
RESEARCH PAPER

Coordinated Multicell Beamforming Based on Power Minimization
in an Uplink–Downlink Configured Massive MIMO Network

Somayeh Aghashahi1 • Jamshid Abouei1 • Aliakbar Tadaion1

Received: 20 January 2020 / Accepted: 21 January 2021 / Published online: 15 February 2021
� Shiraz University 2021

Abstract
In this paper, the coordinated beamforming problem is investigated to minimize the sum transmit power of the system in a

two-cell network, downlink transmission in one cell and uplink transmission in the other cell. It is assumed that the base

stations (BSs) and the users are equipped with multiple input multiple output (MIMO) antennas, and the coordinated

beamforming vectors are designed for the BS in the downlink cell and the users in the uplink cell under the signal-to-

interference plus noise ratio (SINR) constraints. Then, the problem is extended for a scenario where the BSs and users have

massive MIMO antennas, and using the random matrix theory, an algorithm is proposed to design the coordinated

beamforming vectors. Simulation results show that this coordinated beamforming algorithm for the massive MIMO

scenario accurately tracks the optimal sum transmit power minimization beamforming approach, while it reduces the

computational complexity of the coordinated beamforming.

Keywords Uplink–Downlink � MIMO � Sum power minimization � Massive MIMO � Random matrix theory

1 Introduction

We investigate the problem of coordinated beamforming in

an uplink–downlink configuration of a two-cell dynamic

time division duplexing (TDD) network to minimize the

sum power of beamforming vectors with the signal-to-in-

terference plus noise ratio (SINR) constraints. The coor-

dinated beamforming problem has been investigated

extensively in the downlink transmission of multicell

multiple input multiple output (MIMO) networks (Ven-

turino et al. 2010; Garzas et al. 2014; Utschick and Breh-

mer 2012; Huang et al. 2014; Li et al. 2015; He et al.

2015; Tervo et al. 2018; Boukhedimi et al. 2017;

Patcharamaneepakorn et al. 2015; Dahrouj and Yu 2010;

Lakshminarayana et al. 2015; Zakhour and Hanly 2012;

Huang et al. 2013; Belschner et al. 2019; Barman Roy

et al. 2019; Kazi and Wainer 2019; Asgharimoghaddam

et al. 2019; Kwon and Park 2020; Khamidullina et al.

2020; Bai et al. 2020). This scheme addresses involving

both the intracell and intercell interference in beamforming

problems.

For instance, in Venturino et al. (2010), Garzas et al.

(2014), Utschick and Brehmer (2012) the authors taking

both the intracell and intercell interference into account

investigated the weighted sum rate maximization problem

subject to power consumption constraints. Also, the authors

of Kwon and Park (2020) presented a non-iterative algo-

rithm for coordinated beamforming to maximize the SINR

of the users, which improves the overall sum rate of the

system. The energy efficiency of the system is another

objective function which could be maximized by designing

the coordinated beamforming vectors (Huang et al. 2014;

Li et al. 2015; He et al. 2015; Tervo et al. 2018). More-

over, the problems of signal-to-leakage plus noise ratio

(SLNR) maximization and modified SLNR (mSLNR)

maximization have been investigated for coordinated

beamforming in Boukhedimi et al. (2017) and Patchara-

maneepakorn et al. (2015). Besides, a generalized singular

value decomposition (SVD) scheme is presented in
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Khamidullina et al. (2020) to be employed for coordinated

beamforming in multicell MIMO systems. Another target

for designing the coordinated beamforming vectors is sum

power minimization subject to SINR constraints for each

user (Dahrouj and Yu 2010; Lakshminarayana et al. 2015;

Zakhour and Hanly 2012; Huang et al. 2013; Asghari-

moghaddam et al. 2019). Furthermore, the authors in Bai

et al. (2020) leveraged the coordinated beamforming to

enhance the secrecy of the multicell MIMO systems.

