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Abstract
This paper presents a new approach for arc fault and utility disturbance detection and classification in a multiple photo-

voltaic-based DC ring microgrid by using improved multifractal detrended fluctuation analysis (MFDFA). Initially, sim-

ulated DC faults and utility disturbances are captured from the DC microgrid, and they are processed through a cumulative

sum algorithm for fault detection based on a threshold value. Thereafter, detected faults and utility disturbances are fed to

the improved MFDFA for accurate fault classification. This approach consists of two stages, in the first stage, an overlap

moving window-based algorithm (OMW) is implemented to divide the time scale series, and in the second stage, varia-

tional mode decomposition (VMD) is introduced for fitting a polynomial by using the best intrinsic mode functions (IMFs)

of traditional MFDFA, called OMW-VMD-MFDFA. The best IMFs are selected based on the maximum value of the

weighted kurtosis index, and then this approach replaces the least-square polynomial fitting method for estimating the local

trends. To analyze misclassification, a total of five discriminative multifractal features are extracted from the OMW-VMD-

MFDFA, and suitable combinations are plotted in a three-dimensional scatter plot. Among them, the most discriminative

feature set is utilized to demonstrate the efficacy of the proposed classifier and also compared with benchmark techniques

in terms of relative computational time and classification accuracy to evidence its superiority. Ultimately, the proposed

approach is validated on the dSPACE DS1104 embedded processor to enable real-time testing, assessment, and validation

of its simplicity, robustness, and feasibility.

Keywords PV partial shading � PV irradiation � Overlap moving window � Variational mode decomposition �
Weighted kurtosis index � Arc faults � Utility disturbances � CA � RCT � dSPACE 1104

1 Introduction

Nowadays, the world’s increasing population and industrial

revolution have led to a surge in energy demand. Most

researchers are turning their attention to renewable energy

sources (RESs), such as photovoltaic (PV) and wind power,

due to their abundance in nature and depletion of fossil fuel

resources. Currently, there is significant research attention

on low-voltage distribution networks. In particular, PV-

based microgrids are emerging research areas under dif-

ferent conditions such as irradiation change and partial

shading. Microgrids are classified as AC and DC or hybrid

based on the voltage and the type of equipment connected

in the network (Justo et al. 2013). DC microgrids have

several advantages, such as greater reliability, better cost-

effectiveness, greater power transfer capacity, no power

factor losses, and better phase synchronization, as com-

pared to AC microgrids (Saleh et al. 2018).

DC microgrids pose significant challenges in detecting

and classifying arc faults and utility disturbances, particu-

larly in bidirectional power flow systems like DC ring

microgrids. To address these challenges, researchers have

focused on developing protection schemes, with some

proposing a differential protection scheme that can detect

and classify faults with high accuracy, as evidenced by

previous studies (Dhar et al. 2017; Dhar and Dash 2017;

Sarangi et al. 2020). However, the implementation of this

scheme necessitates a communication channel with high

bandwidth capacity to facilitate the transmission of signals
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and enable effective fault monitoring. Additionally, backup

protection measures are necessary to mitigate the risk of

failure, which ultimately increases the complexity and cost

of the grid. Despite the promising potential of the Kalman

filter for detecting arc faults by estimating line admittance,

the filter’s accuracy and robustness have been a matter of

concern (Gajula and Herrera 2020). The adaptive droop

control method is performed in the DC microgrid for arc

fault detection by estimating the impedance with the droop

method (Augustine et al. 2020). This method is suitable for

only the low impedance value, and it depends on the virtual

resistance. An electromagnetic radiation signal-based

detection scheme is introduced (Xiong et al. 2017) to detect

arc faults by using the fractal antenna. This method needs

fast switching and sensing devices to transmit the radiation

from the grid to the antenna. For power quality (PQ) dis-

turbances, detection is presented (Subasi et al. 2011; Cho

et al. 2019) by using the Teager energy operator where the

first peak point is considered as the fault detection point.

However, Teager energy shows various peaks due to more

chattering in the arc faults; as a result, the selection of

threshold is difficult. In Ullah and Hanif (2021), a distri-

bution static compensator with super-twisting sliding mode

control is proposed, and it provides enough information for

the detection of sag and swell but is not suitable for other

PQ disturbances.

Various signal processing algorithms have recently been

introduced for fault detection and classification by using

target features. Well-known signal processing techniques

such as S-transform (Mahela and Shaik 2017), wavelet

transform (WT) (Wang and Balog 2015), discrete wavelet

transform (DWT) (Yao et al. 2013), empirical mode

decomposition (EMD) (Lala and Karmakar 2020), and

ensemble EMD (EEMD) (Liu et al. 2015) have the

demerits like dimensionality reduction, proper mother

wavelet selection, mode mixing, and loss of information. In

Naik et al. (2019), a kernel-based discrete time–frequency

transform (KBDFT) is used to detect faults. This method is

effective only if the proper kernel is selected. Although all

the aforementioned methods are time–frequency based, the

application of fractal analysis has garnered significant

attention in recent years, owing to its numerous advantages

(Das et al. 2018; Xu et al. 2019; Miao et al. 2019). Among

the various methods of fractal analysis, detrended fluctua-

tion analysis (DFA) has attained wide popularity for non-

stationary signal detection. However, the DFA method

suffers from the local fractal analysis, but it can deal very

well with overall fractal components (Das et al. 2018). To

overcome these problems, DFA and variational mode

decomposition (VMD) are hybridized (Xu et al. 2019;

Miao et al. 2019); as a result, the efficiency of the algo-

rithm is improved but not sufficiently. Currently, multi-

fractal DFA (MFDFA) analysis has been exploited for

machinery vibration and biomedical signals (Prasad and

Dash 2021; Chatterjee et al. 2017), because it can concern

both local and overall fractals to fixed polynomials. Despite

this, MFDFA still faces a few difficulties such as the

estimation of scales and the order of the fitting polynomial

trend; also, it is not suitable for higher-order polynomials.

To resolve these issues, optimized EMD-based MFDFA

and modified MFDFA named as OMW-EEMD-MFDFA

are proposed (Lin et al. 2021; Zhang et al. 2019). The

reliability and robustness of these algorithms mainly

depend on the ensemble number.

To address the aforementioned challenges, this paper

introduces a new approach for detecting and classifying arc

faults and utility disturbances in multiple PV-based DC

ring microgrids. Primarily, arc faults and utility disturbance

signals are collected under two scenarios, such as partial

shading and solar irradiation change in the proposed

microgrid. These signals are fed to the cumulative sum

(CUSUM) for fault detection based on any changes. Fur-

ther, detected fault signals are passed through the proposed

algorithm, i.e., improved MFDFA for classification. This

algorithm consists of two stages: in stage 1, an overlap

moving window-based algorithm (OMW) is implemented

to segregate the signal into equal lengths. In stage 2,

variational mode decomposition (VMD) is introduced for

fitting polynomials using intrinsic mode functions (IMFs)

in traditional MFDFA. In order to reduce the computational

burden, the most significant IMFs are selected for esti-

mating local trends based on the weighted kurtosis index

(WKI), which can be obtained by the product the of cor-

relation coefficient (CCf) and kurtosis index (KIs). The

improved MFDFA is named OMW-VMD-MFDFA and is

used to resolve the drawbacks of the traditional MFDFA.

