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Abstract
This paper investigates the problem of adaptive fuzzy composite nonlinear feedback integral sliding mode control for the

synchronization of a master–slave chaotic Rikitake system based on the Takagi–Sugeno model with actuator saturation,

uncertainties, and exogenous disturbances. The uncertainty is described using an unknown norm-bounded form, and its

unknown parameters are estimated using an adaptive technique. The stability, robustness, and convergence of synchro-

nization errors are ensured by the proposed controller with unconstrained and constrained control signals. Besides, by

solving the linear matrix inequalities approach, the control input parameters are obtained. In conclusion, simulation results

are shown to illustrate the effectiveness of the proposed method.

Keywords Chaos synchronization � Rikitake system � Adaptive fuzzy composite nonlinear feedback integral sliding mode

(AFCNFISM) controller � LMI constraints � Adaptive mechanism � Actuator saturation

1 Introduction

Controlling chaos and synchronization is a significant issue

in the control community. In nature, chaos systems exhibit

complicated behavior, including very sensitive dependence

on initial conditions and parameter variations. In 1990,

Pecora and Carroll were the first to introduce synchro-

nization, and research on chaos control and chaos syn-

chronization has advanced over the past two decades.

Synchronization is an important phenomenon and closely

connected to chaos (Alfi 2012; Pereira-Pinto et al. 2004).

Generally, there are two methods of coupling

synchronization, unidirectional coupling and bidirectional

coupling, which may have different synchronized states.

Unidirectional coupling synchronization, such as commu-

nication with chaos, considers a drive (master) system and

a response (slave) system, which may generally be chaotic

but not necessarily identical. However, bidirectional cou-

pling synchronization can be achieved by introducing the

state of a system to another system, where each system can

be considered as a response system (Bhaskar et al. 2021;

Jia 2008; Korneev et al. 2021). In chaotic synchronization,

two chaotic systems with appropriate coupling create

similar oscillations. The chaotic synchronization issue

implies that, depending on various initial conditions

between the master and slave systems, it is feasible to

develop a mechanism to bring the states of the systems into

synchrony. Several master–slave synchronization tech-

niques have been introduced. The key challenge in chaotic

applications is chaos control and chaotic system synchro-

nization. Regardless of their potential applicability in sci-

ence and technology, chaotic systems may be controlled

and synchronized. For the robust stability of disturbed

nonlinear systems, a new barrier function-based adaptive

non-singular terminal sliding mode control (SMC)

& Seyed Mohsen Seyed Moosavi

m.moosavi@srbiau.ac.ir

Saeed Amiri

s.amiri@iauahvaz.ac.ir

Mehdi Forouzanfar

m.forouzanfar@iauahvaz.ac.ir

Ebrahim Aghajari

aghajari@iauahvaz.ac.ir

1 Department of Electrical Engineering, Ahvaz Branch, Islamic

Azad University, Ahvaz, Iran

123

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2023) 47:1491–1508
https://doi.org/10.1007/s40998-023-00629-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0224-4768
http://crossmark.crossref.org/dialog/?doi=10.1007/s40998-023-00629-2&amp;domain=pdf
https://doi.org/10.1007/s40998-023-00629-2


technique with application to two chaotic systems has been

proposed (Mobayen et al. 2022).

Research on the earth’s geomagnetic fields has a long

history, and geophysicists have traditionally placed a pre-

mium on these readily visible features. Throughout geo-

logical history, the earth’s dipole has reverted to its original

polarity several times. A well-known mechanical model for

analyzing reversals of the earth’s magnetic fields consists

of two-disk dynamo systems proposed by Japanese geo-

physicist Rikitake (Pang et al. 2020). Many studies have

investigated the Rikitake system, including chaos control

and synchronization secure communications (Vafamand

and Khorshidi 2018; Mata-Machuca et al. 2012), SMC (Xu

et al. 2021), time delay (Wang et al. 2019), fractional-order

system (Aghayan and Alfi 2023), and many others.

The issue of actuator saturation is a significant challenge

in real control systems. Input saturation is a common and

unavoidable design issue (Li et al. 2018; Benzaouia et al.

2014). If designers fail to consider the actuator saturation

issue, it may lead to performance deterioration or even

cases of instability in the closed-loop system. Despite the

reason for actuator saturation, analyzing and designing a

system with saturated actuators is an essential topic. This

issue is not only difficult from a theoretical standpoint, but

also significant from a practical perspective. There are two

main approaches to dealing with actuator saturation. The

first technique is to disregard saturation during the first

phase of control design and subsequently implement

solutions to reduce the negative consequences of saturation

(Guo and Yue 2012; Naseri and Asemani 2018). This work

aims to analyze and investigate fuzzy control systems with

actuator saturation scenarios. The fundamental concept

behind these strategies is to offer composite nonlinear

feedback (CNF) (Amiri et al. 2022a) to ensure that the

actuator remains within its limitations. In the face of a

variety of challenges, including uncertainty, disturbance,

time delay, and the saturation of the actuator, a CNF

controller is used to investigate the issue of robust tracking

in uncertain nonlinear time-delay systems (Ghaffari et al.

2022). The integral sliding mode control (ISMC) technique

combined with CNF control is discussed in Hu et al. (2022)

for time-delay uncertain systems, taking into account

challenges such as time-varying delays, actuator saturation,

and external disturbances. Hence, the tracking issue is

addressed subject to constraints, and the controller settings

may be obtained by means of a solution for linear matrix

inequality (LMI).

SMC is a distinct kind of variable structure control

developed by Emel’yanov and coworkers. SMC has

evolved into a mature approach for developing robust

controllers for a diverse range of systems, including non-

linear, uncertain, and time-delay systems. SMC algorithms

have been used extensively for synchronous control to

increase the control accuracy of synchronization due to

their simple design and high robustness. To ensure satis-

factory performance and robustness within a closed-loop

system and to maximize the reaching phase, ISMC has

been considered (Chang et al. 2022; Kumar et al. 2022).

