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Abstract
Today, the world is looking at the adoption of alternative energy resources for electrical power generation, particularly for

remote applications. Renewable energy resources are being investigated to meet such demand due to numerous benefits,

such as being environmentally friendly, a reliable source of energy, improving public health issues, job creation in rural

areas, and so on. In the present work, two intelligent approaches, including a recently developed method named Improved

Harmony Search (IHS) and Particle Swarm Optimization (PSO), have been adopted for the optimal sizing of the hybrid

renewable energy system to fulfill the electrical load demand of a selected remote site in the Haryana state of India. The

problem has been formulated by developing a mathematical model of the hybrid renewable energy system by considering

the capital cost, replacement cost, operation and maintenance (O & M) cost, fuel cost, salvage value of various compo-

nents, and the cost of selling and buying power to and from the utility grid. The optimization of the hybrid model for off-

grid and grid-connected mode has been carried out for the minimization of the Net Present Cost (NPC) of the hybrid system

by using the MATLAB platform. A comparative analysis of the results obtained by using the IHS and PSO algorithms is

also presented in this work.
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1 Introduction

Electricity is very important for improving the living

standards of people and for a country’s economic growth.

The majority of the population living in developing nations

belongs to rural communities. A large chunk of this rural

population relies entirely on biomass or fossil fuels to cook

food or to satisfy other needs for energy, but the burning of

fossil fuels pollutes the atmosphere and creates greenhouse

gas (GHG) emissions that cause global warming and are

not good for human health (Chauhan and Saini 2015; Dey

et al. 2019; Lu and Wang 2020). In addition to that, the

regular supply of electricity to most rural areas is limited to

a few hours, for many reasons, such as an inadequate

distribution system, energy theft, the reluctance of local

people to pay electricity bills, etc. These issues can be

resolved by utilizing locally available renewable energy

resources for distributed power generation. It is also

observed that the whole world is looking to increase the

contribution of renewable energy resources to make the

power sector more reliable and more efficient. Further, the

& Priyanka Anand

anand_priyanka10@yahoo.co.in

1 Department of Electronics and Communication Engineering,

B.P.S. Mahila Vishwavidyalaya, Sonipat, Haryana 131305,

India

2 Department of Electrical Engineering, Delhi Technological

University, Delhi 110042, India

3 Department of Electrical Engineering, Giani Zail Singh

Campus College of Engineering and Technology, Bathinda,

Punjab 151001, India

4 Defence Research and Development Organisation, Metcalfe

House Annexe, Delhi, India

5 School of Electronics and Electrical Engineering, Lovely

Professional University, Phagwara, Punjab, India

6 Schulich School of Engineering, University of Calgary,

Calgary, AB, Canada

123

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2022) 46:1149–1174
https://doi.org/10.1007/s40998-022-00524-2(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s40998-022-00524-2&amp;domain=pdf
https://doi.org/10.1007/s40998-022-00524-2


Ministry of New and Renewable Energy (MNRE), India,

has an ambitious target of 175 GW by the end of

2022 (MNRE 2020). It is common knowledge that most

renewable energy resources fluctuate in nature, necessi-

tating additional backup for energy storage systems. If

battery energy storage is utilized as a backup, it will

enhance the cost of the system and the cost of energy (CoE)

as well. To overcome these issues, a hybrid energy system

(HES) can be developed by utilizing all the locally avail-

able renewable energy resources.

Many researchers have employed extensive method-

ologies such as simulation (Anand et al. 2017), graphical

construction (Borowy and Salameh 1996; Markvart 2006),

probabilistic (Karaki et al. 1999; Lujano et al. 2013),

iterative (Li et al. 2012; Zhang et al. 2013), artificial

intelligence (Alturki et al. 2020; Askarzadeh 2013b, a;

Alaaeldin et al. 2018; Chauhan and Saini 2017; Delnia

et al. 2020; Mubaarak et al. 2021; Paliwal et al. 2014; Li

et al. 2020; Wu et al. 2020; Das and Hasan 2021), etc. to

address critical issues related to the optimum design and

sizing of the equipment used in a HES. Moreover, several

authors applied intelligent approaches like Genetic Algo-

rithm (GA), Particle Swarm Optimization (PSO), Harmony

Search (HS), Ant Colony Optimization (ACO), Biogeog-

raphy-Based Optimization (BBO), and Grey Wolf Opti-

mization (GWO) to optimize HESs to maximize economic

benefits.

Delnia et al. carried out research for optimal sizing of

micro-grid based on solar photovoltaic (SPV)/Wind/Bat-

tery and SPV/Wind/Battery/Electric Vehicle, by using PSO

and the SPV/Wind/Battery system was found to be more

economical (Delnia et al. 2020). Arévaloa et al. investi-

gated five types of storage batteries for hybrid systems such

as lead-acid, lithium-ion, vanadium redox flow, and

hydrogen, hydrogen-vanadium redox flow were analyzed

using HOMER (Hybrid Optimization of Multiple Energy

Resources) software, and the vanadium redox flow battery

was revealed to be the most effective in terms of net pre-

sent cost (NPC) and cost of energy (CoE) (Arévaloa et al.

2020). Li et al. proposed a model based on universal size

optimization for the hybrid SPV-wind-battery system using

the PSO algorithm to determine the optimal configuration

of a water pumping system. The developed model was able

to meet the power requirements of the system (Li et al.

2020). Alaaeldin et al. proposed an efficient grid-integrated

SPV/Wind hybrid system using the hybrid PSO-GWO

method for operating a desalination plant for reverse

osmosis. In this research, systems such as SPV/Wind/bat-

tery and SPV/Wind/Hydrogen storage have been compared

in terms of both cost minimization and CO2 emissions. The

results demonstrate that the SPV/Wind along with the

battery storage system is more economical and environ-

mentally friendly (Alaaeldin et al. 2018).

The study of the optimal sizing of renewable HESs by

Bartolucci et al. revealed two findings. Firstly, the fuel cell

(FC) system affects the stability of the grid, and secondly,

the correct size of the SPV power plant allows the battery

to be used more intelligently and gives less reliance on the

energy exchanged with the grid (Bartolucci et al. 2018).

Chauhan and Saini have proposed a Discrete Harmony

Search (DHS)-based approach to optimize the size of a

hybrid power system to reduce NPC (Chauhan and Saini

2016). The technique of HS optimization to size a grid-

dependent SPV-based system for homes located in Iran was

also applied by Zebarjadi and Askarzadeh. The results

conclude that the SPV system is more economical in cir-

cumstances wherein the price of electricity rises from the

current perception (Zebarjadi and Askarzadeh 2016). Singh

et al. proposed an ABC algorithm for optimum sizing of a

hybrid system for electricity generation in the rural areas of

Punjab state in India. The results obtained were found to be

more economical as compared to PSO and HOMER (Singh

et al. 2016). Eteiba et al. conducted a techno-economic

analysis of an off-grid hybrid system consisting of SPV/

biomass/battery for meeting Egypt’s electricity demand. In

the research, three types of batteries, namely flooded lead-

acid, Nickel Iron, and Lithium Ferro Phosphate, were

considered, and optimal sizing has been done using four

optimization techniques, viz. the Flower Pollination

Algorithm (FPA), ABC, HS, and the Firefly Algorithm

(FA). FA provides more accurate results with minimum

execution time (Eteiba et al. 2018). The FA was also

employed by Sufyan et al. for economic scheduling and

optimization of the battery capacity of an isolated micro-

grid. The results were also compared with those obtained

by applying ABC, HS, and PSO, and a 50% decline in

operating cost was obtained with the use of the proposed

FA algorithm (Sufyan et al. 2019).

