li B, Zhang X (2022) Sub-fixed-time control for a

class of second order system. Trans Inst Meas Control

44(1):76–87. https://doi.org/10.1177/0142331220921008

Jimenez-Rodriguez E, Sanchez-Torres JD, Gomez-Gutierrez D,

Loukinanov AG (2019) Variable structure predefined-time

stabilization of second-order systems. Asian J Control

21(3):1179–1188. https://doi.org/10.1002/asjc.1785

Khalil H (2001) Nonlinear systems. Prentice-Hall, New Jersey

Kirk DE (2004) Optimal Control Theory (An Introduction). Dover

Publications, INC, New York

Li T, Zhang S, Yang H, Zhang Y, Zhang L (2014) Robust missile

longitudinal autopilot design based on equivalent-input-distur-

bance and generalized extended state observer approach. Proc

Inst Mech Eng Part G J Aerosp Eng 229(6):1025–1042. https://

doi.org/10.1177/0954410014543715

Li DP, Li DJ, Liu YJ, Tong S, Chen CP (2017) Approximation-based

adaptive neural tracking control of nonlinear MIMO unknown

time-varying delay systems with full state constraints. IEEE

Trans Cybern 47(10):3100–3109. https://doi.org/10.1109/TCYB.

2017.2707178

Li J, Ji L, Li H (2021) Optimal consensus control for unknown

second-order multi-agent systems: using model-free reinforce-

ment learning method. Appl Math Comput 410:126451. https://

doi.org/10.1016/j.amc.2021.126451

Li B, Yang X, Zhou R, Wen G (2022) Reinforcement learning-based

optimised control for a class of second-order nonlinear dynamic

systems. Int J Syst Sci 53(15):1–11. https://doi.org/10.1080/

00207721.2022.2074568

Liu D, Wang D, Yang X (2013) An iterative adaptive dynamic

programming algorithm for optimal control of unknown discrete-

time nonlinear systems with constrained inputs. Inf Sci

220:331–342. https://doi.org/10.1016/j.ins.2012.07.006

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2024) 48:1111–1128 1127

123

https://doi.org/10.1177/1077546317704598
https://doi.org/10.1177/1077546317704598
https://doi.org/10.1016/S0005-1098(97)00147-7
https://doi.org/10.1016/S0005-1098(97)00147-7
https://doi.org/10.1016/j.isatra.2019.07.002
https://doi.org/10.1016/j.isatra.2019.07.002
https://doi.org/10.1016/j.isatra.2021.04.001
https://doi.org/10.1016/j.isatra.2021.04.001
https://doi.org/10.1002/rnc.3381
https://doi.org/10.1002/rnc.3381
https://doi.org/10.1007/s11044-009-9185-z
https://doi.org/10.1007/s11044-009-9185-z
https://doi.org/10.1016/j.ast.2015.01.020
https://doi.org/10.1016/j.mechatronics.2022.102803
https://doi.org/10.1016/j.mechatronics.2022.102803
https://doi.org/10.1002/asjc.2546
https://doi.org/10.15282/ijame.11.2015.41.0222
https://doi.org/10.1177/0142331220921008
https://doi.org/10.1002/asjc.1785
https://doi.org/10.1177/0954410014543715
https://doi.org/10.1177/0954410014543715
https://doi.org/10.1109/TCYB.2017.2707178
https://doi.org/10.1109/TCYB.2017.2707178
https://doi.org/10.1016/j.amc.2021.126451
https://doi.org/10.1016/j.amc.2021.126451
https://doi.org/10.1080/00207721.2022.2074568
https://doi.org/10.1080/00207721.2022.2074568
https://doi.org/10.1016/j.ins.2012.07.006


Loxton RC, Teo KL, Rehbock V, Yiu KFC (2009) Optimal control

problems with a continuous inequality constraint on the state and

the control. Automatica 45(10):2250–2257. https://doi.org/10.

1016/j.automatica.2009.05.029

Lu P (1995) Optimal predictive control of continuous nonlinear

systems. Int J Control 62(3):633–649. https://doi.org/10.1080/

00207179508921561

Ma Z, Huang P (2020) Adaptive neural-network controller for an

uncertain rigid manipulator with input saturation and full-order

state constraint. IEEE Trans Cybern 52(5):2907–2915. https://

doi.org/10.1109/TCYB.2020.3022084

Malekshahi A, Mirzaei M (2012) Designing a non-linear tracking

controller for vehicle active suspension systems using an

optimization process. Int J Automot Technol 13(2):263–271.

https://doi.org/10.1007/s12239-012-0023-6

Marzban HR, Razzaghi M (2010) Rationalized Haar approach for

nonlinear constrained optimal control problems. Appl Math

Model 34(1):174–183. https://doi.org/10.1016/j.apm.2009.03.

036

Mashayekhi S, Ordokhani Y, Razzaghi M (2012) Hybrid functions

approach for nonlinear constrained optimal control problems.

Commun Nonlinear Sci Numer Simul 17(4):1831–1843. https://

doi.org/10.1016/j.cnsns.2011.09.008

Miranda-Colorado R (2019) Finite-time sliding mode controller for

perturbed second-order systems. ISA Trans 95:82–92. https://

doi.org/10.1016/j.isatra.2019.05.026

Mirzaeinejad H, Mirzaei M (2011) A new approach for modelling and

control of two-wheel anti-lock brake systems. Proc Inst Mech

Eng Part K J Multi-body Dyn 225(2):179–192. https://doi.org/

10.1177/2041306810394937

Mirzaeinejad H, Mirzaei M, Kazemi R (2016) Enhancement of

vehicle braking performance on split-l roads using optimal

integrated control of steering and braking systems. Proc Inst

Mech Eng Part K J Multi-body Dyn 230(40):401–415. https://

doi.org/10.1177/1464419315617332

Moradi Nerbin M, Mojed Gharamaleki R, Mirzaei M (2017) Novel

optimal control of semi-active suspension considering a hys-

teresis model for MR damper. Trans Inst Meas Control

39(5):698–705. https://doi.org/10.1177/0142331215618446

Nguyen VC, Vo AT, Kang HJ (2020) A non-singular fast terminal

sliding mode control based on third-order sliding mode observer

for a class of second-order uncertain nonlinear systems and its

application to robot manipulators. IEEE Access 8:78109–78120.

https://doi.org/10.1109/ACCESS.2020.2989613

Rafatnia S, Mirzaei M (2022) Estimation of reliable vehicle dynamic

model using IMU/GNSS data fusion for stability controller

design. Mech Syst Signal Proc 168:108593. https://doi.org/10.

1016/j.ymssp.2021.108593

Rafatnia S, Mirzaei M (2022) Adaptive estimation of vehicle velocity

from updated dynamic model for control of anti-lock braking

system. IEEE Trans Intell Transp Syst 23(6):5871–5880. https://

doi.org/10.1109/TITS.2021.3060970

Rao SS (2019) Engineering optimization: theory and practice. John

Wiley Sons, Hoboken

Razmjooei H, Shafiei MH, Palli G, Arefi MM (2022) Nonlinear finite-

time tracking control of uncertain robotic manipulators using

time-varying disturbance observer-based sliding mode method.

J Intell Robot Syst 104(2):36. https://doi.org/10.1007/s10846-

022-01571-x
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