Takagi–Sugeno (TS) fuzzy models are well established

as a universal approximation approach, and a large class of

nonlinear systems may be precisely described as TS sys-

tems. Various techniques exist for constructing a fuzzy

representation or approximation of a nonlinear system. The

sector nonlinearity (SN) approach is used to obtain a TS

model of a system. Furthermore, the TS approach is a

convex combination of linear models that facilitates sta-

bility analysis, modeling of complicated systems, con-

troller design, and other related concepts within the

framework of LMIs (Feng 2018; Zhao et al. 2021). ISMC

methodologies combined with TS systems have been

broadly utilized over the past decade. It has been recog-

nized that TS fuzzy control and the ISMC are synergistic,

since fuzzy control contains a vigorous framework for

representing expert knowledge (Farbood et al. 2021;

Soltanian and Shasadeghi 2022). In some publications, the

well-known TS fuzzy model has been extended to chaos

control and synchronization to describe chaotic models in

state space. However, some parameters of a chaotic system

cannot be precisely determined in advance. If only a

component of a chaotic system is available, i.e., if its

dynamics are known but some or all of its parameters are

unknown, then a synchronization method based on a pre-

cise model of chaotic systems may be infeasible (Haris

et al. 2021; Aghababa and Aghababa 2011). Adaptive

strategies for a number of chaotic systems have been

suggested to address the issue of chaotic synchronization

with undetermined parameters. A high-gain observer-based

adaptive output feedback design was investigated by Yang

and Xu (2022) for the output synchronization issue of an

uncertain nonlinear system. The suggested scheme for

heterogeneous multi-agent systems concurrently takes into

account the input saturation and output constraint. It was

demonstrated that the proposed scheme is capable of

ensuring the boundedness of entire closed-loop signals. In

Giap et al. (2020), by transforming the control synchro-

nization of two nonidentical chaotic systems into a TS

fuzzy system, a new TS fuzzy system was constructed. The

time-varying disturbance elements were eliminated, and

the proposed disturbance observer’s convergence was

shown to be perfect. Zhao et al. (2018) provided an

adaptive control scheme for the H1 synchronization of a

fuzzy coronary artery system when the input is nonlinear

and the parameters are perturbed.

Although the ISMC problem for TS fuzzy systems has

been studied extensively and a number of significant

advances have been published, the use of the adaptive

1492 Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2023) 47:1491–1508

123



fuzzy composite nonlinear feedback integral sliding mode

(AFCNFISM) controller for synchronizing chaotic Riki-

take systems with actuator saturation is not well studied in

the published literature.

In this study, we propose a control strategy based on

AFCNFISM for the synchronization of chaotic systems

with exogenous disturbances and uncertainties pertaining

to actuator saturation. The TS fuzzy model is employed for

modeling the nonlinear chaotic Rikitake system. On the

basis of this fuzzy model, synchronization error dynamics

are deduced, and the stability of the entire synchronization

system is investigated. The subject of setting restrictions on

the magnitude of the control signal is evaluated, and an

ISMC-based controller is developed. By employing Lya-

punov’s theory of stability and employing an AFCNFISM

controller against uncertainties and exogenous distur-

bances, the stability of the Rikitake system is ensured, and

its chaos synchronization errors converge to zero. The

uniformly ultimate boundedness (UUB) (Amiri et al.

2022b) of the closed-loop system of the Rikitake system is

recast as an LMI problem during stability analysis.

The remaining sections of this work are organized as

follows. Section 2 is devoted to the TS fuzzy modeling of

the Rikitake system. The proposed scheme for ISMC and

AFCNFISM is presented in Sect. 3. In Sect. 4, the limited

specifications of the input signal are considered. The results

of the simulation are presented and discussed in Sect. 5,

and Section 6 contains the paper’s conclusion.

Notations: The following notation is employed in this

paper. The inverse and transpose of the matrix are indi-

cated by the superscripts ‘‘-1’’ and ‘‘T,’’ respectively.

k P k signifies the 2-norm of the matrix P. symfPg indi-

cates Pþ PT , and P[ 0. I stands for the identity matrix in

the proper dimensions. kminðPÞ symbolizes the lowest

eigenvalue of the matrix P. The sign and saturation func-

tions are shown below:

signðsÞ ¼

�1 ifs\0

0 ifs ¼ 0

1 if s[ 0

8
>><

>>:

satðuiÞ ¼

�
u if ui\� �

u
u if � �

u � ui � �
u

�
u if ui [ �

u

8
>><

>>:

2 Problem Description and Preliminaries

In 1958, the Japanese geophysicist Rikitake discovered the

Rikitake dynamo system (Llibre and Messias 2009). As

seen in Fig. 1, the Rikitake system consists of two con-

ductive spinning disks that are joined into two coils. Each

circuit is rotated with an angular velocity by applying an

external constant mechanical torque to the axis. By Fara-

day’s law, a magnetic field traversing a disk creates an

electromagnetic field between the disk’s center and edge,

causing an induced inner current to flow in the opposite

direction, thereby cancelling out the initial current. Thus,

the mathematical model is as follows:

_x1ðtÞ ¼ �lx1ðtÞ þ x2ðtÞx3ðtÞ
_x2ðtÞ ¼ �lx2ðtÞ � ax1ðtÞ þ x1ðtÞx3ðtÞ
_x3ðtÞ ¼ 1 � x1ðtÞx2ðtÞ

8
<

:
ð1Þ

where x ¼ x1; x2; x3ð Þ 2 R3 are state variables, and l and a

are positive parameters. As can be seen, this system for

l ¼ 2 and a ¼ 5 with initial condition ð0:2; 0:3; 0:5Þ has a

chaotic behavior, which is shown in Figs. 1, 2, 3, and 4.

To construct the TS fuzzy model of the Rikitake system

(1), the SN approach is presented. This approach is one of

the most frequently utilized approaches for constructing TS

models for fuzzy control design, as it can achieve an exact

fuzzy representation of very complex or chaotic systems.

Considering this feature, the SN approach can be employed

for the Rikitake systems. For the purpose of simplicity, the

state space representation of system (1) can be stated as

follows:

_xðtÞ ¼ AxðtÞ þ C ð2Þ

where x tð Þ ¼ x 1 tð Þx 2 tð Þx 3 tð ÞT2 R3

A ¼
�l 0 x2 tð Þ
x3 tð Þ � a �l 0

�x2 tð Þ 0 0

2

4

3

5; C ¼
0

0

1

2

4

3

5

Define ,1ðtÞ ¼ x2ðtÞ and ,2ðtÞ ¼ x3ðtÞ for the nonlinear

terms. Then we have

A ¼
�l 0 ,1 tð Þ
,2 tð Þ � a �l 0

�,1 tð Þ 0 0

2

4

3

5;C ¼
0

0

1

2

4

3

5

Then, compute the minimum and maximum values of

,1 tð Þ and ,2 tð Þ under x2 tð Þ 2 �1; 1½ � and x3 tð Þ 2 �1; 1½ �.
These values are of the form max,1 tð Þ ¼ 1,

