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Abstract
Due to the increasing use of communication technologies for data transmission, security threats have increased over the

past decade. One of the essential solutions to detect threats is NIDSs. Over the past few years, much research considered

unsupervised feature extraction for NIDS like sparse auto-encoders; however, there is no research on the supervised auto-

encoder methods. In this work, we propose a novel supervised sparse auto-encoder, which aims to extract more useful

information for classification models than unsupervised methods. The proposed approach validated using NSL-KDD,

KDDCUP’99, CICIDS2017 data-sets, in the term of detection rate, and also response time. Experimental results in

detection rate and test time are promising. In the case of binary classification, the accuracy of 90. 11% on NSL-KDDTest?

and 91.21 on CICIDS2017 were achieved, which is a drastic improvement compared to state of the art with the more

complex models and unsupervised representation learning models. Also, the result on 5class classification was considered.

Keywords Network intrusion detection � Deep learning � Sparse auto-encoder � Supervised auto-encoder

1 Introduction

Since 1994, the internet has been used to present different

services to millions of users. Especially in the past decade,

it changes our lives forever, from social media to how we

work, buy our needs, and online banking. The dark side of

this fact is the threats that target our data and privacy,

which implements the need for network security systems.

Any of these systems includes three parts, which are fire-

walls, antivirus software, and network intrusion detection

systems (NIDSs) (Xin et al. 2018).

A NIDS, which plays an essential role in network

security systems, has three primary functions: monitoring,

analysis, and response (Alom et al. 2015). In this research,

we consider the Analysis function of a NIDS. According to

the way NIDS analyzes the data, there are three types of

NIDSs.

1. Signature-based NIDS (SNIDS): comparing the

received network traffic with an updated database of

attack rules (Ahmed et al. 2016). Ex. Snort (Snort—

Network Intrusion Detection & Prevention System

2022). Low false positive and high response time are

advantages, and the crucial need for updates and

unavailability to detecting zero-day attacks are disad-

vantages of this kind of NIDSs.

2. Anomaly detection based NIDS (ADNIDS): the kind of

NIDSs trying to learn benign behaviors pattern, and

any network traffic has deviated from this pattern

detected as an attack (Hawkins et al. 2002; Moradi and

Zulkernine 2004). It’s common for learning this pattern

to use a machine learning model or combing of models

(hybrid model) (Aljawarneh et al. 2018). These models

would adapt to the changing nature of network attacks

(Leung and Leckie 2005). However, the need for high

detection accuracy, low false-positive rate, and fast

response are the challenges of an ADNIDS.

3. Hybrid-based NIDS (HNIDS): Combing SNIDS and

ADNIDS provide an HNIDS (Viegas et al. 2016).
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Many shallow and deep learning models like SVM

(support vector machine) (Mohammed and Sulaiman 2012;

Wang et al. 2017), DTS (decision trees) (Eesa et al. 2015;

Sindhu et al. 2012), Naı̈ve Bayes (Louvieris et al. 2013;

Xiao and Chen 2014; Yin et al. 2017), fuzzy logic (Ali

et al. 2014; Elhag et al. 2015), KNN (K-nearest neighbors)

(Aburomman and Reaz 2016; Li et al. 2014), CNN (con-

volutional neural network) (Li et al. 2017; Potluri et al.

2018; Vinayakumar et al. 2017; Wu et al. 2018; Zhu et al.

2018), DBN (Deep belief net) (Moradi and Zulkernine

2004), RNN (recurrent neural network) (Tang et al. 2018;

Yin et al. 2017), non-symmetric deep auto-encoder (Shone

et al. 2018) have been used for designing ADNIDSs.

One of the main features of many previous works on

ADNIDSs was designing a powerful feature selector or

extractor because of their effect on improving both accu-

racy and response time by finding a good representation of

features and reducing the misleading data to help classifier

(Tsai et al. 2009). Different kinds of feature learning

techniques have been used for finding the best represen-

tation of data (Coates et al. 2011), which could be based on

deep learning models, like restricted Boltzmann machine

(Smolensky 1986), variational auto-encoders (Kingma and

Welling 2013), convolutional neural networks (Goodfellow

et al. 2016), sparse auto-encoders (Ng 2011) or not. Any

feature learning algorithms can be categorized into two

groups, which are linear and non-linear. The linear algo-

rithms try to optimize z ¼ wxþ b where z is our latent

space and x is the original data. The problem with linear

algorithms is that the optimal latent space must be in the

space spanned by the input and when it is not the case, it

provides too large error (Ng 2011). In non-linear groups,

the problem is formulated as Eq. 1.

z ¼ w/ xð Þ þ b; ð1Þ

wherein / could be any non-linear functions (most popular

is sigmoid), unlike the linear groups, the span is not limited

to the span of the inputs any more (Yu and Principe 2019).

Another way to categorize feature learning is to use

labels, which categorized feature learning into supervised,

unsupervised, and semi-supervised methods. The super-

vised methods are beneficial when z is using for a super-

vised task like classification because, unlike the

unsupervised techniques, it’s also considered labels for

extract features. To the best of our knowledge, there is only

one paper that used semi-supervised feature learning

(Nadeem et al. 2016), and there is no paper on supervised

future learning on NIDSs till now, which is the primary

motivation of our work.

The contributions of our paper are as follow:

i. A novel supervised sparse auto-encoder weighs the

loss term with each feature’s mutual information

with the label.

ii. Combine this model with SVM (shallow and deep

learning models).

iii. Use our model as an ADNIDS using NSL-KDD,

KDDCUP’ 99, and CICIDS2017 data sets.

iv. Design another ADNIDS using previously super-

vised auto-encoders to be a fair comparison with our

model.

v. Compare our model with (iv), and a few of previous

approaches and effect of our supervised sparse auto-

encoder on the number of support vectors compare to

SVM and simple, sparse auto-encoder SVM; also the

comparison on zero-day attacks detection rate of the

proposed model with these two approaches has been

provided.

