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Abstract
The major objectives of this paper are to optimize the scheduling of solar photovoltaic (SPV) and battery energy storage

systems (BESS) with the grid in order to reduce power loss and improve reliability. An unbalanced 8-bus rural distribution

network in the village of Jalalabad, in the district of Ghaziabad, Uttar Pradesh, India, is under consideration. The main

issue in village-based rural communities is excessive power outages and restricted grid power supplies. A modified

artificial bee colony optimization technique has been used to identify optimum sizing, location, and timing in order to

minimize the system’s total cost and losses in order to overcome the aforementioned challenge. The management resource

and demand response strategy are used to manage the load demand profile. The Coulomb Counting method is used to

improve the estimation accuracy of the battery. The various results demonstrate the efficacy of the suggested method for

determining appropriate PV, BESS, and grid size, location, and timing. In this work, only summer season is considered for

SPV generation. In addition, the degradation cost of the battery and the excess power production have also been analyzed

in this paper. It is evident that with the increase in the non-essential load shifting fraction bNELS from 0 to 25%, the fraction

of excess power production decreases from 9.15 to 6.21%. The results demonstrate that combining solar PV with a rural

network reduces carbon dioxide (CO2) emissions while also providing power 24 h a day, seven days a week.
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List of Symbols
G(t) Solar radiation

PNE Non-essential load

DPNE Change in non-essential load

C(BDC) Battery degradation cost

dB (Dt) Depth of discharge of battery

LB (dB) Life time of the battery

EBA (t) Actual capacity of battery at time ‘t’

gBC&

gBD

Charging and discharging efficiency of

battery

Emin Minimum energy rating of the battery

CO Total capital and operation cost of the battery

CBESS
n

Energy cost of the battery

CPV
n

Cost of solar PV

PPVn;t Power from solar PV

PBESSn;t
Power from BESS

P
gr
t Power from grid

C (0) Initial charge of battery

C(t) Final charge of battery

CS Desired charge of battery

Cgr Cost of grid supply

Se Battery price ($/kwh)

SP Solar pv price ($/kWp)

Lo Losses of the objective system

CSN Colony size

CB Battery replacement cost

Dt Battery charging time

Pt Battery power

XT Set containing values of time

bNELS The fraction of non-essential load shifting

1 Introduction

Solar photovoltaics have received a lot of attention in the

distribution network in recent years due to continuously

expanding power demand and limited reserves of
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conventional energy sources. Aside from renewable energy

sources, such as solar photovoltaic, other power sources,

such as energy storage devices, are gaining appeal as a way

to deliver power in areas where the grid is unstable (Verma

et al. 2017). However, in this study, resources (power grid

and renewable) are available, but smart scheduling is the

major focus such that an uninterrupted power supply is

provided with reduced losses, costs, and imbalance, further

increasing system resilience (Karimyan et al. 2014).

In a rural village distribution system, the main problems

are grid unavailability and unbalance (Kumar et al. 2019;

Kandpal et al. 2019). Also, due to improper planning and

uneven distribution of loads in three phases, power quality

problems such as voltage unbalance are prevalent. Major

challenges in the rural areas of India are excessive power

cuts or grid supply being limited. Therefore, renewable

energy-based distribution generation (DG), i.e., solar PV

and energy storage systems, is located near the distribution

loads and is the best option to fulfill the curtailed power

demand. DGs are cost-effective and environmentally

friendly ways to provide continuous power supply.

In this paper, an Indian village-based rural distribution

eight-bus network is considered as shown in Fig. 1. In the

network, each phase is loaded differently, so that each

phase has different power requirements throughout the day.

For such a practical case, one SPV and one BESS are

allowed per phase, for a total of three SPVs and three BESS

systems undertaken for the study. Because the battery can

supply or receive power at any time between its rated

power capacities, its use or scheduling can be done deci-

sively at times when it becomes cost efficient. Their sizes

in the different phases can be changed to reduce unbalance

(Kandpal et al. 2019). The degradation cost of the battery is

also considered in the presented paper. Solar PV should be

sized in such a way that its entire input is used when it is

available (Jannesara et al. 2018).

As a result, the author proposed optimal sizing, posi-

tioning, and timing of solar PV and batteries with a time-

constrained grid to improve the distribution system’s reli-

ability (Ghanegaonkar and Pande 2017). To solve the

problem with optimal solutions, the new advanced opti-

mization technique, i.e., modified artificial bee colony

(Akay and Karaboga 2012; GAO, W. F., Liu, S. Y. 2012),

and resource management are used (Hosseina and Bathaee

2016). The demand response (DR) strategy (Chauhan and

Saini 2017) is applied to manage the load/demand

scheduling.