Anand et al. exploited the PSO algorithm for the optimal

design and sizing of the SPV/biomass/biogas and battery-

based hybrid system for rural electrification, which

includes eight different models. The finding indicates that

the configuration comprising of SPV/biogas/biomass per-

formed better than other configurations (Anand et al.

2019a). The same authors attempted to optimize the size of

a grid-integrated hybrid SPV/biogas/biomass/battery sys-

tem for meeting the demand for electricity in Haryana

(India).Various configurations are considered and con-

trasted by employing the GWO algorithm in both off-grid

and grid-connected scenarios. It has been concluded from

the results that the configuration connected to the grid was

found to be the best configuration for the selected area

(Anand et al. 2019b). The same authors also carried out the

optimal design of a hybrid system consisting of renewable

energy resources using two configurations, i.e., hybrid grid-

integrated and off-grid systems using the HS algorithm. It
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has been revealed from the results that a grid-integrated

hybrid system comprising SPV/Wind/ biogas/biomass with

a battery is the most economical (Anand et al. 2020).

Ghaffari and Askarzadeh proposed a modified Crow Search

Algorithm (CSA) for the optimal design of hybrid SPV/

DG/FC for the minimization of total NPC. It is concluded

from the research that the proposed model gave more

accurate results when compared with the original CSA,

PSO, and GA (Ghaffari and Askarzadeh 2020). Wu et al.

used the Salp Swarm Algorithm (SSA) to optimize the size

of a grid-connected HES associated with a pumped-storage

system. Various configurations of HES have been exam-

ined and found the optimal solution. The findings revealed

that the power exchange with the grid could be minimized

by the proposed HES (Wu et al. 2020).

A detailed literature survey reveals that, while inte-

grating different types of renewable energy sources, it is

essential to assess different facets of energy sources, such

as technical, financial, and certain other external aspects, in

order to obtain the optimum configuration of HES. In

recent times, intelligent approaches have become more

popular and are able to produce remarkable results. Most of

the analysis related to grid-connected scenarios has been

done using simulation tools like HOMER, etc. Compara-

tively, less research is available for grid-integrated HES

using intelligent approaches. Further, biogas and biomass-

based power generation have been rarely considered by

researchers, which are important and potentially valuable

resources, particularly in rural areas. Due to this circum-

stance, there is a research gap and a lack of specialized

work in HES by selecting the optimal hybrid configuration

depending on the renewable energy resources at a specific

site by evaluating various economic and technical factors,

etc. Hence, recognizing all these facts, the goal of this

proposed work is to select the optimum configuration and

sizing of the different components employed in the HES

through different intelligent methodologies, viz., an

improved HS named as IHS, a newly developed approach,

and PSO, for the study area located in the northern region

of India (Haryana).

2 Methodology

2.1 Site Selection

A group of four villages (Khanpur Kalan, Kakana,

Kasanda, and Sargathal) situated in the district of Sonipat,

Haryana state, has been considered in the present study.

These villages are located at the latitude of 29.00 �N–
29.15 �N and the longitude of 76.75 �E–77.01 �E (Anand

et al. 2019a).

2.2 Assessment of Renewable Energy Resources
at Selected Site

A comprehensive investigation was carried out to estimate

the potential of renewable energy resources for the selected

site. The collected data are shown in Table 1, which reveals

that the study area has a huge potential for different

renewable energy resources. These resources can be used

to meet all of the energy needs of the rural people of that

area. However, the annual average wind speed of 3 m/s

available in the study area is not sufficient for power

generation. Biomass has the maximum potential, followed

by biogas and solar energy. Further, Khanpur Kalan village

has the maximum potential for renewable energy resources

among all villages in the study area. Therefore, this village

has been chosen for the installation of a renewable energy-

based power generation system.

2.3 Electrical Load Demand Assessment

To design a hybrid model for electrification of the con-

sidered site, the electrical load demand has been estimated

by keeping in mind the living standards of the local people

and the possible types of electrical appliances to be used by

them. The average monthly temperature of the research

area during the year lies from 4 to 46 �C. This variability in
the study area’s average temperature and climatic condi-

tions influences the energy pattern used by different

appliances. Therefore, for the present study, the whole year

has been sub-divided into three seasons, such as the sum-

mer season (April–July), the moderate season (August–

November) and the winter season (December–March).

Further, the electrical load is characterized as munici-

pal/governmental premises, commercial, residential, and

agricultural loads. The residential load of 533 households

in the study area includes loads like a fan, LED, TV,

refrigerator, mobile charger, cooler, and water pump, etc.,

as shown in Table 2. The load demands of the school,

health centre, veterinary hospital, and street lights are

incorporated into the category of Municipal/Governmental

load. Shops and water lift pumps are involved in com-

mercial and agricultural loads, respectively.

The daily demand for energy for the research area

during the summer season, moderate season, and winter

season is computed as 2997.58 kWh/day,

2357.98 kWh/day, and 1286.149 kWh/day, respectively.

The annual energy consumption for the chosen location is

computed as 809,002.4 KWh/year.
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2.4 Objective Function with Design Constraints

The present research aims to minimize the NPC of the

proposed system, described as:

Min. NPC

NPC ¼ NPCPV þ NPCW þ NPCM þ NPCG þ NPCB

þ NPCinv � CGS þ CGP

ð1Þ

where NPCPV, NPCW, NPCM, NPCG, NPCB, and NPCinv

represent the net present cost of the SPV system, wind

energy system, biomass generator, biogas generator, bat-

tery, and inverter, respectively. CGS defines the selling

price of excess electricity to be sold to the utility grid, and

CGP represents the cost of deficient electricity to be pur-

chased from the utility grid.

This NPC shall be minimized subjected to the various

constraints on the system components as described in the

subsequent sections.

2.4.1 Description of System Components

The size of the system components, i.e., the number of SPV

panels (NPV), number of batteries (NB), power of biomass

generators (PM) and power of biogas generators (PG),

varies according to the load demand in the proposed sys-

tem. The lower and upper limits of these components are,

therefore, specified as:

NPV ¼ Integer; NMn
PV �NPV �NMx

PV

NB ¼ Integer; NMn
B �NB �NMx

B

PG ¼ Integer; PMn
G �PG �PMx

G

PM ¼ Integer; PMn
M �PM �PMx

M

2.4.2 Battery Storage Capacity Limits

For safe operation of the battery, the maximal (EBmx) and

minimal (EBmn) energy storage capacity of the battery are

considered and specified as:

EBmn �EBðtÞ�EBmx ð2Þ

These battery storage capacity limiting values can be

determined using the following Eqs. (3–4) (Anand et al.

2019a):

EBmx ¼
NB � VB � QB

1000
� QBmx ð3Þ

EBmn ¼
NB � VB � QB

1000
� QBmn ð4Þ

where the VB indicates the nominal voltage of the battery

(V), the QB denotes battery capacity (Ah), and the QBmn

and QBmx indicate the minimum and maximum battery

state of charge, respectively.

