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Abstract

The main idea of this work is to present a novel scheme based on Bernstein wavelets for finding numerical solution of two
classes of fractional optimal control problems (FOCPs) and one class of fractional variational problems (FVPs). First, we
present an approximation for fractional derivative using the Laplace transform. Then, the obtained integer-order problems
are converted into equivalent variational problems. By using the Bernstein wavelets, activation functions and the Gauss—
Legendre integration scheme, problems are transformed to algebraic systems of equations. Finally, these systems are
solved employing Newton’s iterative scheme. Error bound for the best approximation is given. Also, we propose a
scheme to determine the number of basis functions necessary to get a certain precision. In order to verify that the
mentioned scheme is applicable and powerful for solving FOCPs and FVP, some numerical experiments have been
provided.
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1 Introduction

Recently, numerous phenomena in various fields of applied
science and engineering have been simulated by fractional
differential equations. In detail, these equations have
appeared in electromagnetics, viscoelasticity, fluid
mechanics, electrochemistry, biological population models,
signals processing, continuum, heat transfer in heteroge-
neous media, ultracapacitor, pharmacokinetics and statis-
tical mechanics (Chen et al. 2013; Jajarmi and Baleanu
2018; Wang and Zhou 2011; Heydari et al. 2016; Popovic
et al. 2015).

Therefore, many numerical schemes have been pre-
sented for finding numerical solution of these problems, for
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instance, Adomian decomposition technique (Babolian
et al. 2014), variational iteration technique (Yang et al.
2010), bivariate Miintz wavelets technique (Rahimkhani
and Ordokhani 2020), fractional alternative Legendre
functions technique (Rahimkhani and Ordokhani 2020),
fractional Lucas optimization technique (Dehestani et al.
2022), fractional Chelyshkov wavelets technique (Rahim-
khani et al. 2019) and orthonormal Bernoulli wavelets
neural network technique (Rahimkhani and Ordokhani
2021).

The FOCP are extensions of the classical ones. In such
problems, the dynamical system and/or the objective
function may be involved with fractional operators. The
main reason to study such problems is the fact that there are
many problems in which the behavior of their dynamical
systems can concisely be expressed in terms of fractional
operators, for instance, in the analog fractional-order con-
troller in temperature and motor control applications
(Bohannan 2008), fractional control of heat diffusion sys-
tems (Suarez et al. 2008), a fractional-order HIV-immune
system with memory (Jesus and Machado 2008), a frac-
tional adaptation scheme for lateral control of an
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autonomous guided vehicle (Ding et al. 2012), mechanical
systems (Kiryakova 1994), automotive vehicle design (Bell
2004), manufacturing processes (Samko et al. 1993),
transportation systems (Jajarmi and Baleanu 2018), HIV/
AIDS epidemic model with random testing and contact
tracing (Kiryakova 1994) and physics (Tripathy et al.
2015). FOCPs can be introduced by applying various def-
initions of fractional derivatives, such as the Caputo frac-
tional derivatives and the Riemann-Liouville. These
problems have been studied by many authors; for example,
Agrawal (2004) introduced a general formulation and a
numerical technique for FOCPs. Lotfi et al. (2013) applied
an approximate direct technique for finding solution of a
general class of FOCPs. Alipour et al. (2013) investigated
multi-dimensional FOCPs by using the Bernstein polyno-
mials. Rabiei et al. (2018a) applied fractional-order Bou-
baker functions for solving a class of FOCPs. Rahimkhani
et al. (2016) used the Bernoulli wavelet method to solve
delay FOCPs. Mashayekhi and Razzaghi (2018) proposed a
technique based on hybrid of block pulse functions and
Bernoulli polynomials for finding approximate solution of
FOCPs. Sabermahani et al. (2019) introduced fractional
order Lagrange polynomials and used them to solve
FOCPs. Rabiei and Parand (2020) investigated the Che-
byshev collocation approach for finding numerical solution
of FOCPs.

Also, different numerical schemes have been introduced
for solving FVPs, for example, Rayleigh-Ritz
scheme (Khader 2015), polynomial basis functions
scheme (Lotfi and Yousefi 2013), fractional finite element
scheme (Agrawal 2008), Miintz—Legendre polynomials
scheme (Ordokhani and Rahimkhani 2018), fractional
Jacobi functions scheme (Zaky et al. 2018), shifted Che-
byshev polynomials scheme (Ezz-Eldien et al. 2018),
modified wavelet scheme (Dehestani et al. 2020), etc.

Special kinds of oscillatory functions are wavelets that
they have been used in time—frequency analysis, fast
algorithms, edge extrapolation, image processing, signal
processing and edge extrapolation (Chui 1997). We note
that there are some advantages, for instance, compact
support, orthogonality and the ability to show the functions
at various levels of resolution. Wavelets as a useful class of
bases have been applied to solve several problems of the
dynamical systems. For example, Haar wavelets have been
used to solve of the Riccati differential equation (Li et al.
2014). Miintz-Legendre wavelets have been introduced for
finding numerical solution of fractional differential equa-
tions (FDEs) with delay (Rahimkhani et al. 2018). Ber-
noulli wavelets have been used for solving variable FDEs
(Soltanpour Moghadam et al. 2020). Genocchi wavelets
have been used for solving of various kinds of FDEs with
delay (Dehestani et al. 2019). Fractional-order Bernoulli
wavelets have been used for numerical analysis of the
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pantograph FDEs (Rahimkhani et al. 2017). Fractional
Chelyshkov wavelets (Rahimkhani et al. 2019) have been
introduced for the approximate solution of distributed-
order FDEs.

