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Abstract
The main idea of this work is to present a novel scheme based on Bernstein wavelets for finding numerical solution of two

classes of fractional optimal control problems (FOCPs) and one class of fractional variational problems (FVPs). First, we

present an approximation for fractional derivative using the Laplace transform. Then, the obtained integer-order problems

are converted into equivalent variational problems. By using the Bernstein wavelets, activation functions and the Gauss–

Legendre integration scheme, problems are transformed to algebraic systems of equations. Finally, these systems are

solved employing Newton’s iterative scheme. Error bound for the best approximation is given. Also, we propose a

scheme to determine the number of basis functions necessary to get a certain precision. In order to verify that the

mentioned scheme is applicable and powerful for solving FOCPs and FVP, some numerical experiments have been

provided.
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1 Introduction

Recently, numerous phenomena in various fields of applied

science and engineering have been simulated by fractional

differential equations. In detail, these equations have

appeared in electromagnetics, viscoelasticity, fluid

mechanics, electrochemistry, biological population models,

signals processing, continuum, heat transfer in heteroge-

neous media, ultracapacitor, pharmacokinetics and statis-

tical mechanics (Chen et al. 2013; Jajarmi and Baleanu

2018; Wang and Zhou 2011; Heydari et al. 2016; Popovic

et al. 2015).

Therefore, many numerical schemes have been pre-

sented for finding numerical solution of these problems, for

instance, Adomian decomposition technique (Babolian

et al. 2014), variational iteration technique (Yang et al.

2010), bivariate Müntz wavelets technique (Rahimkhani

and Ordokhani 2020), fractional alternative Legendre

functions technique (Rahimkhani and Ordokhani 2020),

fractional Lucas optimization technique (Dehestani et al.

2022), fractional Chelyshkov wavelets technique (Rahim-

khani et al. 2019) and orthonormal Bernoulli wavelets

neural network technique (Rahimkhani and Ordokhani

2021).

The FOCP are extensions of the classical ones. In such

problems, the dynamical system and/or the objective

function may be involved with fractional operators. The

main reason to study such problems is the fact that there are

many problems in which the behavior of their dynamical

systems can concisely be expressed in terms of fractional

operators, for instance, in the analog fractional-order con-

troller in temperature and motor control applications

(Bohannan 2008), fractional control of heat diffusion sys-

tems (Suarez et al. 2008), a fractional-order HIV-immune

system with memory (Jesus and Machado 2008), a frac-

tional adaptation scheme for lateral control of an

& Yadollah Ordokhani

ordokhani@alzahra.ac.ir

Parisa Rahimkhani

P.rahimkhani@alzahra.ac.ir

1 Department of Mathematics, Faculty of Mathematical

Sciences, Alzahra University, Tehran, Iran

123

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2022) 46:1041–1056
https://doi.org/10.1007/s40998-022-00522-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5167-6874
http://crossmark.crossref.org/dialog/?doi=10.1007/s40998-022-00522-4&amp;domain=pdf
https://doi.org/10.1007/s40998-022-00522-4


autonomous guided vehicle (Ding et al. 2012), mechanical

systems (Kiryakova 1994), automotive vehicle design (Bell

2004), manufacturing processes (Samko et al. 1993),

transportation systems (Jajarmi and Baleanu 2018), HIV/

AIDS epidemic model with random testing and contact

tracing (Kiryakova 1994) and physics (Tripathy et al.

2015). FOCPs can be introduced by applying various def-

initions of fractional derivatives, such as the Caputo frac-

tional derivatives and the Riemann–Liouville. These

problems have been studied by many authors; for example,

Agrawal (2004) introduced a general formulation and a

numerical technique for FOCPs. Lotfi et al. (2013) applied

an approximate direct technique for finding solution of a

general class of FOCPs. Alipour et al. (2013) investigated

multi-dimensional FOCPs by using the Bernstein polyno-

mials. Rabiei et al. (2018a) applied fractional-order Bou-

baker functions for solving a class of FOCPs. Rahimkhani

et al. (2016) used the Bernoulli wavelet method to solve

delay FOCPs. Mashayekhi and Razzaghi (2018) proposed a

technique based on hybrid of block pulse functions and

Bernoulli polynomials for finding approximate solution of

FOCPs. Sabermahani et al. (2019) introduced fractional

order Lagrange polynomials and used them to solve

FOCPs. Rabiei and Parand (2020) investigated the Che-

byshev collocation approach for finding numerical solution

of FOCPs.

Also, different numerical schemes have been introduced

for solving FVPs, for example, Rayleigh–Ritz

scheme (Khader 2015), polynomial basis functions

scheme (Lotfi and Yousefi 2013), fractional finite element

scheme (Agrawal 2008), Müntz–Legendre polynomials

scheme (Ordokhani and Rahimkhani 2018), fractional

Jacobi functions scheme (Zaky et al. 2018), shifted Che-

byshev polynomials scheme (Ezz-Eldien et al. 2018),

modified wavelet scheme (Dehestani et al. 2020), etc.

Special kinds of oscillatory functions are wavelets that

they have been used in time–frequency analysis, fast

algorithms, edge extrapolation, image processing, signal

processing and edge extrapolation (Chui 1997). We note

that there are some advantages, for instance, compact

support, orthogonality and the ability to show the functions

at various levels of resolution. Wavelets as a useful class of

bases have been applied to solve several problems of the

dynamical systems. For example, Haar wavelets have been

used to solve of the Riccati differential equation (Li et al.

2014). Müntz–Legendre wavelets have been introduced for

finding numerical solution of fractional differential equa-

tions (FDEs) with delay (Rahimkhani et al. 2018). Ber-

noulli wavelets have been used for solving variable FDEs

(Soltanpour Moghadam et al. 2020). Genocchi wavelets

have been used for solving of various kinds of FDEs with

delay (Dehestani et al. 2019). Fractional-order Bernoulli

wavelets have been used for numerical analysis of the

pantograph FDEs (Rahimkhani et al. 2017). Fractional

Chelyshkov wavelets (Rahimkhani et al. 2019) have been

introduced for the approximate solution of distributed-

order FDEs.