Therefore, the following are the main novelties and con-

tributions of this paper:

(i) Construction of a multiple PV-based DC ring

microgrid for the generation of arc faults and

utility disturbances under PV irradiation change

and partial shading scenarios in a MATLAB/

Simulink environment.

(ii) The quick and accurate detection of the arc faults

and utility disturbances, is achieved using the

cumulative sum (CUSUM) method.

(iii) The novel OMW-VMD-MFDFA classifier is

introduced to classify the recorded fault signals

efficiently and is also used to estimate the best

feature set for faults diagnosis from the three-

dimensional (3-D) graphs.

(iv) To validate the efficacy of the proposed classifier,

its performance is evaluated based on classifica-

tion accuracy (CA) and relative computational

time (RCT), and compared against existing
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classifiers DFA, MFDFA, adaptive MFDFA,

OMW-MFDFA, and OMW-EEMD-MFDFA.

The remainder of this paper is organized as follows:

Section 2 illustrates the configuration of the proposed

model and various faults. Section 3 describes fault detec-

tion using CUSUM. Section 4 illustrates the classification

of arc faults and utility disturbances using the proposed

OMW-VMD-MFDFA method. Section 5 presents the

result analysis and the comparison of the proposed method

with existing techniques. Section 6 draws the conclusion

followed by future scope.

2 Multiple PV-Based DC Ring Network

In this section, the construction of a multiple PV-based DC

ring microgrid in the MATLAB/Simulink software envi-

ronment is described as follows: PV arrays 1, 2, and 3 are

connected at buses 1, 2, and 5, respectively, as shown in

Fig. 1. PV array 1 consists of four PV panels, and each

panel has a rating of 100 kW. PV array 2 consists of

200 kW, and PV array 3 consists of 100 kW. To maintain

the demand–supply balance, a DC lamp load with 300 kW

is interfaced at bus 3. To ensure an uninterrupted power

supply to the load, a 100-kW-rated battery is integrated

with the DC microgrid at bus 4. Here, the battery acts as

backup management equipment during islanding mode or

power interruption conditions to drive the load. In grid-

connected mode, the battery acts as a slack terminal to

regulate the voltage and frequency levels of the microgrid

(Prasad and Dash 2021; Mohanty and Pradhan 2018).

Additionally, the utility grid is connected at bus 6 with a

rating of 50 MVA to ensure reliable power supply to the

microgrid system. Different simulation parameters of the

proposed model are included in Table 1. To simulate arc

faults and utility disturbances, different load and resistance

variations were taken into account in the proposed model,

and they were recorded at the point of common coupling

(PCC). To investigate the effects of partial shading and

irradiation variations on fault current, multiple methods

have been developed (Yao et al. 2013; Prasad and Dash

2021; Pragathi et al. 2020, 2021; Yao 2016), but they focus

solely on the current profile. Unlike benchmark techniques,

this paper focused on both voltage and current profile

impact during uncertainties.

Generally, arc faults are caused by insulation failure and

interconnections on bus bar cables (Dhar et al. 2017).

These faults can be categorized into series arc faults and

shunt arc faults, which are further segregated into intra-

string and cross-string faults, and they were simulated in

MATLAB/Simulink environments using Fig. 2. Currently,

detecting arc faults is a key challenge, as most detection

techniques fail to identify them due to their low fault

current magnitude (Yao 2016).

The detection time for arc faults is usually greater than

that for other faults. According to Yao et al. (2013) and

PV-array 1

Lamp load-1

DC-DC converter

AC-DC converter

Transformer

11KV/500V
Circuit breaker  

VSC
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3
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Battery

PV-array 2

PV array 3

3-phase transmission

PCC Utility

GridAC

Load

Tr

Fig. 1 Multiple PV-based DC

ring microgrid

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2023) 47:1343–1363 1345

123



Yao (2016), the DC arc fault is modeled as a nonlinear

resistor using the revised Paukert’s equation, as follows:

Varc ¼
mþ pL

InþqL
arc

ð1Þ

where m; n; p; q 2 R; and L is the gap length. Through

curve fitting, the method was experimentally proved for

both variable and fixed gap lengths and resistance (Yao

et al. 2013; Yao 2016). Experimentally, the obtained values

of m, n, p, and q for the fixed gap length of 0.12 with the

arc fault current less than 25A is as follows:

Varc ¼
20:19þ 526:5L

I0:1174þ1:888L
arc

ð2Þ

Power quality disturbances occur due to nonlinear loads

and sudden load changes in the DC microgrid (Wang and

Balog 2015). The swell, harmonics, and transient utility

disturbances are considered in this paper, because these

disturbances have a greater effect if any changes occur in

terms of source and load (Ullah and Hanif 2020, 2021).

The considered faults are simulated under two case studies:

PV irradiation change and partial shading conditions. To

Table 1 Parameters of the

proposed model
DC bus voltage 550 V

DC-link capacitor 100 lF

Parameters of PV arrays

Photovoltaic array 1 400 kW

Photovoltaic array 2 200 kW

Photovoltaic array 3 100 kW

DC–DC converter 1 4 9 108 kW (± 8% IEC 6210)

DC–DC converter 2 2 9 108 kW (± 8% IEC 6210)

DC–DC converter 3 1 9 108 kW (± 8% IEC 6210)

Parameters of battery

Battery 96 V, 0.4 kAh

Bidirectional DC–DC converter 150 kW, 500 V

Load and cable parameters

DC and AC loads DC lamp load 1 ? 300 kW& AC load 2 ? 150 kW,10 kvar

Cable length 2 km (i.e., bus 1–2, 2–3, 3–4, 4–5, 5–6, 6–1)

Resistance/ km 0.645 X/km

Inductance/ km 0.251 mH/km

Capacitance/ km 0.523 lF

AC grid side parameters

Voltage source converter Frequency 60 Hz, 400 kW, 260 V

Utility grid 11 kV, 50 MVA

Transformer Tr ? 11 kV/500 V

Fig. 2 Schematic diagram for

arc faults in a PV array
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extract the maximum power point from the PV modules in

the proposed model, an improved perturb and observe

method (IP&O) is used (Ahmed and Salam 2015). It

exhibits multiple local maximum power points (LMPP)

and one global MPP (GMPP) in power–voltage (P–V) and

current–voltage (I–V) curves (Kurniawan and Shintaku

2020; Ahmad et al. 2017) under a partial shading condition.

Among these peaks, one is the true maximum power, i.e.,

GMPP. Based on this parameter, maximum power is

extracted from the PV array under any uncertainties of PV

irradiation with the help of maximum power point tracking

(MPPT) techniques. If the MPPT technique fails to detect

and extract the GMPP from the PV array, then the system

will operate based on the LMPP. As a result, the overall

efficiency and accuracy of the system will be affected due

to the suboptimal power quality at this optimum operating

point. To avoid this problem, an improved P&O technique

is used in the proposed work to extract the GMPP. Based

on this, the GMPP fault current magnitude also changes

under nonuniform conditions, i.e., partial shading, climate

changes, etc. All these case studies are performed in a

MATLAB/Simulink environment considering a constant

temperature of 25 �C.

2.1 Modeling of PV and Battery

2.1.1 PV Modeling

A PV array converts solar energy into electrical energy. As

a result, solar radiation, photovoltaic module performance,

and the surrounding temperature have the most effects on

the PV system’s output. The temperature coefficient is

taken into consideration (Dhar et al. 2017; Shaikh et al.