Bernstein wavelets have many useful properties over an
interval [0, 1] (we can deduce these properties from the
Bernstein polynomials properties Bhatti and Bracken
2007). The Bernstein wavelets bases vanish except the first
polynomial at # = 3/ and the last polynomial at r = %,
over any interval [% ,gki,ﬂ It also ensures that the sum at
any point ¢ of all the Bernstein wavelet is 2¢! Bim and
every Bernstein wavelets is positive for all real ¢ on the
region t € (%,%) A simple code written in Mathe-
matica or Maple can be applied to obtain all the non-zero
Bernstein wavelets of any order m over interval
te [2{’—,1 , g%}] The Bernstein wavelets are advantageous for
practical computations, on account of its intrinsic numeri-
cal stability. The Bernstein wavelets have many applica-
tions for finding numerical solution of different FDEs,
fractional integral-differential equations and fractional
optimal control problems. Also, the wavelet method is
computer oriented; thus, solving higher-order equation
becomes a matter of dimension increasing. The solution is
convergent, even if the size of increment is large. Wavelet
basis has two degrees of freedom which increase the
accuracy of the method. The solution is of multiresolution
type. Also, they have the following properties (Rahimkhani
and Ordokhani 2021):

e The basis set can be improved in an systematic way

e Different resolutions can be used in different regions of
space

e The coupling between different resolution levels is easy

e There are few topological constraints for increased
resolution regions

e The Laplace operator is diagonally dominant in an
appropriate wavelet basis

e The matrix elements of the Laplace operator are very
easy to calculate

e The numerical effort scales linearly with respect to
system size.

Here our target is to present a new method based on
Bernstein wavelets and activation functions for solving of
FOCPs and FVP. First, we present an approximation for
fractional derivative using the Laplace transform. Then, the
under study problems are converted into equivalent varia-
tional problems. By using the Bernstein wavelets method
and activation functions, the problems are converted to
algebraic systems of equations. Finally, these systems are
solved employing the Gauss-Legendre integration method
and Newton’s iterative technique. Some of the most
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important advantages of the proposed scheme are listed in
the following:

e FEasy computation and simple implementation.

e The obtained numerical solution with this method is a
continuous and differentiable solution; also these solu-
tions satisfy the initial and boundary conditions.

e We did not use any operational matrix (which reduces
the calculation error and CPU time).

e A small value of Bernstein wavelets is needed to
achieve high accuracy and satisfactory results.

e By applying this scheme, consideration problems are
transformed into a system of algebraic equations that
can be solved via a suitable numerical method.

e Used approximate is based on hybrid of Bernstein
wavelets and activation functions instead of a linear
combination of wavelets, so applied approximate solu-
tion is more efficient.

This paper is organized as follows. In Sect. 2, we present
some preliminaries about Bernstein wavelets and activation
functions. In Sect. 3, we describe the understudy problems.
In Sect. 4, we offer a numerical method for finding
numerical solution of the fractional optimal control prob-
lems and fractional variational problems. In Sect. 5, we
propose error bound for the best approximation. In Sect. 6,
a criterion for choosing the number of wavelets is pre-
sented. In Sect. 7, we report our numerical findings and
demonstrate the accuracy of the new numerical scheme by
considering six test examples. Finally, concluding remarks
are given in Sect. 8.

2 Preliminaries and Notations
2.1 Bernstein Wavelets

The Bernstein wavelets are introduced over [0, 1) as:

L k-1 . n a+1
l//rz.i“m(l‘) = 2 ﬁi,mBi,m(z r— }’l), F <i< F’
) 0, otherwise,
(1)
with
2m
em+1)(
B 21

m )

i
where k can assume any positive integer that determines
the number of subintervals, n = 1,2,...,25! shows the

location of a subinterval and refers to the subinterval
number, i =0,1,...,m,(m =M — 1) is the order of the

Bernstein polynomial and 7 € [0, 1) denotes the time. Also,
B; (t) are the Bernstein polynomials over [0, 1], as

Binl(t) = (”7 > (1 —

1

- (m> (m ; ’)(—1>'”’*"tm‘f,0<i<m.
=0\ J

Bernstein polynomials satisfy the following property

(Nemati 2017):
m n
()0)

(m+n+ 1)("?1}?) |

(2)

3

Il
o

/ | Biwm(1)Bja(t)dt =
0

2.2 Introduction of Activation Functions

In this section, we express a new approximation based on
two classes of activation functions for obtaining the
numerical solution of FOCP and FVP. This approximation
has more ability to solve equations than simple approxi-
mations based on wavelets.

