
RESEARCH PAPER

LR-Net: A Block-based Convolutional Neural Network for Low-
Resolution Image Classification

Ashkan Ganj1 • Mohsen Ebadpour2 • Mahdi Darvish3 • Hamid Bahador3

Received: 6 October 2022 / Accepted: 15 May 2023 / Published online: 27 June 2023
� The Author(s), under exclusive licence to Shiraz University 2023

Abstract
The success of convolutional neural network-based architecture on image classification in learning and extracting features

has made them very popular recently, but the task of image classification becomes more challenging when we apply state-

of-the-art models to classify noisy and low-quality images. It is still difficult for models to extract meaningful features from

this type of image due to its low resolution and lack of meaningful global features. Moreover, high-resolution images need

more layers to train, which means they take more time and computational power. Our method also addresses the problem of

vanishing gradients as the layers become deeper in the deep neural networks that we mentioned earlier. In order to address

all of these issues, we developed a novel image classification architecture composed of blocks that are designed to learn

both low-level and global features from blurred and noisy low-resolution images. Our design of the blocks was heavily

influenced by Residual Connections and Inception modules in order to increase performance and reduce parameter sizes.

We also assess our work using the MNIST family datasets, with a particular emphasis on the Oracle-MNIST dataset, which

is the most difficult to classify due to its low-quality and noisy images. We have performed in-depth tests that demonstrate

that the presented architecture is faster and more accurate than existing cutting-edge convolutional neural networks.

Furthermore, due to the unique properties of our model, it can produce a better result with fewer parameters. The source

code of the project is available at this GitHub repository.
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1 Introduction

Deep convolutional neural networks (CNNs) have revolu-

tionized computer vision in recent years, and are widely

used in various tasks such as object detection [1, 2], image

classification [3, 4], and instance image segmentation [2].

CNNs are preferred over feed-forward networks due to

their ability to share parameters and reduce dimensionality.

In a CNN, features are shared, leading to fewer parameters

and therefore reduced computations. The idea behind

CNNs is that pixels and their surroundings carry semantic

meaning within an image, and elements of interest can

appear anywhere within the image. Like multi-layer per-

ceptrons (MLPs), CNNs have layers, but they are not fully

connected. Instead, they have filters, which are sets of

weights applied to the whole image.

Since the groundbreaking success of AlexNet [5] in the

2012 ImageNet Large Scale Visual Recognition Competi-

tion, which combined CNNs and GPUs, research has

focused on improving CNN architecture and integrating

new concepts for better performance. VGG [6], Google-

LeNet [3], and ResNet [4] are three popular attempts to

improve performance through the use of CNNs. VGG [6]

investigates deeper network performance by extracting as

many features as possible from high-resolution images,

while GoogleLeNet [3] attempts to perform multiple

operations with different filter sizes in parallel to reduce the

risk of trade-offs. ResNet [4], on the other hand, generates

residual learning blocks through identity mapping shortcut
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connections, allowing for neural network models with

hundreds or even thousands of layers to overcome the

gradient vanishing problem. Other models such as Dense-

Net [7] have also found that reorganizing connections

between layers can improve learning and representation.

While all of these models perform well with high-res-

olution images, low-resolution images may not always be

available due to image age, bandwidth, and computation

limitations. Tests with advanced models such as Inception-

v3 [8] on low-resolution images such as Oracle-MNIST

[9], which contain natural noise, have shown a degradation

in performance compared to results with high-resolution

images. This problem is not unique to CNNs, as deep

neural networks (DNNs) also suffer from it [10]. Many

factors influence the quality of an image in the real world.

Most of the time, we cannot get a pure and high-resolution

image, and most images have some level of noise and

degradation, which will diminish the final result. Overall, it

has been recognized that poor image quality has a signifi-

cant impact on the performance of deep neural networks in

computer vision tasks, as noted here [11]. So in this paper,

we try to directly address this problem with a new archi-

tecture by utilizing the idea of inception [3] to get as many

features as possible from images by using different kernels

and combining them with some residual connections [4] to

solve problems like vanishing gradients and the problem of

dimensionality in deep neural networks.