The rest of the paper is structured as follows. Section 2,

reviews previous related works. In Sect. 3 we discussed

background information. Section 4 specifies our novel

proposed solution; Sect. 5 shows the proposed model’s

evaluation and result. The comparison discussed is pro-

vided in this section. Finally, Sect. 6 concludes the pro-

posed model and discussed plans for improving the

proposed model.

2 Related Work

As mentioned before, the NIDSs are the most essential and

challenging part of network security systems, making them

a fascinating topic for researchers. Especially in the area of

designing ADNIDSs, which need to use machine learning

models. Various approaches are used to creating

ADNIDSs, like different shallow learning models and deep

learning models. The shallow models are faster than deep

learning models, but they suffered from a low detection

rate. In this section, we will discuss some of the

notable works in this area.

Tavallaee et al. (2009) provided a statistical analysis of

the KDDCUP’ 99 data set. They found two critical issues

on this data set that affect evaluated systems’ performance

on real-world data: a vast number of redundant data biassed

towards the more frequent records and prevents it from

learning unfrequented records. The second problem is the

test set and the train set are not independent of each other,

which means the test and train set source is similar. These

problems cause high detection rates in research that used

this data set and low detection rate in practice. To solve

these issues, they proposed NSL-KDD data set. They also

tested this data set’s performance on multiple shallow

learning models like j48, naı̈ve Bayes, NB tree.
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Lin et al. (2015) provided NIDS based on combining

cluster centers and k-nearest neighbor. After using a clus-

tering technique to extract cluster centers (the number of

clusters is equal to the number of labels), they replaced all

features in the data set with only one feature. This feature is

the sum of distances of each element with its cluster center

and its nearest neighbor. They used KNN for the classifi-

cation task. The detection rate and response time were

noticeable if considering clustering as preprocessing. They

evaluated their model on KDDCUP’ 99. Another example

of using KNN is Liao and Vemuri (2002).

Alom et al. (2015) proposed a model based on the deep

belief net (DBN). They compared their results with SVM

and DBN-SVM. They reached 97.5% accuracy when using

40% of NSL-KDDTrain? data as train set and the rest as the

test set, which is hurt the main idea behind the NSL-KDD

data set (make train and test set independent from each

other). Alrawashdeh and Purdy (2016) provided a model

based on the restricted Boltzmann machine(RBM) and

logistic regression (LR). The evaluated data set on this

research was KDDCUP’ 99.

Kim et al. (2016) provided a model using the long-short

memory term (LSTM) architecture on a recurrent neural

network (RNN). The KDDCUP’ 99 data set was used to

evaluate their model. They compared their approach with

the general regression neural network (GRNN), proba-

bilistic neural network (PNN), KNN, SVM, etc.

Yin et al. (2017) Also used RNN with softmax regres-

sion for developing a NIDS. They evaluated their model on

the NSL-KDD data set. The comparison between their

model and some of the shallow learning models like j48,

naı̈ve Bayes, NB tree, random forest, and the random tree

is also provided. The improvement of accuracy was

noticeable, but the model was suffered from very high

response time, which comes from the nature of RNN.

Wu et al. (2018) proposed a CNN-based model evalu-

ated on the NSL-KDD data set. They turned each Data set

sample, with 123 features to an 11 9 11 image by

removing one feature with the lowest variance coefficient.

They proposed a model with two convolutional and two

polling layers and one fully connected layer for the clas-

sification task. They also consider weights for samples in

cost function according to the proportion of different class

samples to solve the imbalanced data set problem. Li et al.

(2017) also used CNN to design a NIDS. They also used

the NSL-KDD data set. They turned each sample of the data

set to a vector of binaries after desterilizing continuous

features and hot encoding of non-numerical features. They

used two famous CNN based models (ResNET, Google-

NET) to classify data.

Shone et al. (2018) proposed a novel auto-encoder

named non-symmetric deep auto-encoder. This auto-en-

coder encoding layers is not equal to the number of

decoding layers to design a NIDS. They used NSL-

KDDTrain? as train set and NSL-KDD test with 18,794

instances as test data set, which is the data set that removed

the attack types that consist in NSL-KDDTest? but not in

NSL-KDDTrain? (zero-day attacks). The result was

noticeable compared to the deep belief net.

Yousefi-Azar et al. (2017) proposed a feature learning

model based on deep auto-encoders. They used multiple

shallow learning models for the supervised task like

Gaussian naı̈ve Bayes and SVM.

Farahnakian and Heikkonen (2018) provided a model

based on deep auto-encoders. They used four stacked auto-

encoder for pre-training. After pre-training, they used the

soft-max layer for classification and also fine-tuned all

layers. The result of their model was promising on

KDDCUP’ 99, but it was expensive in the term of com-

putation compare to our model.

Aygun and Yavuz (2017) used auto-encoder and de-

noising auto-encoder, respectively, to propose a NIDS.

They used an auto-encoder to learn normal behavior. After

that, they find a threshold for reconstruction error. In test

time, they used this threshold to classify data. The NSL-

KDD data set was used as a data set of this research.

Nadeem et al. (2016) proposed a model based on the

ladder network (Rasmus et al. 2015; Valpola 2015), a semi-

supervised model. The model was evaluated on 10%

KDDCUP’ 99 data set. Their model’s main issue was

suffering from high response time, as was mentioned in

their paper.

Al-Qatf et al. (2018) provided a model using sparse

auto-encoder and SVM using NSL-KDD data set. Their

model has less accuracy and converges slower in pre-

training compared to our model. Javaid et al. (2016) also

used the sparse auto-encoder combined with the softmax

layer. They also used the NSL-KDD data set.

Tang et al. (2020) proposed a LightGBM auto-encoder-

based model for NIDS. They used the LightGBM model

for feature selection and the AE model for training and

detecting. They used a threshold on AE reconstruction

error for distinguishing between normal and attack

behaviors. For evaluation, the Nsl-KDD data set has been

used. The architecture of their AE model consists of 5

hidden layers. They achieved an 89.82% accuracy rate,

which is considerable. However, as the LightGBM models

are computationally complex (these models are based on

gradient boosting algorithms), their AE model contains five

layers. The Realtimeness of NIDSs is not considered in this

research. Also, their model is disabled to face multiclass

classification problems.