The output of hybrid of these activation functions with
input data ¢ and parameter C is as

N(t,C) = AF(O). (3)
Here @ is a linear combination of the Bernstein wavelets as

21 pM—1

0 = ; ; CniPim(t) = CTP(0), 4)

and C vector determined by:

C=lcip,.- ~,02H,M71]T- (5)

lll(t) = ['{ll,O,m(t)7 L) lPl,Mfl.m(lt% cey l1112"*‘7M71,m(l‘)]7-’
(6)

Also, AF(.) is another activation function that affects on the
combination of the Bernstein wavelets. Here, we have used
functions of tanh(t) and arctan(t) as activation functions.
Figure 1 shows structure of hybrid these functions. Also,
Fig. 2 shows graphs of lp,,,i,m(t), arctan(y,; ,,(t)) and
tanh(y, (1)) for k =2,M = 4.

5 CILM—-1,C20y---C2M—1, - -

3 Problem Statement

In this work, we investigate two classes of FOCPs and one
class of FVP.

i @ Springer



1044 Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2022) 46:1041-1056
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Wy 1,m(t)
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Fig. 1 Structure of hybrid of activation functions
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Output layer

Arctan(@, ; ()

Tanh (@, ; m(tH

Fig. 2 Plots of a %,,:,m(l), b arctan(l//,hi‘m(t)) and ¢ tanh(t//n_,-,m(t))

3.1 Type 1
Consider the following FOCP as

1
min J[y,z]z%/o F(t,y(¢),z(t))dt,

with the following dynamical system
Dy(1) = a(t)y(1) + bz(t) + (1),

and the initial condition

22, Q) Springer

¥(0) = do. 9)

In aforesaid problem, b # 0 and a(¢) and Ah(f) are continu-
ous functions of ¢ and D"y(r) is the Caputo fractional
(7) derivative of order v as (Rahimkhani and Ordokhani 2020)

D'Y(1) = iy folt — " YO (@),
n—1l<v<n.

(3)
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3.2 Type 2

Consider the following FOCP as

1

min Jly.2) = [ Fe.5(0.20)a (10)
0

with the following dynamical system

Py'(t) + QD"y(1) = a(t)y(r) + bz(t) + h(1), (11)

and the boundary conditions

¥(0) = o, ¥(1) = 01. (12)

In aforesaid problem P,Q,b # 0 and a(f) and h(f) are
continuous functions of ¢.

3.3 Type 3
Consider the following FVP as
1
min Jy) = [ Fle.5(0. 050, (13)
0

with the boundary conditions

y(0) = do, ¥(1) =d;. (14)

4 The Computational Scheme

Because Caputo fractional derivative is an integral of the
solution with respect to time, the numerical method for
finding the solution of FDEs requires using the values of all
previous time steps. This needs a large size of memory to
store the necessary data when computing, which may lead
to a memory problem in the computer. Therefore, first, we
approximate the Caputo fraction derivative by applying the
Laplace transform technique similar to Ren et al. (2016) as
follows:

L{D"y(1)} = s"¥(s) — s""'y(0) = 5"[¥(s) — s~ '¥(0)],

(15)
where L is Laplace operator. We linearize the term
s'(0<v<1) as
s' st (1 =9)s® =vs+ (1 —v). (16)
Replacing Eq. (16) into Eq. (15), we get

L{D"y(0)} =[vs + (1 = »)][i(s) = s~'3(0)]
=vs[y(s) —s~'y(0)] (17)
+ (1= )is) —s~'y(0)].

By using the inverse Laplace transform, we conclude

DYy(t) = vy (1) + (1 = v)[y(1) = y(0)]. (18)
4.1 Type 1

For solving problem (7)-(9), we approximate function
D'y(t) by using Eq. (18) as

D'y(r) = v/ (1) + (1 = v) (1) - o). (19)

Now, we estimate y(¢) by hybrid of the activation functions
as

y(t) 2= y(t) = oo + tN(t, C). (20)
According to Eq. (8), we can write
L 05 (0)

+ (1 =v)(3(1) = do) — a(t)y(z) — h(2)).

By replacing Eqgs. (20) and (21) in Eq. (7), we achieve

2(1) = 2(t) = (21)

1
16l =5 [ Flest0.5 070
(1= 9)(500) — Bo) — alo)5(e) — 1))

By employing the above equation and the Gauss—Legendre
integration method, we get

0= (A1)
(1))
O A1)

So, to get extremum of J, the following necessary condi-
tions are demonstrated by

0

6c,,7l-

(22)

(23)

JCl=0,n=1,2,....2%i=0,1,...M — 1.
(24)

We can solve the previous equations for finding C via
Newton’s iterative technique.