This paper commences with introducing some related

works in the following section. Next, it explains the

approach proposed and presented the experimental setup,

and talks about the result of training in sections 3 and 4,

respectively, and finally, we have a conclusion in section 5.

2 Related Work

The use of convolutional neural networks (CNNs) has been

a key method of recognizing images, such as classifying

them [5, 12], recognizing actions [13], and locating objects

[14]. As deep learning models require a lot of training

instances to be able to converge, pre-trained models [15]

have been implemented to process small- and medium-

sized datasets. There seems to be a noticeable improvement

in accuracy with the method mentioned above. Neverthe-

less, because of the pre-trained weights to large datasets

(e.g., ImageNet [16]), it is more time-consuming and

computationally intensive than ever. In addition, compared

to traditional feed-forward networks, CNNs have the

advantage of parameter sharing and dimensionality reduc-

tion [17], which leads to a reduction in the number of

parameters and computations.

According to Han et al. [18] and Wang et al. [9], in order

to challenge deep learning models, they created benchmark

datasets that are acceptable and share the same character-

istics of MNIST, namely that the datasets are small in size

and encoded in an easy way to use. Images from both

Fashion and Oracle are converted into a format compatible

with the MNIST dataset. Thus, they can use MNIST’s

original dataset instantly regardless of the machine learning

system. Also, noted datasets contain more complex infor-

mation than simple digits extracted from the MNIST.

Several innovative models for classifying 2� 28 images

were presented in the literature [19]. In order to charac-

terize the images in the fashion-MNIST dataset using

convolutional neural networks, the authors prepared three

types of neural networks. The model exhibits amazing

results on the benchmark dataset. An extensive correlation

was established between various CNN structures (for

example, VGG16) on various datasets (for example, Image

Net) using the LeNet-5 network designed for fashion-

MNIST. As one example, a custom CNN type with stacked

convolution layers of VGG 16 achieved an accuracy rate of

93.07% on the Fashion MNIST in its published study [20].

Various models of CNNs were introduced to determine

which of them is most suitable for characterization and

identification in terms of their accuracy. The deep learning

architectures that were applied were LeNet-5, AlexNet,

VGG-16, and ResNet.

In most cases, the models perform exceptionally well on

specific data, but they do not generalize well to similar

datasets. As an example, [21] proposed a shallow convo-

lutional neural network using batch normalization tech-

niques in order to accelerate training convergence and

improve accuracy. The noted network consists of only four

layers with small convolution kernels, resulting in a low

time and space complexity. Even though the model

achieved top accuracy on the digits MNIST dataset [22], it

was not able to perform sufficiently on both CIFAR [23]

and Fashion MNIST [18].

It is the intention of most of the recently developed deep

convolutional neural networks (DCNNs) [24–27] that uti-

lize Inception and Residual connections as the basis to

implement bigger deep networks. In order to make the

model more accurate and detailed, the parameters of the

architecture are increased substantially as the size and

depth of the model increases. The complex nature of this

training increases the complexity of the model, which, in

turn, increases the number of resources required to run it.

Recurrence is a difficult property to incorporate in popular

Inception architectures, but it is crucial to improving

training and testing accuracy by requiring fewer compu-

tational resources. Some researchers have attempted to

implement more complex DCNN architectures such as

GoogleNet [3], or residual networks with 1001 layers [28]

that are capable of high recognition accuracy when applied

to different benchmark datasets.
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As we intend to tackle the problem of handling the low-

resolution image and its classification as mentioned in

[29, 30], we consider the CNN’s first layers as feature

extractors. After that, images are classified by taking

advantage of these features. In order to maximize effi-

ciency, a custom CNN block is designed. As compared to

mainstream DCNN architectures, this model not only

guarantees a higher recognition accuracy while requiring

fewer computation parameters but also contributes to the

overall training process of the deep learning approach as a

whole.