2022) while designing the PV array to determine its output

power, which can be expressed as follows:

PPV tð Þ ¼ NPV � PratedPV � lPV � IPVðtÞ½1� rTPðTS tð Þ
� TAðtÞÞ�

ð3Þ

where PPV (t) is the PV system’s real output power, NPV is

the number of PV panels, Prated PV is the nominal capacity

of the PV array, IPV is the deterioration factor, IPV (t) is

solar irradiation incident on the PV panel, and TTP is the

temperature factor, which represents the change in the

output power of a PV panel with respect to its surface

temperature Ts (t). The PV panel’s ambient temperature in

standard test conditions (25 �C) is denoted as TA(t), while

the efficiency of the panel at these conditions is represented

with percentage, as follows:

TA tð Þ

¼
T tð Þ þ TPVnom tð Þ � 20ð Þ= IPV tð Þ

0:8

� �� �
1� lA 1�25rTPð Þ

0:9

� �

1þ ðTPVnom tð Þ � 20Þ= IPV tð Þ
0:8

� �� �
ðrTPlAÞ=0:9

� �

ð4Þ

where TPVnom is the PV cell nominal operating temperature

(25 �C), lA is the efficiency at standard test conditions (%),

and T (t) is the ambient temperature (�C).

2.1.2 Battery Modeling

To drive the load in the proposed model under fault sce-

narios or uncertainties in solar energy, a battery is neces-

sary. Therefore, designing a battery storage system to

balance the power within the ring microgrid is essential. In

this paper, a DC–DC bidirectional converter is employed to

connect the battery to perform charging/discharging oper-

ations in accordance with load demand. When designing a

battery, mainly two parameters (Shaikh et al. 2022), i.e.,

battery voltage (Vbat) and state of charge (SOC), need to be

considered, as follows:

Vbat ¼ V0 � RbatIbat � P
Qbat

Qbat �
R
Ibatdt

þ Eeð�G
R

Ibatdt

ð5Þ

SOC ¼ 100 1�
R
Ibatdt

Qbat

� �
ð6Þ

where P, G, and E indicate the polarization voltage,

exponential capacity, and voltage, respectively, while Q,

Ibat, Rbat, and Vbat indicate the battery capacity, current,

internal resistance, and open-circuit voltage, respectively.

Moreover, the charging and discharging of the battery can

be modeled with respect to the state of charge (SOC) using

the following equations:

SOC tð Þ ¼ 1� bð Þ � SOC t� 1ð Þ

þ Pgen tð Þ � PL tð Þ
� �

lbat;charging �
Dt

Ebat

ð7Þ

SOC tð Þ ¼ 1� bð Þ � SOC t � 1ð Þ

� PL tð Þ � Pgen tð Þ
� �

lbat;discharging �
Dt

Ebat

ð8Þ

I1Vc 1

I R1 L1

1

Fig. 3 Short-circuit fault
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where b is a self-discharging factor (0.01), SOC(t) is the

state of the battery, Pgen (t) is the total amount of power

produced by the microgrid, PL (t) is the total load demand,

Ebat is the nominal capacity of the battery, lbat,charging,
lbat,discharging are battery efficiencies under charging/dis-

charging modes, respectively, and Dt is interval time.

3 Faults Detection and Power Flow Analysis
in the Proposed Model

3.1 Fault Detection Using the CUSUM Method

The cumulative sum is determined by accumulating the

difference between current cycles and a reference cycle

(Dhar and Dash 2017; Prasad and Dash 2021; Musa et al.

2018; Noori and Shahrtash 2013). This method shows any

abrupt change present in the differential current signal of

the current sample ‘‘s’’ as compared with the previous

sample with a low computational burden. In this paper,

current and voltage signals are considered under different

case studies, i.e., solar irradiation change and partial

shading conditions, to perform the CUSUM operation. The

CUSUM method is executed in two ways: one is a sample-

by-sample and the other is a window-by-window approach.

In the sample-by-sample process, the current sample ‘‘s’’ is

compared with the previous sample, i.e., ‘‘s - 1.’’ As a

result of this process, the maximum CUSUM index value is

obtained under sudden variations in the signal (Prasad and

Dash 2021; Musa et al. 2018). Whenever the index exceeds

a threshold, that particular moment is treated as the fault

detection time. In the window-based method, the total

number of samples per window is considered as ‘‘w.’’

Among three consecutive comparisons of threshold values

of st0, ðsþ 1Þt0, and ðsþ 2Þt0 samples in both the windows

of jt0 and ðjþ 1Þt0, which has the maximum detection

index is considered as the fault detection time at that par-

ticular time instant. CUSUM provides faster fault detection

and the positive values of their results, irrespective of the

nature of polarity of the input signal, i.e., differential cur-

rent signal (Id).

Here s ¼ 1; 2; 3 � w and j ¼ 1; 2; 3 � j:

The number of windows is computed as j2 = x/j

CUSUM sð Þ ¼ CUSUM s� 1ð Þ þ Id sð Þ � Id s� kNsð Þ
ð9Þ

where Ns, Id , s, and k indicate the number of samples/win-

dow, differential current, an instant of a sample, and pos-

itive integer (considered as unity), respectively.

If CUSUM[CUSUM threshold

trip flag ¼¼ 1;

CUSUM detection time ¼ CUSUM sð Þ � CUSUM s1ð Þð Þ
� Ts

ð10Þ

where Ts indicates the time interval between samples,

CUSUM_threshold is determined at an instant of jth

through a trial and error method, and the first instant that

the CUSUM index goes over zero is denoted as s1.

3.2 Short-Circuit Faults and Power Flow Analysis

3.2.1 Short-Circuit Analysis

In the proposed model, the short-circuit fault is shown in

Fig. 3

Apply the Kirchhoffs voltage law (KVL) for the Fig. 3:

Vc1 ¼ I1ðR1 þ RfÞ þ L1
dI1
dt

ð11Þ

where

Vdc1 ¼ Vc1 ¼
1

C

Z
I1dt

By considering the fault instant at time t0, the RLC

response of the circuit, which consists of resistance (R),

inductance (L), and capacitance (C), can be represented in

the frequency domain as follows:

I1 sð Þ ¼
Vc1 0ð Þ
L1

þ sIL1 0ð Þ
s2 þ s

R1þRf

L1
þ 1

L1C1

ð12Þ

where Vc1 (0), IL1 (0) are the voltage across the capacitors

and currents flowing through the inductor, respectively, just

before the fault occurrence. In Eq. (12), the converter

contribution to the fault is neglected due to slow response,

and its time domain can be obtained by considering the

underdamped response as follows:

I1 ¼
Vc1ð0Þ
L1xd1

e�a1tsinðxd1tÞ

þ IL 0ð Þe�a1t cos xd1tð Þ � a1
xd1

sin xd1tð Þ
� 	

ð13Þ

where

xd1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n � a21

q
;xn ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
LieqCi

p ; a1 ¼
R1 þ Rf

2L1

The initial voltage across the converter filter capacitance

is the most significant factor shaping the fault current

profile, due to the combination of high filter capacitance

and low cable inductance. This results in a significant

impact on underdamped fault current characteristics, as
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illustrated in Eq. (13), which can be used to represent the

fault current profile, as follows:

I1 tð Þ ¼ Vc1ð0Þ
L1xd1

e�a1tsinðxd1tÞ: ð14Þ

3.2.2 Power Flow Analysis in the Proposed Model

To investigate the steady-state characteristics of the pro-

posed microgrid before and after a fault is crucial. As a

result, understanding the consequences of faults becomes

more complex. For this purpose, power flow computation,

which does not require simulations (Yao et al. 2013; Yao

2016), is the most suitable method for achieving this goal.