4.2 Type 2

For solving problem (10)-(12), we approximate function
D"y(t) by using Eq. (18) as

Dy(1) = vy'(1) + (1 = v)(y(t) — do)- (25)
Now, we estimate y(#) by the activation functions as
y(t) = y(t) = 6o + (61 — do)t +t(t — 1)N(t, C). (26)

By making use of Eq. (11), we gain

52, €\ Springer
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<(e) ~200) = 5 (PY(1) + Q0 (1) o
(L= )(500) — 80)) — a(0)5(0) ~ b))

By inserting Egs. (26) and (27) in Eq. (10), we have

siei=} [R50 850 + 0050) o8

+ (1 =v)((1) = 60)) — a(®)y(1) — h(1)).

By using the above equation and the Gauss—Legendre
integration method, we have

ij <n,+1, (n,+1 |
1 L (n+1 2)
; Py((’z )
o1 -o(s(15) )

(29)

_|_

So, to get extremum of J, the following necessary condi-
tions are demonstrated by

0

JICl=0n=1,2... 2
acn_’[ [ ] an < ]

Li=0,1,...,.M—1.

(30)

We can solve the previous equations for finding C via
Newton’s iterative technique.

4.3 Type 3

For solving problem (13)—(14), we estimate function D"y(t)
by applying Eq. (18) as

D'y(1) ~ vy () + (1 = v)(3() = o)- (31)
Now, we approximate y(¢) by activation functions as
y(t) >~ y(1) = 80 + (01 — o)t + t(t — 1)N(¢,C). (32)

By replacing Eqs. (31) and (32) in Eq. (13), we achieve

Jic) = / F(t, 50,97 (6) + (1 = v)(5(0) — do))dr. (33)

By employing the Gauss—Legendre integration method and
previous equation, we get

52, €\ Springer
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Soor (15 (45
e )

So, to get extremum of J, the following necessary condi-
tions are demonstrated by

0

ac,,.,,-

(34)

JCl=0,n=1,2,....2" i=0,1,....M— 1.

(35)

We can solve the previous equations for finding C via
Newton’s iterative technique.

5 Error Bound for the Best Approximation

The aim of this part is to discuss the error estimate of the
current scheme in Sobolev space. The norm of Sobolev ( of
integer order t>0) over (a, b) is given as Rahimkhani
et al. (2018)

1
||y||H1<a,h>=( /|y |dr)

2
(an |) ,

where yU) shows the distributional derivative of order j of
y.

Theorem 1 Consider y € H*(0,1) with 1>0 and M > 1,
and y is the best approximation of y that is obtained by
applying the activation functions, then we have the fol-
lowing estimations:

D72 200y, (37)
and for 1 <s <1 we yield

s—i— —1\s— T
<eM = 1)) T -
(38)

ly — )7HL2(0,1) <c(M -

Proof Consider y € H*(0, 1) with 7>0 and P,%,;:lly is the
best approximation of y that is obtained by using the
Miintz-Legendre wavelets over (0, 1), we get Rahimkhani
et al. (2018)

DT I Nz,
(39)

k—1
ly — P12V[—IyHL2(0,1) <c(M -

for 1 <s <t we have
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k—1 25—1—1 —1\s—71
lly — P}ZVI—lyHHY(O,l) <cM-—1)" (zk ]) ||y(r)||L2(0,1)7
(40)
in above relations, ¢ depends on .

Since the best approximation is unique (Kreyszig 1978),
it yields

~ k—1
ly — )’||L2(0,1) =lly— P12wf1y||L2(0,1)7 (41)
~ k—1
lly — ¥l H(0,1) — lly — P§471Y| H5(0,1)" (42)
Therefore, we conclude the desired results.
5.1 Type 1
Theorem 2 Assume  that y€ H'(0,1)  with

1 <s<t1,0<v< 1 andy is the best approximation of y that
given by the activation functions. If

o F satisfy Lipschitz condition with the Lipschitz constant

]19
1
BT

o llallzon <7,

then, for the error bound ||E|| 2 ;) we gain

1 -7 —1\—7
1Ell2(0.) < 50 ((1 + wp)e(M = 1) (2

1 )2&—%—1 (2k_1 )s—r

c(M — (@
l—‘(z _ V) )Hy ' ||L2(0,1)'

+K

(43)

Proof By using Eqs. (7)—(8) and the aforesaid conditions,
we have

1El 20,y = Dy, 2l = I 2l 2 0.1)
1 1
:§||/0 F(1,y(1),2(t)) = F(2,5(1), 2(2) )t 20,1

1 - 1 -
< 5’7”)’ =z + EWHZ — Zllr20,)

B _ Lol 11
—577||y—y||L2(0,1)+§”I||5Dy—5dy—5
1

1 .1 1 -
- EDVy toat EhHLZ(O,l) < E’?H)’ =z,

(44)

1 v Vo 1 .
+ EWHD Y =Dl 20,1) + EWIKVHY = Mr20.1)-
Consider the following relation
o5 vl < [lally V1],

We obtain

12 - 112
ID"y = DSl 0.0 = 11"~ (Dy = DY)2(01

o2
* (Dy = DY) |20,

||41
rT(1—v)
1 2 -2
<(— ) (|Dy—D
—((1 —V)F(l —V)) || y yHLz(O,l)

1 2 12
< (m) 1y = Pz 0,1)3
(45)
by using Eq. (38), we have
o1 o
: . o(M— 1))

D"y — Dvy||L2(o,1) < T2 —v) ly ||L2(0,1)~
(46)

By considering (45)—(46) and Eq. (37), we conclude the
required results.