2.4.3 Constraint for Power Reliability Evaluation

In this study, loss of power supply probability (LPSP) is

presumed as a power reliability constraint. If the electrical

load demand surpasses the available generation, the user

may not have electricity. LPSP is therefore calculated by

(Chauhan and Saini 2016):

LPSP =
Non served load at hour (t)

Total load at hour (t)
ð5Þ

The LPSP range is considered from 0 to 1. Also, the

maximum and minimum limits for the LPSP are as follows:

0�LPSP�LPSPmx ð6Þ

where LPSPmx is the LPSP’s maximum limit. LPSP is

assumed to be zero in the present work.

Table 1 Assessment of potential of renewable energy resources at selected areas

Village Available solar energy (kWh/m2/day) Available wind energy Available biomass

(crop residues)

Availability of biogas

(cattle no.)

Khanpur Kalan 5.26 Average annual wind

Speed = 3.27 m/s

1177.76 tonnes/year Buffalo-3347 Cow-231

Sheep-123 Goat-17

Kasanda 5.24 – 550.61 tonnes/year Buffalo- 797 Cow- 131

Sheep-0 Goat-15

Kakana 5.24 – 506.38 tonnes/year Buffalo- 611 Cow- 51

Sheep-31 Goat-09

Sargathal 5.14 – 836.06 tonnes/year Buffalo- 2062 Cow- 94

Sheep-32 Goat-11

Annual energy potential

of the study area

1919.9 kWh/m2/year for Khanpur Kalan – 2,791,645.45 kWh/

year

1,416,484.70 kWh/year
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2.5 IHS-based Intelligent Approach

HS has gained popularity in the past few decades as an

efficient solution for solving difficult optimization issues.

In the existing HS algorithm, the final position obtained

from the harmony memory is utilized toward the location

of the search space that is directed toward finding the

optimal solution (Askarzadeh 2013b, a; Kamboj et al.

2016). This action may lead to a trap in the local optimum

solution. Another offshoot is the reduction of the diversity

of the population and HS to drop into the local optimum.

To overcome these impediments, an improved harmony

search (IHS) algorithm is proposed. The advancement

includes a novel search strategy allied by selecting and

amending steps, which consists of a dimension learning-

based hunting (DLH) search strategy. In the IHS algorithm

strategy, each individual harmony memory is well-read by

its neighbors to be one more candidate for the latest posi-

tion of XiðtÞ. The steps below show how the standard HS

and DLH search techniques produce two distinct

candidates.

Fig. 1 Electrical load demand

of the proposed location

Fig. 2 Available monthly average solar energy for study area
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Fig. 3 Available mean air temperature for study area

Table 3 Scheduling of biogas

and biomass generator for study

area

Bio-generator Summer season Moderate season Winter season

Biogas generator 01.00–05.00 am 01.00–05.00 am 17.00–19.00 pm

Biomass generator 18.00–24.00 pm 16.00–24.00 pm 20.00–22.00 pm

Table 4 Database of hybrid system (Anand et al. 2019b, 2020)

A system with the considered capacity Capital cost ($) O&M cost ($) Salvage value ($) Fuel cost

SPV system (235 W) 166.4 3.328 16.64 –

Biomass generator (1 kW) 895.2667 44.763 268.58 13$/tonne

Biogas generator (1 kW) 572 28.6 171.6 6.93 $/tonne

Table 5 Result of hybrid renewable energy system for off-grid scenario

Model Algorithm NPV (nos.) NB (nos.) PPV (kW) EB (kWh) PM (kW) PG (kW) NPC (105 $) CoE ($/kWh)

M11 IHS 975 227 229.13 544.8 166 - 7.17 0.105

PSO 939 250 220.67 600 170 – 7.47 0.110

M12 IHS 962 235 226.07 564 – 168 8.20 0.120

PSO 912 268 214.32 643.2 – 173 8.64 0.127

M13 IHS 804 356 188.94 854.4 179 216 11.95 0.175

PSO 713 408 167.55 979.2 249 127 12.22 0.179

Table 6 Results of grid-

connected model using IHS and

PSO algorithms

Algorithm NPV NB PPV (kW) PM (kW) PG (kW) EB (kWh) NPC (105$) CoE ($/kWh)

IHS 963 23 226.31 41 98 55.2 6.00 0.081

PSO 858 34 201.63 87 5 81.6 6.12 0.088
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DLH Search Strategy In the original HS, for each har-

mony memory, the latest position is produced from the

given population. As a result of this, HS has a sluggish

convergence rate, the population loses diversity too soon,

and chimps get stuck in the local optima. To address these

flaws, the suggested DLH search technique considers an

individual local position that is learnt from its neighbors.

Each dimension of the new location of harmony memory

Xi tð Þ is computed by Eq. (7a) in the DLH search strategy,

in which this particular harmony memory is learnt by its

various neighbors and a randomly picked population. Then,

as well,riðtÞ, another candidate for the latest position of

harmony memory Xi tð Þ named XI�DLHðt þ 1Þ, is generated
by the DLH search strategy. To achieve this, initially, a

radius riðtÞ is calculated by the Euclidean distance between

the present positions of Xi tð Þ and position XIHS t þ 1ð Þ by

the Eq. (7b).

Xi�DLH;d t þ 1ð Þ ¼ Xi;d tð Þ þ rand� Xn;d tð Þ � Xr;d tð Þ
� �

ð7aÞ
ri tð Þ ¼ Xi tð Þ � XIHS t þ 1ð Þk k ð7bÞ

Then, the neighbors of Xi tð Þ represented by Ni(t) are

constructed by Eq. (7c) with respect to ri tð Þ, where Di is

the Euclidean distance between Xi tð Þ and Xj tð Þ.
Ni tð Þ ¼ Xj tð ÞDi Xi tð Þ; Xj tð Þ

� �
� ri tð Þ;Xj tð Þ 2 Pop

� �
ð7cÞ

Once the neighborhood of Xi(t) is constructed, multi-

neighborhood learning is performed by Eq. (7a), where the

dth dimension of XI�DLH; d t þ 1ð Þ is determined by using

the dth dimension of a random neighbor Xn; d tð Þ selected

from Ni tð Þ, and a random harmony Xr; d tð Þ from the pop-

ulation (Pop).

Attacking Phase In this phase, first the superior candi-

date is elected by comparing the fitness values of two

candidates XIHSðt þ 1Þ and XI�DLHðt þ 1Þ by the Eq. (7a).

Then, in order to update the latest position of Xi(t + 1),

if the fitness value of the selected candidates is less than

Xi(t), Xi(t) is updated by the elected candidate. Otherwise,

Xi(t) remains unchanged in the population.

Xi t þ 1ð Þ ¼
XIHS t þ 1ð Þ ; if f XIHSð Þ\f XI�DLH t þ 1ð Þð
XI�DLH t þ 1ð Þ; otherwise

�

ð7dÞ

Finally, after repeating this method for all individuals,

the iteration counter is incremented by one, and the search

can be repeated until the predetermined number of itera-

tions is reached.

The step-wise method of implementing the IHS algo-

rithm for optimization is discussed below.

2.5.1 Problem Formulation

The problem of optimization concerning an objective

function f(X) can be expressed as:

Min. f(X) subject to

xmn
i � xi � xmx

i i ¼ 1; 2; 3; 4; . . .; nð Þ

where X = [9 1, 9 2, 9 3,…xn]T denotes a set of deci-

sion variables and n denotes the number of decision vari-

ables or problem dimensions.