Assuming the total number of buses in the proposed

model is n (where n = 6), according to Kirchhoff’s current

law, the current injected at the bus i is equal to the sum of

current flowing through other n-1 buses.

Ii ¼
Xn

j ¼ 1

j 6¼ i

Yij Vi � Vj

� �
ð15Þ

where Yij refers to the admittance between two buses (i and

j), while Vi and Vj denote the voltage magnitudes at those

respective buses. Admittance can be obtained using

impedance (Z), and it can be estimated by Vdc1½ � ¼ I1½ �½Z�
Finally, the power flow equations for any bus can be

calculated as follows:

Pi ¼ ViIi ð16Þ

From Eqs. (15) and (16),

Pi ¼ Vi

Xn

j ¼ 1

j 6¼ i

Yij Vi � Vj

� �
ð17Þ

According to the load and power in the proposed model,

the power flow equation is as follows:

PL ¼ Pgrid þ PV1 þ PV2 þ PV3 � Pbat ð18Þ

where PL is load demand, PV1, PV2, and PV3 are the PV

array’s output power, and ± Pbat represents the battery

output power in charging/discharging modes.

4 Fault Classification Using the Proposed
Algorithm

The proposed OMW-VMD-MFDFA algorithm has two

stages. In stage 1, an overlap moving window-based

algorithm (OMW) is implemented to segregate the signal

into the equal length of windows (Zhang et al. 2019). In

stage 2, variational mode decomposition (VMD) is intro-

duced for fitting polynomials by estimating the local trends

with the help of IMFs in classic MFDFA.

4.1 Overlap Moving Window (OMW)

To address the issue of discontinuity in data segmentation,

the OMW-based algorithm is utilized; by estimating the

moving window size (Zhang et al. 2019) from the fault

signal of length L and determining the step size (s) for each

iteration. Here, the algorithm iterates through the signal for

a number of iterations that depends on the signal length or

total samples, as shown in Fig. 4, and it can be calculated

as follows:

Total number of iterations ¼ total length ðLÞ
� window size ðwÞ

4.2 Variational Mode Decomposition (VMD)

The popular VMD technique has been used by signal

processing enthusiasts all over the world to break down

nonlinear signals into several sub-signals (lk), also refer-

red to as intrinsic mode functions (IMFs) (Xu et al. 2019;

Miao et al. 2019). Each mode is connected to a central

frequency (xk) by means of the j^2 norm, and its band-

width is evaluated via the gradient estimate (Lin et al.

2021; Isham et al. 2018). As a result, VMD is characterized

by both equality and inequality constraints, posing an

optimization challenge in the form of the following

equation:

min
kf g; fxkg

X
k

kðot½ d tð Þ þ j

pt

� �
� lk tð Þ�e�jxktk

2

2

( )
ð19Þ

subjected to
XK
k¼1

lk ¼ l

Total samples of signal: L

Moving window

Size: w

Moving window

Size: w
Number of 

moves: L-w

Step size

Fig. 4 Overlap moving window

architecture
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where d tð Þ indicates the Dirac distribution, k:k22 indicates

the L2-norm, K is the modal number, l is the reconstructed

signal, and * indicates the convolution operator.

By incorporating the Lagrange multiplier (k) and the

fidelity factor (r), it is possible to transform Eq. (19) into

an unconstrained optimization problem. The fidelity factor

reduces Gaussian noise and enhances accuracy, and the

resulting augmented Lagrangian (L) is as follows:

L lkf g;fxkg;kð Þ¼r
X
k

kot d tð Þþ j

Pt

� �
�lk tð Þ

� 	
e�jxktk

2

2

þkl tð Þ�
X
k

lk tð Þk2

2

þhk tð Þ;l tð Þ

�
X
k

lk tð Þi

ð20Þ

where angle brackets hi represent the inner product of two

variables. Equation (20) yields the best solution through an

alternate direction multiplier approach, which also enables

the extraction of the bandwidth of each finite mode. To

upgrade the modes (blnþ1
k ) and center frequencies xnþ1

k

� �
;

the process employs two loops, represented as follows:

blnþ1
k xð Þ ¼

bl xð Þ �
P

i 6¼k bln
i þ

bkn

ðxÞ
2

1þ 2aðx� xn
kÞ

ð21Þ

xnþ1
k ¼

R1
0
x bln

kðxÞ
�� ��2dxR1

0
bln
kðxÞ

�� ��2dx
ð22Þ

By examining Eqs. (21) and (22), it is evident that both

modes and central frequencies are upgraded, resulting in an

upgraded Lagrange multiplier ðbknþ1
Þ expressed as follows:

bknþ1
xð Þ ¼ bkn þ sðbl xð Þ þ

XK
k¼1

blnþ1
k xð Þ ð23Þ

where s indicates the tolerance parameter.

From the earlier discussion, it is clear that as long as the

convergence condition [i.e., in Eq. (24)] is not fulfilled, the

process in VMD will be repeated using Eqs. (20) to (23).

Once the condition is satisfied, the algorithm stops the

decomposition process.

XK
k¼1

kblnþ1
k � bln

kk
2

2

kbln
kk

2

2

\e ð24Þ

where e is the convergence decisive factor.

To enhance accuracy and reduce computational com-

plexity, optimal IMF selection is crucial among a series of

IMFs. It means that IMFs that contain very low noise and

more information regarding the fault need to be selected.

Here, the selection of the optimal IMF is based on the

maximum value of the weighted kurtosis index (WKI),

which is illustrated in the following section.

4.3 Weighted Kurtosis Index

All the IMFs produced by VMD do not carry much more

information regarding the input signal. In this paper. the

weighted kurtosis index is used (Miao et al. 2019; Gu et al.

2020) to eliminate the noise content and IMFs carrying

limited information. The WKI is the product of two major

indices, such as correlation coefficient (CCf) and the kur-

tosis index (KIs). Here, the KIs is used to eliminate the

higher amplitude of scattering distribution, and the CCf is

used to measure the similarity between the two-time series

signals.

WKI ¼ KIsj j � CCf

�� �� ð25Þ

where KIs ¼
1
N

PN�1
t¼0 S4ðtÞ

1
N

PN�1
t¼0 S2ðtÞ

� �2
and CCf

¼
E½ S� S
� �

Z � Z
� �

�
E½ S� S
� �2ðZ � ZÞ2�

where N, Z, and S(t) denote the length of the signal, IMF of

the signal, and time series signal, respectively. The best

three IMFs are selected among the series of IMFs using a

threshold (Gu et al. 2020). In this work, after observing

several simulations, the threshold is fixed as greater than

two, because the IMFs below the threshold value contain

more noise and less fault information.

4.4 Traditional MFDFA

MFDFA is the extension of the DFA approach, which

addresses the limitations of DFA, such as local fractal

analysis in nonstationary signals (Zhang et al. 2019; Mar-

tı́nez et al. 2021). The MFDFA algorithm is utilized to

analyze the fault signals that have been previously detected

using the CUSUM method.

Step 1: The profile can be subtracted from the input

signal’s mean in MFDFA to eliminate a specific set of

components:

M pð Þ ¼
Xp

t¼1

X tð Þ � X tð Þ
� �

; p ¼ 1,2; . . .:; L ð26Þ

where L, X(t), andX tð Þ indicate sample total, input signal,

and its mean, respectively.