5.2 Type 2

Theorem 3 Let y € H(0,1) with 1<s<t,0<v<1. If
the assumptions in Theorem 2 are established and

|P| =K |Q| =1

p! T bRl T

then we get

”E”LZ(()’]) < ﬂC((l + ij)(M _ 1)*1'(2k71)7r

K2 )(M _ I)Zs—%—r (zkfl)s—r)

+(r1 + 71_(2 )

||y(f) HL2(0,1)~
(47)

Proof By using Egs. (10)—(11) and the aforesaid condi-
tions, we have

1l = 94 — Il
1
-y / F(t,y(0),2(1)) — F(6,506), 20l 0,

<nlly = Yz +1llz = 20,y
0

. P, v 1
= lly =Sz +all 5y +4 D'y = - ay (48)
1 P, 0, 1 _ 1
==V = DV ay+ okl

<nlly = Illzony + mxilly’ = Fllz0)
- 1 -
+ 12| Dy = D'Yl|20,1) + EWV”)’ =z,

Due to the definition of Sobolev norm for 1 <s <1, we get
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1y —f||L2(o,1) <ly- )7HHY(O‘1)' (49)
By applying Eqgs. (38) and (49), yields
Y = 2oy S e = D) T g0

(50)

By considering (37), (46) and Eq. (48), we conclude the
required results.

5.3 Type 3

Theorem 4 Let y € H(0,1) with 1<s<t,0<v<L. If
the assumptions in Theorem 2 are established, then we

achieve

IE| 2001y < ne((M — 1) (27" 51)
37%71 —1\s—71 T

HM - 1P TR )y >HL2(0‘1)'

Proof By using Egs. (13), we have

1
1EN 200y = IMD] = TDl 201y = II/0 F(t,y(),D"y(1))
— F(t,5(1), D"y(1))dt| 1201
<nlly— }7||L2(0,1) +n[|D"y — DV}7||L2(0,1)-
(52)

From Egs. (37), (46) and above equation, the desired result
is deduced.

6 A Criterion for Choosing the Number
of Wavelets

In this part, we introduce a algorithm for choosing the
number of basis functions (k, M). For this aim, we assume

y(-) € ([0, 1)).

6.1 Type 1

By applying the error of 7-point Legendre—Gauss quadra-
ture formula given in Morgado et al. (2017), the exact

solution of problem (7)—(9) satisfies the following relation
as

52, €\ Springer

- F - 4
[2;“’1 < 2 ’y< 2 )\ 2

o))
e )

+Rn*(H)},
(53)
where
Gy o
RulH) = o (),
and
mies) = (5o (5 (v ()
(3]
(F)(5) (%))
(54)

Let

21
01 = max{|mH1(t,y(t))|;O§t§ 1}7

and Y}, (r) = do + tN(t,C) be the numerical solution of
problem (7)—(9) given via the mentioned scheme in Sect. 4.

Therefore, for a given € > 0, we can choose k, M such
that the following criterion holds:

d i+ 1 n+ 1\ 1 o+ 1
door (M ta(M) 5 (e[
+1
+(1v)<Y,}SM<"12 >5o>
n+1 n+1
(')

6.2 Type 2

1
4

Similar to type 1, we let
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ot = (5o (50 (o ((5)
+Q(vy(t+l>
() )
( () -(5))

0
02 = max{|WH2(t,y(t))|;O§t§ 1}7

and  Y7,,(t) = 0o + (61 — o)t +1(r — 1)N(1,C) is the
numerical solution of problem (10)—(12).

So, for a given € > 0, we can choose k, M such that the
following criterion holds:

1< 41, (1) 1 » [ (m+1

4 jZIwJF< 2 ’Yk,M 2 7Z PYkM 2
o (mi+1 i+ 1
+Q<vY,§_M(’2 )+(1—v)<Y,iM<’2 >

() ()

()"
2(2s + 1) (2a1)*

_|_

(57)

Remark 1 For Type 3, we can obtain a criterion for
choosing k, M similar to type 1 and type 2.

7 Numerical Investigation of the Mentioned
Method

In the current part, we implement the activation functions
scheme for finding numerical solution of FOCP and FVP,
which justify the applicability and accuracy of the men-
tioned scheme. The reported numerical results were done
on a personal computer, and the codes are written in
Mathematica 10.