In the literature, several researchers have applied

effective and analytical approaches to the scheduling, sit-

ting, and sizing of DGs in distribution networks to mini-

mize power losses (Acharya et al. 2006; Wang and Nehrir

2004; Gözel and Hocaoglu 2009; Kamel and Kermanshahi

2009). An efficient and an improved analytical method are

investigated to achieve the optimal sizing and placement of

multiple DGs in distribution networks where grid extension

is challenging (Mahmoud et al. 2016; Hung and Mithu-

lananthan 2013). Gampa and Das developed a multi

objective technique to obtain optimal sitting and sizing of

DGs and evaluate the economic and technical factors

(Gampa and Das 2015) of the distribution system. A two-

step optimization technique to investigate the effect of a

battery system incorporating solar PV is presented in

Chedid and Sawwas (2019).

Mehrjerdi and Hemmati deployed a battery energy

storage system in a distribution network and investigated

power losses and voltage magnitude with high accuracy

(Mehrjerdi and Hemmati 2019). Saboori and Jadid pre-

sented movement scheduling of batteries in the distribution

Fig. 1 Eight bus network representation of a rural distribution system
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system and obtained optimal charging and discharging in

different bus locations (Saboori and Jadid 2020). A model

to increase the life span of the battery with uncertainties in

the distribution system is presented in Mehmood et al.

(2017). In order to lower operational and investment costs,

Zhang et al. suggested a conservation voltage reduction

methodology for implementing battery storage in an active

distribution system (Zhang et al. 2017).

A hybrid modified shuffled frog leaping algorithm with

fuzzy sets is applied to obtain optimal sizing and placement

of DGs in the distribution network (Mojarrad et al. 2013).

Tyagi and Verma presented a comparative study of two

meta-heuristic techniques: bacterial foraging differential

evolution and Improved Harmony Search for optimal DG

placement (Tyagi and Verma 2016). Ganguly and Samaj-

pati (Ganguly and Samajpati 2015) present an adaptive

genetic algorithm with a fuzzy base for optimal DG

placement and sizing. Maleki et al. and Ali et al. investi-

gated optimal specifications for PV sizing and locations

(Maleki et al. 2017; Ali et al. 2020).

Various researchers have also investigated the battery

degradation cost in terms of charging and discharging,

taking into account DGs and ESS with grid (Yoshida et al.

2016; Pelletier et al. 2017; Ziaa et al. 2019; Hossain et al.

2019; Aghdama et al. 2020; Nair et al. 2020). Several

researchers have presented advanced optimization tech-

niques for optimal placement, sizing, and scheduling of

DGs in distribution networks, such as the Grey Wolf

Optimization technique (Tyagi et al. 2019; Sobieh et al.

2017; Pradhan et al. 2016; Yahiaoui et al. 2017), Artificial

Bee Colony (Karaboga and Basturk 2007, 2008; Abu-

Mouti and El-Hawary 2011; Das et al. 2018), and Modified

Artificial Bee Colony (Abu-Mouti and El-Hawary 2009;

Das et al. 2017; Hussain and Roy 2012), in order to reduce

the loss, improve voltage profile, and reduced costs.

In the literature, authors give numerous prominent

solutions separately for the electrification of the distribu-

tion network. However, lots of information has been

gathered about the optimal scheduling for rural electrifi-

cation. Even so, there are only a few scenarios where the

DGs, battery, and grid are scheduled in order of time

constrained by the battery degradation cost. In the present

scenario in India, almost all village-based rural/remote

areas have grid supply connections. However, the power

cuts or availability of grid supply in these areas is either at

night only, or during the day only, or only for a few hours a

day. Therefore, this paper overcomes the major challenge

of power cuts and unbalanced load/generation in the pre-

sent network system. Non-essential loads shifted toward

the availability of irradiance are subjected to demand

response and resource management (Kumar et al. 2019).

This may ensure a more realistic picture in most Indian

villages where the grid is available, but only for the time

being. Therefore, by using available local sources based on

renewable energy and making intelligent decisions on DGs,

BESS, and DR deployment, to reduce the cost of invest-

ment and losses. Such type of power supply can be useful

and helpful for any developed or developing country. The

MATLAB/Simulink is used for optimal solutions such that

it ensures seven-day, 24-h electrical supply.