Khraisat et al. (2020) proposed a model by combining

the c5 decision tree and one-class SVM. They evaluate

their model using the NSL-KDD data set, with an 83.24%

accuracy rate on binary classification.
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Ieracitano et al. (2020) proposed a model based on

statistical analysis for feature extraction from 122 to 102

dimensions and AE for dimensional reduction from 102 to

50. The NSL-KDD was used as the data set in this research.

The accuracy rate was 84.21% in binary classification.

Li et al. (2020) design a model using the NSL-KDD

data-set using a multi convolutional Neural Network

(multi-CNN). They achieved an 89.95% accuracy rate for

binary classification and 81.32% for 5-class classification.

Obviously, the response time was not considered in this

method because one CNN is very complex; and multiple of

them have been used.

Zhou et al. (2020) proposed a method based on

M-Adaboost, which is a complex ensemble model. They

used NSL-KDD Train? for both training and testing.

We understood after studying these approaches that

many of these approaches suffering from low accuracy

converge slowly in pertaining or high response time.

For having a comparison with some of the following

approaches, we evaluated our model on NSL-KDD and

KDDCUP’ 99 data sets in two approaches using tenfold

cross-validation on training sets of these data sets and using

training sets for training and test sets for testing. We

examined both binary and five category classification

problems.

3 Background

This section provides information about the proposed

method’s base concepts, which is necessary for under-

standing the motivation and concepts behind our work.

First, a brief elucidation about deep learning and multiple

representation learning methods is based on it; After that,

soft-margin SVM will be discussed. Finally, the mutual

information will be discussed.

3.1 Deep Learning

Deep learning is a subcategory of machine learning that

tries to find high-level features from input data (Deng and

Yu 2014). Deep learning is based on neural networks

(stochastic models that inspire directly from human and

animal neural systems intending to find a relationship

between input and output). Any neural network has two

paths, forward and backward. The input has been mapped

to output by crossing over a graph with multilevel linear or

non-linear transformation layers in the forwarding path.

The backward path calculates the gradient of the cost for

the weights and tries to minimize the cost by updating

weights. In other words, it is based on feature and repre-

sentation learning in different layers of the model. Deep

learning models divide each complex concept into more

straightforward concepts. This process leads the model to

find essential concepts. In recent years deep learning

achieved considerable success in many fields like machine

vision, machine translation, and speech recognition

because of the availability to find intricate data patterns.

We used the power of deep learning in representation

learning. In the following, we discussed some of the pre-

vious methods in representation learning based on deep

learning.

3.1.1 Auto-encoder

Auto-encoders are unsupervised models that try to learn a

good representation of data by mapping the data from the

original space to a latent space (encoding) and reconstruct

the original data from latent space (decoding) (Baldi 2012;

Hinton and Zemel 1997) as it is shown in Fig. 1. Any auto-

encoder could have three or more layers, an input layer, an

output layer, hidden layer(s). If only linear functions or one

sigmoid function used in the middle layers, the auto-en-

coder acts like PCA (principal component analyzer). It was

considering F as encoding function with w and b parame-

ters for mapping data to latent space according to Eq. 2.

z ¼ Fw;b xð Þ: ð2Þ

Also g as decoding function with w
0
and b

0
parameters

try to reconstruct data from latent space according to Eq. 3.

x
0 ¼ g

w
0
;b

0 zð Þ: ð3Þ

The loss function of the auto-encoder can be something

to minimize the difference between x and x
0
like, mean

square error. Auto-encoder’s family can be used for feature

extraction, data de-noising, and a generative data model.

3.1.2 Sparse Auto-encode

Sparse auto-encoders are auto-encoders trying to discover

exciting structures by imposing other constraints on the

network. For example, when the latent space dimensions

are higher than the original space, the vanilla auto-encoder

desired to copy input in latent space and adding some

zeroes to latent space. This problem can be handled by

adding a sparsity constraint on the hidden layer. This

sparsity is a Kullback–Leibler divergence between the

average of activated nodes in the hidden layer and a fixed

encoder decoder

Fig. 1 example of an auto-encoder
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number between 0 and 1. So the loss function of it could be

like Eq. 4.

J ¼ 1

2m

Xm

i¼1

kxi � bxik2 þ b
Xk

j¼1

klðqkbqj

�
; ð4Þ

b is the constants considering as hyper-parameters of the

loss function that show the importance of respective terms.

The first term is a mean square error between original and

reconstructed data, and the second term is the sparsity

constraint will calculate according to Eq. 5.

klðqkbqjÞ ¼ qlog
q
bqj

 !
þ ð1� pÞlog 1� q

1� bqj

 !
; ð5Þ

where q is sparsity constraint parameter and bqj is the

average value of activated hidden unit j overall training

input x (Ng 2011).

3.1.3 Supervised Auto-encoder

In this kind of auto-encoders, there is a supervised con-

straint in the loss function. This kind of auto-encoders is

mostly used when the latent variable is used as supervised

model input. Ex (Le and Patterson 2018) Adding a soft-

max layer to the network connected to the hidden layer and

reformulates the loss as Eq. 6.

J ¼ 1

2m

Xm

i¼1

kx� bxik2 þ
b
2m

Xm

i¼1

ky� byik2: ð6Þ

3.2 SVM (Support Vector Machine)

A classifier aimed to find the best separating hyperplane

that maximizes the margin between two classes. Figure 2

shows a schema of how this classifier works. W and b are

considered as parameters of the hyperplane that need to be

learned. After learning, any new sample could be classified

into each positive or negative class by Eq. 7.

8iy ið Þ wTx ið Þ þ b
� �

� 1 ð7Þ

SVM aims to satisfy two requirements:

i. Maximize the distance between decision boundaries,

which is 2
kwk.

ii. Correctly classify all x ið Þ.