The coordinated beamforming problem is also examined

in massive MIMO (mMIMO) systems, in which the num-

ber of antennas is much more than the number of Users. In

order to implement the coordinated beamforming in such

systems, it is required to exchange lots of channel infor-

mation between the base stations (BSs). Therefore, the

researchers employed the random matrix theory to design

the beamforming vectors which only depend on the

statistics of the channels. These schemes have been

investigated in the downlink transmission of multicell

mMIMO networks. In He et al. (2015), the authors exten-

ded the energy efficiency maximization problem for mul-

ticell mMIMO networks and used the random matrix

theory to propose a reduced overhead algorithm for coor-

dinated beamforming. Also, the SLNR maximization

problem has been proposed in Boukhedimi et al. (2017) for

a two-tier mMIMO scenario including macro and small

cells. Furthermore, the authors in Lakshminarayana et al.

(2015) and Zakhour and Hanly (2012) used the random

matrix theory to form the coordinated beams for mini-

mizing the sum power of the beamforming vectors in a

multicell mMIMO network.

The above researches discussed multicell TDD networks

in which, at each time, all cells have downlink or uplink

transmission. However, in the recent years by increasing

the demands such as video downloading and video sharing,

the requests for both the downlink and uplink transmissions

are growing and highly time variable (Agustin et al. 2017).

Therefore, the dynamic TDD networks have been pro-

posed, in which, based on the demands of the users, the

cells could have downlink or uplink transmission (Shen

et al. 2012). Under the influence of this possibility, such a

scenario could happen that at the same time some cells

have downlink transmission and the other cells have uplink

transmission. Thus, the users would experience new types

of intercell interference such as BS to BS (downlink to

uplink) and user to user (uplink to downlink) interference

(Kim et al. 2020). In order to overcome this problem in

MIMO networks, different coordinated beamforming

approaches are proposed, which could be divided into two

general categories. In the first category, only the downlink

to uplink intercell interference is considered, i.e., the

downlink BSs are equipped with MIMO antennas and form

their beams considering the intercell and intracell

interference, but the uplink users have single antennas and

transmit without considering the intercell interference (Ko

et al. 2018; Guimaraes et al. 2018; Cavalcante et al. 2018).

For instance, the authors in Ko et al. (2018) used the

interference alignment concept to form the coordinated

beams for the downlink BSs. A priced-based beamforming

approach is proposed in Guimaraes et al. (2018), for

coordinated beamforming in the downlink cells. Also, in

Cavalcante et al. (2018) the authors minimized the transmit

power of the base stations subject to SINR constraints for

each of the users in the downlink cells and keeping the BS

to BS interference below a threshold. In the other category

of the proposed schemes, both the uplink to downlink and

downlink to uplink interferences are considered. In fact the

downlink BSs form their beams with respect to intracell

and downlink to uplink interference and the uplink users

form the beam or allocate the power, considering the

uplink to downlink interference (Yoon and Cho 2015;

Aghashahi et al. 2019; Jayasinghe et al. 2015; Lagen et al.

2017; Aghashahi et al. 2018; Yoon et al. 2019; Cavalcante

et al. 2019; Lee et al. 2020). A scenario is studied in Yoon

and Cho (2015), where the BSs have MIMO antennas and

the users have single antennas, and both the uplink to

downlink and downlink to uplink interferences are con-

sidered. The authors of this research designed the coordi-

nated beamforming vectors for the downlink BSs and

allocated power to the uplink users to maximize the energy

efficiency of the system. Also, in a similar scenario the

authors of Aghashahi et al. (2019) investigated the energy

efficiency maximization problem to allocate the coordi-

nated transmit power for both the uplink users and down-

link BSs. Moreover, the weighted sum rate maximization

problem is considered in Jayasinghe et al. (2015) and

Lagen et al. (2017) and the coordinated beamforming

vectors for the BSs in the downlink cells and the users in

the uplink cells are designed. In particular, in Lagen et al.

(2017) the sum rate of the users is maximized by jointly

considering the scheduling, transmission direction selec-

tion and beamforming problems. The SLNR maximization

is another problem investigated in a dynamic TDD scenario

with MIMO BSs and user, in which both the downlink BSs

and uplink users attempt to reduce the intercell interference

leakage (Aghashahi et al. 2018).

Moreover, in Yoon et al. (2019) the authors considered

mean squared error minimization problem and jointly

designed the beamforming vectors for downlink and uplink

users in a dynamic TDD network. Also, some other

researches focused on the sum power minimization prob-

lem in a dynamic TDD system with multiple antenna BSs

(Cavalcante et al. 2019; Lee et al. 2020). In Lee et al.