This paper is systematized into 6 sections; the contextual

theory and introduction are presented in Sect. 1. Study

areas and system modeling have been presented in Sect. 2.

In Sect. 3, problem formulation and different objective

functions subject to equality and inequality constraints are

presented. Model formulation and optimization method-

ologies have been presented in Sect. 4. The most suit-

able optimal results and discussions are offered in Sect. 5.

Section 6 presents the conclusion of the work.

2 System Modeling

The state of Uttar Pradesh lies in the northern region of

India. It is located at 77.41� east longitude and 28.66� north
latitude. The considered village Jalalabad has total geo-

graphical area of 5.81 km2 (Kumar et al. 2019). The

average recorded minimum temperature of the village

during winter is about 4–9 �C, whereas the average

recorded maximum temperature is about 40–45 �C in

summer. The locality of the study region is shown in

Fig. 2.

2.1 Load Modeling

A 35-household rural village-based community has been

chosen for this work. The load demand data of households

has been assessed by a questionnaire and is based on a field

survey. Total power has been projected on the basis of

operative hours and the power rating of the apparatus used

for a 24-h time period (Kumar et al. 2019).

Fig. 2 Study area of rural distribution system
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2.2 Solar SPV Modeling

The scale factor for solar PV generation on a 24-h basis for

all seasons is shown in Fig. 3. The solar SPV generation

value 1 is presented as its maximum generation, which also

varies with seasons and time (Kandpal et al. 2019). For

analyzing the variation in losses for a radial unbalanced

distribution network of an actual system, two cases are

considered with varying maximum capacities of the

available SPV. In this study, the maximum SPV capacity

for each phase is taken to be 20 kWp, which will be placed

on a certain bus in the distribution network. The cost of

such an SPV installation is taken to be US $ 615 per kW as

the capital cost and will include an additional 3% for

operations and maintenance per year. The lifetime of the

SPV system is taken to be 15 years.

The power generated by solar PV is proportional to the

solar irradiance, and the area is given by (1).

PPV
n;t ¼ gSPV � I � A ð1Þ

where gSPV = efficiency of the SPV system, I = solar

irradiation in kW/m2 and A = area of the SPV system.

2.3 Energy Storage Modeling

Energy storage in the form of lithium-ion batteries is

considered in this study and is scheduled according to the

problem objective and the demand of the loads. For the

optimization study, the batteries are allowed a maximum

power rating of 20 kW and the energy rating of the bat-

teries is calculated based on their calculated optimal

schedule.

The charge and discharge of the battery is based on the

simple coulomb counting method (Ng et al. 2009) as shown

in the following equations.

C t þ 1ð Þ ¼ C tð Þ
þ Dt:PtPt [ 0; ifcharging;Pt\0 if discharging

ð2Þ

Additionally, initial and final limits on the battery stor-

age energy are imposed such that their final SoC is set back

to their initial SoC through charging/discharging at the end

of the day.

C 0ð Þ ¼ C Tð Þ ¼ Cs ð3Þ

For the rated energy rated capacity of the storage sys-

tem, the maximum amount of energy it receives while

charging or gives while discharging is calculated for one

typical day.

Emin ¼ max
XtþN

t

Ptj j:Dt8t 2 1; . . .; 24½ � ð4Þ

where N = window size, varies in the range from 1 to 24.

This will allow the battery to charge/discharge as will be

required based on the optimal scheduling for the loads of

the distribution system. The final minimum battery energy

rating is taken as 20% extra capacity for considering the

margin for losses.

EBESS
min ¼ 1:2� Emin ð5Þ

The cost of a battery is determined by its energy rating.

A higher energy-rated battery would linearly increase in

cost. For this study, the cost of the battery is taken to be US

$ 287.16 per kWh. The lifetime of the battery is taken to be

5 years.

3 Problem Statement

The following are the several objectives that have been

considered in this paper:

(i) Reducing the total cost of installing and operating the

system, including SPV, BESS, and grid power, with and

without taking battery degradation into account.

(ii) Lowering total real-power losses in an eight-bus

distribution network (Kandpal et al. 2019).

(iii) Excess power estimation using a fraction of non-

essential load shifting (bNELS 0, 0.20, and 0.25 for each

season).
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Fig. 3 SPV generation of

different seasons on a 24-h basis
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The costs considered for the different elements are given

in the previous sections. Based on these costs and grid costs

per unit of electricity, analysis is done to optimally size,

place, and schedule the resources in the system.