To achieve these goals, SVM formulated a problem that

needs to be solved using the primal form shown in Eq. 8.

minw:b
kwk
2

þ C
XN

i¼1

e ið Þ

s:ty ið Þ wTuðx ið ÞÞ þ b
� �

� 1� e ið Þ

e ið Þ [ 0

8i 2 f1; � � � ;Ng ð8Þ

where e ið Þ is slack variables and C is error penalty term, and

u is kernel function that maps data in the space can be

separated better. For solving this problem, first, it needs to

be written in the dual form, which is considered in Eq. 9.

maxaminw:b
kwk
2

þ C
XN

i¼1

a ið Þ 1� wTu x ið Þ
� �

þ b
� �� �

:

ð9Þ

After solving this problem, the optimal values for w

looks like Eq. 10.

wi ¼
XN

i¼1

a ið Þy ið Þu x ið Þ
� �

: ð10Þ

Also, in the test time, the prediction of each label is

calculated by Eq. 11.

ytest ¼
XN

i¼1

a ið Þy ið Þu x ið Þ
� �T

u xtestð Þ þ b; ð11Þ

a ið Þ[ 0 if and only if x ið Þ Is a support vector (Chapelle

2007). So less number of support vectors concludes fewer

computations in the test.

3.3 Mutual Information

The mutual information between two random variables is a

measure of how much information can be gotten from one

of them by observing another one. It is calculated by

Eq. 12 (Cover and Thomas 2012). High mutual informa-

tion indicates a massive reduction in uncertainty; low

mutual information indicates a small reduction, and zero

means independence.

Fig. 2 A geometric view of a SVM classifier
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I x; yð Þ ¼
X

x2X

X

y2Y
p x; yð Þlogð pðx; yÞ

p xð ÞpðyÞÞ: ð12Þ

4 Proposed Methodology

This section will describe our supervised sparse auto-en-

coder and its benefits in two parts; Sect. 4.1 describes our

proposed supervised sparse auto-encoder and the motiva-

tion of the proposed methodology, and Sect. 4.2 provides

the benefits of the proposed model compared to the tradi-

tional supervised auto-encoders.

4.1 Sparse Auto-encoder with Mutual
Information Weight Reconstruction Loss

The main challenges ahead of designing NIDSs are relia-

bility and being real-time. So we aim to propose a method

that could meet the expectations of both of the challenges.

This paper introduces our supervised sparse auto-encoder,

an auto-encoder with a sparsity constraint, and weighted

reconstruction error with the diagonal matrix that shows

each feature’s importance in the classification tasks. One of

the reasons that motivate us to propose our approach was

when an unsupervised auto-encoder tries to find an optimal

solution, it has no idea about which features are more

important than the others in the supervised (classification)

task, and it must be more information about them in the

latent variable. These models only try to minimize loss, and

there is a possibility to be no information about a critical

feature in the latent variable. This disadvantage of unsu-

pervised auto-encoder significantly affects the models

designed for NIDSs. There is no need to use unsupervised

representation learning in the training process when the

labels are available. Representation learning is mostly used

along with a supervised classification model. So our

approach is going to put a positive impact on supervised

tasks by having more critical information about the label

than the unsupervised auto-encoder. This process can also

reduce classifier complexity by giving it more prof-

itable information, which causes finding a solution easier

(in our case number of support vectors shows that).

Another advantage of our model is that the weight

matrix can be any matrix that shows the importance of

different features. We test joint entropy, correlation, and

mutual information of features with the label. As we

thought, mutual information has the most effect on accu-

racy and number of support vectors.

The weight matrix will be calculated as a preprocessing

task, which is a diagonal matrix that elements i; i shows the

mutual information of ith feature with the label. Consid-

ering f i as ith feature the matrix is going to be calculated as

follows;

Mi;j ¼
I fi; yð Þ if fi ¼ j

0 if fi 6¼ j

�
: ð13Þ

Considering matrix as M, the loss function of the pro-

posed model formulated as follows;

J ¼ 1

2m

Xm

i¼1

ðxi � bxiÞ
T �M� ðxi � bxiÞ þ

k
2
ð
X

kn

w 2

þ
X

nk

v2 þ
X

k

b2 þ
X

n

b
02Þ þ b

Xk

j¼1

klðqkbqj

�
;

ð14Þ

W and V are the weight matrix of the first and second layer,

b and b
0
are also the bias vector of them, respectively.

When the auto-encoder begin the learning process, it

gives more importance to the feature with more mutual

information or other metrics; we decide for showing fea-

ture importance because these features have an immense

weight than the others in the loss function, so for mini-

mizing the loss the reconstruction of them is more impor-

tant than the others. The auto-encoder needs to have more

information about them in latent space to reduce the

reconstruction error of corresponding features because the

decoder uses the latent space to reconstruct data. This

process may increase the risk of overfitting. We handle this

risk by adding the regularizer to them. After the auto-en-

coder is well trained, the latent variable of training data

will be used for training the SVM. In the test phase, each

testing data first feeds the auto-encoders encoder to find the

latent variable. The latent variable of corresponding testing

data will feed to the SVM to predict the label. The idea is

so simple, but our results show that our model finds the

optimal latent space faster than the others, reduces classi-
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fiers complexity, and is better or at least competitive with

other works even with more hidden layers. The Alghorithm

1 shows the pseudocode of the proposed method.

4.2 Benefits of the Proposed Model Compared
to Traditional Supervised Auto-encoders

As was discussed before, in previous models, a supervised

constraint was added to the auto-encoder like Eq. 6, so the

pre-training and training phase had been merged. These

models have a high potential to over-fit on training data

because of the label’s direct effect on encoder layers.

However, in our models, the labels will not directly affect

the encoder and decoder layers but only tell which features

it preferred better than the others.

Another benefit of our model over the traditional ones is

that in traditional supervised auto-encoders, the supervised

term acts as a constant in decoder layers, which causes no

effect on backpropagation in these layers. However, in our

model, it affects both decoder and encoder layers, which

causes less risk on overfitting of the encoder and make the

decoder a better generative model (which is not the con-

sideration on NIDSs) as a consequence.