Step 2: The resultant signal is represented by M(p),

which is subdivided into Ls windows. Each window con-

sists of non-overlapping segments with equal lengths (s):

where

Ls ¼ L=s: ð27Þ
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The above segmentation process will perform very well

until the window lengths are equal. In the uncertainty

condition, some part of the profile remains unused, and that

will be wasted. To avoid that kind of situation, the above

procedure is performed in reverse order.

Step 3: Estimate the local trends of each 2Ls segment,

and the detrended time series Yt (i) can be obtained as

follows:

Yt ið Þ ¼ vt ið Þ � pt ið Þ1\i\s

where vt ið Þ and pt ið Þ denote the segment and trend time

series data, respectively.

Step 4: The least-squares polynomial fitting method is

used to calculate the local trends of each segment, enabling

the estimation of the MFDFA local trends. Following this,

the variance of each signal is computed, as demonstrated

below:

F2 s; mð Þ ¼ 1

n

Xn
p¼1

M m� 1ð Þsþ p½ � � mmðpÞf g2; for m

¼ 1,2; . . .; Ls ð28Þ

F2 s; mð Þ ¼ 1

n

Xn
p¼1

M L� m� 1ð Þsþ p½ � � mmðpÞf g2; for m

¼ Ls þ 1; . . .; 2Ls

ð29Þ

where mmðpÞ is the fitted least-square polynomial, which

can take the shape of a linear, quadratic, cubic, or higher-

order polynomial in terms of v. The fluctuation function

can be computed as follows:

Fq sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Ls

X2Ls

m¼1
F2 s; mð Þ0:5qq

r
if q 6¼ 0

Fq sð Þ ¼ exp
1

4Ls

X2Ls

m¼1
ln F2ðs; mÞ
� � �

� nHð0Þif q ¼ 0

8>>><
>>>:

ð30Þ

where q is the polynomial order; if q = 2, then the MFDFA

acts as a DFA.

Step 5: The power-law relationship is computed

between the fluctuation function Fq sð Þ and s scales as

follows:

Fq sð Þ / sH qð Þ ð31Þ

From Eq. (29), it is clear that the fluctuation function

and scaling component exhibit a linear relationship. By

definition, the Hurst exponent H(q) is calculated for any

value of q. If q = 2, then it is known as the generalized

(a) (b) (c)

S2S1

DC-DC
converter

S3

Fig. 5 Partial shading effect during a 100-kW PV array model. b I–V characteristics. c P–V characteristics

(a) (b) (c)

Fig. 6 Comparative results for different arc faults during unshaded (normal) and partial shading conditions: a series arc fault; b shunt cross-string

fault; and c shunt intra-string fault
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Hurst exponent (Prasad and Dash 2021). The presence of

multifractal characteristics in fault signal data can be

determined by the relationship between Hq and q (Anjaiah

et al. 2022a). If the variables are independent, then multi-

fractal characteristics are absent, but if they are dependent,

then multifractal characteristics are present. Moreover, a

positive value for both Hq and q implies a large scaling

performance of segment fluctuations, while both negative

values indicate a lower scaling behavior.

Step 6: The relation between mass exponent (Mq) and

Hurst exponent (Hq) is expressed as

Mq ¼ qHq � 1 ð32Þ

In the case of monofractal analysis, a single Hurst

exponent with a mass exponent shows linear properties. In

(a) (b) (c)

Fig. 7 Comparative results for different arc faults during unshaded (normal) and partial shading conditions: a swell; b harmonics; and

c transients

(a) (b) (c)

Fig. 8 Effect of PV irradiation change on arc faults: a series arc fault; b shunt intra-string arc fault; and c shunt cross-string arc fault

(a) (b) (c)

Fig. 9 Effect of PV irradiation change on utility disturbances: a swell; b harmonics; and c transients

(a) (b) (c)

Fig. 10 Series arc fault detection using the CUSUM method under different solar irradiation levels: a 100% irradiation; b 75% irradiation; and

50% irradiation
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multifractal analysis, multiple Hurst exponents with a mass

exponent indicate nonlinear properties.

Step 7: The Legendre transform is used to express the

relationship between the mass exponent and the singularity

spectrum (Sq):

(a) (b) (c)

Fig. 11 Shunt cross-string arc fault detection using the CUSUM method under different solar irradiation levels: a 100% irradiation; b 75%

irradiation; and c 50% irradiation

(a) (b) (c)

Fig. 12 Shunt intra-string arc fault detection using the CUSUM method under different solar irradiation levels: a 100% irradiation; b 75%

irradiation; and c 50% irradiation

(a) (b) (c)

Fig. 13 Detection of swell using the CUSUM method under different solar irradiation levels: a 100% irradiation; b 75% irradiation; and c 50%
irradiation

(a) (c)(b)

Fig. 14 Detection of harmonics using the CUSUM method under different solar irradiation levels: a 100% irradiation; b 75% irradiation; and

c 50% irradiation
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dq ¼
dMq

dq
ð33Þ

Sq ¼ qdq �Mq ð34Þ

where dq is the singularity exponent, and Sq is also known

as the fractal dimension.

dq ¼ Hq þ qH0
q ð35Þ

Sq ¼ q dq � Hq

� 
þ 1 ð36Þ

An inverted parabolic shape characterizes the multi-

fractal spectrum, and the width of this shape corresponds to

the degree of multifractality. Thus, an increase in the width

of the spectrum implies an increase in the level of

multifractality.

4.5 Analysis of Improved OMW-VMD-MFDFA
Algorithm

Modified MFDFA algorithms, i.e., OMW-EEMD-MFDFA

(Zhang et al. 2019) and adaptive MFDFA (Martı́nez et al.

2021), are proposed to avoid the complexities in the basic

MFDFA, and it experimentally proved its accuracy in the

application of precipitation analysis (Zhang et al. 2019).

However, this method has a few drawbacks due to the

EEMD algorithm, such as the selection of ensemble

number and noise amplitude. To address those limitations,

this paper introduces an OMW-VMD-MFDFA approach,

and it is developed by modifying the two steps, i.e., steps 2

and 4 in the traditional MFDFA without changing other

steps. In step 2, the profile is divided into equal lengths of

windows without overlapping each other. The problem in

this step is due to polynomial fitting, as a result of this

discontinuity in the segmentation process. In order to

enhance the segmentation of the fault signal data in step 2,

an overlap moving window-based algorithm has been

implemented in this paper. This algorithm effectively

resolves the issues previously faced, and the traditional

MFDFA only requires modifications in steps 2 and 4

without any impact on other steps.

Step 2: The OMW algorithm divides the profile into

L� sþ 1 overlapping segments of equal length s.

Step 4: Using the OMW algorithm, the original fault

signal data is segregated into L� sþ 1 segments, allowing

the qth order fluctuation function to be calculated using the

obtained segments:

Fq sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ðL� sþ 1Þ
XL�sþ1

m¼1
F2 s; mð Þ0:5qq

s
if q 6¼ 0

Fq sð Þ ¼ exp
1

2ðL� sþ 1Þ
XL�sþ1

m¼1
ln F2ðs; mÞ
� � �

� nHð0Þif q ¼ 0

8>>>><
>>>>:

ð37Þ

Basic MFDFA typically assumes that local trends can be

modeled as polynomials. To further refine this process,

MFDFA has been incorporated with the VMD algorithm

and utilizes the optimal IMFs to fit the polynomial and

accurately estimate the local trends. We change step 3

without changing other steps:

Yt ið Þ ¼ vt ið Þ � Rn ið Þ1\i\s ð38Þ

where Yt(i) is the time series of the fault signal. Note that

the trend Rn(i) should be determined for each 2Ls segment

on time scale s.