3.1 Cost-Based Objective Function

The first objective of this work is to minimize the total cost

of capital and operation of the system, which comprises

SPVs, BESS, and the cost of power from the grid.

The problem of cost minimization will be defined as:

min Coð Þ ¼ min
X

n2BESS
CBESS
n þ

X

n2PV
CPV
n

X

t2T
Cgr
n Pgr

n

þ tð Þ:Dt ð6Þ

CBESS
n ¼ Se � EBESS

min;n þ CBDC
n ð7Þ

CPV
n ¼ Sp � PPV

n

� �
þ
XT

k¼1

O&Mk

ð1þ rÞk
ð8Þ

The costs are divided into capital and operating/main-

tenance costs. For a photovoltaic system, 3% O & M costs

are added per year on top of the initial investment. The

present value of the O & M costs is calculated with a

discount rate of 6%.

Subjected to the following constraints:

• The sum of total losses and power demand should

always be equal to the total generation.
X

n2PV
PPV
n;t þ

X

n2BESS
PBESS
n;t þ Pgr

t ¼
X

n2H
Pdem
n;t þ Ploss8t

ð9Þ

• The voltage at each phase of the system should be

within a considerable limit.

Vk;ph
min �Vk;ph �Vk;ph

max8k; 8ph ð10Þ

where Vk
ph is the phth phase voltage of kth bus, Vkmin

ph

and Vkmax
ph are the minimum and maximum limits.

• The generation of total active power from each SPV

unit should not hit its maximum capacity.

PPV �PPV
max ð11Þ

where Pp
PV represents available power of pth SPV and

Pmax
PV represents the maximum capacity of SPV.

• SoC limits of the battery is also constrained to be equal

to its initial value at the end of the day

X24

t¼1

Pn
t :Dt ¼ 0; 8n 2 BESS ð12Þ

This allows the battery to charge/discharge

throughout the day as per the requirements of the grid

while only constraining its final SoC level at the end of

the day.

• Power limits of the battery

PBESS
min �PBESS �PBESS

max ð13Þ

3.2 Losses-Based Objective Function

The second objective studied is minimizing the losses in

the distribution network. To minimize the losses, the

objective function will be

min Loð Þ ¼ min
X

t2T
Pt;ph
loss 8ph 2 A;B;C½ � ð14Þ

Constraints used for this objective are similar to the

constraints for the cost-based optimization problem given

in Eqs. (9–13).

4 Proposed Methodologies and Algorithm

4.1 Load Shifting through Demand Response

As discussed in Kumar et al. (2019), the non-essential

loads are shifted throughout the day toward the times with

higher solar irradiation through a demand response

program.

The Optimization problem for the DR strategy consid-

ered can be expressed as:

max
X

G tð ÞDPNE tð Þ ð15Þ

subject to
X

t2XT

DPNE tð Þ ¼ 0 ð16Þ

� bNELSð ÞPNE tð Þ�DPNE tð Þ� bNELSð ÞPNE tð Þ ð17Þ

where the fraction of non-essential load shifting (bNELS) is
assumed to be 25 percent or 0.25. XT is the set containing

values of time from 19:00 pm to 07:00 am on hourly basis

and PNE and DPNE is non-essential load and change in non-

essential load.

4.2 Battery Degradation Cost

Energy storage such as lithium-ion batteries has a lifetime

decided by the number of cycles of charge/discharge it can

provide before its capacity reduces to below usable levels.

As the battery degrades, its ability to store and release

energy decreases. Several studies have given methods to

theoretically convert battery degradation into monetary

values. Most lithium-ion batteries are used in power sys-

tems due to their vigorous and efficient operation. The

main essential parameters in battery degradation are rated
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energy, capacity, and lifetime (Ziaa et al. 2019). There are

many other degradation factors that are not analyzed

individually. Therefore, the state of charging/discharging

time, depth of discharge, and life time of the battery are

considered here (Hossain et al. 2019; Aghdama et al.

2020).

For this study battery degradation cost C(BDC) due to

charging/discharging is taken from Ju et al. (2018).

C BDCð Þ ¼
CB � PB � Dtf g

2 � LBðdB Dtð Þ � EBA tð Þ:dB Dtð Þ � gBC � gBDf g ð18Þ

where Depth of Discharge: dB Dtð Þ ¼ PB�Dt
EBA

, Lifetime of

Battery: LB dBð Þ ¼ 4980 � d�1:98
B � e�0:016�dB , Battery Cost:

CB Dtð Þ ¼ 287:16 � ½BatterySizeðkWhÞ�
Using the above formulation for degradation cost

C(BDC), the additional cost incurred over the initial battery

cost can be calculated for the entire timeline of

optimization.