Bernstein wavelets have many useful properties over an

interval [0, 1] (we can deduce these properties from the

Bernstein polynomials properties Bhatti and Bracken

2007). The Bernstein wavelets bases vanish except the first

polynomial at t ¼ n̂
2k�1 and the last polynomial at t ¼ n̂þ1

2k�1,

over any interval ½ n̂
2k�1 ;

n̂þ1
2k�1�. It also ensures that the sum at

any point t of all the Bernstein wavelet is 2k�1bi;M and

every Bernstein wavelets is positive for all real t on the

region t 2 ð n̂
2k�1 ;

n̂þ1
2k�1Þ. A simple code written in Mathe-

matica or Maple can be applied to obtain all the non-zero

Bernstein wavelets of any order m over interval

t 2 ½ n̂
2k�1 ;

n̂þ1
2k�1�. The Bernstein wavelets are advantageous for

practical computations, on account of its intrinsic numeri-

cal stability. The Bernstein wavelets have many applica-

tions for finding numerical solution of different FDEs,

fractional integral-differential equations and fractional

optimal control problems. Also, the wavelet method is

computer oriented; thus, solving higher-order equation

becomes a matter of dimension increasing. The solution is

convergent, even if the size of increment is large. Wavelet

basis has two degrees of freedom which increase the

accuracy of the method. The solution is of multiresolution

type. Also, they have the following properties (Rahimkhani

and Ordokhani 2021):

• The basis set can be improved in an systematic way

• Different resolutions can be used in different regions of

space

• The coupling between different resolution levels is easy

• There are few topological constraints for increased

resolution regions

• The Laplace operator is diagonally dominant in an

appropriate wavelet basis

• The matrix elements of the Laplace operator are very

easy to calculate

• The numerical effort scales linearly with respect to

system size.

Here our target is to present a new method based on

Bernstein wavelets and activation functions for solving of

FOCPs and FVP. First, we present an approximation for

fractional derivative using the Laplace transform. Then, the

under study problems are converted into equivalent varia-

tional problems. By using the Bernstein wavelets method

and activation functions, the problems are converted to

algebraic systems of equations. Finally, these systems are

solved employing the Gauss-Legendre integration method

and Newton’s iterative technique. Some of the most
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important advantages of the proposed scheme are listed in

the following:

• Easy computation and simple implementation.

• The obtained numerical solution with this method is a

continuous and differentiable solution; also these solu-

tions satisfy the initial and boundary conditions.

• We did not use any operational matrix (which reduces

the calculation error and CPU time).

• A small value of Bernstein wavelets is needed to

achieve high accuracy and satisfactory results.

• By applying this scheme, consideration problems are

transformed into a system of algebraic equations that

can be solved via a suitable numerical method.

• Used approximate is based on hybrid of Bernstein

wavelets and activation functions instead of a linear

combination of wavelets, so applied approximate solu-

tion is more efficient.

This paper is organized as follows. In Sect. 2, we present

some preliminaries about Bernstein wavelets and activation

functions. In Sect. 3, we describe the understudy problems.

In Sect. 4, we offer a numerical method for finding

numerical solution of the fractional optimal control prob-

lems and fractional variational problems. In Sect. 5, we

propose error bound for the best approximation. In Sect. 6,

a criterion for choosing the number of wavelets is pre-

sented. In Sect. 7, we report our numerical findings and

demonstrate the accuracy of the new numerical scheme by

considering six test examples. Finally, concluding remarks

are given in Sect. 8.

2 Preliminaries and Notations

2.1 Bernstein Wavelets

The Bernstein wavelets are introduced over [0, 1) as:

wn;i;mðtÞ ¼
2

k�1
2 bi;mBi;mð2k�1t � n̂Þ; n̂

2k�1
� t\

n̂þ 1

2k�1
;

0; otherwise;

8
<

:

ð1Þ

with

bi;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2mþ 1Þ
2m

2i

� �s

m

i

� � ;

where k can assume any positive integer that determines

the number of subintervals, n ¼ 1; 2; . . .; 2k�1; shows the

location of a subinterval and refers to the subinterval

number, i ¼ 0; 1; . . .;m; ðm ¼ M � 1Þ is the order of the

Bernstein polynomial and t 2 ½0; 1Þ denotes the time. Also,

Bi;mðtÞ are the Bernstein polynomials over [0, 1] , as

Bi;mðtÞ ¼
m

i

� �

tið1� tÞm�i

¼
Xm�i

j¼0

m

i

� �
m� i

j

� �

ð�1Þm�i�jtm�j; 0� i�m:

ð2Þ

Bernstein polynomials satisfy the following property

(Nemati 2017):

Z 1

0

Bi;mðtÞBj;nðtÞdt ¼

m

i

� �
n

j

� �

ðmþ nþ 1Þ
mþ n

iþ j

� � :

2.2 Introduction of Activation Functions

In this section, we express a new approximation based on

two classes of activation functions for obtaining the

numerical solution of FOCP and FVP. This approximation

has more ability to solve equations than simple approxi-

mations based on wavelets.

The output of hybrid of these activation functions with

input data t and parameter C is as

Nðt;CÞ ¼ AFðHÞ: ð3Þ

HereH is a linear combination of the Bernstein wavelets as

H ¼
X2k�1

n¼1

XM�1

i¼0

cn;iWn;i;mðtÞ ¼ CTWðtÞ; ð4Þ

and C vector determined by:

C ¼ ½c1;0; . . .; c1;M�1; c2;0; . . .c2;M�1; . . .; c2k�1;M�1�T : ð5Þ

WðtÞ ¼ ½W1;0;mðtÞ; . . .;W1;M�1;mðtÞ; . . .;W2k�1;M�1;mðtÞ�T :
ð6Þ

Also, AF(.) is another activation function that affects on the

combination of the Bernstein wavelets. Here, we have used

functions of tanh(t) and arctan(t) as activation functions.

Figure 1 shows structure of hybrid these functions. Also,

Fig. 2 shows graphs of wn;i;mðtÞ, arctanðwn;i;mðtÞÞ and

tanhðwn;i;mðtÞÞ for k ¼ 2;M ¼ 4.