5 Evaluation and Result

Our proposed model, implemented using GPU-enabled

TensorFlow is performed on 64-bit Ubuntu 14.04 on PC

with Intel(R) Core(TM) i5-6400 CPU 2.70 GHz, 16 GB

ram, and NVIDIA GTX 1070 GPU. The hyper-parameters

for classification and supervised sparse auto-encoder

(SSAE) have been provided in Table 1. Also, RMS-probe

with exponential decay learning rate (initial 0.001 for

binary and 0.01 for 5 class classification) is used as an auto-

encoder optimizer. All of these hyper-parameters are found

by grid search of different values using validation data.

This section provides details of our implementation and

also the result and comparison with other researches.

Section 5.1, the evaluation metrics were discussed,

Sect. 5.2 gives the detail of data sets, Sect. 5.3 discussed

preprocessing that needs to be done to prepare the data.

Finally, the result and comparison were provided in

Sect. 5.4.

5.1 Evaluation Metrics

To perform our evaluation, we used NSL-KDD and

KDDCUP’ 99 data-sets. Our approach’s performance was

evaluated using the following metrics, which have been

used in other research in the same field.

1. True Positive (TP): anomaly records that are correctly

classified as an anomaly.

2. False Positive (FP): normal records that are incorrectly

classified.

3. True Negative (TN): normal records that are correctly

classified as normal.

4. False Negative (FN): anomaly records that are classi-

fied incorrectly.

We used these metrics to compute the following

measures:

1. Accuracy rate (AC): Percentage of correctly classified

records overall records Formula (Metz 1978).

AC ¼ TPþ TN

TPþ TNþ FPþ FN
� 100% ð15Þ

2. Precision rate (P): Percentage of correctly classified

anomaly records over a total of classified anomalies

(Powers 2020).

P ¼ TP

TPþ FP
� 100% ð16Þ

3. Recall (R): Percentage of correctly classified anomalies

divided by the number of attack entries (Powers 2020).

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2022) 46:829–846 835

123



R ¼ TP

TPþ FN
� 100% ð17Þ

4. F-measure (F): Harmonic mean of precision and recall,

which is considered the most crucial measure for

NIDSs (Powers 2020).

F ¼ 2� P� R

Pþ R
� 100% ð18Þ

5. False-positive rate:

FPR ¼ FP

FPþ TN
ð19Þ

6. False-negative rate:

FNR ¼ FN

TPþ FN
ð20Þ

We used all of the following metrics for evaluation on

NSL-KDD and CICIDS2017. However, because the goal

of using KDDCUP99, which is the old version of NSL-

KDD, was the comparison with related works, we only

used the accuracy metric on it.

5.2 Data Sets

In this paper, KDDCUP’ 99, NSL-KDD, and CICIDS2017

data-sets were considered for evaluation. These data sets

have been used Widely in NIDSs research areas.

5.2.1 KDDCUP’ 99

Since 1999 KDDCUP’ 99 has been the most used data set

for the evaluation of NIDSs. This data set was evaluated by

using data captured in DARPA’s 98 programs (Stolfo et al.

2000). The Data consists of 4 gigabytes-worth of com-

pressed tcpdump data resulting from 7 weeks of network

traffic. The training data set involve 4,900,000 records each

consider as a connection record with 41 feature includes

Basic, Domain knowledge and time observation features.

Each record was labeled as either Attack from 22 different

attack types or normal behavior. It is common to use 10%

KDDCUP’ 99 data set with 145,586 records with no

duplicated data and a great representation of the complete

data set as training data set and KDDCUP’ 99 corrected

with 77,291 records as testing data set. The features in this

data set involve numerical and symbolic values, so it needs

preprocessing for evaluating our model. The numerical

values need to be normalized to reduce computational

complexity. The whole process of preprocessing will be

explaining.

5.2.2 NSL-KDD

The newer version of KDDCUP’ 99 to overcome the

KDDCUP’ 99 problems (Tavallaee et al. 2009). This data

set structure is similar to the previous data set, consisting of

41 features; three of these features are symbolic, and others

are numeric. As discussed before, the need for prepro-

cessing is crucial for this data set. NSL-KDD data set

consists of two different training data set, which are

KDDTrain? and KDDTrain?20%, and also two testing

data sets, which are KDDTest? and KDDTest-21. In this

research, we used KDDTrain? as training data set and

KDDTest? as testing data set. The training data set consist

of 22 different types of attacks, and the testing data set

consist of 34 attack types, which means the KDDTest?

data set consist of 12 attacks that do not appear in the

training data set (zero-day attacks), so the generalization

power of model on zero-day attacks will be considered.

These attacks will categories into four categories, which

are r2l, u2r, Dos, and probe. The KDDTrain? data set

consist 125,973 records and KDDTest? data set 22,544

records. The description of the following data sets is pro-

vided in Table 2.

Table 1 hyper-parameters of

the proposed model
NSL-KDD KDDCUP99 CICIDS2017

Binary 5-class Binary Binary

SSAE

AE-arch 122–30-122 122–30–122 79–100–50–25–50–100–79

k 6� 10�4 6� 10�4 6� 10�4

b 3 0.3 0.3

bqj 0.5 0.77 0.77

SVM

c 10 5.56 10 1

c 4 1.06 4 0.1
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5.2.3 CIC IDS 2017 (Sharafaldin et al. 2018)

CIC IDS 2017 is the newer version of ISCX 2012 (Shiravi

et al. 2012) provided by the Canadian Institute of Cyber-

security, consist of a variety of benign and malicious net-

work traffic types. The attack types in this data set are the

most up to date attack scenarios. The Data set includes

eight CSV files; each file consists of 83 features and label,

the label could be either benign or one of 14 different

attack types also, 285,735 instances have a null label, so

they have to be deleted from the data set. In this research,

we first concatenate all files that provide us with a data set

with 3,116,478 instances and 2,830,743 instances after

deleting flows with the null label. Table 3 shows the details

of this data set. As the Data is vast and cannot be used for

training models, we randomly select 10% of the data

instances but with the vision of selecting from different

classes and distribution of original data set. Some of the

features (flag id, destination IP, source IP, destination port,

source port) of this data set needs to be deleted for

designing NIDS because it is not correct to make the IDS

model sensitive to them, for example, if the IDS is sensitive

to the source IP the attacker can pass the IDS by changing

his/her IP address. Similar to previous data sets, this data

set also needs normalization.