4.6 OMW-VMD-MFDFA Feature Extraction
Analysis

It is necessary to select the features to classify the faults

and power quality disturbances efficiently. From the

(a) (b) (c)

Fig. 15 Detection of transients using the CUSUM method under different solar irradiation levels: a 100% irradiation; b 75% irradiation; and

c 50% irradiation

Table 2 Arc fault and utility disturbance detection using the CUSUM

method

Type of fault Average detection time (ms)

Shunt intra-string 11.01

Shunt cross-string 12.87

Series arc 12.31

Swell 10

Harmonics 13.27

Transients 9.68
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various kinds of literature, the following features are con-

sidered for fault classification.

(i) Hurst exponent (Hq)

(ii) Singularity spectrum (Sq)

(iii) The right extremity of the singularity exponent

(dmax)

(iv) Singularity spectrum peak value (dpeak)
(v) Singularity spectrum width (Ddq)

The abovementioned features are computed for all the

simulated faults. Hurst exponent (Hq) for q = 2 exhibits

self-affinity. The right extremity of the singularity expo-

nent (dmax) and singularity spectrum peak value (dpeak)
signifies the maximum fluctuation of fault signal and peak

fluctuation of fault signal data, respectively. Singularity

spectrum width (Ddq = dmin—dmax) indicates the degree of

the signal; higher fluctuations are represented by a wide

spectral width and vice versa.

(a) (c) (e)

(b) (d) (f)

Fig.16 IMFs produced by VMD for different arc faults: a series arc

fault and its significant IMFs; b WKI values for significant IMFs;

c shunt intra-string arc fault and its significant IMFs; d WKI values

for significant IMFs; e shunt cross-string arc fault and its significant

IMFs; and f WKI values for significant IMFs
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5 Result Analysis

Initially, various DC faults are created in the proposed

model (i.e., multiple PV-based DC ring microgrid), and

their corresponding signals are captured from the PCC and

DC bus. Simulated faults include series arc, shunt arc

(intra-sting and cross-string) faults, and utility disturbances

(i.e., swell, harmonics, and transients). The effects of the

simulated fault signals are investigated under two cases,

such as solar irradiation change and partial shading con-

ditions. Thus, the results indicate that the current profile in

the proposed microgrid is more influenced by arc faults

than the voltage profile. Similarly, utility disturbances

impact the voltage more as compared to the current. Thus,

both voltage and current signals are considered for fault

analysis. Among six faults, three are related to arc faults,

(a) (c) (e)

(b) (d) (f)

Fig.17 IMFs produced by VMD for utility disturbances: a swell and its significant IMFs; b WKI values for significant IMFs; c harmonics and

their significant IMFs; d WKI values for significant IMFs; e transients and their significant IMFs; and f WKI values for significant IMFs
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and the other three are related to utility disturbances. The

effect of these faults under two case studies, i.e., PV partial

shading and irradiation change, is presented in this paper.

5.1 Case 1: Partial Shading Effect

Generally, a partial shading effect will occur in PV arrays

due to clouds, and therefore some of the modules are not

exposed to sunlight (2020; Ahmad et al. 2017). Due to this

phenomenon, voltage and current are influenced more, and

the shaded modules produce less current and voltage than

unshaded modules. This paper investigates the effects of

partial shading on a 100-kW-rated PV array, which is made

up of three strings with individual ratings of 33.4 kW. The

experimental simulation includes three irradiation levels:

fully shaded (150 W/m2), partially shaded (600 W/m2), and

unshaded (1000 W/m2), as depicted in Fig. 5a. The partial

shading effect commences after 1.2 s in the proposed

(a) (b)

(c)

Fig. 18 Arc faults and power quality disturbances analysis by OMW-VMD-MFDFA: a Hurst exponent (Hq); b mass exponent (Mq); and
c singularity spectrum (Sq)

Table 3 Feature extraction for

simulated faults using the

OMW-VMD-MFDFA method

Type of fault Fault class Hq Sq dmax dpeak Ddq

Shunt intra-string CL1 3.784 0.272 3.415 2.307 2.213

3.686 0.201 3.397 2.154 2.251

3.561 0.182 3.392 2.087 2.191

Shunt cross-string CL2 3.249 0.377 5.782 1.819 4.925

3.195 0.346 5.705 1.794 4.864

3.001 0.324 5.678 1.788 4.825

Series arc CL3 6.486 0.852 3.384 2.647 1.987

6.402 0.832 3.279 2.578 1.981

6.381 0.811 3.255 2.452 1.978

Swell CL4 3.852 0.478 3.557 1.925 2.748

3.815 0.461 3.527 1.901 2.729

3.786 0.445 3.492 1.892 2.717

Harmonics CL5 3.186 0.611 3.957 1.789 2.925

3.015 0.592 3.876 1.781 2.856

2.987 0.575 3.825 1.778 2.807

Transients CL6 4.396 1.152 5.887 1.895 5.331

4.185 1.027 5.759 1.882 5.287

4.034 0.921 5.639 1.879 5.054

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2023) 47:1343–1363 1357

123



microgrid. During this phenomenon, two LMPPs and one

GMPP are extracted using an IP&O method, and they are

depicted in Fig. 5b and c.

The impact of partial shading on arc faults and utility

disturbances is more pronounced than in unshaded or

normal conditions, as demonstrated in Fig. 6. Analysis of

the figure reveals that the effects of partial shading become

apparent after 1.2 s. This is due to the differential nature of

the fault current signals, which result in zero readings prior

to this time. The arc fault currents are immediately high

when compared with an unshaded condition, because at

this instant of time, the PV array is switched to the partial

shading operation. This phenomenon can be observed from

the selected portion in Fig. 6. Similarly, the effect of

voltage in utility disturbances under normal conditions and

partial shading conditions is shown in Fig. 7. From these

figures, it is clear that the voltage magnitude is the same for

all the figures before the partial shading effect at 1.2 s.

After 1.2 s, the source power is decreased due to partial

shading. For this reason, the voltage magnitude fluctuates a

little more; but after a few milliseconds, the voltage

amplitude is stabilized, and it follows the unshaded voltage

profile with a very low difference, because of battery

action.

5.2 Case 2: Irradiation Change in the PV Array

In this scenario, the effect of solar irradiation change in the

400-kW PV array is observed in arc faults and utility dis-

turbances. In this paper, three variations of 100%, 75%,

and 50% are considered for all considered faults, and these

are represented in Figs. 8 and 9. From Fig. 8, it is clear that

arc fault current amplitudes decrease with respect to irra-

diation level. Similarly, the voltages of utility disturbances

also decrease their amplitude with respect to irradiation, as

shown in Fig. 8.