3 Problem Statement

In this work, we investigate two classes of FOCPs and one

class of FVP.
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3.1 Type 1

Consider the following FOCP as

min J½y; z� ¼ 1

2

Z 1

0

Fðt; yðtÞ; zðtÞÞdt; ð7Þ

with the following dynamical system

DmyðtÞ ¼ aðtÞyðtÞ þ bzðtÞ þ hðtÞ; ð8Þ

and the initial condition

yð0Þ ¼ d0: ð9Þ

In aforesaid problem, b 6¼ 0 and a(t) and h(t) are continu-

ous functions of t and DmyðtÞ is the Caputo fractional

derivative of order m as (Rahimkhani and Ordokhani 2020)

DmyðtÞ ¼ 1
Cðn�mÞ

R t

0
ðt � sÞn�m�1yðnÞðsÞds;

n� 1\m� n:

Fig. 1 Structure of hybrid of activation functions

Fig. 2 Plots of a wn;i;mðtÞ, b arctanðwn;i;mðtÞÞ and c tanhðwn;i;mðtÞÞ
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3.2 Type 2

Consider the following FOCP as

min J½y; z� ¼
Z 1

0

Fðt; yðtÞ; zðtÞÞdt; ð10Þ

with the following dynamical system

Py0ðtÞ þ QDmyðtÞ ¼ aðtÞyðtÞ þ bzðtÞ þ hðtÞ; ð11Þ

and the boundary conditions

yð0Þ ¼ d0; yð1Þ ¼ d1: ð12Þ

In aforesaid problem P;Q; b 6¼ 0 and a(t) and h(t) are

continuous functions of t.

3.3 Type 3

Consider the following FVP as

min J½y� ¼
Z 1

0

Fðt; yðtÞ;DmyðtÞÞdt; ð13Þ

with the boundary conditions

yð0Þ ¼ d0; yð1Þ ¼ d1: ð14Þ

4 The Computational Scheme

Because Caputo fractional derivative is an integral of the

solution with respect to time, the numerical method for

finding the solution of FDEs requires using the values of all

previous time steps. This needs a large size of memory to

store the necessary data when computing, which may lead

to a memory problem in the computer. Therefore, first, we

approximate the Caputo fraction derivative by applying the

Laplace transform technique similar to Ren et al. (2016) as

follows:

LfDmyðtÞg ¼ smŷðsÞ � sm�1yð0Þ ¼ sm½ŷðsÞ � s�1yð0Þ�;
ð15Þ

where L is Laplace operator. We linearize the term

smð0\m� 1Þ as

sm ’ ms1 þ ð1� mÞs0 ¼ msþ ð1� mÞ: ð16Þ

Replacing Eq. (16) into Eq. (15), we get

LfDmyðtÞg ’½msþ ð1� mÞ�½ŷðsÞ � s�1yð0Þ�
¼ms½ŷðsÞ � s�1yð0Þ�
þ ð1� mÞ½ŷðsÞ � s�1yð0Þ�:

ð17Þ

By using the inverse Laplace transform, we conclude

DmyðtÞ ’ my0ðtÞ þ ð1� mÞ½yðtÞ � yð0Þ�: ð18Þ

4.1 Type 1

For solving problem (7)–(9), we approximate function

DmyðtÞ by using Eq. (18) as

DmyðtÞ ’ my0ðtÞ þ ð1� mÞðyðtÞ � d0Þ: ð19Þ

Now, we estimate y(t) by hybrid of the activation functions

as

yðtÞ ’ ~yðtÞ ¼ d0 þ tNðt;CÞ: ð20Þ

According to Eq. (8), we can write

zðtÞ ’ ~zðtÞ ¼ 1

b
ðm~y0ðtÞ

þ ð1� mÞð~yðtÞ � d0Þ � aðtÞ~yðtÞ � hðtÞÞ:
ð21Þ

By replacing Eqs. (20) and (21) in Eq. (7), we achieve

J½C� ¼ 1

2

Z 1

0

Fðt; ~yðtÞ; 1
b
ðm~y0ðtÞ

þ ð1� mÞð~yðtÞ � d0Þ � aðtÞ~yðtÞ � hðtÞÞÞdt:
ð22Þ

By employing the above equation and the Gauss–Legendre

integration method, we get

J½C� ’ 1

4

X̂n

j¼0

xjF
gj þ 1

2
; ~y

gj þ 1

2

� �

;
1

b
m~y0

gj þ 1

2

� ���

þ ð1� mÞ ~y
gj þ 1

2

� �

� d0

� �

� a
gj þ 1

2

� �

~y
gj þ 1

2

� �

� h
gj þ 1

2

� ���

:

ð23Þ

So, to get extremum of J, the following necessary condi-

tions are demonstrated by

o

ocn;i
J½C� ¼ 0; n ¼ 1; 2; . . .; 2k�1; i ¼ 0; 1; . . .;M � 1:

ð24Þ

We can solve the previous equations for finding C via

Newton’s iterative technique.

4.2 Type 2

For solving problem (10)–(12), we approximate function

DmyðtÞ by using Eq. (18) as

DmyðtÞ ’ my0ðtÞ þ ð1� mÞðyðtÞ � d0Þ: ð25Þ

Now, we estimate y(t) by the activation functions as

yðtÞ ’ ~yðtÞ ¼ d0 þ ðd1 � d0Þt þ tðt � 1ÞNðt;CÞ: ð26Þ

By making use of Eq. (11), we gain
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zðtÞ ’~zðtÞ ¼ 1

b
ðP~y0ðtÞ þ Qðm~y0ðtÞ

þ ð1� mÞð~yðtÞ � d0ÞÞ � aðtÞ~yðtÞ � hðtÞÞ:
ð27Þ

By inserting Eqs. (26) and (27) in Eq. (10), we have

J½C� ¼ 1

2

Z 1

0

Fðt; ~yðtÞ; 1
b
ðP~y0ðtÞ þ Qðm~y0ðtÞ

þ ð1� mÞð~yðtÞ � d0ÞÞ � aðtÞ~yðtÞ � hðtÞÞ:
ð28Þ

By using the above equation and the Gauss–Legendre

integration method, we have

J½C� ’ 1

4

X̂n

j¼0

xjF
gj þ 1

2
; ~y

gj þ 1

2

� ��

;

1

b
P~y0

gj þ 1

2

� ���

þ Q m~y0
gj þ 1

2

� ��

þ ð1� mÞ ~y
gj þ 1

2

� �

� d0

� ��

� a
gj þ 1

2

� �

~y
gj þ 1

2

� �

� h
gj þ 1

2

� ���
:

ð29Þ

So, to get extremum of J, the following necessary condi-

tions are demonstrated by

o

ocn;i
J½C� ¼ 0; n ¼ 1; 2; . . .; 2k�1; i ¼ 0; 1; . . .;M � 1:

ð30Þ

We can solve the previous equations for finding C via

Newton’s iterative technique.