(2020), power allocation is performed for the uplink single

antenna users, whereas in Cavalcante et al. (2019) the users

are equipped with MIMO antennas.
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Contribution: Taking the above considerations into

account, in this paper, we consider the problem of coor-

dinated beamforming in a two-cell network, where one cell

has downlink transmission and the other cell has uplink

transmission. We assume that the BSs and the users are

equipped with MIMO antennas, and we design the coor-

dinated beamforming vectors for the BS in the downlink

cell and the users in the uplink cell. Based on the demanded

rates, we assume that the network has some constraints on

the minimum rate of each user. On the other hand, an

important parameter is the amount of transmit power by the

BSs and the users. Therefore, we consider the sum transmit

power of the network as the criteria and minimize it under

the SINR constraints to ensure a minimum rate for each

user. In addition, we employ the random matrix theory to

propose an algorithm to solve the problem for the scenario

where the BSs and the users have mMIMO antennas. Such

scenario could happen when each of the users in our model

is a small BS or an access point connected to a macro BS

through a wireless backhaul. It must be noted that the sum

power minimization problem would be so complicated for

the mMIMO scenario; therefore, we propose a method to

leverage the computational complexity. We find equations

for the Lagrangian multipliers of the sum power mini-

mization problem, which only depend on the channel

statistics and the norm of the receive filters. Then,

employing the independence of the Lagrangian multipliers

from the instantaneous channel information, we propose a

less complicated iterative algorithm to solve the power

minimization problem for the dynamic TDD mMIMO

scenario. Actually, in the first algorithm proposed for

MIMO systems, we require the coefficients of the receive

filters to obtain the Lagrangian multipliers, and therefore, it

should be performed in each iteration, while in the second

algorithm, since we only require the norm of the receive

filters, it could be performed once, out of the iteration loop.

This is the reason that the computational complexity is

reduced in the second algorithm. Moreover, since the

Lagrangian multipliers in the second algorithm are inde-

pendent of instantaneous CSI, we could even more reduce

the computational complexity by obtaining the Lagrangian

multipliers only with the change of the statistics of the

channel. Simulation results show that yet our mMIMO

coordinated beamforming algorithm tracks the results of

the optimum sum power minimization approach.

Organization.The rest of the paper is organized as

follows: In Sect. 2, the system model is introduced. In Sect.

3, the coordinated beamforming vectors are designed for

MIMO systems. The proposed coordinated beamforming

approach is extended for mMIMO systems in Sect. 4. The

computational complexity of the algorithms is compared in

Sect. 5, and some simulation results are provided in Sect. 6.

Section 7 concludes the paper.

Notations. The vectors and the matrices are denoted

with boldface letters and boldface capital letters, respec-

tively. For matrix A, trfAg denotes the trace of this matrix

, i.e., trfAg ¼
P

i Ai;i, diagðAÞ shows the diagonal matrix

with the elements Ai;i and ATand AH are the transpose and

the Hermitian of matrix A, respectively. The N � N iden-

tity matrices are represented with IN . Notation �!a:s: denotes

the almost sure convergence.

2 System Model

In this paper, a two-cell network is considered in which the

first cell has downlink transmission and the second one has

uplink transmission (Fig. 1). In each cell, there is one BS

with N antennas which serves K users each equipped with

M antennas. In this scenario, we design the beamforming

vectors for the BS in the downlink cell and users in the

uplink cell in a coordinated manner. Let the ith BS and the

kth user terminal (UT) in the jth cell be represented with

BS(i) and UT(j,k), respectively. The notations of the

channel matrices and the beamforming vectors are as

shown in Table 1. Also, it is assumed that the elements of

the channel matrices are i.i.d. complex Gaussian random

variables. Then, the received signal at UT(1,k) after the

receive filter is Heath and Lozano (2018),

yDL1;k ¼ vDL1;k

�

HH
1;1;kw

DL
1;kx

DL
1;k

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Signal

þ
X

m6¼k

HH
1;1;kw

DL
1;mx

DL
1;m

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Intracell Interference

þ

XK

n¼1

H1;k
2;nv

UL
2;nx

UL
2;n

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Intercell Interference

þ z1;k
|{z}

AWGN

�

;

ð1Þ

where xDL1;m is the information signal sent for UT(1,m), xUL2;n

is the information signal transmitted by UT(2,n) and

z1;k �Nð0;N0IM�MÞ is the corresponding additive white

Gaussian noise. The first term in (1) is the desired signal

sent for UT (1,k), the second term is sum of the intracell

interference, the third term is sum of the intercell (uplink to

downlink) interference, and the last term is the corre-

sponding additive white Gaussian noise.