5.3 Data Preprocessing

5.3.1 Normalization

Many features of these data sets consist of a broad range

between maximum and minimum, which achieves com-

putational complexity during the learning and testing pro-

cess. Therefore, we normalized these features using a min–

max normalization map of each feature to range between 0

and one according to Eq. 21.

xi ¼
xi �min

max�min
ð21Þ

where xi is a data point, min is the minimum value from all

data points, and max is the maximum value for each

feature.

5.3.2 Categorize Labels into Five Categories

All the attacks in this data-sets fall in one of the following

four categories(Tavallaee et al. 2009) according to Table 4:

1. Denial of Service Attack (DoS): is an attack that

attackers target the system’s availability by making

resources of the victim too busy or full.

2. User to Root Attack (U2R): kind of attacks that

attackers start the system with a regular user account

and exploit some vulnerabilities to access root user

privileges.

3. Remote to Local Attack (R2L): when the attacker can

send packets to the system but do not have any

accounts on the system, but gain against some vulner-

abilities to local access as a user to the system

4. Probing Attack: kind of attacks that attacker investigate

network over the system or the system to determine

Table 2 Description of NSL-

KDD and 10%KDDCUP data

sets

Category 10% KDDCUP NSL-KDD

Train Test Train? Test? Test? no zero-day attacks

DoS 54,572 23,570 45,927 7458 5741

Probe 2131 2682 11,656 2421 1106

R2L 999 3056 995 2754 2199

U2R 52 70 52 200 37

Normal 87,832 47,913 67,343 9711 9711

Total 145,586 77,291 125,973 22,544 18,794

Table 3 Description of CICIDS2017 data set

CSV file #instances #attacks #type of attacks

Monday 529,918 0 All benign

Tuesday 445,909 7938 FTP-Patator

5897 SSH-Patator

Wednesday 692,703 5796 DoS-slowloris

5499 DoS-Slowhttptest

231,073 DoS-Hulk

10,293 DoS-GoldenEye

11 Heartbleed

Thursday AM 170,366 1507 Web Attack-Brute Force

652 Web Attack-XSS

21 Web Attack-Sql Injection

Thursday PM 288,602 36 Infiltration

Friday AM 191,033 1966 Bot

Friday PM1 286,467 158,930 PortScan

Friday PM2 225,745 128,027 DDOS

Total 2,830,743 557,646 14 attack type
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vulnerabilities of the system that can lead to exploits,

which could be circumventing system security

controls.

5.3.3 One-Hot Coding Symbolic Labels

The NSL-KDD data set has 38 numerical features and three

symbolic features to convert these symbolic features to

numerical features; we used the one-hot coding strategy.

EX. The ‘‘protocol-type’’ feature has three distinct attri-

butes, these attributes be encoded as (1, 0, 0), (0, 1, 0), (0,

0, 1) binary vectors. This process converts NSL-KDD

features set from 41 feature dimensional to 122-dimen-

sional features.

5.4 Result and Comparison

5.4.1 Number of Support Vectors Training and Testing
Time

As SVM with RBF kernel is used as the classifier, the

number of support vectors (nSVs) and dimensions will be

impacted training and testing time because SVM with non-

linear kernels computation and usage memory grows rel-

ative to nSVs. So we compare our approach (SSPAE-SVM)

in terms of nSVs, training, and testing time on NSL-KDD

AN and CICIDS2017 data sets with simple SVM and

sparse auto-encoder SVM (SPAE-SVM) (Al-Qatf et al.

2018) in four different approaches for NSL-KDD, and one

approach for CICIDS2017. Also, we provide a comparison

between the pre-training (representation learning) time of

the proposed method and SPAE-SVM.

In the first approach, we used NSL-KDDTrain? as a

training set and NSL-KDDTest? as a test set, also we

consider CICIDS2017 10% 0.7 as training and 0.3 as

testing data. The label is considered binary (normal and

Attack). The result shows that we reduce the number of

support vectors in all three models compared to simple

SVM and SPAE-SVM in thereupon training and testing

time. Also, the dimensional reduction using auto-encoder

affects memory and computational complexity. Table 5

shows the result.

In the second approach, we used tenfold cross-validation

on the NSL-KDDTrain?, considering labels as binary like

the previous approach; the result also emphasis on effi-

ciency of the proposed model. Because pre-training time

was similar to the first approach, these results were not

considered again. Table 6 shows the result of this.

In the third approach, we used NSL-KDDTrain? and

NSL-KDDTest? as the test set. The label is considering as

five labels (normal and four attack categories). The one vs.

rest strategy was used for the classification model. This

result also shows the positive effect of our model on

memory and time complexity. Table 7 shows the result. In

the fourth approach, the NSL-KDDTrain? was used for

both training and testing with a tenfold cross-validation

strategy Table 8 shows the result. What is noticeable in all

of these approaches is the improvement of our model in

training and testing time of a NIDAS; e.g., the total pre-

training and training time of our model is less than training

time SVM.

5.4.2 Evaluation Considering Binary Classification

Two approaches were considered for binary classification,

first using NSL-KDDTrain? and NSL-KDDTest? and

CICIDS2017 10% data sets. In the second approach, the

evaluation on NSL-KDDTrain? using tenfold-cross-vali-

dation strategy, in each fold 70% of data set used as

training data and 30% as testing. Table 9 shows the result

in the first approach as it shows the proposed model

achieves 90.11% accuracy on NLSKDDTest? and 91.22%

on CICIDS2017; which is very noticeable, considering

only one-layer encoding for NSLKDD compare to other

works using deep-stacked auto-encoders with more than

one auto-encoder and more than one layers for encoding

(Shone et al. 2018) or using multiple convolutional layers

and overhead of turning samples to pictures (Wu et al.