7.1 Type 1

Example 1 Consider the following FOCP as (Alizadeh
et al. 2017)

=1 [0+ 20 (59
with the dynamics system
D'y(t) = —0.25(y(t) — z(1)) + 1", (59)
y(0) = 1. (60)

The aforesaid problem has the following exact solution
forv=1:

o = & 2¢% — e )9 +2v2 +2)
(\/E—l)eT—&—(\/i—i—])eT
(V2 4 e F)(96F +2V2 - 2) (61)
(V2= 1)e¥ + (V2+1)e?
+2r—8,
(=" (96__+2\/_+2)+e_7( 9e4+2\/_ 2 _,,

(V2= 1)e % + (V2 + 1)e¥

We solve the aforesaid problem via the mentioned tech-
nique in Sect. 4 with activation function arctan(.). The
state and control variables are approximated by

y(1) = ¥(t) = 1+ N(t,C),
z(t) = 2(t) = 4(D"y(1) — ") + ¥(1).

Absolute errors of y(7) and z(¢) via k = 1,v = 1 and various
choices M are expressed in Table 1. From this table, we
notice that both the state and the control variables converge
as M is increased. Also, the optimal values of cost function
and CPU times for k=1,M =10 are compared with
Alizadeh et al. (2017) in Table 2. Numerical results of the
state and control variables with various cases of v are
portrayed in Fig. 3. From this figure, we conclude that by
approaching the values of v to 1, the numerical result is
convergent to the exact solution.

Example 2 Consider the following FOCP as (Sahu and
Saha Ray (2018))

1

4 25/01[@@ — "+ (2(t) = £ = T(v+1))7dr,  (62)

with the dynamics system
D'y(1) = —=y(1) +2(1), (63)
¥(0) =0. (64)

The aforesaid problem has the following exact solution:
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Table 1 Absolute errors of y(t)

and 2(1) for k= 1,v =1, ! (0 W

(Example 1) m=>5 m=9 m=11 m=>5 m=9 m=11
0.1 1391076 3.69x10710  196x1072  282x 107 337x10°°  812x 10710
02 449%x 100  509%x107° 171x1072  1.07x10* 9.11x10° 653 x 1071
0.3 302x 100 415x 10710 433x 1073 1.84x10%  3.04x10°%  4.61 x 10°10
04  245x10°  151x1070  396x1072  201x10% 411x10"% 328 x 10710
05  499x1076 541x107°  601x1072  9.66x 1076 3.07x10°  1.07 x 1071
0.6 1.93x10°°  219%x 10710  573x 1013 2.02x10* 373x10°%  3.07x 10710
07  318x 1070 334x107° 323x1072  1.60x107* 3.17x10°  4.97x 1071
08  395x10°0 460x107°  637x1072  1.10x107* 3.00x10° 3.73x 1071
0.9 140 1076 332x 1070 441 %1072 238x10* 247x10°% 557 x 10710
CPU  0.484 2.891 6.594

Table 2 Optimal values of J and — — T —

CPU times for k = 1, M — 10, y v=1 v =0.99 vy=0.9 v=0.8 Absolute error

(Example 1) Alizadeh et al. (2017) 0.535837 0.538097 0.561228 0.593473 2.48 x 1079
Present method 0.535837 0.537572 0.555367 0.580731 8.49 x 1012
CPU times 4.453 5.141 5.141 6.095

000 . . . . .

-0.05

-0.10

z(t)

-0.15

-0.20

-0.25

(b)

Fig. 3 Approximate results for various cases of v, a y(f), b z(r) (Example 1)

yt)=tz(t)="+T(v+1),J=0.

We solve the aforesaid problem via the mentioned tech-
nique in Sect. 4 with activation function tanh(.). The state
and control variables are approximated as

y(1) = 3(1) = iN(t,C), z(t) = 2(1) = D"y(t) + ¥(1).

In Table 3, we report the optimal values of J and CPU
times of the presented scheme with k =2, M =3,v =1,

LWM, Chebyshev wavelet method (CWM), Laguerre
wavelet method (LaWM) and CASWM (Sahu and Saha
Ray 2018). By using Table 3, we conclude that the men-
tioned method is more accurate than other methods in Sahu
and Saha Ray (2018). Also, numerical results of the state
and control variables for different choices of v are plotted
in Fig. 4.

Table 3 Optimal values of J and

CPU times for k — 2, M — 3 LWM CWM LaWM CASWM Our method
and v =1, (Example 2) J 5.87 x 102 7.63 x 102 4.64 % 10~ 5.61 x 103 0
CPU 7755 16.677 4.962 163.286 0.485

2

@ Springer
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y(t)

0.0 0.2 0.4 06 0.8 1.0
(a)

Fig. 4 Approximate results for various cases of v, a y(f), b z(r) (Example 2)

7.2 Type 2

Example 3 Consider the following FOCP as (Rabiei et al.
2018b)

lefMﬂ—y@Fw, (65)

with the dynamics system

Y0+ D5(0) =2l0) = 5(0) + £ +

T(v+3)’ (66)

(0) = 05(1) = (67)

The aforesaid problem has the following exact solution:

6tv+3 6tv+3

1) =————7,2(t) = =—.
Y=ot = Thra
We solve the aforesaid problem via the mentioned tech-
nique in Sect. 4 with activation function tanh(.). The state
and control variables are approximated by

y(t) :)7(0 :mt—‘,—t(l‘_ I)N(I,C)7
“”2a0=f@+Dwm+ﬂ0—ﬁ—F%;5.