Furthermore, various steps are summarized for imple-

menting the IHS code as:
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Table 7 Test result of UM benchmark functions using IHS algorithm for 10, 30, 50, and 100 dimensions

Function

no

Parameters Objective fitness function

(10 dimensions)

Objective fitness function

(30 dimensions)

Objective fitness function

(50 dimensions)

Objective fitness function

(100 dimensions)

F1 Index 1 14 27 20

Mean 1.46E-190 6.02E-31 0.0006159 0.0237249

SD 0 3.30E-30 0.0016309 0.0080498

Best 0 1.61E-160 1.41E-63 0.0090996

Worst 4.37E-189 1.81E-29 0.0076871 0.0397484

Median 0 3.02E-79 2.97E-22 0.0245168

F2 Index 1 1 27 30

Mean 0 0 1.73E-178 2.89E-65

SD 0 0 0 1.58E-64

Best 0 0 1.47E-257 2.55E-119

Worst 0 0 5.17E-177 8.66E-64

Median 0 0 1.16E-227 3.37E-90

F3 Index 1 5 2 21

Mean 0 0.0062922 0.0737742 0.7291939

SD 0 0.0117352 0.0414089 0.4417872

Best 0 4.09E-119 0.0023466 0.3250389

Worst 0 0.0520213 0.1748615 2.3129826

Median 0 5.31E-22 0.0686605 0.5454504

F4 Index 2 15 12 19

Mean 2.74E-54 0.0256386 0.0489318 0.0885322

SD 1.50E-53 0.0202212 0.0143959 0.0092894

Best 0 2.89E-49 4.13E-06 0.0685978

Worst 8.22E-53 0.0486136 0.0696788 0.113581

Median 0 0.0394833 0.050245 0.0876076

F5 Index 29 13 4 21

Mean 6.5581064 28.457134 48.732954 98.867182

SD 0.3960093 0.2924578 0.1834307 0.1165037

Best 5.8098523 27.656336 48.39324 98.528255

Worst 7.4484759 28.90474 48.939714 98.984317

Median 6.5147293 28.471396 48.771238 98.921066

F6 Index 27 26 1 22

Mean 0.0275005 3.1746032 7.1810491 18.312907

SD 0.0133937 0.2849396 0.3985647 0.5881708

Best 0.0114381 2.5403941 6.4545206 16.694277

Worst 0.0679568 3.7000377 7.8438373 19.282699

Median 0.0265952 3.2477819 7.2347066 18.455543

F7 Index 5 11 7 3

Mean 6.09E-05 6.37E-05 6.22E-05 4.26E-05

SD 6.83E-05 8.20E-05 7.37E-05 4.35E-05

Best 1.95E-06 2.22E-06 8.83E-07 1.73E-06

Worst 0.0002827 0.0004361 0.0003747 0.0001775

Median 3.58E-05 5.27E-05 4.31E-05 2.23E-05
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2.5.2 IHS Parameter Initialization

Adjustable IHS parameters, which include Harmony

Memory Size (HMS), Pitch Rate (PR), Harmony Memory

Consideration Rate (HMR), and Generation Bandwidth

(BW), are also initialized.

The initialization of elements of the harmony memory

matrix is done by using the following equation.

Xij ¼ Xmn
i + rand (Xmx

i �Xmn
i Þ ð8aÞ

where j = 1,2,3, 4…n; i = 1,2,3,4……HMS. where Xmx
i

and Xmn
i denote upper and lower bounds on ith decision

variable; rand denotes random values distributed in the 0–1

range. Mathematically, the harmony memory (HM) matrix

is represented as:

HM ¼

x11 x12 x13 ::::::::::x1n
x21 x22 x23 ::::::::::x2n
x31 x32 x33 ::::::::::x3n

:

:

xHMS1 xHMS2 xHMS3 ::::::::::xHMSn

2

66666664

3

77777775

HMS�n

ð8bÞ

2.5.3 Development of New Harmony

A new harmony vector is developed based on experience

and is referred to as improvisation or adjustment of har-

mony. To generate new harmony, i.e., Xnw = [xnw, 1,

xnw, 2, xnw, 3,…xnw, n], the following stages are carried

out for all decision variables:

Table 9 Test result of UM benchmark functions using IHS algorithm for 10, 30, 50 and 100 dimensions

Function no Parameters Objective fitness

function (10

dimensions)

Objective fitness

function (30

dimensions)

Objective fitness

function (50

dimensions)

Objective fitness

function (100

dimensions)

F1 Wilcoxon rank sum test p-rank 0.3337107 0.06786886 0.0678689 0.63087629

h-rank 0 0 0 0

T-Test p-test 1 0 0 0

t-test 0 0.32557885 0.2303897 0.81708626

F2 Wilcoxon rank sum test p-rank – 0.8418015 0.78445977

h-rank 0 0 0 0

T-Test p-test – – 0 0

t-test – – 0.325582 0.32556084

F3 Wilcoxon rank sum test p-rank 0.3337107 0.6843226 0.9823071 0.37107703

h-rank 0 0 0 0

T-Test p-test 1 0 0 0

t-test 0 0.4847723 0.2455422 0.15629828

F4 Wilcoxon rank sum test p-rank 0.4320441 0.3790363 0.807275 0.14127751

h-rank 0 0 0 0

T-Test p-test 0 0 0 0

t-test 0.325582 0.5461467 0.5340496 0.07345329

F5 Wilcoxon rank sum test p-rank 0.3870998 0.6204037 0.3041768 0.85338174

h-rank 0 0 0 0

T-Test p-test 0 0 0 0

t-test 0.4133304 0.6706703 0.4845669 0.58682251

F6 Wilcoxon rank sum test p-rank 0.0270863 0.4464194 0.5996895 0.30417682

h-rank 1 0 0 0

T-Test p-test 1 0 0 0

t-test 0.0197353 0.5211085 0.4738117 0.54989648

F7 Wilcoxon rank sum test p-rank 0.5996895 0.935192 0.040595 0.00058737

h-rank 0 0 1 1

T-Test p-test 0 0 0 1

t-test 0.7710415 0.7596276 0.1515444 0.00143501
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Stage (i): A new random number (RN) is generated in

the range of 0–1.

If RN[HMR, then the decision variable Xnw
ij is gen-

erated by using the following equation.

Xnw
ij ¼ Xmn

j þ rand ðXmx
j � Xmn

j Þ ð9Þ

where j = 1,2,3, 4…….n; i = 1,2,3,4……HMS.

If, on the contrary,RN�HMR, then one of the decision

variables stored in the current HM is chosen at random

using the following equation:

Xnw
ij ¼ Xij ð10Þ

where i = 1,2,3,4……HMS; j = 1,2,3,4…….n;

Stage (ii): HS considers a pitch adjustment mechanism

through which the new harmony can move to a neighboring

value in respect of the possible range. To execute a pitch

adjustment mechanism, a uniformly distributed random

number (rand) is generated between 0 and 1 after stage (i).

If rand� PR, the new harmony will move to a neighboring

value using the following equation.

Xnw
ij ¼ Xnw

ij þ BW � ðrand�0:5Þ � ðXmn
j �Xmx

j Þ ð11Þ

where BW denotes bandwidth;

Further, the iteration-wise value of variables PR and BW

is calculated as follows (Anand et al. 2020):

PR itrð Þ ¼ PRmn þ
PRmx� PRmnð Þ

itrmx

� itrð Þ ð12Þ

BW itrð Þ¼BWmx exp a.itrð Þ

a¼
Ln Bwmn

Bwmx

� �

itrmx

ð13Þ

where PR (itr) represents an iteration wise pitch adjustment

rate; itr denotes an iteration index; PRmx and PRmn denote

the maximum and minimum value of the adjustment rate of

the pitch. BWmx and BWmn denote maximum and minimum

bandwidth values.