4.3 Type 3

For solving problem (13)–(14), we estimate function DmyðtÞ
by applying Eq. (18) as

DmyðtÞ ’ my0ðtÞ þ ð1� mÞðyðtÞ � d0Þ: ð31Þ

Now, we approximate y(t) by activation functions as

yðtÞ ’ ~yðtÞ ¼ d0 þ ðd1 � d0Þt þ tðt � 1ÞNðt;CÞ: ð32Þ

By replacing Eqs. (31) and (32) in Eq. (13), we achieve

J½C� ¼
Z 1

0

Fðt; ~yðtÞ; m~y0ðtÞ þ ð1� mÞð~yðtÞ � d0ÞÞdt: ð33Þ

By employing the Gauss–Legendre integration method and

previous equation, we get

J½C� ’
X̂n

j¼0

xjF

�
gj þ 1

2
; ~y

gj þ 1

2

� �

; m~y0
gj þ 1

2

� �

þð1� mÞ ~y
gj þ 1

2

� �

� d0

� ��

:

ð34Þ

So, to get extremum of J, the following necessary condi-

tions are demonstrated by

o

ocn;i
J½C� ¼ 0; n ¼ 1; 2; . . .; 2k�1; i ¼ 0; 1; . . .;M � 1:

ð35Þ

We can solve the previous equations for finding C via

Newton’s iterative technique.

5 Error Bound for the Best Approximation

The aim of this part is to discuss the error estimate of the

current scheme in Sobolev space. The norm of Sobolev ( of

integer order s� 0) over (a, b) is given as Rahimkhani

et al. (2018)

kykHsða;bÞ ¼
�
Xs

j¼0

Z b

a

jyðjÞðtÞjdt
�1

2

¼
�
Xs

j¼0

kyðjÞðtÞk2L2ða;bÞ
�1

2

;

ð36Þ

where yðjÞ shows the distributional derivative of order j of

y.

Theorem 1 Consider y 2 Hsð0; 1Þ with s� 0 and M� s;
and ~y is the best approximation of y that is obtained by

applying the activation functions, then we have the fol-

lowing estimations:

ky� ~ykL2ð0;1Þ � cðM � 1Þ�sð2k�1Þ�skyðsÞkL2ð0;1Þ; ð37Þ

and for 1� s� s we yield

ky� ~ykHsð0;1Þ � cðM � 1Þ2s�
1
2
�sð2k�1Þs�skyðsÞkL2ð0;1Þ:

ð38Þ

Proof Consider y 2 Hsð0; 1Þ with s� 0 and P2k�1

M�1y is the

best approximation of y that is obtained by using the

Müntz–Legendre wavelets over (0, 1), we get Rahimkhani

et al. (2018)

ky� P2k�1

M�1ykL2ð0;1Þ � cðM � 1Þ�sð2k�1Þ�skyðsÞkL2ð0;1Þ;
ð39Þ

for 1� s� s we have
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ky� P2k�1

M�1ykHsð0;1Þ � cðM � 1Þ2s�
1
2
�sð2k�1Þs�skyðsÞkL2ð0;1Þ;

ð40Þ

in above relations, c depends on s.
Since the best approximation is unique (Kreyszig 1978),

it yields

ky� ~ykL2ð0;1Þ ¼ ky� P2k�1

M�1ykL2ð0;1Þ; ð41Þ

ky� ~ykHsð0;1Þ ¼ ky� P2k�1

M�1ykHsð0;1Þ: ð42Þ

Therefore, we conclude the desired results.

5.1 Type 1

Theorem 2 Assume that y 2 Hsð0; 1Þ with

1� s� s; 0\m� 1 and ~y is the best approximation of y that

given by the activation functions. If

• F satisfy Lipschitz condition with the Lipschitz constant

g,
• 1

jbj ¼ j,

• kakL2ð0;1Þ � c;

then, for the error bound kEkL2ð0;1Þ we gain

kEkL2ð0;1Þ �
1

2
g
�
ð1þ jcÞcðM � 1Þ�sð2k�1Þ�s

þj
cðM � 1Þ2s�

1
2
�sð2k�1Þs�s

Cð2� mÞ
�
kyðsÞkL2ð0;1Þ:

ð43Þ

Proof By using Eqs. (7)–(8) and the aforesaid conditions,

we have

kEkL2ð0;1Þ ¼ kJ½y; z� � J½~y; ~z�kL2ð0;1Þ

¼ 1

2
k
Z 1

0

Fðt; yðtÞ; zðtÞÞ � Fðt; ~yðtÞ; ~zðtÞÞdtkL2ð0;1Þ

� 1

2
gky� ~ykL2ð0;1Þ þ

1

2
gkz� ~zkL2ð0;1Þ

¼ 1

2
gky� ~ykL2ð0;1Þ þ

1

2
gk 1

b
Dmy� 1

b
ay� 1

b
h

� 1

b
Dm ~yþ 1

b
a~yþ 1

b
hkL2ð0;1Þ �

1

2
gky� ~ykL2ð0;1Þ

þ 1

2
gjkDmy� Dm ~ykL2ð0;1Þ þ

1

2
gjcky� ~ykL2ð0;1Þ:

ð44Þ

Consider the following relation

ku � vkp �kuk1kvkp:

We obtain

kDmy� Dm ~yk2L2ð0;1Þ ¼ kI1�mðDy� D~yÞk2L2ð0;1Þ

¼ k 1

tmCð1� mÞ � ðDy� D~yÞk2L2ð0;1Þ

�
� 1

ð1� mÞCð1� mÞ
�2kDy� D~yk2L2ð0;1Þ

�
� 1

Cð2� mÞ
�2ky� ~yk2Hsð0;1Þ;

ð45Þ

by using Eq. (38), we have

kDmy� Dm ~ykL2ð0;1Þ �
cðM � 1Þ2s�

1
2
�sð2k�1Þs�s

Cð2� mÞ kyðsÞkL2ð0;1Þ:

ð46Þ

By considering (45)–(46) and Eq. (37), we conclude the

required results.