4.3 Modified Artificial BEE Colony (MABC)
Algorithm

The Artificial bee colony (ABC) is a new and popular

metaheuristics algorithm (Karaboga 2005), primarily

developed for unconstrained optimization. Due to its sim-

plicity, it has gained interest among researchers for its

application to various optimization problems. The ABC

algorithm is found to be very effective in solving standard

benchmark functions (Karaboga 2005). However, when

applied to real-world constrained optimization problems,

existing literature shows that ABC struggles to obtain

satisfactory results (Karaboga and Akay 2011). Therefore,

several modifications to the original ABC algorithm have

been proposed by many researchers (Karaboga and Akay

2011) through (Karaboga and Gorkemli 2014). These

modifications aim to improve the performance of ABC

while retaining the structural simplicity of the original

ABC algorithm. One of the recent changes to the ABC

algorithm by the name of the modified ABC (MABC)

algorithm has been proposed by the authors in Das et al.

(2017). In this reference, the authors have proposed MABC

to handle mixed-integer, nonlinear optimization problems,

especially for transmission network expansion planning

problems. It has also been shown to provide better results

compared to existing methodologies for standard bench-

mark functions.

As optimal sitting, sizing, and scheduling of DGs is a

mixed integer nonlinear optimization problem, therefore,

MABC is used in this paper to obtain the optimal

scheduling of the DGs. A brief description of MABC is

provided here. The original ABC algorithm is based on the

intelligent foraging behavior of honeybee swarms.

• The Algorithmic Process of the Basic ABC Algorithm

The Algorithmic Process of the Basic ABC Algorithm is

as follows (Das et al. 2017).

• Initial food source sites: Initial food sources are formed

randomly within the range of the boundaries of the

parameters:

xde ¼ xdmin
e þ r and 0; 1ð Þ xdmax

e � xdmin
e

� �
ð19Þ

where e ¼ 1; . . .. . .; CSN
2
,d ¼ 1; . . .. . .;D.CSN is the number

of food sources and D being the number of problem

dimensions. e denotes the eth EB.

• Movement of the Employed bees: In ABC, the move-

ment of an EB is defined by:

yde ¼ xde þ ;0 xde � xdf

� �
ð20Þ

where xe is the old food site, ye is the new site, d is the

randomly selected problem dimension and xf is another

employed bee and, £0 is a real random number

between þ1 and �1. The fitness value for each position

is evaluated as:

fitness ¼
1

1þMð Þ if Me � 0

1þ abs Mð Þ if Me\0

8
<

: ð21Þ

fitness is the fitness value associated with each food source

and EB e. M is the augmented objective function value at

the eth location. The augmented objective functionM is the

summation of the original objective function and the

penalties. Penalties are only added to the objective function

when there is a violation of any constraint. If there is no

violation of any constraints, the penalties become zero and

M becomes equal to the actual objective function.

M ¼ Co or Loð Þ þ Penalties ð22Þ

where Co is defined as in Eq. (6) and Lo is defined as in

Eq. (14). Penalties are defined as in Das et al. (2017) using

Eqs. (9)–(13).

• Selection of the EBs by OBs: Probability of selection of

employed bees are as follows:

pe ¼
fitness

PCSN
2

e¼1 fitness
ð23Þ

The initial locations of the OBs are the similar to those

of the EBs selected.

MABC is based on the ABC algorithm, which is struc-

turally similar to ABC. It is defined in Das et al. (2017) by

incorporating the concepts of global attraction and uni-

versal gravitation (Tsai et al. 2009) into the original The
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most important modification introduced in MABC is that it

changes each and every dimension of the problem in a run

of the program. This removes the possibility of missing any

problem dimension in the course of algorithm simulation.

The modifications introduced in the MABC algorithm

for each dimension (dDas et al. 2017) are:

1. Employed bees’ phase: The new position for the EBs is

defined by the equation:

yde ¼ xde þ floor ;0� xde � xdf

� �
þ xg�rand 0; 1ð Þ� gdo � xde

� �� �

8; f 6¼ e; f 2 1; 2; . . .. . .:;
CSN
2

� �

ð24Þ

Here, g0 is the position of the global optimum

obtained till the instant of the algorithm run, and xg is

the weightage that decides the effect of the global

optimum on the movement of the EBs. The MATLAB

function ‘floor’ is used only for integer variables. In

other cases, where continuous variables are present,

they are removed.