Stage (iii): The population obtained from Eq. (11) is

further updated using a DLH-based search strategy.

2.5.4 Updation

If the newly created harmony vector Xnw
ij

� �
delivers better

results as compared to the worst Xwst
ij

� �
harmony in HM,

the new harmony vector is taken into account in the HM

Table 10 Simulation time of UM benchmark functions using IHS algorithm for 10, 30, 50 and 100 dimensions

Function no Parameters Objective fitness

function (10

dimensions)

Objective fitness

function (30

dimensions)

Objective fitness

function (50

dimensions)

Objective fitness

function (100

dimensions)

F1 Best time (Sec) 0.03125 0.046875 0.078125 0.140625

Average time (Sec.) 0.078125 0.1020833 0.1416667 0.2223958

Worst time (Sec) 0.25 0.328125 0.421875 0.90625

F2 Best time (Sec) 0.03125 0.0625 0.078125 0.140625

Average time (Sec.) 0.0776042 0.1041667 0.125 0.2015625

Worst time (Sec) 0.34375 0.3125 0.375 0.5625

F3 Best time (Sec) 0.0625 0.171875 0.28125 0.59375

Average time (Sec.) 0.0942708 0.1973958 0.3276042 0.65625

Worst time (Sec) 0.171875 0.234375 0.859375 0.875

F4 Best time (Sec) 0.03125 0.0625 0.078125 0.140625

Average time (Sec.) 0.0651042 0.0895833 0.1125 0.1572917

Worst time (Sec) 0.140625 0.1875 0.1875 0.203125

F5 Best time (Sec) 0.046875 0.0625 0.09375 0.140625

Average time (Sec.) 0.08125 0.0807292 0.1145833 0.1723958

Worst time (Sec) 0.140625 0.109375 0.15625 0.359375

F6 Best time (Sec) 0.03125 0.0625 0.078125 0.125

Average time (Sec.) 0.0619792 0.071875 0.0994792 0.1614583

Worst time (Sec) 0.09375 0.109375 0.171875 0.265625

F7 Best time (Sec) 0.0625 0.109375 0.171875 0.328125

Average time (Sec.) 0.0848958 0.1296875 0.2088542 0.3432292

Worst time (Sec) 0.125 0.171875 0.3125 0.375
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instead of the existing worst harmony and it is mathemat-

ically represented as:

Xwst
ij ¼ Xnew

ij ; f Xnew
ij

� �
\ f Xwst

ij

� �

Xwst
ij ; Otherwise

( )

ð14Þ

Based on the obtained solution, the best value of the

objective function is calculated as:

f bst ¼ min fið Þ ; i 2 1; 2; 3; 4:::::::HMS ð15Þ

2.5.5 Check Stopping Criteria

If no. of iterations exceeds, then the algorithm will cease to

work, else step 2.5.3 and step 2.5.4 are repeated.

2.6 PSO-based Intelligent Approach

PSO is a stochastic-based optimization approach that has

been propelled by the communal performance of bird

congregating, which initializes with inhabitants of random

Table 11 Test result of MM benchmark functions using IHS algorithm for 10, 30, 50 and 100 dimensions

Function

no

Parameters Objective fitness function (10

dimensions)

Objective fitness function (30

dimensions)

Objective fitness function (50

dimensions)

F8 Index 23 8 19

Mean - 2850.43 - 5121.3336 - 6972.8981

SD 257.17714 443.84981 432.78124

Best - 3367.3551 - 6437.3229 - 7778.3714

Worst - 2372.6406 - 4317.8725 - 5883.5459

Median - 2859.3609 - 5090.4497 - 7012.4868

F9 Index 1 1 1

Mean 0 0 0

SD 0 0 0

Best 0 0 0

Worst 0 0 0

Median 0 0 0

F10 Index 1 1 1

Mean 8.88E-16 8.88E-16 8.88E-16

Std 0 0 0

Best 8.88E-16 8.88E-16 8.88E-16

Worst 8.88E-16 8.88E-16 8.88E-16

Median 8.88E-16 8.88E-16 8.88E-16

F11 Index 1 22 3

Mean 3.71E-12 0.1893664 1.287844

SD 2.03E-11 0.1376684 0.6147181

Best 0 0.0179498 0.4657037

Worst 1.11E-10 0.4722641 3.4812008

Median 0 0.1714668 1.0759526

F12 Index 1 25 8

Mean 0.0276916 0.5100072 0.7308314

SD 0.0069211 0.0432966 0.0271067

Best 0.0161779 0.4211718 0.6672053

Worst 0.0443696 0.5921292 0.7781942

Median 0.0279344 0.5134917 0.7370376

F13 Index 14 18 16

Mean 0.8602966 2.8308818 4.8618731

SD 0.1285511 0.0915252 0.1038929

Best 0.5495171 2.5571825 4.6639295

Worst 0.9956581 2.9969841 5.0109654

Median 0.8844531 2.8306134 4.8740007
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solutions known as particles and sees the optimal solution

by updating generation.

In PSO, the particle is represented by a vector having m

decision variables. Initially, m particles are arbitrarily ini-

tialized in the search space. Each particle is trying to get a

better position than the present one. The memory infor-

mation comprises the best experience expressed by the

group (Gbest) and the best experience gained by the particle

(Pbest). The updating expression at each iteration (i) is

given by the equation as (Anand et al. 2019a; Askarzadeh

and Leandro 2015; Mahesh and Sandhu 2019):

Vj iþ 1ð Þ ¼ w � Vj ið Þ þ C1 � r1 Pbestj ið Þ�xj ið Þ
� �

þ C2

� r2 Gbestj ið Þ� xj ið Þ
� �

ð16Þ
xj iþ 1ð Þ ¼ Vj iþ 1ð Þ þ xj ið Þ ð17Þ

where i = 1,2,3,…….imax; j = 1,2,3,4……SP. where Vj

denotes the velocity of jth particle; xj represents the posi-

tion of jth particle; SP denotes the size of particles; C1 and

C2 are the learning coefficients; r1 and r2 represent random

numbers lying in the range of 0 to 1; imax is the maximum

number of iterations.

Further, w known as inertia weight factor is used to

provide a balance among the local and global search. A

larger value of w results in a global search, whereas a small

value leads to a local search. Generally, the value of w is

varied by using the following equation.

w ðiÞ ¼ wmx �
wmx � wmn

imax

� i ð18Þ

where wmn and wmx are the initial and final values of inertia

weight.

Further, the following steps for implementing the PSO

algorithm are described as:

2.6.1 Initialization of the Problem with PSO Parameters

The first step is to formulate the problem (objective func-

tion along with constraints). Besides, the adjustable PSO

parameters are also defined.