Table 4 Optimal values of cost function and CPU times for
k=2,M = 8, (Example 3)

\J 0.8 0.9 1

Rabiei et al. (2018b)  1.65 x 1078 4.26 x 107° 3.02 x 10733
Our method 336 x 10732 2,13 x 10732 1.66 x 10732
CPU times 5.172 4.702 1.953

(b)

The optimal values of J and CPU times of the presented
scheme with k =2,M = 8 and Rabiei et al. (2018b) are
illustrated in Table 4. In Table 5, we report the absolute
errors of y(¢) and z(¢) for k = 1,v =1 and different cases
M. From this table, we notice that by increasing the number
of basis functions, the absolute error tends to zero. Dia-
grams of numerical results of the state and control variables
for k=1,M = 10 and several cases of v are shown in
Fig. 5.

Example 4 Consider the following FOCP as (Rabiei et al.
(2018b))

1
5= [t - v 200, (68)
0

with the dynamics system

Y (1) +D'y(1) = 2(1) + 22, (69)
2
0)=0,y(1) = =——.
y(0) =000 =5, (70)
The aforesaid problem has the following exact solution:
ztv+2 2tv+1
) = = )
(1) r@+3ydo T +2)

We solve the aforesaid problem via the mentioned tech-
nique in Sect. 4 with activation function arctan(.). The
state and control variables are approximated by

y(t) ~y() = ﬁwr t(t — 1)N(¢,C),
2(1) ~ 2(1) = ¥ (1) + D'5 () + y(t) — £

The optimal values of J and CPU times of the proposed
scheme with k = 1, M = 15 and Rabiei et al. (2018b) for
several cases of v are summarized in Table 6. In Table 7,
we report values of absolute errors of the state variable, the
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Table 5 Absolute errors of y(f)

and z(f) fork = 1,v = 1 M, ! Y W
(Example 3) m=10 m=15 m =20 m=10 m=15 m =20
0.1 279 % 107" 1.09x 10710 1.88x 107" 596x107° 282x107% 219 x 107!
0.2 429 x 1078 308 x 10710 1.64x107"  517x10°  859x10° 870x 107!
0.3 1.49 x 107° 1.82x 10710 121x107"  546x107° 226x107%  1.05x 1070
0.4 7.82 x 1078 7.07 x 1071 9.65x 10712 397 x107° 2.65x107%  1.58 x 10'°
0.5 1.25 x 1077 974 x 10712 1.07x 107" 419x10°% 285x10% 7.84x10°!
0.6 9.60 x 108 1.02x 1071 638x 10712 453x10° 3.01x10% 147x10°1°
0.7 1.56 x 1078 259 %x 10710 245x 1072 699 x 10 291 x10°% 1.12x 10710
0.8 466x107%  465x10710  262x107'2  7.69x107° 1.17x107%  2.80 x 10710
0.9 2.98 x 1078 143x1071°  1.00x 1072 1.03x 1075 493x10% 338x10°'°
J 341 x 107" 812x 107" 288 x 1072
CPU  4.141 24.016 151.062
0.35pr T . , T T v
0.30F 4
0.25 v=038 v=0.8
. 0.20 v=09 = v=09
%‘ 0.15 - ¥=0. N ~— ¥=0.
0.10 - v=1 11— v=1
0.05
0.00
Fig. 5 Approximate results for various cases of v, a y(f), b z(r) for (Example 3)
e VR 1
(Example 4) Rabiei et al. (2018b) 4.11 x 1078 7.07 x 10~° 1.83 x 1070 1.02 x 10-3
Present method 1.09 x 1071 3.96 x 1012 1.16 x 10712 2.89 x 10732
CPU times 184.812 98.688 87.375 16.36
Tab]e 7 Absolut§ errors of state P M—5 M—3 M= 10 M=12 M=15
variable, the optimal values of
cost function and CPU times for ) ; 8.61 x 1077 242 % 10710 2.76 x 1012 450 x 1015 229 % 10777
k=1,v =1, (Example 4)
0.2 4.19 x 1077 2.90 x 10~ 1.52 x 10712 5.00 x 10713 8.59 x 10~
0.3 3.55 x 1077 1.25 x 10710 1.16 x 10712 4.46 x 1071 7.81 x 107V
0.4 2.04 x 1077 1.54 x 10710 7.64 x 10713 291 x 1071 2.08 x 10717
0.5 2.64 x 1077 4.52 x 1071 2.39 x 10713 1.28 x 10713 2.08 x 107"
0.6 8.63 x 1078 6.99 x 10~ 2,13 x 1071 1.80 x 10716 4.16 x 107V
0.7 2.05 x 1077 9.04 x 10711 4.19 x 10713 2.78 x 10716 2.78 x 10717
0.8 6.57 x 1078 4.82 % 1071 4.17 x 10713 2.78 x 1071 2.78 x 10717
0.9 9.70 x 108 2.56 x 10711 2.68 x 10713 175 x 1071 2.78 x 107V
J 1.50 x 10711 5.57 x 10718 2.78 x 10722 1.34 x 10720 2.89 x 10732
CPU 2.266 3.406 4.563 14.320 16.360
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v=0.28
- v=098

yit)

- v=0.