min,1 tð Þ ¼ �1, max,2 tð Þ ¼ 1, and min,2 tð Þ ¼ �1. From

the maximum and minimum values, ,1 tð Þ and ,2 tð Þ can be

represented by

,1 tð Þ ¼ x2 tð Þ ¼ M11 ,1 tð Þð Þ:1 þM21 ,1 tð Þð Þ: �1ð Þ
,2 tð Þ ¼ x3 tð Þ ¼ M12 ,2 tð Þð Þ:1 þM22 ,2 tð Þð Þ: �1ð Þ

where

M11 ,1 tð Þð Þ þM21 ,1 tð Þð Þ ¼ 1

M12 ,2 tð Þð Þ þM22 ,2 tð Þð Þ ¼ 1

Hence, the membership functions can be computed as
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Fig. 1 The Rikitake two-disk

dynamo

Fig. 2 The Rikitake chaotic

attractor in (1), in the x1 � x2

space
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M11 ,1 tð Þð Þ ¼ 1

2
1 þ x2 tð Þð Þ

M21 ,1 tð Þð Þ ¼ 1

2
1 � x2 tð Þð Þ

M12 ,2 tð Þð Þ ¼ 1

2
1 þ x3 tð Þð Þ

M22 ,2 tð Þð Þ ¼ 1

2
1 � x3 tð Þð Þ

By employing four membership functions M11, M21, M12

and M22, the nonlinear system (1) with control input u tð Þ is

represented by the following TS model:

Ri : IF ,1 tð Þ is Mi1; ,2 tð Þ is Mi2;

. . .; and ,p tð Þ is Mip; THEN _x tð Þ
¼ Aix tð Þ þ Bisat u tð Þð Þ þ Ci

where i 2 C ¼ 1; 2; 3; 4f g and j 2 D ¼ 1; 2; 3; 4f g repre-

sent the number of fuzzy rules and premise variables,

respectively. Mij are fuzzy sets. x tð Þ 2 R3�1 and u tð Þ 2
R3�1 are the state variable and control input, respectively.

,i tð Þ denotes the premise variable, and Mij is a fuzzy set.

Ai 2 R3�3 and Bi 2 R3�3 are system matrices, and Ci is

known with the proper dimension.

R1: IF ,1 tð Þ is M11 and ,2 tð Þ is M12, THEN

_xðtÞ ¼ A1xðtÞ þ B1satðuðtÞÞ þ C1

R2: IF ,1 tð Þ is M11 and ,2 tð Þ is M22, THEN

_xðtÞ ¼ A2xðtÞ þ B2satðuðtÞÞ þ C2

R3: IF ,1 tð Þ is M21 and ,2 tð Þ is M12, THEN

_xðtÞ ¼ A3xðtÞ þ B3satðuðtÞÞ þ C3

R4: IF ,1 tð Þ is M21 and ,2 tð Þ is M22 , THEN

_xðtÞ ¼ A4xðtÞ þ B4satðuðtÞÞ þ C4

Then

A1 ¼
�l 0 1

1 � a �l 0

�1 0 0

2

4

3

5A2 ¼
�l 0 1

�1 � a �l 0

�1 0 0

2

4

3

5

A3 ¼
�l 0 �1

1 � a �l 0

1 0 0

2

4

3

5A4 ¼
�l 0 �1

�1 � a �l 0

1 0 0

2

4

3

5

B1 ¼ B2 ¼ B3 ¼ B4 ¼
1 0 0

0 1 0

0 0 1

2

4

3

5

C1 ¼ C2 ¼ C3 ¼ C4 ¼
0

0

1

2

4

3

5

Fig. 3 The Rikitake chaotic

attractor in (1), in the x2 � x3

space

Fig. 4 The Rikitake chaotic attractor in (1), in the x1 � x2 � x3 space

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2023) 47:1491–1508 1495

123



By utilizing the center-average defuzzifier, the overall

fuzzy model of the Rikitake system (1) is created by fuzzy

blending as follows:

_xðtÞ ¼
Xr

i¼1

kið,ðtÞÞðAixðtÞ þ BisatðuðtÞÞ þ CiÞ ð3Þ

where ki , tð Þð Þ ¼ wi , tð Þð ÞPr

i¼1
wi , tð Þð Þ

and wi , tð Þð Þ ¼
Q

p
j¼1Mij ,j tð Þ

� �
. ki , tð Þð Þ is denoted as the normalized weight

of the if–then rules which satisfies
Pr

i¼1 ki , tð Þð Þ ¼ 1

ki , tð Þð Þ� 0

�

and

k1 , tð Þð Þ ¼ M11 ,1 tð Þð ÞM12 ,2 tð Þð Þ
k2 , tð Þð Þ ¼ M11 ,1 tð Þð ÞM22 ,2 tð Þð Þ
k3 , tð Þð Þ ¼ M21 ,1 tð Þð ÞM12 ,2 tð Þð Þ
k4 tð Þð Þ ¼ M21 1 tð Þð ÞM22 2 tð Þð Þ

This fuzzy model precisely illustrates the dynamics of

the nonlinear Rikitake system (1) under �1� x2ðtÞ� 1 and

�1� x3ðtÞ� 1. By employing the master–slave concept,

the dynamic equation of the TS fuzzy system (master

system) is given as

_x tð Þ ¼
Xr

i¼1

ki , tð Þð Þ Aix tð Þ þ Cið Þ ð4Þ

The slave system (response system) of the TS fuzzy

Rikitake system is as follows:

_y tð Þ ¼
Xr

i¼1

kið,̂ðtÞÞ AiyðtÞ þ Bisat(u(t)) + Fi-ðtÞ þ Cif g

ð5Þ

where yðtÞ ¼ ½y1ðtÞy2ðtÞy3ðtÞ�T 2 R3 is the state vector, u is

the control input, and Fi and Ci are disturbance and known

constant matrices, respectively. -ðtÞ is an exogenous dis-

turbance with an uncertain structure which is unknown but

bounded and satisfied by a looser constraint:

k -ðtÞ k � l1 þ l2 k eðtÞ k ð6Þ

In constraint (6), l1 and l2 are both unknown parame-

ters that are determined based on the structure of -ðtÞ and

eðtÞ. It should be noted that premise variables are also used

in fuzzy models for outputs. Therefore, the premise vari-

ables in the TS fuzzy model of master system are similar to

the slave, namely ki ,̂ tð Þð Þ ¼ ki ,̂ tð Þð Þ. In consequence, the

synchronization error is determined as

_eðtÞ ¼ _yðtÞ � _xðtÞ
¼

Pr
i¼1 kið,ðtÞÞfAieðtÞ þ BisatðuðtÞÞ þ Fi-ðtÞg

ð7Þ

3 Main Results

This section will cover the method of developing the fuzzy

surface and AFCNFISM controller for the chaotic syn-

chronization in (7). According to the Lyapunov stability

criteria, the stability and reachability criteria are evaluated.