3 Method

3.1 Problem Overview

In this section, we will discuss the rationale behind our

decision to introduce a new architecture for image classi-

fication. After doing some tests with some famous state-of-

the-art models on the Oracle-MNIST [9], we discover a

noticeable decrease in the performance of the models. With

some further experiments, we realized that the relation

between classification accuracy and the resolution of ima-

ges is close to being linear, in all the cases, and this

problem seems to be common in most image-classification

algorithms. Even images with small degradation or noise

which is not noticeable by humans can cause performance

problems for models. According to our findings, we believe

that the primary cause of this problem is the architecture of

the models, and in order to solve the issue, we believe that

new algorithms and architectures need to be developed. In

this paper, we introduce a new architecture for addressing

this problem.

3.2 Overall Architecture

As one can see from Fig. 1, our architecture consists of

three multi-kernel blocks that stack on top of each other,

including the steps that our models take to learn the fea-

tures and details. After that, we add some fully connected

layers and the last layer with a sigmoid activation function

for classifying the outputs. The proposed architecture uses

the concept of Inception and Residual Connections in MK

blocks to provide robust performance for classifying ima-

ges. As we know, the inception modules were introduced

as a way of reducing computational expense in CNN, and

we knew that the simple models could not solve this

problem, so we tried to get the inception module idea and

use it with a combination of residual connections to

improve accuracy and reduce computation overhead. Since

our neural network deals with a wide variety of images

with varying salient parts or features, so using an inception

base idea is essential for this architecture.

As our input images are low-resolution images, the

useful details usually exist in fewer pixels, and for each

window or kernel, the information that can be extracted is

rarely found, so the filter size in our models is descending,

which means that for larger sizes, we will have smaller

kernel sizes. Additionally, the padding of each convolu-

tional layer is the same since the results must be

concatenated.

The multi-kernel block (MK-block) contains several

residual connections, as shown in Fig. 1. Rather than

learning unreferenced functions, these links learn residual

functions by referencing the layer inputs. The stacked

nonlinear layers have the ability to skip connectivity to fit

another mapping of FðxÞ :¼ HðxÞ � x that corresponds to

the desired underlying mapping H(x). FðxÞ þ x is formed

from the initial mapping (see Fig. 2). The residual mapping

is generally easier to tweak than the original one. In theory,

fitting an identity mapping by a stack of nonlinear func-

tions requires less effort than pushing the residual to zero if

an identity mapping is optimal.

Fig. 1 An illustration of the overall architecture of the model is

shown in this figure, along with details on each of the blocks. Our

block architecture is influenced by both Inception and Residual Net

concepts. The block can be divided into two different sides, from

which we can extract specific features. As part of our approach, three

kernels (3� 3, 5� 5, 7� 7) were used for feature extraction and a

1� 1 kernel was used for feature combining at the last step
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3.3 Multi-Kernel Block

As we mentioned earlier, our model was constructed by

stacking three multi-kernel blocks (Mk-kernel) on top of

each other. Our architecture relies heavily on these iden-

tical blocks. At the first layer (Fig. 3) of our block, we have

three different kernels (3� 3, 5� 5, 7� 7). The connec-

tions of these three kernels is critical because we want to

share the information in a way that our model does not

experience a big jump in kernel and feature. In other words,

we connect the result of kernels that have meaningful

relationships between them. For example, we have a con-

nection between kernels 3� 3 and 5� 5 because the

information that they exchange is useful. However, we do

not have a connection between 3� 3 and 7� 7 because the

information that they will share is unusable. The second

reason to have this type of connection is that we want to

process the low-resolution information. This is because as

we know, the big kernels extract more global information,

while smaller kernels extract detail and local information.

If you look at Fig. 1, you will see that we have a connection

between 3� 3, 5� 5, and 7� 7. The reason we made this

connection is that the 5� 5 kernel can create a balance

between the 3� 3 and 7� 7 images in a way that the

model will better understand which parts of the image will

have a local view and which parts will have a global view.

We divide our block into two parts in the second layer.