5— v=1

(a)

v=0.238
- v=09
— v=0.
1- v=1

(b)

Fig. 6 Approximate results for various cases of v, a y(f), b z(r) (Example 4)

optimal values of cost function and CPU times for v =
1,k = 1 and various choices M. From this Table, it is clear
that when the number of base functions increases, the
absolute error tends to zero. Graphs of numerical results of
the state and control variables with k =1,M = 15 and
various cases of v are illustrated in Fig. 6.

7.3 Type 3

Example 5 Consider the following FVP as

1
1= [ @ o], (1)

with the boundary conditions as
y(0) = y(1)=0. (72)

The aforesaid problem has the following exact solution for
v=1:

¥(1) = (1= 03).

8.x10717

6.x10717

Absolute error
o
x
a
o
1
&%
=

2.x107 17

0.0 0.2 0.4 0.8 0.8 1.0
t

Fig. 7 Absolute error for k = 1,M = 2, (Example 5)

We solve the aforesaid problem via the mentioned tech-
nique in Sect. 4 with activation function arctan(.). The
state and control variables are approximated by

y(1) = 3(1) = 1(t = 1)N(z, C).

The absolute error behavior for k = 1,M = 2 is demon-
strated in Fig. 7. Also, Fig. 8 demonstrates the behavior of
numerical results with M = 2,k = 1 and different cases of
v and the exact solution. This figure demonstrates that the
numerical solution is convergent to the exact solution as
the value of v approaches 1.

Example 6 Consider the following FVP as (Ordokhani and
Rahimkhani 2018; Dehestani et al. 2020; Razzaghi and
Yousefi 2000)

1
J:A[wwmf+mww+fmwn (73)

with the boundary conditions as
y(1) =7 (74)

The aforesaid problem has the following exact solution for
v=1:

t

¥ (1) = (1=

We solve the aforesaid problem via the mentioned tech-
nique in Sect. 4 with activation function tanh(.). The state
and control variables are approximated by

§(0) = 5(0) = 31+ 1~ DN(, ).

The values of approximate solution of y(#) and the optimal
values of cost function of the proposed scheme with k =
1,M = 4 and LWM (Razzaghi and Yousefi 2000), Miintz—
Legendre method (MLM) (Ordokhani and Rahimkhani
2018), modified wavelet method (MWM) (Dehestani et al.
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025 [ ) ) ]

¥t

0.08}

0.04+

0.02}

0.00

(b)

Fig. 8 a Approximate results for various cases of v, b the exact and approximate results for v = 1, (Example 5)

Table 8 Approximate results

(3(1)) and the optimal values of LWM MLM MWM Present method Exact solution
cost function, (Example 6) k=3M=3 M =5 k=2,M=3 k=1,M=4
0.1 0.041949 0.041950 0.041950 0.041950 0.041950
0.2 0.079315 0.079317 0.079317 0.079317 0.079316
0.3 0.112471 0.112473 0.112473 0.112473 0.112472
0.4 0.141749 0.141751 0.141751 0.141751 0.141750
0.5 0.167443 0.167443 0.167443 0.167443 0.167442
0.6 0.189807 0.189807 0.189807 0.189807 0.189806
0.7 0.209064 0.209066 0.209066 0.209066 0.209065
0.8 0.225411 0.225414 0.225413 0.225413 0.225412
0.9 0.239010 0.239013 0.239013 0.239013 0.239011
J - 0.19759399 0.19759399 0.19759399 0.19759399

t

Fig. 9 Approximate results for various cases of v, (Example 6)

2020) are summarized in Table 8. Also, the approximate
solutions of y(¢) for different choices of v are demonstrated
in Fig. 9. This figure demonstrates that the numerical
solution is convergent to the exact solution as the value of v
approaches 1.

., @ Springer

8 Conclusion and Future Work

In this study, two classes of FOCPs and one class of FVP
have been investigated. A novel method based on Bernstein
wavelets and activation functions was used for numerical
solution of such problems. By applying the Laplace
transform, fractional-order problems are converted into
integer-order problems. Then, we use hybrid of the Bern-
stein wavelets and activation functions, Gauss—Legendre
integration method and Newton’s iterative method for
obtaining numerical solution of such problems. The accu-
racy of the mentioned scheme has been examined on dif-
ferent numerical examples. The obtained results confirmed
that the established technique for solving the intended
problems is extremely effective and powerful, even when
using a limited number of bases Bernstein wavelets. We
plan to do the following works in the future:

e This method can be used to solve different problems
such as fractional partial differential equations, two-
dimensional FOCP, fractal-fractional differential equa-
tions, fractal-fractional OCP, inverse problems etc.



Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2022) 46:1041-1056 1055

o Wavelets base can be combined with neural network,
least squares-support vector regression etc.

e Stability analysis of the suggested scheme for numerical
approximation of FOCP is an interesting problem for
future work.
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