Table 13 Test result of MM benchmark functions using IHS algorithm for 10, 30, 50 and 100 dimensions

Function no Parameters Objective fitness

function (10

dimensions)

Objective fitness

function (30

dimensions)

Objective fitness

function (50

dimensions)

Objective fitness

function (100

dimensions)

F8 Wilcoxon rank sum test p-rank 0.9705161 0.0138316 0.6414235 0.2707053

h-rank 0 1 0 0

T-Test p-test 0 1 0 0

t-test 0.9132262 0.0199548 0.9380641 0.1097652

F9 Wilcoxon rank sum test p-rank – – – –

h-rank 0 0 0 0

T-Test p-test – – – –

t-test – – – –

F10 Wilcoxon rank sum test p-rank – – – 0.6665651

h-rank 0 0 0 0

T-Test p-test – – – 0

t-test – – 0.4702274

F11 Wilcoxon rank sum test p-rank 0.9863612 0.5297825 0.7393988 0.8766349

h-rank 0 0 0 0

T-Test p-test 0 0 0 0

t-test 0.4305782 0.6253625 0.5604393 0.7591375

F12 Wilcoxon rank sum test p-rank 0.6627348 0.7618283 0.077272 0.371077

h-rank 0 0 0 0

T-Test p-test 0 0 0 0

t-test 0.6191869 0.7865857 0.2418907 0.4122382

F13 Wilcoxon rank sum test p-rank 0.395267 0.0451462 0.9823071 0.4289634

h-rank 0 1 0 0

T-Test p-test 0 0 0 0

t-test 0.6061278 0.0845897 0.8402802 0.7232989
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2.6.2 Initialization of Particles

In the second step, m particles have been initialized in the

search space with randomly generated decision vectors.

The initialization of each particle is done using the fol-

lowing equation.

x 0ð Þ ¼ xmn;j þ rand xmx;j � xmn;j

� �
ð19Þ

where xmx and xmn denote the initial and final value of x for

all particles.

2.6.3 Fitness Function Evaluation

Based on the value of decision variables associated with

each particle, the value of the objective function is

determined.

2.6.4 Updation

Pbest is calculated for each particle and Gbest is selected

among the population based on the best particle. Further,

each particle is allowed to move to the next new position.

More specifically, the velocity of each particle and its

Table 14 Simulation time of MM benchmark functions using IHS algorithm for 10, 30, 50 and 100 dimensions

Function

no

Parameters Objective fitness function

(10 dimensions)

Objective fitness function

(30 dimensions)

Objective fitness function

(50 dimensions)

Objective fitness function

(100 dimensions)

F8 Best time

(Sec)

0.03125 0.078125 0.109375 0.171875

Average time

(Sec.)

0.0744792 0.0875 0.1338542 0.2067708

Worst time

(Sec)

0.15625 0.125 0.171875 0.3125

F9 Best time

(Sec)

0.03125 0.0625 0.09375 0.140625

Average time

(Sec.)

0.0614583 0.0729167 0.1229167 0.1651042

Worst time

(Sec)

0.109375 0.125 0.1875 0.28125

F10 Best time

(Sec)

0.046875 0.0625 0.09375 0.140625

Average time

(Sec.)

0.0640625 0.075 0.1177083 0.1682292

Worst time

(Sec)

0.09375 0.109375 0.203125 0.265625

F11 Best time

(Sec)

0.046875 0.078125 0.109375 0.1875

Average time

(Sec.)

0.078125 0.0890625 0.1364583 0.2171875

Worst time

(Sec)

0.125 0.125 0.21875 0.28125

F12 Best time

(Sec)

0.140625 0.234375 0.328125 0.59375

Average time

(Sec.)

0.1671875 0.265625 0.3651042 0.6244792

Worst time

(Sec)

0.25 0.3125 0.40625 0.640625

F13 Best time

(Sec)

0.140625 0.234375 0.328125 0.578125

Average time

(Sec.)

0.1598958 0.2473958 0.36875 0.6005208

Worst time

(Sec)

0.1875 0.28125 0.421875 0.640625
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Table 15 Test result of FD benchmark functions using IHS algorithm for 10, 30, 50 and 100 dimensions

Function

no

Parameters Objective fitness function

(10 dimensions)

Objective fitness function

(30 dimensions)

Objective fitness function

(50 dimensions)

Objective fitness function

(100 dimensions)

F14 Index 20 30 17 27

Mean 8.9586192 9.2958827 9.5502341 10.444576

SD 4.6885511 3.708035 3.8707949 4.0003265

Best 0.9980038 1.9920309 0.9980038 0.9980038

Worst 12.670506 12.670506 12.670506 12.670506

Median 11.7187 10.763181 10.763181 12.670506

F15 Index 26 29 8 –

Mean 0.0160376 0.0169005 0.0181053 –

SD 0.030964 0.0327302 0.0315364 –

Best 0.0003475 0.0003475 0.000353 –

Worst 0.1207472 0.1162259 0.1089183 –

Median 0.0019117 0.0010714 0.0043061 –

F16 Index 28 30 6 –

Mean - 1.0316283 - 1.0316283 - 1.0316283 –

SD 1.34E-07 1.15E-07 1.75E-07 –

Best - 1.0316285 - 1.0316284 - 1.0316284 –

Worst - 1.031628 - 1.031628 - 1.0316275 –

Median - 1.0316283 - 1.0316283 - 1.0316283 –

F17 Index 14 16 30 27

Mean 0.4123419 0.4097653 0.4130562 0.4127692

SD 0.0098248 0.010759 0.0138232 0.0110477

Best 0.3995004 0.399306 0.3996816 0.3987943

Worst 0.4410052 0.4491349 0.4557192 0.4428635

Median 0.4106485 0.406472 0.4076855 0.4105367

F18 Index 17 7 18 18

Mean 9.3000012 11.10058 8.4005383 7.5000008

SD 11.614945 12.584091 10.984358 10.234325

Best 3 3 3 3

Worst 30.000013 30.00002 30.000011 30.000011

Median 3 3 3 3

F19 Index 18 4 3 8

Mean - 3.8505681 - 3.8508949 - 3.8518311 - 3.852858

SD 0.00588 0.0035879 0.0042009 0.0047404

Best - 3.8578257 - 3.857879 - 3.8603253 - 3.8611905

Worst - 3.8298316 - 3.8425129 - 3.8392971 - 3.8363528

Median - 3.8516327 - 3.8517318 - 3.8525449 - 3.8536414

F20 Index 5 7 5 12

Mean - 3.0410618 - 3.1018361 - 3.0709558 - 3.0730514

SD 0.0921201 0.0778961 0.1056266 0.0945628

Best - 3.2350461 - 3.2494744 - 3.2261268 - 3.2513409

Worst - 2.8634044 - 2.8980305 - 2.7724918 - 2.8489681

Median - 3.0583833 - 3.1123699 - 3.1060803 - 3.099351

F21 Index 6 18 5 30

Mean - 3.7479617 - 4.2588219 - 3.5079814 - 3.8342777

SD 1.3800636 1.5273327 1.15973 1.1648219

Best - 8.6037115 - 8.9291233 - 6.3095192 - 6.3553686

Worst - 1.794827 - 2.0148458 - 1.390897 - 1.7697845

Median - 3.5545286 - 3.834521 - 3.3704116 - 3.5955415
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position are updated by employing Eqs. 16 and 17,

respectively.

2.6.5 Stopping Criteria

If the maximum number of iterations is completed, the

algorithm stops and Gbest is considered as the optimal

solution. Otherwise, steps 2.6.2 and 2.6.4 are repeated.

2.7 Database for Techno-Economic Evaluation

The techno-economic database required as input to opti-

mize the size and operation of the proposed system is

detailed as:

2.7.1 Electrical Load Requirements (kW)

The hourly load demand in the study area throughout the

summer, moderate and winter seasons is demonstrated in

Fig. 1. The maximum load demand for the study area is

estimated in the summer, winter and moderate seasons as

177.71 kW, 177.71 kW and 182.12 kW, respectively.