On the right side, we connect the nodes with kernel 5� 5

and kernel 7� 7 together, and at this step, the model

attempts to conclude the information in big kernels without

considering details, and it will use this information at the

last layer when we want to aggregate all the features. Our

next layer is a 3� 3 Conv layer that gathers the last details

from small sizes, or we can say that we will do local fea-

tures extraction or low-level features extraction based on

global features. The model will try to extract as much detail

and low-level features as it can in the continuation of

conv2D with kernel 3� 3, since in the previous layer we

extracted some low-level features, and so we repeat this

operation again. The reason we need this step is that we

need good performance on noisy and blurry images. At the

end of the process, the extracted features should be applied

with any weight from the previous steps.

The last point to note is the way we chose the number of

filters. In our images, we have two types of features. Some

of them are local and some of them are global features.

When we choose small filters, the model will extract the

small and detailed features, which will perform poorly with

low-quality and noisy images, while when we choose lar-

ger kernels, a much more complex neural network will be

needed to extract all useful images. As a result, we decided

to implement the inception concept, which uses different

image sizes across layers because our goal is to classify the

low-resolution images. So, we decided to have more 3� 3

kernels than 7� 7 and 5� 5 kernels.

4 Experiments

4.1 Datasets

We use MNIST-family datasets to evaluate our work

results and compare them with other state-of-the-art mod-

els to show the superiority of our model. The MNIST

family datasets have both of the characteristics we want to

study, which are noise and low-quality images. Table 1

shows a summary of all the information provided in the

next parts.

Fig. 2 Building blocks of the deep residual network

Fig. 3 MK-block’s first layer shows details of kernel connections as

well as how information is shared between them
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4.1.1 MNIST Digit Dataset

The fact that most of the models use this dataset and that it

also meets our requirement for a low-resolution image led

us to choose it as a way to demonstrate the power of our

architecture while providing a good way to compare our

results with those of other state-of-the-art models. The

MNIST dataset was created using NIST’s Special Data-

bases 3 and 1, which include binary images of handwritten

integers. Initially, NIST classified SD-3 as the training set

and SD-1 as the test set. SD-3, on the other hand, is much

cleaner and easier to discern than SD-1. The MNIST

training set contains 30,000 SD-3 patterns and 30,000 SD-1

patterns. Our test set included 5000 SD-3 patterns and 5000

SD-1 patterns. The SD-1 has 58,527 digit images authored

by 500 different writers. In contrast to SD-3, where blocks

of data from each writer appear in sequence, the data in

SD-1 is fragmented.

4.1.2 Fashion MNIST Dataset

Fashion-MNIST [18] is a dataset of Zalando article photos,

with 60,000 examples in the training set and 10,000

examples in the test set. Each example is a 28 x 28

grayscale image paired with a label from one of ten cate-

gories. Fashion-MNIST is intended to be a drop-in

replacement for the original MNIST dataset for evaluating

machine learning algorithms. The image size and structure

are the same as in the training and testing splits.

Each image is 28 pixels high and 28 pixels wide, for a

total of 784 pixels. Each pixel has a single pixel value

associated with it, which indicates how light or dark that

pixel is, with larger numbers indicating darker. This pixel

value is an integer ranging from 0 to 255. There are 785

columns in the training and test data sets. The class labels

are listed in the first column. The first represents the

clothing, while the second represents the accessories. The

remaining columns contain the corresponding image’s

pixel values.

4.1.3 Oracle MNIST Dataset

The Oracle-MNIST dataset [9] contains 30,222 ancient

characters from ten categories in 28� 28 grayscale image

format for pattern classification, with special challenges in

image noise and distortion. The training set has 27,222

images, while the exam set has 300 images per class. It

uses the same data structure as the original MNIST dataset,

making it compatible with all existing classifiers and sys-

tems. However, it is more difficult to train a classification

model on it without overfitting and low performance.

Images of ancient characters suffer from (1) incredibly

serious and unusual noises created by 3000 years of burial

and aging, as well as (2) significantly different writing

styles in ancient Chinese, both of which make them real-

istic for machine learning study.