3.1 Synchronization of the Chaotic Rikitake
System

In accordance with the structure of (7), the fuzzy surface is

selected as follows:

g tð Þ ¼ =e tð Þ �
Z t

0

Xr

i¼1

Xr

j¼1

kið,ð0ÞÞkjð,ð0ÞÞ=ðAi þ BiKjÞeðhÞdðhÞ � =eð0Þ

ð8Þ

Remark 1 Regarding the ISMC design of system (7), we

take into consideration the system matrices Fi and Bi with

two cases, namely the Fi ¼ Bi case and the Fi 6¼ Bi case.

Hence, in the following sections, we will investigate the

stability of the sliding-motion dynamic based on the fuzzy

surface (8) in two distinct cases.

In (8), = 2 R1�3 is non-singular, and the matrix

Kj 2 R3�3. It should be emphasized that, in contrast to

classic SMC, ISMC enhances transient performance in

uncertain and chaotic conditions. The purpose of ISMC is

to drive sliding motion on g tð Þ ¼ 0; therefore, using the

derivative of fuzzy surface (8) and system (7), we have:

_g tð Þ¼
Xr

i¼1

Xr

j¼1

ki , hð Þð Þkj , hð Þð ÞGBi sat u tð Þð Þþ- tð Þ�Kje tð Þ
� �

ð9Þ

Based on the definition of equivalent control (Zhang

et al. 2022), the state trajectory of (7) enters the sliding

motion, i.e., gðtÞ ¼ 0 and _gðtÞ ¼ 0 for the case Fi ¼ Bi, the

equivalent control can be stated as

satðuðtÞÞ ¼ KjeðtÞ � -ðtÞ ð10Þ

By substituting (10) into (7), the dynamic of sliding

motion can be obtained:

_e tð Þ ¼
Xr

i¼1

Xr

j¼1

ki , tð Þð Þkj , tð Þð Þ Ai þ BiKj

� �
e tð Þ ð11Þ

Remark 2 There are various control and estimating issues

that can be characterized as a ‘‘double sum negative’’

problem as follows:
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Xr

i¼1

Xr

j¼1

ki ,ð Þkj ,ð ÞKij zð Þ ð12Þ

While the nonlinear functions ki ,ð Þ satisfy the convex

sum property, namely,
Pr

i¼1 kið,Þ ¼ 1 and kið,Þ� 1, the

symmetric matrices Kij zð Þ are affinely dependent on the

unknown variables z 2 R3. By relying only on the convex

sum criterion for the nonlinear functions ki ,ð Þ, the objec-

tive is to determine the least conservative criteria on Kij zð Þ
such that (13) is fulfilled.

Theorem 1 (Palanimuthu et al. 2022) The synchronization

error of the system (11) is globally asymptotically stable if

there exist symmetric positive definite matrices Xi and Yi

such that

Kii\0
2

r � 1
Kii þ Kij þ Kji\00� i 2 C 6¼ j 2 D� r

Kij ¼ AiX þ BiYj þ ðAiX þ BiYjÞT

8
><

>:
ð13Þ

Proof Consider the Lyapunov function

VðeðtÞÞ ¼ eTðtÞPeðtÞ, which satisfies PT ¼ P for sliding

motion (11). The time derivative of the Lyapunov function

yields

_VðeðtÞÞ ¼ f
Pr

i¼1

Pr
j¼1 kið,ðtÞÞkjð,ðtÞÞ

ðAi þ BiKjÞeðtÞgTPeðtÞ
þeTðtÞPf

Pr
i¼1

Pr
j¼1 ki

ð,ðtÞÞkjð,ðtÞÞðAi þ BiKjÞeðtÞg
¼

Pr
i¼1

Pr
j¼1 kið,ðtÞÞ

kjð,ðtÞÞeTðtÞfAT
i Pþ PAi þ PBiKj þ KT

j B
T
i PgeðtÞ

ð14Þ

Consequently, _VðeðtÞÞ\0 is guaranteed if Remark 2 is

fulfilled, namely

Xr

i¼1

Xr

j¼1

kið,ðtÞÞkjð,ðtÞÞfAT
i Pþ PAi þ PBiKj

þ KT
j B

T
i Pg\0 ð15Þ

where

AT
i Pþ PAi þ PBiKi þ KT

i B
T
i P\0

2

r � 1
ðAT

i Pþ PAi þ PBiKi þ KT
i B

T
i PÞ

þðAT
i Pþ PAi þ PBiKj þ KT

j B
T
i PÞ

þðAT
j Pþ PAj þ PBjKi þ KT

i B
T
j PÞ\0; � i 2 C 6¼ j 2

8
>>>><

>>>>:

ð16Þ

To realize the LMI conditions, change the variables as

follows: X ¼ P�1, Kj ¼ YjX
�1. The matrix inequalities

(16) are identical to the linear matrix inequalities (13),

which completes the proof of Theorem 1.

3.2 Robust Synchronization of the Uncertain
Chaotic Rikitake System

Real-world systems frequently exhibit parameter uncer-

tainties due to inaccurate modeling or environmental

changes. Consequently, parameter uncertainty must be

taken into account in the master–slave synchronization

strategy. In this subsection, we aim to design an AFCNF-

ISM controller for an uncertain model of the Rikitake

system, which was inspired by the preceding section. The

uncertain TS model of the Rikitake system is structured as

follows:

_eðtÞ ¼
Xr

i¼1

kið,ðtÞÞfðAi þ DAiðtÞÞeðtÞ þ BisatðuðtÞÞ

þ Fi-ðtÞg ð17Þ

In accordance with the feature of (17), the fuzzy surface

is defined as

gðtÞ ¼ IeðtÞ �
Z t

0

Xr

i¼1

Xr

j¼1

kið,ðhÞÞkjð,ðhÞÞIðAi þ DAiðtÞ

þ BiKjÞeðhÞdðhÞ � Ieð0Þ
ð18Þ

From (18) and (17), the derivative of the fuzzy surface

for the Bi 6¼ Fi case by setting IFi ¼ 0 is obtained as

_gðtÞ ¼
Xr

i¼1

Xr

j¼1

kið,ðtÞÞkjð,ðtÞÞIBifsatðuðtÞÞ � KjeðtÞg

ð19Þ

Remark 3 Since DAiðtÞ ¼ TiDiðtÞLi, Ti and Li are real

known constant matrices with appropriate dimensions, and

DiðtÞ is a vague time-varying matrix with Lebesgue-mea-

surable elements and fulfilling DT
i ðtÞDiðtÞ� I, the param-

eter uncertainties mentioned here are norm-bounded (Phu

et al. 2020).