5.2 Type 2

Theorem 3 Let y 2 Hsð0; 1Þ with 1� s� s; 0\m� 1. If

the assumptions in Theorem 2 are established and

jP
b
j ¼ j1; j

Q

b
j ¼ j2;

then we get

kEkL2ð0;1Þ � gc
�
ð1þ jcÞðM � 1Þ�sð2k�1Þ�s

þðj1 þ
j2

Cð2� mÞÞðM � 1Þ2s�
1
2
�sð2k�1Þs�s�

kyðsÞkL2ð0;1Þ:
ð47Þ

Proof By using Eqs. (10)–(11) and the aforesaid condi-

tions, we have

kEkL2ð0;1Þ ¼ kJ½y; z� � J½~y; ~z�kL2ð0;1Þ

¼ k
Z 1

0

Fðt; yðtÞ; zðtÞÞ � Fðt; ~yðtÞ; ~zðtÞÞdtkL2ð0;1Þ

� gky� ~ykL2ð0;1Þ þ gkz� ~zkL2ð0;1Þ

¼ gky� ~ykL2ð0;1Þ þ gkP
b
y0 þ Q

b
Dmy� 1

b
ay

� 1

b
h� P

b
~y0 � Q

b
Dm ~yþ 1

b
a~yþ 1

b
hkL2ð0;1Þ

� gky� ~ykL2ð0;1Þ þ gj1ky0 � ~y0kL2ð0;1Þ

þ gj2kDmy� Dm ~ykL2ð0;1Þ þ
1

b
gjcky� ~ykL2ð0;1Þ:

ð48Þ

Due to the definition of Sobolev norm for 1� s� s, we get
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ky0 � ~y0kL2ð0;1Þ � ky� ~ykHsð0;1Þ: ð49Þ

By applying Eqs. (38) and (49), yields

ky0 � ~y0kL2ð0;1Þ � cðM � 1Þ2s�
1
2
�sð2k�1Þs�skyðsÞkL2ð0;1Þ:

ð50Þ

By considering (37), (46) and Eq. (48), we conclude the

required results.

5.3 Type 3

Theorem 4 Let y 2 Hsð0; 1Þ with 1� s� s; 0\m� 1. If

the assumptions in Theorem 2 are established, then we

achieve

kEkL2ð0;1Þ � gc
�
ðM � 1Þ�sð2k�1Þ�s

þðM � 1Þ2s�
1
2
�sð2k�1Þs�s�kyðsÞkL2ð0;1Þ:

ð51Þ

Proof By using Eqs. (13), we have

kEkL2ð0;1Þ ¼ kJ½y� � J½~y�kL2ð0;1Þ ¼ k
Z 1

0

Fðt; yðtÞ;DmyðtÞÞ

� Fðt; ~yðtÞ;Dm ~yðtÞÞdtkL2ð0;1Þ
� gky� ~ykL2ð0;1Þ þ gkDmy� Dm ~ykL2ð0;1Þ:

ð52Þ

From Eqs. (37), (46) and above equation, the desired result

is deduced.

6 A Criterion for Choosing the Number
of Wavelets

In this part, we introduce a algorithm for choosing the

number of basis functions (k, M). For this aim, we assume

yð:Þ 2 C2n̂ð½0; 1ÞÞ:

6.1 Type 1

By applying the error of n̂-point Legendre–Gauss quadra-

ture formula given in Morgado et al. (2017), the exact

solution of problem (7)–(9) satisfies the following relation

as

J½C� ¼ 1

2

�
1

2

X̂n

j¼1

xjF
gj þ 1

2
; y

gj þ 1

2

� �

;
1

b
my0

gj þ 1

2

� ���

þ ð1� mÞ y
gj þ 1

2

� �

� d0

� �

� a
gj þ 1

2

� �

y
gj þ 1

2

� �

� h
gj þ 1

2

� ���

þRn̂ðHÞ
	

;

ð53Þ

where

Rn̂ðHÞ ¼ ðn̂!Þ4

ð2n̂þ 1Þð2n̂!Þ4
o2n̂

ot2n̂
Hðt; yðtÞÞ;

and

H1ðt; yðtÞÞ ¼ F
t þ 1

2
; y

t þ 1

2

� �

;
1

b
my0

t þ 1

2

� ���

þ ð1� mÞ y
t þ 1

2

� �

� d0

� �

� a
t þ 1

2

� �

y
t þ 1

2

� �

� h
t þ 1

2

� ���

:

ð54Þ

Let

r1 ¼ maxfj o
2n̂

ot2n̂
H1ðt; yðtÞÞj; 0� t� 1g;

and Y1
k;MðtÞ ¼ d0 þ tNðt;CÞ be the numerical solution of

problem (7)–(9) given via the mentioned scheme in Sect. 4.

Therefore, for a given �[ 0, we can choose k, M such

that the following criterion holds:

1

4










X̂n

j¼1

xjF
gj þ 1

2
; Y1

k;M

gj þ 1

2

� ��

;
1

b
mY10

k;M

gj þ 1

2

� ��

þ ð1� mÞ Y1
k;M

gj þ 1

2

� �

� d0

� �

� a
gj þ 1

2

� �

Y1
k;M

gj þ 1

2

� �

� h
gj þ 1

2

� ���






þ

ðn̂!Þ4

2ð2n̂þ 1Þð2n̂!Þ4
r1 � �:

ð55Þ

6.2 Type 2

Similar to type 1, we let
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H2ðt; yðtÞÞ ¼ F
t þ 1

2
; y

t þ 1

2

� �

;
1

b
Py0

t þ 1

2

� ����

þ Q my0
t þ 1

2

� ��

þ ð1� mÞ y
t þ 1

2

� �

� d0

� ��

� a
t þ 1

2

� �

y
t þ 1

2

� �

� h
t þ 1

2

� ���

;

ð56Þ

r2 ¼ maxfj o
2n̂

ot2n̂
H2ðt; yðtÞÞj; 0� t� 1g;

and Y2
k;MðtÞ ¼ d0 þ ðd1 � d0Þt þ tðt � 1ÞNðt;CÞ is the

numerical solution of problem (10)–(12).

So, for a given �[ 0, we can choose k, M such that the

following criterion holds:

1

4










X̂n

j¼1

xjF
gj þ 1

2
; Y2

k;M

gj þ 1

2

� ��

;
1

b
PY20

k;M

gj þ 1

2

� ���

þ Q mY20

k;M

gj þ 1

2

� �

þ ð1� mÞ Y2
k;M

gj þ 1

2

� ���

� d0ÞÞ � a
gj þ 1

2

� �

Y2
k;M

gj þ 1

2

� �

� h
gj þ 1

2

� ���








þ ðn̂!Þ4

2ð2n̂þ 1Þð2n̂!Þ4
r2 � �:

ð57Þ

Remark 1 For Type 3, we can obtain a criterion for

choosing k, M similar to type 1 and type 2.