All these variations of fault signals are passed through

CUSUM for detection. The CUSUM method identifies

abrupt changes that occurred in the input signal; because of

this phenomenon, CUSUM is used to detect faults and

disturbances. Here, the threshold is a user-defined value,

and it is chosen as greater than 2 for detecting the faults,

because at this threshold value, both arc faults and PQ

disturbances can be detected accurately. If the results of the

CUSUM exceed the predefined threshold, that instant of

(b)             (c)             (a)             

Fig. 19 Fault and utility disturbance classification in three dimensions with different features of OMW-VMD-MFDFA combination

Table 4 Classification accuracy of extracted feature sets

Features and their combination set CA (%)

Feature set 1 Hq, Sq, Ddq 99.33

Feature set 2 Sq, Ddq, dpeak 96.66

Feature set 3 Sq, Ddq, dmax 92.12

Bold value indicates superiority when compared to other sets

Table 5 Performance comparison of proposed and existing classifiers

for nonlinear fault analysis

Classifier CA (%) RCT

DFA (Das et al. 2018) 97.8 2.03

MFDFA (Prasad and Dash 2021) 98.15 1.85

ADAPTIVE MFDFA (Martı́nez et al. 2021) 99.11 1.31

OMW-MFDFA (Zhang et al. 2019) 99.02 1.72

OMW-EEMD-MFDFA (Zhang et al. 2019) 99.17 1.18

Proposed

(OMW-VMD-MFDFA)

99.33 1

Bold values indicate superiority when compared to other techniques
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time is the fault detection time. Here, the threshold of each

fault is indicated with the dotted line.

All the simulated fault signals (i.e., arc faults and utility

disturbances) under different PV irradiation levels such as

100%, 75%, and 50% are detected using the CUSUM

method, and these are represented in Figs. 10, 11, 12, 13,

14, and 15. The detection time of every fault is calculated

under three variations, thus its average time is considered

as the fault detection time, as reported in Table 2. Fault

detection time is calculated by subtracting the CUSUM

detection time to the actual fault-created time (1.2 s) for

every variation.

Here, arc faults and utility disturbances are detected in

less than 14 ms using the CUSUM method. Further, these

detected signals are fed to the proposed classifier, i.e.,

OMW-VMD-MFDFA, for fault classification.

The initial step is set to 1, and N - s ? 1 segments will

be obtained for each iteration of the s using the OMW

method. The next step is to perform the VMD operation for

the decomposition of the N - s ? 1 segments into IMFs,

which are obtained from the OMW method. In order to

reduce the computational burden of the proposed classifier,

it is necessary to select the best IMF among the series of

IMFs. Thus, the WKI is introduced in this work for

selecting the best IMFs. By utilizing a threshold, three

sensitive IMFs were selected out of a series of IMFs,

shown in Figs. 16 and 17.

The IMF having the maximum value of WKI is treated

as the IMF1 irrespective of the model number. Similarly,

IMF2 and IMF3 are selected in the same manner. This

approach is used to fit the polynomial by estimating the

local trends instead of the least-square polynomial fitting

method. VMD has several advantages over other existing

techniques, such as sampling, noise elimination, end effect,

and mode mixing; thus, VMD is preferred in this paper.

The proposed algorithm, i.e., OMW-MFDFA, is differ-

ent from the basic MFDFA, and it provides the solution for

any order of the polynomial function. In this approach, the

fluctuation function [Fq(s)] is calculated for differential

fault current signals and power quality disturbances, with

Fig. 20 Validation of PV-DG

on hardware test bench setup

using dSPACE DS1104

Fig. 21 Validation of PV-DG during an arc fault: a uncertainty of PV irradiance; b corresponding output in Control Desk
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different q values. To examine the nonlinear characteristics

of the signal, three vectors (Hq, Mq, and Sq) were analyzed

based on existing literature, and the most effective feature

was found to be the Hurst exponent. This is due to the fact

that when Hq exhibits long-range correlation, the log-linear

fluctuation function of the signal displays power-law cor-

relations, providing valuable insight into its nonlinear

behavior (Anjaiah et al. 2022a).

In this paper, the authors investigated the nonlinear

characteristics of differential fault current signals by

varying the Hq and q values over a range of -5 to 5.

Notably, a q value of 2.5 produced discriminative behavior

in Hq when exposed to simulated arc faults and power

quality disturbances, suggesting that Hq could serve as a

reliable discriminator of nonlinear signal dynamics. Con-

versely, the Hq was rendered ineffective with q = 0.3, as it

demonstrated inadequate selectivity and superimposed the

fault signals. The scaling features of the fluctuation func-

tion are greater if the q and Hq variables are positive and

less if they are negative. All of the aforementioned char-

acteristics of the Hurst exponent are discernible within the

range of 0.5\Hq\ 6.8, as illustrated in Fig. 18a. A dis-

tinct classification between the scaling exponent (Mq) and

q is evident from the plot, with the relationship between

Mq and q displaying a nonlinear and convex-shaped curve,

as depicted in Fig. 18b. Furthermore, Fig. 18c represents a

multifractal spectrum whose shape resembles an inverted

parabola. This spectrum exhibits truncated right tail and

left tail features, indicating that arc faults and power

quality disturbances are multifractal and possess internal

dynamic characteristics. When it comes to fault signals,

right tail properties exhibit insensitivity to local fluctua-

tions due to their high magnitude, whereas the left tail

properties exhibit insensitivity to local fluctuations due to

their low magnitudes. Moreover, simulated faults have

been distinguished at dq = 2.5 in the multifractal spectrum,

as shown in Fig. 18c. Here, it is clear that increasing q and

Hq results in a decrease in nonlinearity. Conversely,

increasing q and Mq leads to an increase in nonlinearity.

The nonlinearity, higher degree, and fluctuations in the

fault signal are denoted not only by Hq but also by Mq and

Sq.

5.3 A. Performance evaluation

To substantiate the efficacy of the proposed method, clas-

sification accuracy (CA) and relative computational time

(RCT) (Prasad and Dash 2021) are used as metrics. The CA

and RCT values obtained for the OMW-VMD-MFDFA

method are as follows:

Fig. 22 Validation of arc faults and utility disturbances: a shunt-intra string arc fault in Control Desk; b corresponding output in a digital

oscilloscope; c sag in a digital oscilloscope; and d corresponding output in Control Desk
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ClassificationAccuracy (CA)%

¼ Truely classified features data samples

Randomly chosen feature data samples fromwhole data
� 100

ð39Þ

Relative computational time RCTð Þ

¼ particularmethod computational time

low computational time of overall methods
ð40Þ

In this work, a total of five features such as Hq, Sq, dmax,

dpeak, and Ddq are considered to analyze the classification

accuracy of the proposed method. Except for Hq and Sq, all

the features are numeric; in order to obtain numerical

values for Hq and Sq feature vectors, their mean is con-

sidered. A total of six kinds of faults are simulated from the

proposed model. From these fault signals, the abovemen-

tioned features are extracted using the proposed OMW-

VMD-MFDFA method and are reported in Table 3. A total

of 180 variations are obtained for all the faults by con-

sidering different operating conditions, i.e., partial shading

and solar irradiation. A total of 150 samples are randomly

selected from the 180 samples to perform the classification

of the fault. Out of randomly selected 150 samples, a total

of 149 samples are classified exactly. Misclassification

happens between swell and shunt cross-string arc faults,

and they are observed from Fig. 19 in three dimensions.

From Fig. 19, it is clear that out of five features, the

combinations of Hurst exponent (Hq), singularity spectrum

(Sq), and spectrum width (Ddq) show the accurate classi-

fication as compared to other combinations (i.e., Fig. 19a),

and its CA is reported in Table 4. The other two sets are

misclassified more compared to Fig. 19a.