The following dynamic of the sliding motion can be

determined as

_eðtÞ ¼
Xr

i¼1

Xr

j¼1

kið,ðtÞÞkjð,ðtÞÞfðAi þ DAiðtÞ þ BiKjÞeðtÞ

þ Fi-ðtÞg
ð20Þ

where

Aij ¼ ðAi þ DAiðtÞ þ BiKjÞ
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Under the sliding motion defined by (20), the succeeding

Definition 1 and Theorem 2 present the bounded stability

criterion of (20).

Definition 1 Take into consideration the system (20),

where xðtÞ 2 R,fð :k ð k � c1; ð 2 Rng for constrained

variable c1 � 0, c1 2 R and t� 0. If limx!1xðtÞ ¼ 0 is

fulfilled, for all xðtÞ 2 ð, the system in (20) is said to be

boundedly stable.

Theorem 2 System (20) is considered boundedly stable for

a symmetric positive definite matrix fij if there exists a

feasible solution ðP;KjÞ with positive definite matrices P ¼
PT 2 Rn�n and Km�n

j meeting the following criteria:

2l2 k PFi k �kminðfijÞ\0

fij,� A
T

ijP� PAij

(

ð21Þ

Proof By specifying a candidate for the Lyapunov func-

tion as VðeðtÞÞ ¼ eTðtÞPeðtÞ, we have

_VðtÞ ¼
Xr

i¼1

Xr

j¼1

kiððtÞÞkjððtÞÞf �Aij þ Fi-ðtÞgTPxðtÞ

þ xTðtÞP
Xr

i¼1

Xr

j¼1

kiððtÞÞkjððtÞÞf �Aij þ Fi-ðtÞg

¼
Xr

i¼1

Xr

j¼1

kiððtÞÞkjððtÞÞfxTðtÞð �AT
ijPþ P �AijÞxðtÞ

þ -TðtÞFT
i PxðtÞ þ xTðtÞPFi-ðtÞg

�
Xr

i¼1

Xr

j¼1

kiððtÞÞkjððtÞÞf2ðl1 þ l2 k xðtÞ kÞ

k PFi kk xðtÞ k �kminðfijÞ k xðtÞ k2g

¼
Xr

i¼1

Xr

j¼1

kiððtÞÞkjððtÞÞf�ðkminðfijÞ

� 2l2 k PFi kÞ k xðtÞ k2 þ2l1 k PFi kk xðtÞ kg
ð22Þ

Thus, _V\0 is achieved if the condition in (21) holds,

and then the system (20) is boundedly stable.

Remark 4 For the proposed sliding surface in (18), when

Bi 6¼ Fi, the appropriate matrix Kj can be obtained by

solving the condition in (21). In addition, the selected

matrix I satisfies IFi ¼ 0 when Bi 6¼ Fi, and IFi is non-

singular, which is essential for the subsequent adaptive

CNF-based fuzzy sliding mode controller synthesis

process.

3.3 AFCNFISM Controller Design

This novel AFCNFISM controller is suggested to be

appropriate for the TS fuzzy model in (7) and (17). The

objective of the AFCNFISM controller is to propel the state

trajectory of the system (7) and (17) into the fuzzy surface

(8) and (18), and thereafter to preserve them within the

fuzzy surface regardless of disturbances or uncertainties.

Indeed, the AFCNFISM controller modifies the values of

the sliding parameters. In other words, the attractiveness of

the fuzzy surface is enhanced by imposing criteria on the

controller that make it reachable. This control structure

consists of four terms. The first term is developed using the

parallel distribution compensation (PDC) technique. The

second term, which we refer to as the adjusted term, is any

arbitrary nonlinear function of the error that has the fea-

tures described in Remark 5. The third term is designed

using the adaptive mechanism, which is defined by the

parameters el1ðtÞ ¼ bl1ðtÞ � l1 and el2ðtÞ ¼ bl2ðtÞ � l2 to

estimate known parameters bl1ðtÞ and bl2ðtÞ to the system’s

unknown parameters l1 and l2, respectively. The structure

of the fourth term is based on the well-known SMC.

Theorem 3 Let the system (7) with the constraints (6)

hold. The fuzzy surface (8) can be reached in a limited

time, the closed-loop system (7) and the fuzzy surface gðtÞ
under the AFCNFISM controller is UUB.

We define

K ¼
Pr

j¼1 kjð,ðtÞÞKj

h�ðtÞ ¼ bl1ðtÞ þ bl2ðtÞ k eðtÞ k
uN ¼

Pr
i¼1 kið,ðtÞÞnðeðtÞÞIBieðtÞ

ðijðtÞ ¼
Pr

i¼1

Pr
j¼1 kið,ðtÞÞkjð,ðtÞÞIBi

8
>><

>>:

ð23Þ

Remark 5 In the development of the CNF control law, the

choice of the negative nonlinear function nðeðtÞÞ is a cru-

cial step. This nonlinear function provides anti-overshoot

characteristics and dampens response overshoot (Jafari and

Binazadeh 2019).

The AFCNFISM controller is designed in the following

manner:

uðtÞ ¼
uN � gðtÞðijðtÞ

k gðtÞðijðtÞ k
h�ðtÞ � usignðgðtÞ

ðijðtÞÞ þ KeðtÞ k gðtÞðijðtÞ k6¼ 0

KeðtÞ þ uN k gðtÞðijðtÞ k¼ 0

8
>><

>>:

ð24Þ

where adaptive laws are defined as follows:

_bl1ðtÞ ¼ n1ðk gðtÞðijðtÞ k �e1bl1ðtÞÞ
_bl2ðtÞ ¼ ðn2 � 1Þðe2bl2ðtÞ� k gðtÞðijðtÞ kk eðtÞ kÞ

(

ð25Þ

where n1, n2, e1, e2, and u are designed positive scalars.
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Proof Define the Lyapunov function for the closed-loop

system:

VðtÞ ¼ 1

2
gTðtÞgðtÞ þ 1

2n1

el2
1ðtÞ þ

1

2ð1 � n2Þ
el2

2ðtÞ ð26Þ

In consideration of the nature of the control signal, the

stability analysis of saturated and unsaturated scenarios is

expressed. Hence, based on (8) and the control law stated

in (24), the derivative of the Lyapunov function with

respect to time is computed as follows:

_VðtÞ ¼ gTðtÞfðijðtÞðsatðuðtÞÞ þ -ðtÞ � KeðtÞÞg
þ 1

n1

el1ðtÞ _bl1ðtÞ þ
1

2ð1 � n2Þ
el2ðtÞ _bl2ðtÞ ð27Þ

Scenario 1 None of the input signals are saturated, i.e.

juðtÞj\�
u; therefore, utilizing (25)–(27), the following

results can be acquired:

_V tð Þ ¼ gT tð Þ ij tð Þ u tð Þ þ - tð Þ � Ke tð Þð Þ
� �

þ 1

n1

~l1 tð Þ _̂l tð Þ þ 1

2 1 � n2ð Þ ~l2 tð Þ _̂l2 tð Þ

¼ gT tð Þij tð Þ u tð Þ þ - tð Þ � Ke tð Þf g þ ~l1 tð Þ
k gT tð Þij tð Þ k �e1l̂1 tð Þ
� �

þ ~l2 tð Þ gT tð Þij tð Þ
�
�

�
� e tð Þk k � e2l̂2 tð Þ

� �

� gT tð Þij tð Þ
�
�

�
�f� g tð Þij tð Þ

g tð Þij tð Þ
�
�

�
�

l̂1 tð Þ þ l̂2 tð Þ e tð Þk kð Þ � usign g tð Þij tð Þ
� �

þ l1 þ l2 e tð Þk kg
þ ~l1 tð Þ þ ~l2 tð Þ e tð Þk kð Þ gT tð Þij tð Þ

�
�

�
�

� e1l̂1 tð Þ l̂1 tð Þ � l1ð Þ
� e2l̂2 tð Þ l̂2 tð Þ � l2ð Þ

¼ �u g tð Þij tð Þ
�
�

�
�

1
�e1ðl̂1 tð Þ � 1

2
l1Þ2

� e2ðl̂2 tð Þ � 1

2
l2Þ2 þ 1

4
e1l

2
1 þ e2l

2
2

� �

� � u g tð Þij tð Þ
�
�

�
�

1
þ 1

4
e1l

2
1 þ e2l

2
2

� �

ð28Þ

Scenario 2 All input signals transcend their upper limits,

which means uðtÞ[ �
u.

uðtÞ ¼ KeðtÞ þ uN � gðtÞðijðtÞ
k gðtÞðijðtÞ k

h�ðtÞ

� usignðgðtÞðijðtÞÞ� �
u

ð29Þ

In this scenario, one can reveal that if ui [ �
u is

established, then one has �
u �

Pr
j¼1kjð,ðtÞÞKjeðtÞ� 0.

Based on the definition of saturation function,

satðuðtÞÞ ¼ �
u, and from (29), the following is obtained:

_V tð Þ ¼ gT tð Þ ij tð Þ u
� þ- tð Þ � Ke tð Þ

� 	n o
þ 1

n1

~l1 tð Þ l̂
1

tð Þ

þ 1

2 1 � n2ð Þ ~l2 tð Þ l̂
2

tð Þ

ð30Þ

where (29) and (30) result in

uN � gðtÞðijðtÞ
k gðtÞðijðtÞ k

h�ðtÞ � usignðgðtÞðijðtÞÞ� �
u
� KeðtÞ� 0

ð31Þ

Thus, we acquire via (30) and (31):

_V tð Þ ¼ gT tð Þ ij tð Þ u
� þ- tð Þ � Ke tð Þ

� 	n o

þ 1

n1

~l1 tð Þ _̂l1 tð Þ þ 1

2 1 � n2ð Þ ~l2 tð Þ _̂l2 tð Þ

� k gT tð Þij tð Þ k fuN � g tð Þij tð Þ
k g tð Þij tð Þ k

l̂1 tð Þ þ l̂2 tð Þ k e tð Þ kð Þ � usign g tð Þij tð Þ
� �

þ l1 þ l2 k e tð Þ kg þ ~l1 tð Þ k gT tð Þij tð Þ k �e1l̂1 tð Þ
� �

þ ~l2 tð Þ k gT tð Þij tð Þ kk e tð Þ k �e2l̂2 tð Þ
� �

� � u k g tð Þij tð Þ k1 þ 1

4
e1l

2
1 þ e2l

2
2

� �

ð32Þ

Scenario 3 All input signals transcend their lower limits,

which implies uðtÞ� � �
u.

KeðtÞ þ uN � gðtÞðijðtÞ
k gðtÞðijðtÞ k

h�ðtÞ � usignðgðtÞðijðtÞÞ� � �
u

ð33Þ

In this scenario, one can indicate that if ui\� �
u is

determined, then one has �
u þ

Pr
j¼1kjð,ðtÞÞKjeðtÞ� 0.

From (33) and the definition of the saturation function, it

can be determine that

uN � gðtÞðijðtÞ
k gðtÞðijðtÞ k

h�ðtÞ � usignðgðtÞðijðtÞÞ� � �
u
� KeðtÞ

ð34Þ

Lastly, (27) and (34) denote that
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Fig. 5 a The unconstrained

responses of the

synchronization error. b Control

signals. c Fuzzy surface

Fig. 6 a The constrained

responses of the

synchronization error. b Control

signals. c Fuzzy surface
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Fig. 7 a The unconstrained

uncertain responses of the

synchronization error. b Control

signals. c Fuzzy surface

Fig. 8 a The constrained

uncertain responses of the

synchronization error. b Control

signals. c Fuzzy surface
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Fig. 9 a The unconstrained

approximation responses of the

synchronization error. b Control

signals. c Fuzzy surface

Fig. 10 a The constrained

approximation responses of the

synchronization error. b Control

signals. c Fuzzy surface
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Fig. 11 a The unconstrained

uncertain approximation

responses of the

synchronization error. b Control

signals. c Fuzzy surface

Fig. 12 a The constrained

uncertain approximation

responses of the

synchronization error. b Control

signals. c Fuzzy surface
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_V tð Þ ¼ gT tð Þ ij tð Þ � u
� þ- tð Þ � Ke tð Þ

� 	n o

þ 1

n1

~l1 tð Þ l̂
1

tð Þ þ 1

2 1 � n2ð Þ ~l2 tð Þ l̂
2

tð Þ

� k gT tð Þij tð Þ k fuN � g tð Þij tð Þ
k g tð Þij tð Þ k

l̂1 tð Þ þ l̂2 tð Þ k e tð Þ kð Þ � usign g tð Þij tð Þ
� �

þ l1 þ l2 k e tð Þ kg þ ~l1 tð Þ k gT tð Þij tð Þ k �e1l̂1 tð Þ
� �

þ ~l2 tð Þ k gT tð Þij tð Þ kk e tð Þ k �e2l̂2 tð Þ
� �

� � u k g tð Þij tð Þ k1 þ 1

4
e1l

2
1 þ e2l

2
2

� �

ð35Þ

Therefore, based on (26) and (27), and in accordance

with Theorem 3, the UUB of the system (7) for three

scenarios can be obtained. The UUB of the system (17) is

identical to that of (7), then it is eliminated.