7 Numerical Investigation of the Mentioned
Method

In the current part, we implement the activation functions

scheme for finding numerical solution of FOCP and FVP,

which justify the applicability and accuracy of the men-

tioned scheme. The reported numerical results were done

on a personal computer, and the codes are written in

Mathematica 10.

7.1 Type 1

Example 1 Consider the following FOCP as (Alizadeh

et al. 2017)

J ¼ 1

2

Z 1

0

½y2ðtÞ þ z2ðtÞ�dt; ð58Þ

with the dynamics system

DmyðtÞ ¼ �0:25ðyðtÞ � zðtÞÞ þ tm; ð59Þ

yð0Þ ¼ 1: ð60Þ

The aforesaid problem has the following exact solution

for m ¼ 1:

yðtÞ ¼ ð
ffiffiffi
2

p
e
ffiffi
2

p
t

4 � e
ffiffi
2

p
t

4 Þð9e�
ffiffi
2

p

4 þ 2
ffiffiffi
2

p
þ 2Þ

ð
ffiffiffi
2

p
� 1Þe�

ffiffi
2

p

4 þ ð
ffiffiffi
2

p
þ 1Þe

ffiffi
2

p

4

� ð
ffiffiffi
2

p
e
�
ffiffi
2

p
t

4 þ e
�
ffiffi
2

p
t

4 Þð�9e
ffiffi
2

p

4 þ 2
ffiffiffi
2

p
� 2Þ

ð
ffiffiffi
2

p
� 1Þe�

ffiffi
2

p

4 þ ð
ffiffiffi
2

p
þ 1Þe

ffiffi
2

p

4

þ 2t � 8;

ð61Þ

zðtÞ ¼ e
ffiffi
2

p
t

4 ð9e�
ffiffi
2

p

4 þ 2
ffiffiffi
2

p
þ 2Þ þ e�

ffiffi
2

p
t

4 ð�9e
ffiffi
2

p

4 þ 2
ffiffiffi
2

p
� 2Þ

ð
ffiffiffi
2

p
� 1Þe�

ffiffi
2

p

4 þ ð
ffiffiffi
2

p
þ 1Þe

ffiffi
2

p

4

� 2t:

We solve the aforesaid problem via the mentioned tech-

nique in Sect. 4 with activation function arctan(.). The

state and control variables are approximated by

yðtÞ ’ ~yðtÞ ¼ 1þ tNðt;CÞ;
zðtÞ ’ ~zðtÞ ¼ 4ðDm ~yðtÞ � tmÞ þ ~yðtÞ:

Absolute errors of y(t) and z(t) via k ¼ 1; m ¼ 1 and various

choices M are expressed in Table 1. From this table, we

notice that both the state and the control variables converge

as M is increased. Also, the optimal values of cost function

and CPU times for k ¼ 1;M ¼ 10 are compared with

Alizadeh et al. (2017) in Table 2. Numerical results of the

state and control variables with various cases of m are

portrayed in Fig. 3. From this figure, we conclude that by

approaching the values of m to 1, the numerical result is

convergent to the exact solution.

Example 2 Consider the following FOCP as (Sahu and

Saha Ray (2018))

J ¼ 1

2

Z 1

0

½ðyðtÞ � tmÞ2 þ ðzðtÞ � tm � Cðmþ 1ÞÞ2�dt; ð62Þ

with the dynamics system

DmyðtÞ ¼ �yðtÞ þ zðtÞ; ð63Þ

yð0Þ ¼ 0: ð64Þ

The aforesaid problem has the following exact solution:
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yðtÞ ¼ tm; zðtÞ ¼ tm þ Cðmþ 1Þ; J ¼ 0:

We solve the aforesaid problem via the mentioned tech-

nique in Sect. 4 with activation function tanh(.). The state

and control variables are approximated as

yðtÞ ’ ~yðtÞ ¼ tNðt;CÞ; zðtÞ ’ ~zðtÞ ¼ Dm ~yðtÞ þ ~yðtÞ:

In Table 3, we report the optimal values of J and CPU

times of the presented scheme with k ¼ 2;M ¼ 3; m ¼ 1,

LWM, Chebyshev wavelet method (CWM), Laguerre

wavelet method (LaWM) and CASWM (Sahu and Saha

Ray 2018). By using Table 3, we conclude that the men-

tioned method is more accurate than other methods in Sahu

and Saha Ray (2018). Also, numerical results of the state

and control variables for different choices of m are plotted

in Fig. 4.

Table 1 Absolute errors of y(t)
and z(t) for k ¼ 1; m ¼ 1,

(Example 1)

t y(t) z(t)

m ¼ 5 m ¼ 9 m ¼ 11 m ¼ 5 m ¼ 9 m ¼ 11

0.1 1:39� 10�6 3:69� 10�10 1:96� 10�12 2:82� 10�4 3:37� 10�8 8:12� 10�10

0.2 4:49� 10�6 5:09� 10�10 1:71� 10�12 1:07� 10�4 9:11� 10�9 6:53� 10�10

0.3 3:02� 10�6 4:15� 10�10 4:33� 10�13 1:84� 10�4 3:04� 10�8 4:61� 10�10

0.4 2:45� 10�6 1:51� 10�10 3:96� 10�12 2:01� 10�4 4:11� 10�8 3:28� 10�10

0.5 4:99� 10�6 5:41� 10�10 6:01� 10�12 9:66� 10�6 3:07� 10�9 1:07� 10�10

0.6 1:93� 10�6 2:19� 10�10 5:73� 10�13 2:02� 10�4 3:73� 10�8 3:07� 10�10

0.7 3:18� 10�6 3:34� 10�10 3:23� 10�12 1:60� 10�4 3:17� 10�8 4:97� 10�10

0.8 3:95� 10�6 4:60� 10�10 6:37� 10�12 1:10� 10�4 3:00� 10�9 3:73� 10�10

0.9 1:40� 10�6 3:32� 10�10 4:41� 10�12 2:38� 10�4 2:47� 10�8 5:57� 10�10

CPU 0.484 2.891 6.594

Table 2 Optimal values of J and
CPU times for k ¼ 1;M ¼ 10,

(Example 1)

m m ¼ 1 m ¼ 0:99 m ¼ 0:9 m ¼ 0:8 Absolute error

Alizadeh et al. (2017) 0:535837 0:538097 0:561228 0:593473 2:48� 10�9

Present method 0:535837 0:537572 0:555367 0:580731 8:49� 10�12

CPU times 4:453 5:141 5:141 6:095

Fig. 3 Approximate results for various cases of m, a y(t), b z(t) (Example 1)

Table 3 Optimal values of J and
CPU times for k ¼ 2;M ¼ 3

and m ¼ 1, (Example 2)

LWM CWM LaWM CASWM Our method

J 5:87� 10�32 7:63� 10�32 4:64� 10�9 5:61� 10�3 0

CPU 7.755 16.677 4.962 163.286 0.485
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7.2 Type 2

Example 3 Consider the following FOCP as (Rabiei et al.