2. Onlooker’s bees’ phase: The OBs reach their new

position as defined by the equation.

yde ¼ xde þ floor Fe; f norm

� �
ð25Þ

Here the function floor is used only when integer

variables are to be considered. Fe;fnorm is the normal-

ized force of attraction between two employed bees ‘e’

and ‘f ’. This is calculated as per the procedure stated in

Das et al. (2017).

3. Scout bees phase: According to Das et al. (2017), the

scout bees provide better positions when it starts its

search from the previously abandoned position of other

EBs or OBs. Therefore, the equation governing the

movement of the scout bees is as follows:

yde ¼ xde þ randi �a; b½ �; 1ð Þ ð26Þ

Here, a ¼ xde � xdmine and b ¼ xdmaxe � xde .

Again, function ‘randi’ in MATLAB is used only for

integer variables. For continuous variables, function ‘rand’

may be used in proper syntax.

The parameters of MABC are taken from Das et al.

(2017), i.e., maxiteration = 30; wg = 1.5; lim ¼ 6 and CSN
= 20. The algorithm flowchart of the MABC is shown in

Fig. 4.

5 Results and Discussions

This work was performed in the village of Jalalabad in the

district of Ghaziabad, Delhi-NCR, India. The data taken for

the network is the same as that taken in Kumar et al.

(2019); Kandpal et al. 2019).

A photovoltaic system with a maximum capacity of 30

kWp and a battery energy storage system with a maximum

power rating of 100 kW in each phase is allowed. In

addition, the grid is not available from 07:00 a.m. to 19:00

p.m. Consequently, the demand response programme as

used in Kumar et al. (2019) shifts the non-essential loads

Fig. 4 Flowchart of MABC algorithm
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(bNELS) to this period to coincide with the high SPV gen-

eration when the grid is not available. For the cost objec-

tive, a one-year timeline is considered, which will include

the cost of installing the SPVs and BESS systems and

consequently running them for this timeline with supple-

mentary power from the grid.

As metaheuristics algorithms are used for obtaining the

results, the results of only a single trial can’t be relied upon.

At least 50 trials need to be run for an appropriate final

schedule. The time provided in the next section corre-

sponds to the time required for a single trial. The specifi-

cation of the computing system is as follows: MATLAB

R2018b; A desktop computer with 8 GB of RAM and an

Intel (R) Core (TM) i7-3770 CPU processor running at

3.40 GHz.

5.1 Optimal Scheduling Based on Modified
Artificial Bee Colony Algorithm

5.1.1 Case I: Cost-Based Objective without Including
Degradation Cost of Batteries

For this objective, an optimization problem is run to reduce

the total cost of the system, including the cost of power

purchased from the grid over a one-year timeline. This cost

includes the capital cost of purchasing the equipment, such

as SPV panels of different power ratings and energy stor-

age systems of different energy ratings, with the additional

cost of maintaining them. Table 1 shows the results of

optimal scheduling and the total cost of the system with a

very low colony size of 20. It can be observed that with

such a small colony size value, results are obtained extre-

mely quickly. The location and size of SPV at phase B are

different as compared to phases A and C, whereas the

location and size of BESS are higher at phase C as com-

pared with the other phases, A, and B. The total cost for

colony size = 20 is $92,307.69, not including the degra-

dation cost of the battery. The time taken per trial in this

case is 2.06 h. However, the quality of the results suffers.

5.1.2 Case II: Cost-Based Objective Including Degradation
Cost of Batteries

In this case, to improve the power system performance, the

degradation cost of the battery is considered under the cost-

based objective. To show the effectiveness of using a large

colony size, the results are computed with a value of 50.

The results are provided in Table 1, with PV, grid, and

battery. As phase-A, has the least load and phase-B, the

highest, SPV, BESS, and grid systems are sized, located,

and scheduled accordingly. The total cost obtained for

colony size CSN=50 is $ 53,640, including the degradation

cost of the battery. The degradation cost of the battery is $

4,056.77 and the time taken per trial in this case is 5.15 h.

Hence, the total cost obtained for the colony size CSN =50

is lower $ 53,640 as compared with colony size CSN=20 is

$ 92,307.69.