Therefore, the combination of this feature set is con-

sidered to be the most optimal for analyzing nonlinear fault

classification. To compute the CA and RCT, Eqs. (39) and

(40) were employed, respectively. Moreover, the proposed

OMW-VMD-MFDFA classifier is compared against

benchmark techniques, such as DFA, MFDFA, adaptive

MFDFA, OMW-MFDFA, and OMW-EEMD-MFDFA

classifiers, to demonstrate its superiority in terms of CA

and RCT.

Interestingly, Table 5 shows the superiority of the pro-

posed classifier in terms of CA and RCT for the classifi-

cation of arc faults and utility disturbances in the multiple

PV-based DC ring microgrid. Even though the proposed

methods (i.e., CUSUM, OMW-VMD-MFDFA) achieved

outstanding performance, they have a few limitations, such

as the difficulty in the selection of the threshold in the

CUSUM method whenever fault current magnitude is

much lower under a high-impedance scenario. Similarly,

OMW-VMD-MFDFA also needs to be improved in terms

of the selection of modal numbers and penalty factors for

estimating the unknown trends, to obtain more accuracy in

real-time applications.

5.4 Validation of the Proposed Method Through
HIL Setup

This paper presents a hardware-in-loop (HIL) setup for a

DC ring bus system that uses multiple photovoltaic (PV)

sources and accommodates local loads, as illustrated in

Fig. 20. The proposed OMW-VMD-MFDFA algorithm is

intended for real-time applications in electrical engineer-

ing. To this end, we used an 80-W PV emulator and a DC–

DC converter. The PV panels belong to ELDORA and have

a rating of 40 W/panel. To obtain the maximum power (i.e.,

VMPP and IMPP of 17.9 V and 2.3A, respectively), we cre-

ated artificial irradiance using 1.8-kW halogen bulbs

mounted on top of the panel. We also installed a knob to

vary the illumination, allowing us to validate the setup for

partial shading and DG disconnections and to estimate the

proposed algorithm’s efficacy.

To extract and monitor the maximum PV power, we

used PV Ecosense� and power conditioning units (PCU:

25-W DC–DC/50-W DC–AC operations) (Anjaiah et al.

2022b). We interfaced the real-time setup with dSPACE

DS1104 using Tektronix� TPP0101 oscilloscope probes.

The DS 1104 R&D control board, which runs at 250 MHz,

is the master controller that performs analog-to-digital

(ADC) and digital-to-analog (DAC) conversion at a

switching frequency of 10 kHz (\ rated 250 MHz). To

implement the control logic for the converter, we used

MATLAB/Simulink via the RTI library and Control Desk.

We used 50-W resistive–inductive loads to achieve

demand–supply balance.

5.5 Case 1: Impact of PV Irradiance Variation
on Current

In order to verify the effectiveness of the proposed

approach, the above designed HIL setup is utilized to test

the proposed approach, which included 80-W generation.

Irradiance was varied by adjusting the halogen lamps’

luminance, with the maximum luminance set at 1000

W/m2, producing the rated output power for ELDORA PV

panels. To validate uncertainty in PV, irradiance was var-

ied from 1000 W/m2 to 500 W/m2. In real time, luminance

was maintained at 1000 W/m2 until t = 10 s and then

varied at t = 16 s, t = 21 s, t = 24 s, and t = 28 s. At

t = 21 s, 40W of the ELDORA PV panel is completely

turned off. To observe the impact of irradiance on the

current profile, a digital oscilloscope is utilized, and its

output is shown in Fig. 21a. For more effective represen-

tation, Control Desk output is also included in this paper, as

shown in Fig. 21b.
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5.6 Case 2: Fault Disturbance Detection using
CUSUM in a Real-Time Environment

Further, to validate the proposed methodology, in the

hardware setup, out of various discussed faults, a series arc

fault is created with proper precautions. Here, the current

profile is considered to detect the fault, since during an arc

fault, voltage is nearly more than 10 times the normal

voltage. To mitigate this fault, CUSUM logic is developed

in dSPACE DS1104. Whenever the CUSUM index of the

current profile exceeds the predefined threshold, it issues

the trip signal to the circuit breaker for isolating the fault.

To observe this phenomenon more effectively, the out-

comes of the digital oscilloscope and Control Desk are

represented in Fig. 22a, b. From Fig. 22a, it is clear that the

arc fault is initiated at t = 4.6 s, and its corresponding

CUSUM index peak is represented at t = 4.65 s. From

Fig. 21b, we can observe that the trip signal is issued when

the CUSUM_predefined threshold is exceeded.

Also, among various discussed utility disturbances, the

impact of swell is observed in a real-time environment,

which is caused by the sudden disconnection of load from

the proposed test bench setup. This phenomenon can be

observed in digital oscilloscope and Control Desk out-

comes, as shown in Figs.22c and d, respectively.

6 Conclusion

In this paper, arc fault and utility disturbance detection and

classification is carried out using a CUSUM-based

improved MFDFA approach. Initially, arc fault and utility

disturbance signals are recorded at the PCC in the proposed

DC microgrid under PV partial shading and variable solar

irradiation conditions. These signals are fed to the CUSUM

method for fault detection. In this method, the instant at

which CUSUM results exceed the threshold (i.e.,[ 2) is

considered the fault detection point. All the simulated

faults (i.e., arc faults and PQ disturbances) are detected in

less than 14 ms using the CUSUM method. Further, these

signals are fed to the improved MFDFA for classification.

In this algorithm, stage 1 is based on the OMW method,

and it is used to divide the profile into non-overlapping

windows with equal lengths, and VMD is applied to

decompose the segments of the OMW output into IMFs in

stage 2. Also, the VMD algorithm is used for fitting the

polynomial by estimating local trends with the help of the

best three selected IMFs based on the maximum value of

WKI. Finally, the proposed algorithm, i.e., OMW-VMD-

MFDFA, is used for fault classification and to visualize the

misclassification among the considered faults. A total of

five distinct multifractal features are extracted from the

proposed algorithm. From these features, suitable combi-

nations are plotted in a three-dimensional scatter plot to

show the distinct nature among the fault classes. Among

these combinations, the Hurst exponent (Hq), singularity

spectrum (Sq), and singularity spectrum width (Ddq)
combination showed more classification accuracy. There-

fore, the following are the primary contributions and

novelties of this paper.

(i) A DC ring microgrid based on multiple PV

sources was constructed, and simulations of utility

disturbances and arc faults were performed using a

MATLAB/Simulink platform.

(ii) The CUSUM algorithm detects the captured

signals of arc faults and utility disturbances in

less than 14 ms.

(iii) The proposed classifier shows superiority in terms

of CA and RCT over DFA, MFDFA, adaptive

MFDFA, OMW-MFDFA, and OMW-EEMD-

MFDFA classifiers with the assistance of best

feature set such as Hq, Sq, and Ddq from the 3-D

cluster graphs. The achieved classification accu-

racy is 99.33%, and the relative computational

time is 1 p.u.

(iv) The dSPACE 1104 embedded processor imple-

mentation results in the MATLAB/Simulink envi-

ronment prove the robustness, simplicity, and

outstanding ability to recognize the different DC

fault conditions using the proposed method over

other state-of-the-art methods.

In light of the discussions, it is concluded that the

OMW-VMD-MFDFA approach is more appropriate for

fault detection and classification in a multi-PV-based DC

ring microgrid, as compared to benchmark techniques.
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