We chose this dataset because of its noisy and low-

resolution characteristics. This aspect of the dataset makes

it extremely difficult for a standard model to classify the

images. Figures x and y show that the Inception v3 [8] and

Vgg-16 [6] models are not performing optimally, and we

can see an obvious degradation in the models’

performance.

4.2 Training Setup

To improve the reliability of our results, we use the same

setup and input size for training and testing all models. The

images have been resized to 35� 35� 1 in order to pre-

serve the standard input size for models like Inception-v3

[8] and VGG-16 [6], which do not function properly with

28� 28. For training the models, we use Google-Colab

with an NVIDIA Tesla T4 GPU with 16GB memory, with

a batch size of 128. For analyzing the model’s behavior

over a long period of time, models were trained for 200

epochs. However, for publishing the model, we use a

callback function that stops the training after 30 unchanged

epochs on validation loss. This technique is applied to save

time and prevent overfitting.

4.3 Results

In this section, we will present the results of our model and

we will have a comparison of our model’s accuracy and

loss against other models to evaluate the effectiveness of

the introduced architecture in low-resolution image clas-

sification tasks.

As shown in Fig. 4, our model outperformed three other

state-of-the-art models in terms of accuracy on all three

datasets without experiencing gradient exploding or

Table 1 Information regarding

the size and number of instances

of datasets used for evaluation

and training in this paper

Dataset name Training data Validation data Test data

Instances Size Instances Size Instances Size

Digit MNIST – 64.73 – 88.41 – 94.13

Fashion MNIST [18] 71.1 63.32 36.4 88.70 20.7 94.93

Oracle MNIST [9] 49.4 68.55 22.3 91.73 14.1 96.28
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overfitting issues. It is important to note that the introduced

model is simpler and faster based on the number of train-

able and un-trainable parameters and the prediction time.

Table 2 provides a detailed comparison of these five

models on the Oracle dataset [9]. These better results were

achieved by utilizing the MK-Blocks introduced in Sect. 3.

Our analysis of Tables 2 and 3 shows that noise and details

in the images directly affect all models’ performance. Due

to a large amount of natural noise in the Oracle-MNIST

dataset [9], as well as internal variance in the labels, the

accuracy of the models is lower on this dataset. However,

the introduced method (LR-Net) is able to achieve an

accuracy of 95.13, which is higher than other state-of-the-

art models that we examined in this research. We achieved

higher accuracy with fewer parameters and a shorter pre-

diction time, which shows the effectiveness of LR-Net in

classifying low-resolution images. The results we dis-

cussed earlier were expected as a result of the unique

block-based architecture we introduced in Sect. 3. Each

block was maintained by using a number of residual con-

nections between the input and upper levels in order to

maintain the features. This proved very effective at

increasing the meaningful feature extraction of models. We

were also able to overcome the gradient explosion problem,

which is common in deep neural networks. Based on the

results, we can see the power of residual connections in

combination with inception modules.

4.4 Comparative Evaluation

The purpose of this section is to compare our method with

VGG-16 [6], Inception-V3 [8], AlexNet [5], and ResNet50

[4] on three popular datasets: MNIST-Digit, MNIST-

Fashion [18], and Oracle-MNIST [9]. In Sect. 3, we dis-

cussed the use of the Inception module and the Res con-

nection to improve the accuracy and performance of the

LR-Net model on low-resolution images. Therefore, it may

Fig. 4 Training and validation loss over epochs generated by training

the custom CNN model on a MNIST fashion, b digit MNIST, and

c oracle MNIST datasets. The gradual increment in accuracy suggests

the efficiency of the network for learning practical features of the

image with an optimal convergence pace

Table 2 Analysis of five different models using the Oracle dataset and their parameters and prediction and running times

Model name Prediction time Number of trainable parameters Number of non-trainable parameters Number of parameters

AlexNet 24 ms 56,361,738 2752 56,358,986

Inception-V3 22 ms 23,851,784 34,432 23,817,352

VGG-16 16 ms 138,357,544 0 138,357,544

ResNet-50 15 ms 25,636,712 53,120 25,583,592

Ours(LR-Net) 10 ms 1,028,234 3236 1,024,998
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be worthwhile to compare these two models with others to

see how they perform.