Furthermore, the received signal at BS(2) after the

receive filter corresponding to UT(2,k) is Heath and

Lozano (2018),
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yUL2;k ¼ wUL
2;k

�

H2;2;kv
UL
2;kx

UL
2;k

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Signal

þ
X

m6¼k

H2;2;mv
UL
2;mx

UL
2;m

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Intracell Interference

þ

XK

n¼1

H1;2w
DL
1;nx

DL
1;n

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Intercell Interference

þ z2;k
|{z}

AWGN

�

;

ð2Þ

where the first term is the desired signal sent for UT(2,k),

the second term is sum of the intracell interference, the

third term is sum of the intercell (downlink to uplink)

interference, and z2;k �Nð0;N0IN�NÞ is the corresponding

AWGN vector. Then, the SINR at UT(1,k) would be Heath

and Lozano (2018),

SINRDL
1;k ¼

jvDL1;kH
H
1;1;kw

DL
1;k j

2

P
m 6¼k jvDL1;kH

H
1;1;kw

DL
1;mj

2 þ
PK

n¼1 jvDL1;kH
1;k
2;nv

UL
2;nj

2 þ kvDL1;kk
2N0

;

ð3Þ

where the numerator is the power of the desired signal

received by UT(1,k) and the denominator is the sum of the

power of the intracell and intercell interference and the power

of the corresponding AWGN, respectively. Moreover, the

SINR corresponding to UT(2,k) is Heath and Lozano (2018),

SINRUL
2;k

¼
jwUL

2;kH2;2;kv
UL
2;k j

2

P

m 6¼k

jwUL
2;kH2;2;mv

UL
2;mj

2 þ
Pk

n¼1

jwUL
2;kH1;2wDL

1;nj
2 þ kwUL

2;kk
2N0

;

ð4Þ

where the numerator is the power of the desired signal

corresponding to UTð2; kÞ received by BSð2Þ and the

denominator is the sum of the power of the interference

caused by other users in cell-2 and the interference caused

by BS(1) and corresponding AWGN, respectively.

In this paper, various receivers such as MRC, local

MMSE and MMSE are considered for the BS in the uplink

cell and the users in the downlink cell, to evaluate the

performance of the proposed coordinated beamforming

approaches. Employing the formulas for these receivers

Chockalingam and Rajan (2014); Jayasinghe et al. (2015),

the expressions for the receive filters would be as follows,

Fig. 1 The system model of a

two-cell dynamic TDD network,

where cell 1 has downlink

transmission and simultaneously

cell 2 has uplink transmission

(uplink–downlink scenario)

Table 1 The notations of the

channel matrices and the

beamforming vectors

Hi;j 2 CN�N The channel matrix from BS(i) to BS(j).

Hi;j;k 2 CN�M The channel matrix from BS(i) to UT(j,k).

Hi;m
j;n 2 CM�M The channel matrix from UT(j, n) to UT(i, m).

wDL
1;k 2 CN�1 The downlink transmit beamforming vector for UT(1,k).

vUL2;k 2 CM�1 The uplink transmit beamforming vector for UT(2,k).

vDL1;k 2 C1�M The downlink receive filter vector for UT(1,k).

wUL
2;k 2 C1�N The uplink receive filter vector for UT(2,k).
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vDL;MRC
1;k ¼ ðHH

1;1;kw
DL
1;kÞ

H 8k; ð5Þ

wUL;MRC
2;k ¼ ðH2;2;kv

UL
2;kÞ

H 8k: ð6Þ

vDL;LMMSE
1;k

¼ ðHH
1;1;kw

DL
1;kÞ

H
XK

m¼1

ðHH
1;1;kw

DL
1;mÞðHH

1;1;kw
DL
1;mÞ

H þ N0IM

 !�1

;