The schedules of SPV, grid, and battery are provided in

Figs. 5, 6, 7 for the 24-h time period, as per the loads in the

respective phases to which they are connected. The SPV

schedule for all the three phases for 24 h for cost mini-

mization is shown in Fig. 5. The summer season is con-

sidered for SPV generation. Figure 6 shows the grid

schedule which is available between 07:00 pm and 07:00

am. The grid is not available between the mornings of 7 am

and evening of 7 pm. Therefore, the power consumed from

the grid for all phases during this period is zero, as shown

in Fig. 6. The battery schedule for all three phases for 24 h

is shown in Fig. 7.

Moreover, the demand response strategy management is

implemented in such a way that non-essential loads have

been shifted toward the available solar irradiance as men-

tioned in Kumar et al. (2019). By adding the strategy of

demand response, it impacts on sizing, location, and gives

better scheduling of SPV, BESS, and the grid. Also, the

total cost and losses are reduced by implementing the DR

strategy at bNELS at 25%.

5.1.3 Case III: Loss-Based Objectives

For this objective, the optimization programme reduces the

total real power losses in the distribution system. The

combined losses of all three phases are reduced with dif-

ferent scheduling and sizing of SPV, the grid, and batteries.

The sizes and cost results of the system are provided in

Table 2, with the colony sizes (with = 20), 20 and 50

(with = 50) for the 24-h time period. In the same spirit as

in the previous case, to justify the selection of a higher

colony size value in a metaheuristic algorithm, a higher

value of 50 is also considered for obtaining the results.

Table 2 provides the sizes of the SPV and BESS. The real

power losses with a colony size of 20 are 9.5061 kW,

whereas considering a higher colony size of 50, the losses

decrease to 2.94 kW. Because Phase B has the highest load

and Phase A has the lowest, SPV with colony size 20 has

the largest size and location in Phase B and the smallest in

Phase A. The size and location of the batteries are also

greatest in phase B and lowest in phase C. By selecting the

higher colony size of 50, the SPV size and location at

Phase-B are the highest and least at Phase-A. The battery

size and location are highest at Phase-B and lowest at

Phase-A. The obtained results show a better reduction in

losses for the higher colony size of 50.

The detailed scheduling results of SPV, BESS, and grid

for the colony size 50 are provided in Figs. 8, 9, 10 for the

24-h time period. The grid scheduling is as per the grid
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availability between 7 pm and 7 am as shown in Fig. 8.

Grid scheduling is not available between 07:00 am and

19:00 pm. SPV and battery scheduling are shown in Figs. 9

and 10, as per the connected load in all the three phases.

The results are far better by incorporating the DR strategy

into the non-essential load.

5.1.4 Excess Power Analysis

The profile of excess electricity production depends upon

the solar irradiation and the load profile of the considered

study area (Kumar et al. 2019). Figure 11a–d shows the

results of hourly data of annual excess electrical power

production with and without non-essential load shifting,

with bNELS 0%, 20% and 25%, respectively, for the dif-

ferent seasons. It can be observed from Fig. 11a–d that

with the increase in the bNELS, the excess electricity

Table 1 Optimal scheduling and total cost of the system for Cost Minimization Objective

Particulars Case I: Without including degradation cost of batteries

(with CSN = 20)

Case II: With including degradation cost of batteries

(with CSN = 50)

Phases Bus No. Size Phases Bus No. Size

SPV location and size (kWp) A 8 1.00 A 8 2.68

B 8 14.68 B 5 16.34

C 5 1.00 C 6 10.99

BESS location and size (kWh) A 8 73 A 2 9

B 7 55 B 7 33

C 8 93 C 8 20

Battery degradation cost ($) – 4,056.77

Total cost ($) 92,307.69 53,640

Time per trial (hrs.) 2.06 5.15

Fig. 5 SPV Schedule for three phases for Cost Minimization

Objective for 24 Hours

Fig. 6 Grid Schedule for three phases for Cost Minimization

Objective for 24 Hours

Fig. 7 Battery Schedule for three phases for Cost Minimization

Objective for 24 Hours
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production in kW is reduced. The reason is that with the

increase in bNELS, the utilization of SPV or the combination

of SPV and BESS increases, given the fact that more load

is being shifted toward the availability of the SPV, thus

resulting in the reduction in excess electricity production.

The excessive generation expressed in terms of per-

centage of the total energy demand or the total energy

supplied has been calculated and is expressed in Table 3.

With the increase in the bNELS, from 0 to 25% the fraction

of excessive energy generation decreases from 9.15 to

6.21%.