As shown in Table 3, our newly developed model has

higher accuracy than other models. This is achieved by

utilizing MK-Block, which also reduced the number of

parameters and prediction time, as shown in the Table 2.

This reduces computation overhead and increases predic-

tion speed, which is particularly effective for low-power

devices. With 99.47% accuracy, our model is more accu-

rate than other models in the MNIST dataset. In the second

dataset (Fashion-MNIST [18]), which is a more challeng-

ing dataset to classify due to image complexity, our model

can achieve better accuracy compared to others by looking

at Table 3. We can see that the model keeps its robustness

during training.

The real challenge comes with Oracle-MNIST [9], since

it is a newly collected dataset with unique characteristics.

As indicated in Sect. 4.1, there are some natural noises and

blur that come with images. As a result, the images have

very poor quality, which will reduce the performance of the

models and make it harder for models to extract features.

Based on our tests, which are available in Tables 3 and 2,

other state-of-the-art models (inception-v3 [8], VGG-16

[6], AlexNet [5], ResNet50 [31]) had very poor perfor-

mance on Oracle-MNIST [9], despite their higher number

of parameters and complexity of their architecture

(Table 2). However, our model achieves a better result on

this dataset and it is able to classify images with greater

confidence while having less power consumption than

Inception-v3 [8] and VGG-16 [6].

4.5 Significance Test

The purpose of this section is to demonstrate the robustness

of our results and model by analyzing our testing results

statistically. In order to ensure that weight sharing did not

happen between training sessions, we started training the

models from the beginning at isolated run times. This was

to increase the reliability of our results.

Table 4 illustrates the information of the training model

ten different times on the Oracle-MNIST [9] dataset, which

was our main goal. During all training runs, we made sure

that the model learns weights from the beginning without

using transferring learning from previous runs. So, the

model’s results are independent of training status. The

results of Table 4 depict the robustness of our model and

show its reliability in the real world. By looking at the

table, we can see the average validation accuracy which is

95.18%, which is around the value that we reported earlier

in Table 3. The variance and standard deviation show our

error rate in relation to what we announced. According to

Table 4, the results and values announced in this paper are

reliable and applicable to other environments.

5 Conclusions and Future Work

In this paper, a novel architecture for low-resolution image

classification is proposed and examined. Using the results

of our study, we can conclude that this model can out-

perform many of the state-of-the-art models that are cur-

rently available in image classification tasks. In addition,

the presence of modules similar to those seen at inception

may contribute to these results. With the help of these two

ideas, we were able to create a model that was simpler and

more efficient compared to others. The model was evalu-

ated on MNIST family datasets and is generalizable to

other low-resolution ones.

As a future work, there are several modifications that

can be performed to make our model more robust against

noises and make it faster by reducing the number of

parameters. According to our findings, the image size

decreased dramatically after the first MK block, so having

the same number of filters for the second and third MK

blocks would not be optimal, which increases computa-

tional costs and would be undesirable. The goal is to

introduce a new hyperparameter for the number of filters in

the second and third blocks in order to make these blocks

more flexible for the individual image. Another way to

manage this problem is to use deconvolution to increase the

Table 3 The accuracy of five

different image classification

algorithms on three famous

MNIST datasets

Model name Digit MNIST Fashion MNIST [18] Oracle MNIST [9]

AlexNet 98.4 91 85.7

Inception-V3 93.31 94.44 92.6

VGG-16 92.4 74.2 52.6

ResNet50 98.8 88.63 90.9

Ours 99.47 95.03 95.13

Table 4 The results for ten different runs of LR-Net on Oracle-

MNIST [9]

Standard deviation Mean Variance Mode

Results 0.0030 0.9518 9.4140 0.9549
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image size after each block. This will increase feature

extraction and make the system more robust overall.
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