2018). So the proposed model is powerful and also simple

in terms of computation, which means that the proposed

model improves both critical requirements of NIDSs. The

Table 4 Category of attacks on NSLKDD

Category Attacks

DoS back, land, neptune, pod, smurf, teardrop, Mailbomb, Processtable, Udpstorm, Apache2, Worm

U2R buffer-overflow, loadmodule, perl,rootkit, Sqlattack, Xterm, Ps

R2L ftp-write, guess-passwd, imap, multihop, phf, spy, warezclient, warezmaster, Xlock, Xsnoop, Snmpguess, Snmpgetattack, Httptunnel,

Sendmail, Named

Probe ipsweep, nmap, portsweep, satan, Portsweep, Mscan, Saint
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comparison also shows the improvement of our model

compare to SVM and SPAE-SVM.

The false-positive rate and false-negative rate of each

model for NSL-KDDTest? and CICIDS2017 been shown in

Figs. 3 and 4, respectively.

The ROC curve and AUC of the model on CICIDS2017

have also shown in Fig. 5, and ROC curve of NSL-

KDDTest? has been shown in Fig. 6. ROC is a probability

curve, and AUC represents the degree or measure of sep-

arability. It tells how much the model is capable of dis-

tinguishing between classes (Fig. 7).

Table 10 showed the result when NSL-KDDTrain?

tenfold cross-validation was used. As the result shows we

do not have such massive improvement as the previous

approach, which is a good thing because it shows less

potential for the over-fitting of our model.

5.4.3 Evaluation Considering 5 Class Classification

This approach Compared to our result in 5 class in terms of

accuracy, precision, recall, and F-measure, considering

these measures for different classes with SVM and SPAE-

SVM. All of the results were provided considering differ-

ent class labels. This evaluation also shows our improve-

ment in 5 class classification when our model got 80.46%

accuracy, the SVM got 77.49% accuracy, and SPAE-SVM

got 78.54%, as has been provided in Fig. 8. Also, Fig. 9

compares the result in tenfold cross-validation on NSL-

KDDTrain?. ROC curve of the proposed model consider-

ing 5 class classification problems also has been provided

in Fig. 5.

Table 5 Training and testing

time and number of support

vectors (NSV) comparison for

SVM, SPAE-SVM, Proposed

model (SSPAE-SVM) for

binary classification on

CICIDS2017, NSL-KDDTrain?

and NSL-KDDTest?

Data set (sec) Method (nSVs) Pre-training time (s) Training time (s) Testing time nSVs

NSL-KDD SVM – 520.56 17.03 4596

NSL-KDD SPAE-SVM 308.74 179.15 9.49 3879

NSL-KDD SSPAE-SVM 268.36 182.08 5.22 3870

CICIDS2017 SVM – 722.61 102.08 19,670

CICIDS2017 SPAE-SVM 421.32 541.71 70.82 18,022

CICIDS2017 SSPAE-SVM 291.22 317.36 46.54 16,550

Table 6 Training and testing time and number of support vectors

(NSV) comparison for SVM, SPAE-SVM, proposed model for binary

classification based on NSL-KDDTrain?

Method Training time (s) Testing time (s) nSVs

SVM 38,734 240.35 38,734

SPAE-SVM 1044.47 71.66 32,597

Proposed model 968.35 75 33,287

Table 7 Training and testing time and number of support vectors

(nSV) comparison for SVM, SPAE-SVM, proposed model for 5 class

classification based on NSL-KDDTest?

Method Pre-training

time (s)

Training

time (s)

Testing time

(ss)

nSVs

SVM – 2382.80 33.34 9049

SPAE-SVM 160.92 368.84 12.14 5957

Proposed

model

120.65 290.42 6.33 5271

Table 8 Training and testing time and the number of support vectors

(nSV) comparison for SVM, SPAE-SVM, proposed model 5 class

classification based on NSL-KDDTrain?

Method Training time (s) Testing time(s) nSV

SVM 11,512.23 481.26 77,513

SPAE-SVM 767.15 97.48 48,339

Proposed model 730.239 93.087 46,234

Table 9 Evaluation result

considering binary classification

on NSL-KDDTest? and

CICIDS2017 data sets

Data set method Accuracy Precision Recall F-measure

NSL-KDD SVM 88.91 93.80 86.22 89.85

SPAE-SVM 87.85 93.56 84.46 88.78

SSPAE-SVM 90.11 93.74 88.53 91.06

CICIDS 2017 SVM 83.36 1 83.34 90.92

SPAE-SVM 88. 19 93.30 92.58 92.94

SSPAE-SVM 91.22 96.04 93.59 94.80
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5.4.4 The Zero-Day Attacks Detection Rate

This section compared the zero-day attack detection rate of

our model to SVM and SPAE-SVM to show the proposed

model’s generalization power. From 22,544 instances of

NSL KDDTest? 3750 are zero-day attacks, which means

the attack types which are not observed in training data as

the results show in Table 11 the proposed model achieved a

better detection rate on zero-day attacks.

5.4.5 Additional Comparison

We also compared the proposed model considering the

accuracy rate with some of the related works and previ-

ously supervised auto-encoder. The evaluation on

KDDCUP’ 99 also provided in this section; Table 12 shows

this comparison in binary classification, and Table 13

provides a comparison in 5 class classification.

All results from 5.4.1 to 5.4.4 show our approach has a

better or at least competitive detection rate compared to

SVM, SPAE-SVM, related works, and significant potential

for real-time NIDS shows in 5.4.1. Comparing our model

with related works in binary classification shows our

approach has the best accuracy when evaluated on NSL-

KDDTest?, even better than traditional supervised auto-

Fig. 3 FNR and FPR on binary classification in CICIDS2017

Fig. 4 FPR and FNR on binary classification in NSL-KDDTest?