2.7.2 Average Solar Irradiance (kWh/m.2/day)

For the selected area, the availability of monthly average

solar energy is depicted in Fig. 2. It is found to be highest

in the month of May (7.08 kWh/m2/day) and lowest in

December (3.23 kWh/m2/day) (NASA 2020).

2.7.3 Mean Air Temperature (�C)

The air temperature for different months of the year at the

proposed location is presented in Fig. 3. It has been

observed that the ambient temperature of the research area

lies in the range of 8 �C–42 �C during the year.

2.7.4 Scheduling of Biogas and Biomass Generators

Bio-generators have been scheduled for operation when the

load reaches the peak value for the proposed research area

and are demonstrated in Table 3.

2.7.5 IHS and PSO Algorithm Parameters

For optimizing the objective function, various IHS algo-

rithm parameters are detailed as: itrmx = 150; HMR =

0.95; PR = 0.1; HMS = 5; PRmx = 1; PRmn = 0.1. The

following parameters are set for the PSO algorithm: m = 4,

C1 = 2, C2 = 2, Sp = 30, and imax = 150.

2.7.6 Economical database of Hybrid System Components

The economic database of particular components of the

hybrid system is listed in Table 4.

2.7.7 Project Parameters

In present research, the life of the system is 25 years with

an 11% interest rate.

3 Result and Discussion

A concerted effort has been made to achieve the optimal

size and design of the hybrid system made up of renewable

energy resources. Firstly, under the off-grid mode, the three

Table 15 (continued)

Function

no

Parameters Objective fitness function

(10 dimensions)

Objective fitness function

(30 dimensions)

Objective fitness function

(50 dimensions)

Objective fitness function

(100 dimensions)

F22 Index 13 30 14 21

Mean - 3.5086423 - 3.8007127 - 3.5578506 - 3.5019407

SD 1.4662792 1.4745621 1.1441033 1.1145269

Best - 6.8760262 - 8.0583388 - 6.6029679 - 5.1052682

Worst - 1.3918829 - 1.4536972 - 1.7277629 - 1.601393

Median - 3.5870892 - 3.7268609 - 3.5793141 - 3.6208009

F23 Index 26 12 10 11

Mean - 4.1656536 - 4.5412382 - 3.6650576 - 3.8132129

SD 1.6904521 1.6560109 1.8260066 1.6634419

Best - 8.212587 - 8.761818 - 8.5834305 - 8.2305609

Worst - 1.6650987 - 2.0013184 - 1.3407726 - 1.3802065

Median - 3.9062129 - 4.2167482 - 3.5149493 - 3.7151855
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models of renewable energy-based systems are considered

in the present study, as elaborated below:

(a) Model M11: SPV/Biomass/Battery

(b) Model M12: SPV/Biogas/Battery

(c) Model M13: SPV/Biomass/Biogas/Battery

The hourly simulations for each model have been con-

ducted in MATLAB for one year. The parameters were

optimized with the goal of minimizing the system’s NPC,

which was achieved by employing the IHS and PSO

algorithms. The SPV/biomass/biogas/battery model con-

nected to a grid has also been simulated on an hourly basis

using both algorithms to validate the results. Finally, the

results from off-grid models are compared with the grid-

connected hybrid model, and the optimal option has been

found.

The selected off-grid models are simulated for fulfilling

the load demand of the proposed location on an hourly

basis using IHS and PSO algorithms by simulating in

MATLAB. The obtained result after hourly simulation

along with the optimum size of each component is shown

in Table 5.

It is observed that the most optimal off-grid model M11

comprises a 229.13 kW (975 nos.) SPV system, a 166 kW

biomass gasifier system, and 544.8 kWh (227 nos.) of

battery bank storage system along with a 100 kW con-

verter. The optimum NPC of the model is calculated as

$7.17 * 105 and a CoE of $0.105/kWh. It has also been

reported that IHS gives more promising results compared

to PSO.

3.1 Optimization Results of Grid-Integrated
Hybrid Model

The optimization of the grid-integrated hybrid model,

which consists of SPV/Biogas/Biomass/battery using IHS

and PSO algorithms, was carried out, and the results are

presented in Table 6.

It is concluded that the IHS model has given more

accurate results as compared to the PSO algorithm. The

optimal size of the grid-connected model obtained by the

IHS algorithm is a 226.31 kW SPV array, a 41 kW bio-

mass system, a 98 kW biogas system, a 55.2 kWh battery

bank storage, and a 100 kW converter, with NPC and CoE

calculated as $6.00 * 105 and $0.081/kWh, respectively.

3.2 Comparative Analysis of Off-Grid and Grid-
Connected Models

The grid-integrated model is compared with off-grid

models in terms of NPC and CoE. Tables 5 and 6 reveal

that the grid-integrated model has a lower value for NPC

and CoE than the off-grid models. Besides, it is alsoTa
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Table 17 Test result of FD benchmark functions using IHS algorithm for 10, 30, 50 and 100 dimensions

Function

no

Parameters Objective fitness

function (10

dimensions)

Objective fitness

function (30

dimensions)

Objective fitness

function (50

dimensions)

Objective fitness

function (100

dimensions)

F14 Wilcoxon rank

sum test

p-
rank

1 0.0962628 0.935192 0.3790363

h-
rank

0 0 0 0

T-test p-test 0 0 0 0

t-test 0.8832565 0.1528692 0.8789596 0.8548552

F15 Wilcoxon rank

sum test

p-
rank

0.3041768 0.491783 0.6520436 0.2972717

h-
rank

0 0 0 0

T-test p-test 0 0 0 0

t-test 0.7973219 0.8082163 0.0736713 0.6062152

F16 Wilcoxon rank

sum test

p-
rank

0.2115612 0.7618283 0.9705161 0.7171888

h-
rank

0 0 0 0

T-test p-test 0 0 0 0

t-test 0.3501874 0.7894639 0.967972 0.8030388

F17 Wilcoxon rank

sum test

p-
rank

0.5395103 0.2643262 0.7282653 0.8187457

h-
rank

0 0 0 0

T-test p-test 0 0 0 0

t-test 0.5242866 0.8078773 0.8046798 0.4345065

F18 Wilcoxon rank

sum test

p-
rank

0.6952154 0.17145 0.935192 0.1153624

h-
rank

0 0 0 0

T-test p-test 0 0 0 0

t-test 0.7864796 0.1694317 0.5362894 0.1607109

F19 Wilcoxon rank

sum test

p-
rank

0.7958455 0.5105979 0.2707053 0.2707053

h-
rank

0 0 0 0

T-test p-test 0 0 0 0

t-test 0.790141 0.4404338 0.1883748 0.3970414

F20 Wilcoxon rank

sum test

p-
rank

0.1259702 0.2225729 0.0992576 0.7505872

h-
rank

0 0 0 0

T-test p-test 0 0 0 0

t-test 0.1609095 0.2516846 0.1547637 0.9142226

F21 Wilcoxon rank

sum test

p-
rank

0.7171888 0.2707053 0.0191124 0.8766349

h-
rank

0 0 1 0

T-test p-test 0 0 1 0

t-test 0.5228637 0.2268478 0.0099076 0.8635955
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observed that the grid-connected model has the lowest

battery storage capacity of 55.2 kWh to meet the full load

demand. As a result, the grid-connected model is better and

is proposed for the selected area given economic concerns.

Further, the results of different parameters of the proposed

model are presented in the forthcoming sections.

3.3 IHS and PSO Algorithm Convergence Curve
for Proposed Model

The convergence curve for the IHS and the PSO algorithm

of the proposed grid-connected model is shown in Fig. 4.