4 Constrained Control Performance
Specifications

The mathematical framework based on LMI constraints is

set to the control signal for the simulation to demonstrate

good behavior. To obtain an efficient and robust control,

the LMI constraints are introduced to the Rikitake system’s

control signal. Assume that the initial state x 0ð Þ is known,

and that the quantity of the W boundaries is the maximum

value permitted for the control signal’s 2-norm

(k u tð Þ k2 �w).

1 xð0ÞT
x 0ð Þ X


 �

� 0;
X WT

i

Wi W2I


 �

� 0 ð36Þ

where Wi ¼ KiX and X ¼ P�1.

The following phases offer a concise summary of the

proposed strategy:

Algorithm 1 (Fuzzy SMC phases).

Phase 1. Specify nonlinear variables in (1) in terms of

,1 tð Þ and ,2 tð Þ.
Phase 2. Achieve the maximum and minimum variables

in (1).

Phase 3. The normalized firing strengths k1; k2; k3; and

k4 are determined using membership functions M11, M12,

M21, and M22.

Phase 4. Specify the fuzzy rules.

Phase 5. Specify the state matrices A1, A2, A3, and A4

using the minimum and maximum values of the ,1 tð Þ
and ,2 tð Þ as well as fuzzy rules.

Phase 6. There are two scenarios taken into account for

the TS model in (13): matrices with Ei ¼ Bi and matrices

with Ei 6¼ Bi.

Phase 7. Design the AFCNFISM controller in (24) as the

control law.

Phase 8. Determine the sliding surface matrix Kj in two

cases from a feasible solution of (13) for the case Ei ¼ Bi

and a feasible solution of inequality (21) for the case

Ei 6¼ Bi which is represented in Examples 1 and 2.

Phase 9. Determine the values for the design parameters

n1,n2,u,e1, e2, l̂1 0ð Þ, and l̂2 0ð Þ that are provided in (24)

and (25).

Phase 10. Apply the designed control law with the

constrained (36) and unconstrained control law in the

system (7) and the uncertain chaotic Rikitake system in

(17).

5 Illustrative Examples

Example 1 This part is presented to verify the effective-

ness and advantages of the proposed fuzzy model and

control scheme. Applying the designed AFCNFISM con-

troller in (19) for the unsaturated TS fuzzy control of the

Rikitake system in (7), we select u ¼ 5:5, n1 ¼ 0:01,

n2 ¼ 0:01, e1 ¼ 0:04, e2 ¼ 0:03, and W ¼ 5. The adaptive

parameters are given as l̂1 0ð Þ ¼ 0:1 and l̂2 0ð Þ ¼ 0:2.

Then, matrix = is selected as = ¼ 0 0:01 0:1. By utilizing a

feasible solution of (13) and considering Theorem 1, the

fuzzy surface is selected as follows:

g tð Þ ¼ =e tð Þ � =e 0ð Þ

�
Z t

0

X4

i¼1

X4

j¼1

ki , hð Þð Þkj , hð Þð Þ= Ai þ BiKj

� �
e hð Þd hð Þ

ð37Þ

All the nonlinear simulations are implemented entirely

in the MATLAB software/SeDuMi solver, where the initial

condition is e 0ð Þ ¼ 0:01 0:01 0:01
T
, and - tð Þ ¼ 0:4 þ

0:3sin tð Þ is an exogenous disturbance. The unconstrained

gain Kj is calculated as follows:

K1 ¼
1:7375 2:0002 0:0002

2:0001 1:7389 0:0002

�0:0001 �0:0001 �0:2621

2

4

3

5;

K2 ¼
1:7633 3:0003 1:0003

3:0001 1:7658 0:0002

0:9997 �0:0007 �0:2355

2

4

3

5
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K3 ¼
1:7183 2:0002 0:0000

2:0001 1:7201 �0:0002

�0:0003 �0:0006 �0:2806

2

4

3

5;

K4 ¼
1:7287 3:0003 0:0000

3:0001 1:7314 �0:0002

�0:0003 �0:0007 �0:2697

2

4

3

5

P ¼
0:9995 �0:0004 0:0002

�0:0004 0:9995 �0:0000

0:0002 �0:0000 0:9997

2

4

3

5

After applying new LMI conditions (24) on the control

signal (19), the matrix Kj is obtained as

K1 ¼
0:6990 0:3766 �0:2307

0:6942 0:4119 �0:1121

�1:3249 �0:5583 �0:5189

2

4

3

5;

K2 ¼
0:6722 0:6918 0:4781

1:2830 0:1147 �0:2201

1:3653 0:0135 �0:3794

2

4

3

5

K3 ¼
0:4551 0:3284 0:2681

0:7894 0:4145 0:0279

0:8917 0:2415 �0:3223

2

4

3

5;

K4 ¼
0:5785 0:6658 0:2459

1:2438 0:0132 �0:0097

0:7135 0:1033 �0:3321

2

4

3

5

P ¼
0:6094 0:1721 0:0324

0:1721 0:2467 0:0070

0:0324 0:0070 0:1541

2

4

3

5

Thus, Figs. 5a and 6a depict the behavior of synchro-

nization errors of the Rikitake system: unconstrained and

constrained, respectively. Clearly, the state trajectories in

Fig. 6a almost reach zero after 2 s with minimum transient

oscillations with the short time in comparison to the

Fig. 5a. This implies that the stabilization objective is met

despite primary transient oscillations in the states. It is

observed that the amplitude of the control signals in Fig. 6b

is less than that in Fig. 5b, and chattering has been sig-

nificantly reduced. The fuzzy surfaces are represented in

Figs. 5c and 6c.