Fig. 5 ROC curve and AUC value of proposed model on binary

classification based on CICIDS2017

Fig. 6 ROC curve and AUC value of proposed model on five class

classification based on NSLKDDTest?

Fig. 7 ROC curve and AUC value of proposed model on binary

classification based on NSLKDDTest ?

Table 10 Evaluation result considering binary classification on NSL-

KDDTrain? data-set

Method Accuracy Precision Recall F-measure

SVM 99.85 99.73 99.68 99.20

SPAE-SVM 99.81 99.68 99.13 99.79

SSPAE-SVM 99.84 99.69 99.92 99.80
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Fig. 8 Accuracy, precision, recall, and F-measure values for the proposed model, SVM, SPAE SVM for five class classification based on

NSLKDDTest?
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encoder because of these models’ high potential overfitting.

However, in evaluation on KDD CUP’99 the improvement

was just competitive. The reason behind that is the nature

of this data set, which is that the corrected and 10% train

data set have a close relationship together. If models learn

10% KDD CUP’99 very well, the result will be so good on

KDDCUP’99 Corrected, but in NSL-KDDTrain? and NSL-

KDDTest? or CICIDS2017, the model like that may face

with overfitting problem. Considering improvement

through NSL-KDDTrain?, NSL-KDDTest?, and

CICIDS2017 data sets, only the competitive result is 10%

KDDCUP’99 and KDDCUP’ 99 Corrected shows the

Fig. 9 Accuracy, precision, recall, and F-measure values for the proposed model, SVM, SPAE-SVM for five class classification on

NSLKDDTrain?
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robustness of our model on overfitting. The evaluation on

NSL-KDDTest? with no zero-day attacks also provided for

comparison of the proposed model with Shone et al.

(2018), considering that their model was much more

computationally complex in representation learning by

using two deep non-symmetrical auto-encoder with two

encoding layers and one decoding layer and also in clas-

sification by using random-Forrest (ensemble model) the

proposed model achieved better detection rate.

6 Conclusion and Feature Work

In this study, we investigated the challenges of designing a

NIDS. In response to these challenges, we proposed a novel

supervised sparse auto-encoder with reconstruction loss

term weighted by mutual information, which led to sig-

nificant improvements in both the detection rate and the

computational complexity. We have implemented our

model in TensorFlow GPU enabled and compared our

model with simple SVM and SPAE-SVM for both binary

classification and 5class classification in terms of training

and test time, accuracy, precision, recall, and f-measure.

The improvement of the proposed model in binary classi-

fication on NSLKDDTest? with 90.11% accuracy and

91.22 on CICIDS2017 was very promising compared to

other works, even much more complex models. Also, in the

case of 5class classification, our model has improved

compared to SVM and sparse auto-encoder SVM. More-

over, in terms of real-time computation, our model per-

forms better compared to SVM and sparse auto-encoder

Table 11 Comparison of Zero-day attacks detection rate

Method The zero-day attacks detection rate

Binary (%) 5 class (%)

SVM 78.18 32.08

SPAE-SVM 73.54 33.54

Proposed model 78.34 38.96

Table 12 Additional performance comparisons with several related approaches in the binary classification

Method Accuracy

%

Training data Testing data Method category

Naı̈ve Baysian (Tavallaee et al.

2009)

75.56 NSL-KDDTrain? NSL-KDD test? Shallow learning

J48 (Tavallaee et al. 2009) 81.07 NSL-KDDTrain? NSL-KDD test? Shallow leaning

Random Forest (Tavallaee et al.

2009)

80.67 NSL-KDDTrain? NSL-KDD test? Shallow learning

Recurrent Neural Network (Yin

et al. 2017)

83.28 NSL-KDDTrain? NSL-KDD test? Deep leaning (RNN)

ResNet50 (Li et al. 2017) 79.14 NSL-KDDTrain? NSL-KDD test? Deep learning (CNN)

SPAE-Softmax (Javaid et al. 2016) 88.39 NSL-KDDTrain? NSL-KDD test? Deep learning (AE)

Deep auto-encoder (Farahnakian and

Heikkonen 2018)

96.53 10% KDDCUP’99

(494,021 records)

KDDCUP’ 99 Corrected

(311,029 records)

Deep learning (AE)

SPAE-SVM (Al-Qatf et al. 2018) 95.09 10% KDDCUP’99

(145,586 records)

KDDCUP’ 99 Corrected

(77,291 records)

Deep learning (AE) ? shallow

learning

LightGBM-AE (Tang et al. 2020) 89.82 NSL-KDDTrain? NSL-KDD test? Ensemble model ? deep

learning method

C5 decision tree-one class SVM

(Khraisat et al. 2020)

83.24 NSL-KDDTrain? NSL-KDD test? Hybrid method

statistical analysis-AE (Ieracitano

et al. 2020)

84.21 NSL-KDDTrain? NSL-KDD test? Shallow learning

Supervise auto-encoder 82.04 NSL-KDDTrain? NSL-KDD test? Deep learning (supervise AE)

Proposed model 90.11 NSL-KDDTrain? NSL-KDD test? Deep learning (supervise

AE) ? shallow learning

Proposed model 94.72 10% KDDCUP’99

(145,586 records)

KDDCUP’ 99 Corrected

(77,291 records)

Deep learning (supervise

AE) ? shallow learning
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SVM even with adding an additional computational oper-

ator term in the pre-training phase because of faster con-

vergence to the optimal representation.

The comparison of the proposed model with some of the

related studies and the traditional supervised auto-encoder

has been provided based on accuracy measures for both

NSL-KDD and KDDCUP’ 99 data sets, all of which were

promising. In the future, we aim to provide a model (like

using a genetic algorithm) that learns the weights of

reconstruction loss instead of using mutual information.

We will also try to improve our detection rate on five

categories of classification and evaluate the model on real-

world data.

Code availability Githhub link for codes: https://github.com/ALIGH

ORBANI29/IDS_SSPAE_SVM
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