ð7Þ

wUL;LMMSE
2;k

¼ ðH2;2;kv
UL
2;kÞ

H
XK

m¼1

ðH2;2;mv
UL
2;mÞðH2;2;mv

UL
2;mÞ

H þ N0IN

 !�1

:

ð8Þ

vDL;MMSE
1;k ¼ ðHH

1;1;kw
DL
1;kÞ

H

 
XK

m¼1

ðHH
1;1;kw

DL
1;mÞðHH

1;1;kw
DL
1;mÞ

Hþ

XK

n¼1

ðH1;k
2;nv

UL
2;nÞðH

1;k
2;nv

UL
2;nÞ

H þ N0IM

!�1

;

ð9Þ

wUL;MMSE
2;k ¼ ðH2;2;kv

UL
2;kÞ

H

 
XK

m¼1

ðH2;2;mv
UL
2;mÞðH2;2;mv

UL
2;mÞ

H

þ
XK

n¼1

ðH1;2w
DL
1;nÞðH1;2w

DL
1;nÞ

H þ N0IN

!�1

:

ð10Þ

3 Sum Power Minimization Problem
in MIMO Systems

In this Section, we formulate the sum power minimization

problem to design the coordinated beamforming vectors.

The criteria of the problem is the sum power of the

beamforming vectors, and as the constraints of the opti-

mization problem, the SINR of each of the users is con-

sidered to be more than a specified threshold; then, the

optimization problem would be,

min
wDL

1;k
;vUL

2;k
8k

PK

k¼1

kwDL
1;kk

2 þ kvUL2;kk
2

� �

s:t: SINRDL
1;k � c1;k k ¼ 1; . . .;K;

SINRUL
2;k � c2;k k ¼ 1; . . .;K;

ð11Þ

where c1;k and c2;k are thresholds of SINRs corresponding

to UTð1; kÞ and UTð2; kÞ, respectively. Replacing the SINR

definitions from (3) and (4), and after some mathematical

calculations, problem (11) would be,

min
wDL

1;k
;vUL

2;k
8k

XK

k¼1

wDL;H
1;k wDL

1;k þ vUL;H2;k vUL2;k

� �

� 1

c1;k

wDL;H
1;k H1;1;kv

DL;H
1;k vDL1;kH

H
1;1;kw

DL
1;kþ

þ
X

m 6¼k

wDL;H
1;m H1;1;kv

DL;H
1;k vDL1;kH

H
1;1;kw

DL
1;mþ

þ
XK

n¼1

vUL;H2;n H1;k;H
2;n vDL;H1;k vDL1;kH

1;k
2;nv

UL
2;nþ

þ kvDL1;kk
2N0 � 0 k ¼ 1; . . .;K

� 1

c2;k

vUL;H2;k HH
2;2;kw

UL;H
2;k wUL

2;kH2;2;kv
UL
2;kþ

þ
X

m 6¼k

vUL;H2;m HH
2;2;mw

UL;H
2;k wUL

2;kH2;2;mv
UL
2;mþ

þ
XK

n¼1

wDL;H
1;n HH

1;2w
UL;H
2;k wUL

2;kH1;2w
DL
1;nþ

þ kwUL
2;kk

2N0 � 0 k ¼ 1; . . .;K:

ð12Þ

It must be noted that the problem in (12) is nonconvex;

however, it could be rewritten as a second order cone

problem; then, the strong duality holds (Wiesel et al.

2006), and Karush-Kuhn-Tucker (KKT) conditions are

sufficient (Boyd and Vandenberghe 2004). Hence, in order

to solve the problem in (12), we evaluate the Lagrangian

function and investigate the KKT conditions.