Example 2 This section considers the uncertain unsatu-

rated TS Rikitake disturbed system in (17). In (23), the

parameters u ¼ 10:5, n1 ¼ 0:02, n2 ¼ 0:03, e1 ¼ 0:05,

e2 ¼ 0:02, l1 0ð Þ ¼ 0:2, l2 0ð Þ ¼ 0:3, and W ¼ 5 are

selected for the designed AFCNFISM controller. Then, the

matrix = is selected as = ¼ 0 0:10. Using a feasible solu-

tion of (21) and taking into account Theorem 2, the fuzzy

surface is chosen as follows:

g tð Þ ¼ =e tð Þ �
Z t

0

X4

i¼1

X4

j¼1

ki , hð Þð Þkj , hð Þð Þ

= Ai þ DAi tð Þ þ BiKj

� �
e hð Þd hð Þ � =e 0ð Þ

ð38Þ

L1 ¼
0:1 0 0

�0:1 0 0

0 0 0

2

4

3

5 L2 ¼
0 0 0

0 �0:1 0

0 0 0

2

4

3

5

L3 ¼
�0:1 0 0

0:1 0 0

0 0 0

2

4

3

5 L4 ¼
0 0 0

0 0:1 0

0 0 0

2

4

3

5

T1 ¼
0:01 0 0

�0:01 0 0

0 0 0

2

4

3

5 T2 ¼
0:01 0 0

0 �0:01 0

0 0 0

2

4

3

5

T3 ¼
�0:01 0 0

0:01 0 0

0 0 0

2

4

3

5 T4 ¼
�0:01 0 0

0:01 0 0

0 0 0

2

4

3

5

D1 tð Þ ¼ D2 tð Þ ¼ D3 tð Þ ¼ D4 tð Þ ¼
sin tð ÞThe unconstrained gain Kj is computed as follows:

K1 ¼
1:6624 1:5499 0:0507

1:4714 2:2534 0:4331

�0:0000 0:5000 �0:0375

2

6
4

3

7
5;

K2 ¼
1:6417 1:5556 �0:0507

1:4768 2:2357 �0:4331

�0:0000 �0:5000 �0:0525

2

6
4

3

7
5:

K3 ¼
1:6826 3:5468 0:0507

3:4557 2:2744 0:4331

0:0000 0:5000 �0:0263

2

4

3

5;

K4 ¼
1:6635 3:5596 �0:0507

3:4670 2:2680 �0:4331

0:0000 �0:5000 �0:0325

2

4

3

5

P ¼
0:0135 �0:0016 �0:0000

�0:0016 0:0136 �0:0000

�0:0000 �0:0000 0:0116

2

4

3

5

The matrix Kj is derived as follows after applying new

LMI conditions to the control signal (18):

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2023) 47:1491–1508 1505

123



K1 ¼
1:3257 8:2545 �0:0000

1:6986 �7:8034 0:0000

0:0037 0:5538 �0:0000

2

6
4

3

7
5;

K2 ¼
1:0666 8:2411 �0:0000

1:7003 �7:8131 �0:0000

0:0036 �0:4462 �0:0000

2

6
4

3

7
5

K3 ¼
1:6050 13:6811 �0:0000

2:9227 �7:8617 0:0000

0:0075 0:5734 �0:0000

2

6
4

3

7
5;

K4 ¼
1:4541 13:6889 �0:0000

3:5954 27:3827 �0:0000

0:0076 �0:4266 �0:0000

2

6
4

3

7
5

P ¼
1:4564 0:1218 �0:0000

0:1218 6:4230 �0:0000

�0:0000 �0:0000 0:0000

2

4

3

5

Consequently, Figs. 7a and 8a illustrate the uncon-

strained and constrained responses of synchronization

errors in the Rikitake system, respectively. Evidently, in

comparison to Fig. 7a, the state trajectories in Fig. 8a

nearly approach zero after 3 s with minimal transient

oscillations and a short UUB time. This indicates that

despite transient oscillations in the states, the UUB aim of

stabilizing and decreasing synchronization errors is ful-

filled. The control signals in Fig. 8b have a lower ampli-

tude than Fig. 7b, and chattering has been reduced

considerably. The fuzzy surfaces are shown in Figs. 7c and

8c.

A chattering-free control signal must be constructed to

guarantee that the system is robust against uncertainties

and external disturbances with unknown bounds after

providing control signals. Due to the nature of the control

signal (18), the existence of the chattering phenomenon and

its non-convergence to zero is inevitable. A frequent

solution to this control chattering issue is the boundary

layer design, which replaces the discontinuous switching

function sign gð Þ ¼ g
gj j with a continuous approximation

function g
gj jþs, in which s is a small positive constant.

Therefore, the responses of synchronization errors,

control signals, and fuzzy surface for the unconstrained and

constrained approximation cases are shown in Figs. 9 and

10. As compared to Figs. 5a and 6a, in both the uncon-

strained and constrained cases, the rate of convergence

errors in Figs. 9a and 10a are faster and smoother. The

unconstrained approximation control effort in Fig. 9b and

particularly in 10b are small relative to the unconstrained

and constrained control effort in Figs. 5b and 6b. The

chattering and oscillations illustrated in Figs. 9b and 10b

are significantly reduced in comparison to the preceding

cases depicted in Figs. 5b and 6b. The fuzzy surfaces

shown in Figs. 9c and 10c have less chattering than Figs. 5c

and 6c.

Figures 11 and 12 illustrate the behavior of synchro-

nization errors, control signals, and the fuzzy surface in the

unconstrained and constrained uncertain approximation

cases. In comparison to Figs. 7 and 8, the rate of conver-

gence errors in Figs. 11 and 12 is quicker and smoother in

both unconstrained and constrained uncertain cases. The

unconstrained uncertain approximation control effort

shown in Fig. 11b and, more specifically, in Fig. 12b has

low activity compared to the unconstrained and constrained

uncertain control effort depicted in Figs. 7b and 8b. Fig-

ures 11c and 12c exhibit less chattering than Figs. 7c and

8c.

6 Conclusion

In this paper, we have investigated the Takagi–Sugeno

fuzzy approach for modeling the chaos synchronization of

the nonlinear Rikitake system subject to actuator satura-

tion. By employing this method, the nonlinear components

of a system can be represented by linear subsystems, and

the findings can be structured in the form of a simpler

model with uncomplicated dynamics. Meanwhile, to

achieve efficient control, an LMI constraint is added to the

Rikitake system’s control signal. By establishing the Lya-

punov function and appropriate fuzzy sliding surface and

designing the AFCNFISM controller, the controlled sys-

tems are UUB, and the synchronization error of the chaotic

Rikitake system in the presence of external disturbances

and uncertainties converges to zero. Sufficient conditions

have been set to ensure the synchronization of the con-

trolled system with respect to LMIs. Compared with the

unconstrained control, the constrained control yields better

performance in the face of uncertainty and exterior

disturbances.

Future research is planned to implement the higher-

order sliding mode (HOSM) control approach to chaotic

synchronization of a nonlinear time-delay system with

asymmetric actuator saturation.
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