From Fig. 4, it is observed that IHS converges com-

pletely and provides a fixed value at the 128th iteration.

However, PSO has converged to a constant value after the

140th iteration. Therefore, it is obvious that IHS has a

faster convergence than PSO. Besides, to test the efficacy

of the proposed IHS optimization model, a set of different

benchmark functions is considered, which comprises three

major benchmark feature classes: Uni Modal (UM)

benchmark functions F1, F2, F3, F4, F5, F6 and F7; Multi-

Modal (MM) benchmark functions F8, F9, F10, F11, F12,

and F13; and benchmark problems of Fixed Dimensions

(FD) are considered (Bhattacharya et al. 2021; Dhawale

et al. 2021). The values of the mean, standard deviation

(SD), best value, worst value, median, quartile, Wilcoxon

sum test, statistical T test, and simulation time result are

computed for each of the objective functions for 10, 30, 50,

and 100 dimensions, respectively, and demonstrated in

Tables 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18. In the

present work, 30 trial runs are considered, and the proposed

model is simulated for a maximum of 500 iterations. The

proposed optimization model was tested at 2.60 GHz on

Intel � Core TM and i7-5600 CPUs.

3.4 Annual Energy Generation by Grid-
Connected Optimal Model

The contribution of different renewable energy resources to

the annual generation of electricity by the proposed grid-

connected model is shown in Fig. 5.

The obtained result clearly shows that the SPV array

produced the maximum amount of electricity of

450,570 kWh/year (65.56%), followed by biomass with

182,885 kWh/year (26.61%) and biogas with 53,822 kWh/

year (7.83%).

3.5 Cost-wise Breakup of NPC

The proportion of the cost breakup in the overall NPC of

the proposed model is given in Table 19. The cost of grid

purchase was found to have the highest share of $280,400

among all costs.

3.6 Component-wise Breakup of NPC

The contribution of different system components is shown

in Fig. 6. Biomass has been observed to have the biggest

part of a total of 50% of NPC, followed by biogas with

19%, the SPV panel with 14%, the battery with 11% and

the converter with 6%.

Table 17 (continued)

Function

no

Parameters Objective fitness

function (10

dimensions)

Objective fitness

function (30

dimensions)

Objective fitness

function (50

dimensions)

Objective fitness

function (100

dimensions)

F22 Wilcoxon rank

sum test

p-
rank

0.2009489 0.8766349 0.7393988 0.0962628

h-
rank

0 0 0 0

T-test p-test 0 0 0 0

t-test 0.1387403 0.8241737 0.8465256 0.0825139

F23 Wilcoxon rank

sum test

p-
rank

0.0701266 0.074827 0.3870998 0.3183042

h-
rank

0 0 0 0

T-test p-test 1 1 0 0

t-test 0.0415531 0.0118357 0.5656017 0.3863183
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Table 18 Simulation time of FD benchmark functions using IHS algorithm for 10, 30, 50 and 100 dimensions

Function

no

Parameters Objective fitness function

(10 dimensions)

Objective fitness function

(30 dimensions)

Objective fitness function

(50 dimensions)

Objective fitness function

(100 dimensions)

F14 Best time

(Sec)

– 0.359375 0.34375 –

Average time

(Sec.)

– 0.3869792 0.384375 –

Worst time

(Sec)

– 0.46875 0.4375 –

F15 Best time

(Sec)

0.03125 0.03125 0.03125 0.03125

Average time

(Sec.)

0.0536458 0.0411458 0.0583333 0.0510417

Worst time

(Sec)

0.09375 0.09375 0.109375 0.09375

F16 Best time

(Sec)

0.03125 0.03125 0.03125 0.03125

Average time

(Sec.)

0.0541667 0.0416667 0.0536458 0.0526042

Worst time

(Sec)

0.09375 0.078125 0.125 0.078125

F17 Best time

(Sec)

0.03125 0.03125 0.015625 0.015625

Average time

(Sec.)

0.0776042 0.0541667 0.0661458 0.0609375

Worst time

(Sec)

0.171875 0.1875 0.171875 0.171875

F18 Best time

(Sec)

0.015625 0.015625 0.03125 0.015625

Average time

(Sec.)

0.0489583 0.0307292 0.0473958 0.0442708

Worst time

(Sec)

0.078125 0.046875 0.0625 0.0625

F19 Best time

(Sec)

0.03125 0.03125 0.03125 0.03125

Average time

(Sec.)

0.0640625 0.0473958 0.065625 0.0526042

Worst time

(Sec)

0.09375 0.09375 0.15625 0.09375

F20 Best time

(Sec)

0.03125 0.03125 0.046875 0.03125

Average time

(Sec.)

0.0614583 0.05 0.0729167 0.0546875

Worst time

(Sec)

0.109375 0.0625 0.125 0.078125

F21 Best time

(Sec)

0.046875 0.03125 0.03125 0.046875

Average time

(Sec.)

0.0697917 0.0640625 0.0739583 0.0682292

Worst time

(Sec)

0.109375 0.140625 0.109375 0.109375

F22 Best time

(Sec)

0.0625 0.046875 0.0625 0.046875

Average time

(Sec.)

0.0796875 0.0703125 0.0875 0.0786458

Worst time

(Sec)

0.109375 0.109375 0.140625 0.09375
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3.7 Seasonal Energy Sale and Purchase to/
from Grid

Seasonal energy sold and purchased from the utility grid

has been shown in Table 20. It is concluded that in the

summer season, the proposed model buys more energy,

followed by the moderate and winter seasons. It is due to

the increased demand for energy during the summer. Fur-

thermore, grid sales and grid purchases are relatively lower

in the winter than in the summer and the moderate seasons

due to lower energy demand.

4 Conclusion

In this research, the modeling and optimization of the

hybrid energy system based on renewable energy resources

has been carried out in the remote area of Sonipat, India.

Based on the available renewable energy resources, dif-

ferent configurations for off-grid and grid-connected sce-

narios are developed and presented. From the developed

configurations, an optimized model is selected to electrify

the given location based on NPC and CoE. The IHS, a

newly developed algorithm, and PSO algorithms have been

used to optimize the hybrid energy system.

The size optimization of the hybrid renewable energy

system for the grid-connected scenario is obtained as a

226.31 kW SPV array, 98 kW biogas system, 41 kW bio-

mass system, 100 kW converter, and 55.2 kWh of battery

bank storage. The total NPC and CoE are estimated to be

$6.00 * 105 and $0.081/kWh, respectively. The findings of

the study may be used to develop a hybrid renewable

energy system for other related areas having the same

geographical parameters.

Fig. 5 Share of renewable

energy resources in annual

energy generation

Table 19 Cost-wise breakup of NPC

S. no Indicator Value ($) Percentage (%)

1 Capital cost 143,665 21

2 O & M cost 128,260 19

3 Fuel cost 68,840 10

4 Salvage value 11,106 01

5 Revenue from grid sale 54,965 08

6 Cost of grid purchase 280,400 41

Table 18 (continued)

Function

no

Parameters Objective fitness function

(10 dimensions)

Objective fitness function

(30 dimensions)

Objective fitness function

(50 dimensions)

Objective fitness function

(100 dimensions)

F23 Best time

(Sec)

0.0625 0.0625 0.0625 0.0625

Average time

(Sec.)

0.09375 0.08125 0.0994792 0.0796875

Worst time

(Sec)

0.171875 0.125 0.15625 0.171875
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