2018b)

J ¼
Z 1

0

½zðtÞ � yðtÞ�2dt; ð65Þ

with the dynamics system

y0ðtÞ þ DmyðtÞ ¼ zðtÞ � yðtÞ þ t3 þ 6tmþ2

Cðmþ 3Þ ;
ð66Þ

yð0Þ ¼ 0; yð1Þ ¼ 6

Cðmþ 4Þ : ð67Þ

The aforesaid problem has the following exact solution:

yðtÞ ¼ 6tmþ3

Cðmþ 4Þ ; zðtÞ ¼
6tmþ3

Cðmþ 4Þ :

We solve the aforesaid problem via the mentioned tech-

nique in Sect. 4 with activation function tanh(.). The state

and control variables are approximated by

yðtÞ ’ ~yðtÞ ¼ 6

Cðmþ 4Þ t þ tðt � 1ÞNðt;CÞ;

zðtÞ ’ ~zðtÞ ¼ ~y0ðtÞ þ Dm ~yðtÞ þ ~yðtÞ � t3 � 6tmþ2

Cðmþ 3Þ :

The optimal values of J and CPU times of the presented

scheme with k ¼ 2;M ¼ 8 and Rabiei et al. (2018b) are

illustrated in Table 4. In Table 5, we report the absolute

errors of y(t) and z(t) for k ¼ 1; m ¼ 1 and different cases

M. From this table, we notice that by increasing the number

of basis functions, the absolute error tends to zero. Dia-

grams of numerical results of the state and control variables

for k ¼ 1;M ¼ 10 and several cases of m are shown in

Fig. 5.

Example 4 Consider the following FOCP as (Rabiei et al.

(2018b))

J ¼
Z 1

0

½tzðtÞ � ðmþ 2ÞyðtÞ�2dt; ð68Þ

with the dynamics system

y0ðtÞ þ DmyðtÞ ¼ zðtÞ þ t2; ð69Þ

yð0Þ ¼ 0; yð1Þ ¼ 2

Cðmþ 3Þ : ð70Þ

The aforesaid problem has the following exact solution:

yðtÞ ¼ 2tmþ2

Cðmþ 3Þ ; zðtÞ ¼
2tmþ1

Cðmþ 2Þ :

We solve the aforesaid problem via the mentioned tech-

nique in Sect. 4 with activation function arctan(.). The

state and control variables are approximated by

yðtÞ ’ ~yðtÞ ¼ 2

Cðmþ 3Þ t þ tðt � 1ÞNðt;CÞ;

zðtÞ ’ ~zðtÞ ¼ ~y0ðtÞ þ Dm ~yðtÞ þ ~yðtÞ � t2

The optimal values of J and CPU times of the proposed

scheme with k ¼ 1;M ¼ 15 and Rabiei et al. (2018b) for

several cases of m are summarized in Table 6. In Table 7,

we report values of absolute errors of the state variable, the

Fig. 4 Approximate results for various cases of m, a y(t), b z(t) (Example 2)

Table 4 Optimal values of cost function and CPU times for

k ¼ 2;M ¼ 8, (Example 3)

m 0.8 0.9 1

Rabiei et al. (2018b) 1:65� 10�8 4:26� 10�9 3:02� 10�33

Our method 3:36� 10�32 2:13� 10�32 1:66� 10�32

CPU times 5.172 4.702 1.953
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Table 5 Absolute errors of y(t)
and z(t) for k ¼ 1; m ¼ 1 M,

(Example 3)

t y(t) z(t)

m ¼ 10 m ¼ 15 m ¼ 20 m ¼ 10 m ¼ 15 m ¼ 20

0.1 2:79� 10�11 1:09� 10�10 1:88� 10�11 5:96� 10�6 2:82� 10�8 2:19� 10�11

0.2 4:29� 10�8 3:08� 10�10 1:64� 10�11 5:17� 10�6 8:59� 10�9 8:70� 10�11

0.3 1:49� 10�9 1:82� 10�10 1:21� 10�11 5:46� 10�6 2:26� 10�8 1:05� 10�10

0.4 7:82� 10�8 7:07� 10�11 9:65� 10�12 3:97� 10�6 2:65� 10�8 1:58� 10�10

0.5 1:25� 10�7 9:74� 10�12 1:07� 10�11 4:19� 10�8 2:85� 10�8 7:84� 10�11

0.6 9:60� 10�8 1:02� 10�10 6:38� 10�12 4:53� 10�6 3:01� 10�8 1:47� 10�10

0.7 1:56� 10�8 2:59� 10�10 2:45� 10�12 6:99� 10�6 2:91� 10�8 1:12� 10�10

0.8 4:66� 10�8 4:65� 10�10 2:62� 10�12 7:69� 10�6 1:17� 10�8 2:80� 10�10

0.9 2:98� 10�8 1:43� 10�10 1:00� 10�12 1:03� 10�5 4:93� 10�8 3:38� 10�10

J 3:41� 10�11 8:12� 10�16 2:88� 10�20

CPU 4.141 24.016 151.062

Fig. 5 Approximate results for various cases of m, a y(t), b z(t) for (Example 3)