It can be observed from the results obtained by MABC

that, for both the minimization objectives, better results

with lower costs are obtained. However, the computational

burden is very high in the MABC. The time consumed per

trial of the solution process by MABC is even with a larger

colony size of 50. Further, the time per trial required is

lower by MABC with a small colony size of 20. As dis-

cussed earlier, at least 50 trials of the solution are required

for a metaheuristic to provide a realistic final solution.

Therefore, the computational burden required by MABC is

only 256.5 h (CSN = 50).

It is also observed that for only scheduling, MABC

provides fast results with reasonable optimization. It should

be noted here that with CSN = 50, the results obtained by

MABC validate the efficiency of MABC. Hence, in the

planning stage, when the optimal size in a short time frame

Table 2 Optimal scheduling

and total Losses of the system

for Loss Minimization

Objective

Particulars (With CSN =20) (With CSN =50)

Phases Bus No. Size Phases Bus No. Size

SPV location and size (kWp) A 2 3.79 A 8 1.80

B 8 20.04 B 6 13.77

C 3 10.86 C 5 7.69

BESS location and size (kWh) A 8 37 A 7 15

B 8 48 B 2 50

C 2 26 C 8 34

Losses (kW) 9.5061 2.94

Fig. 8 SPV Schedule for three phases for Loss Minimization

Objective for 24 Hours

Fig. 9 Grid Schedule for three phases for Loss Minimization

Objective for 24 Hours

Fig. 10 Battery Schedule for three phases for Loss Minimization

Objective for 24 Hours
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with scheduling and DR has to be evaluated, MABC should

be used. MABC can be used for better efficiency.

The hybridization of MABC can be worked upon to

make the algorithm more appropriate for online applica-

tions. The incorporation of the DR strategy and resource

management on non-essential load shifting results in better

SPV, BESS, and grid size, location, and scheduling.

The pattern of battery charging and discharging on a

typical one day for all the four seasons with bNELS as 0 and

0.2 for the whole day is presented in Kumar et al. (2019).

The evaluation of excess power production gives the

appropriate shifting of non-essential load with respect to

the availability of solar irradiance. Moreover, the separate

analysis of battery degradation cost shows its impact on the

sizing and scheduling of DGs. The proposed method is

based on an accurate representation of remote and rural

distribution network systems. It can reduce unbalance and

give optimal scheduling, sizing, and sitting of DGs, as well

as battery and grid support.

6 Conclusions

The purpose of this article is to use scheduling to reduce

the losses and costs of installing and maintaining SPVs and

BESS in a rural distribution system. This analysis considers

limitations such as restricted grid availability. Demand

response is used to move non-essential loads to periods of

increasing solar intensity during the day. SPV, BESS, and

the grid are sized and scheduled optimally using this load

data for the rural distribution system. For three different

loaded phases of the grid, different sizes of SPV and bat-

tery storage systems were discovered. The research utilizes

two different scheduling objectives: cost-based and loss-

based system scheduling. For the cost-based goal, an

optimization problem is addressed over a one-year period

to reduce the system’s capital and operational costs, as well

as the cost of power received from the grid. A typical

summer day’s total losses are reduced over a 24-h period

for the loss-based target. When the sizes of the SPV and

BESS are proportional to the loading of the corresponding

phase, losses are minimized.

The proposed method/algorithm/system is flexible

enough to cover a wide range of circumstances and may be

used to any other seasonal or network data. Because the

hamlet under consideration is without grid power during

the day, this research can assist decision-makers in deter-

mining the best location, size, and timing of alternative

energy sources such as solar photovoltaics (SPVs) to match

grid demand. As a result, unintended losses and expenses

are avoided, which would otherwise result in a penalty for

the distribution system operator and the municipality. The

approach is also dependable, cost-effective, and environ-

mentally friendly. Appropriate grid scheduling of DGs and

BESS can be accomplished by considering a variety of

factors, including the cost of total energy acquired by end

users, the power system, and the cost of total energy

acquired by end users.

Appropriate grid scheduling of DGs and BESS can be

accomplished by considering a variety of factors, such as

the overall cost of energy purchased by end users, power

system losses, and so on. The optimal solutions are pro-

duced by combining DR approaches with a novel opti-

mization technique called MABC to control the

shiftable loads.

Once the distribution system operator (DSO) identifies

the appropriate sizes and schedules for the DGs for the

distribution network, the transmission system operator

(TSO) can use this knowledge to improve unit commitment

results. Only the summer season is addressed for SPV

generation in this work, and the remaining seasons will be

considered in future work with appropriate outcomes.
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