Table 6 Optimal values of J and
CPU times for k ¼ 1;M ¼ 15,

(Example 4)

m 0.5 0.8 0.9 1

Rabiei et al. (2018b) 4:11� 10�8 7:07� 10�9 1:83� 10�9 1:02� 10�33

Present method 1:09� 10�11 3:96� 10�12 1:16� 10�12 2:89� 10�32

CPU times 184.812 98.688 87.375 16.36

Table 7 Absolute errors of state

variable, the optimal values of

cost function and CPU times for

k ¼ 1; m ¼ 1, (Example 4)

t M ¼ 5 M ¼ 8 M ¼ 10 M ¼ 12 M ¼ 15

0.1 8:61� 10�7 2:42� 10�10 2:76� 10�12 4:50� 10�15 2:29� 10�17

0.2 4:19� 10�7 2:90� 10�11 1:52� 10�12 5:00� 10�15 8:59� 10�17

0.3 3:55� 10�7 1:25� 10�10 1:16� 10�12 4:46� 10�15 7:81� 10�17

0.4 2:04� 10�7 1:54� 10�10 7:64� 10�13 2:91� 10�15 2:08� 10�17

0.5 2:64� 10�7 4:52� 10�11 2:39� 10�13 1:28� 10�15 2:08� 10�17

0.6 8:63� 10�8 6:99� 10�11 2:13� 10�13 1:80� 10�16 4:16� 10�17

0.7 2:05� 10�7 9:04� 10�11 4:19� 10�13 2:78� 10�16 2:78� 10�17

0.8 6:57� 10�8 4:82� 10�11 4:17� 10�13 2:78� 10�16 2:78� 10�17

0.9 9:70� 10�8 2:56� 10�11 2:68� 10�13 1:75� 10�15 2:78� 10�17

J 1:50� 10�11 5:57� 10�18 2:78� 10�22 1:34� 10�26 2:89� 10�32

CPU 2.266 3.406 4.563 14.320 16.360
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optimal values of cost function and CPU times for m ¼
1; k ¼ 1 and various choices M. From this Table, it is clear

that when the number of base functions increases, the

absolute error tends to zero. Graphs of numerical results of

the state and control variables with k ¼ 1;M ¼ 15 and

various cases of m are illustrated in Fig. 6.

7.3 Type 3

Example 5 Consider the following FVP as

J ¼
Z 1

0

1

2
ðDmyðtÞÞ2 � yðtÞ

� 	

dt; ð71Þ

with the boundary conditions as

yð0Þ ¼ yð1Þ ¼ 0: ð72Þ

The aforesaid problem has the following exact solution for

m ¼ 1:

yðtÞ ¼ ð1� tÞð t
2
Þ:

We solve the aforesaid problem via the mentioned tech-

nique in Sect. 4 with activation function arctan(.). The

state and control variables are approximated by

yðtÞ ’ ~yðtÞ ¼ tðt � 1ÞNðt;CÞ:

The absolute error behavior for k ¼ 1;M ¼ 2 is demon-

strated in Fig. 7. Also, Fig. 8 demonstrates the behavior of

numerical results with M ¼ 2; k ¼ 1 and different cases of

m and the exact solution. This figure demonstrates that the

numerical solution is convergent to the exact solution as

the value of m approaches 1.

Example 6 Consider the following FVP as (Ordokhani and

Rahimkhani 2018; Dehestani et al. 2020; Razzaghi and

Yousefi 2000)

J ¼
Z 1

0

½ðDmyðtÞÞ2 þ tDmyðtÞ þ y2ðtÞ�dt; ð73Þ

with the boundary conditions as

yð0Þ ¼ 0; yð1Þ ¼ 1

4
: ð74Þ

The aforesaid problem has the following exact solution for

m ¼ 1:

yðtÞ ¼ ð1� tÞð t
2
Þ:

We solve the aforesaid problem via the mentioned tech-

nique in Sect. 4 with activation function tanh(.). The state

and control variables are approximated by

yðtÞ ’ ~yðtÞ ¼ 1

4
t þ tðt � 1ÞNðt;CÞ:

The values of approximate solution of y(t) and the optimal

values of cost function of the proposed scheme with k ¼
1;M ¼ 4 and LWM (Razzaghi and Yousefi 2000), Müntz–

Legendre method (MLM) (Ordokhani and Rahimkhani

2018), modified wavelet method (MWM) (Dehestani et al.

Fig. 6 Approximate results for various cases of m, a y(t), b z(t) (Example 4)

Fig. 7 Absolute error for k ¼ 1;M ¼ 2, (Example 5)

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2022) 46:1041–1056 1053

123



2020) are summarized in Table 8. Also, the approximate

solutions of y(t) for different choices of m are demonstrated

in Fig. 9. This figure demonstrates that the numerical

solution is convergent to the exact solution as the value of m
approaches 1.

8 Conclusion and Future Work

In this study, two classes of FOCPs and one class of FVP

have been investigated. A novel method based on Bernstein

wavelets and activation functions was used for numerical

solution of such problems. By applying the Laplace

transform, fractional-order problems are converted into

integer-order problems. Then, we use hybrid of the Bern-

stein wavelets and activation functions, Gauss–Legendre

integration method and Newton’s iterative method for

obtaining numerical solution of such problems. The accu-

racy of the mentioned scheme has been examined on dif-

ferent numerical examples. The obtained results confirmed

that the established technique for solving the intended

problems is extremely effective and powerful, even when

using a limited number of bases Bernstein wavelets. We

plan to do the following works in the future:

• This method can be used to solve different problems

such as fractional partial differential equations, two-

dimensional FOCP, fractal-fractional differential equa-

tions, fractal-fractional OCP, inverse problems etc.

Fig. 8 a Approximate results for various cases of m, b the exact and approximate results for m ¼ 1, (Example 5)

Table 8 Approximate results

(~yðtÞ) and the optimal values of

cost function, (Example 6)

t LWM MLM MWM Present method Exact solution

k ¼ 3;M ¼ 3 M ¼ 5 k ¼ 2;M ¼ 3 k ¼ 1;M ¼ 4

0.1 0.041949 0.041950 0.041950 0.041950 0.041950

0.2 0.079315 0.079317 0.079317 0.079317 0.079316

0.3 0.112471 0.112473 0.112473 0.112473 0.112472

0.4 0.141749 0.141751 0.141751 0.141751 0.141750

0.5 0.167443 0.167443 0.167443 0.167443 0.167442

0.6 0.189807 0.189807 0.189807 0.189807 0.189806

0.7 0.209064 0.209066 0.209066 0.209066 0.209065

0.8 0.225411 0.225414 0.225413 0.225413 0.225412

0.9 0.239010 0.239013 0.239013 0.239013 0.239011

J � 0.19759399 0.19759399 0.19759399 0.19759399

Fig. 9 Approximate results for various cases of m, (Example 6)

1054 Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2022) 46:1041–1056

123



• Wavelets base can be combined with neural network,

least squares-support vector regression etc.

• Stability analysis of the suggested scheme for numerical

approximation of FOCP is an interesting problem for

future work.
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