Based on the definition of the Lagrangian of the opti-

mization problem in Boyd and Vandenberghe (2004), the

Lagrangian of the problem (12) would be,

L
�
w1; v2; k1; k2

�
¼
XK

k¼1

�

wDL;H
1;k wDL

1;k þ vUL;H2;k vUL2;k

þ k1;k

N

�
� ð1 þ 1

c1;k

ÞwDL;H
1;k H1;1;kv

DL;H
1;k vDL1;kH

H
1;1;kw

DL
1;k

þ
XK

m¼1

wDL;H
1;m H1;1;kv

DL;H
1;k vDL1;kH

H
1;1;kw

DL
1;m

þ
XK

n¼1

vUL;H2;n H1;k;H
2;n vDL;H1;k vDL1;kH

1;k
2;nv

UL
2;n þ kvDL1;kk

2N0

�

þ k2;k

M

�
� ð1 þ 1

c2;k

ÞvUL;H2;k HH
2;2;kw

UL;H
2;k wUL

2;kH2;2;kv
UL
2;k

þ
XK

m¼1

vUL;H2;m HH
2;2;mw

UL;H
2;k wUL

2;kH2;2;mv
UL
2;m

þ
XK

n¼1

wDL;H
1;n HH

1;2w
UL;H
2;k wUL

2;kH1;2w
DL
1;n þ kwUL

2;kk
2N0

�
�

;

ð13Þ

where w1 ¼ wDL
1;1; . . .;w

DL
1;K

h iT
, v2 ¼ vUL2;1; . . .; v

UL
2;K

h iT
, k1 ¼

k1;1; . . .; k1;K

	 
T
and k2 ¼ k2;1; . . .; k2;K

	 
T
, and the coeffi-

cients 1
N and 1

M before the Lagrangian multipliers are lied to
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simplify the formulations in the following, especially in

mMIMO scenario in Sect. 4 (See Appendix 8.3).

Based on the KKT conditions, the gradient of the

Lagrangian with respect to main variables in optimal point

is equal to zero, then the following conditions are resulted

in the problem,

oL
�
w1; v2; k1; k2

�

owDL
1;k

¼ 0 k ¼ 1; . . .;K; ð14Þ

oL
�
w1; v2; k1; k2

�

ovUL2;k

¼ 0; k ¼ 1; . . .;K; ð15Þ

which leads to,
�

IN � k1;k

N

�
1 þ 1

c1;k

�
H1;1;kv

DL;H
1;k vDL1;kH

H
1;1;k

þ
XK

m¼1

� k1;m

N
H1;1;mv

DL;H
1;m vDL1;mH

H
1;1;m

þ k2;m

M
HH

1;2w
UL;H
2;m wUL

2;mH1;2

�
�

wDL
1;k ¼ 0 k ¼ 1; . . .;K;

ð16Þ
�

IM � k2;k

M

�
1 þ 1

c2;k

�
HH

2;2;kw
UL;H
2;k wUL

2;kH2;2;k

þ
XK

n¼1

� k2;n

M
HH

2;2;kw
UL;H
2;n wUL

2;nH2;2;k

þ k1;n

N
H1;n;H

2;k vDL;H1;n vDL1;nH
1;n
2;k

�
�

vUL2;k ¼ 0; k ¼ 1; . . .;K:

ð17Þ

Then, by some calculation and simplification on (16), we

obtain the optimal beamforming vector corresponding to

UTð1; kÞ as follows,

wDL
1;k ¼

ffiffiffiffiffiffiffi
p1;k

p k1;k

N

�
1 þ 1

c1;k

�
�

IN þ R1

��1

H1;1;kv
DL;H
1;k

k k1;k

N

�
1 þ 1

c1;k

��
IN þ R1

��1
H1;1;kv

DL;H
1;k k

:

k ¼ 1; . . .;K;

ð18Þ

where,

R1 ¼
XK

m¼1

�
k1;m

N
H1;1;mv

DL;H
1;m vDL1;mH

H
1;1;mþ

þ k2;m

M
HH

1;2w
UL;H
2;m wUL

2;mH1;2

�

;

ð19Þ

and p1;k is,

p1;k ¼ ðvDL1;kH
H
1;1;kw

DL
1;kÞ

2

�
� k1;k

N

�
1 þ 1

c1;k

��
IN þ R1

��1
H1;1;kv

DL;H
1;k

�
�2
; k ¼ 1; . . .;K:

ð20Þ

Moreover, simplifying (17) we find the optimal vUL2;k as,

vUL2;k ¼

ffiffiffiffiffiffiffi
p2;k

p k2;k

M

�
1 þ 1

c2;k

�
�

IM þ R2;k

��1

HH
2;2;kw

UL;H
2;k

k k2;k

M

�
1 þ 1

c2;k

��
IM þ R2;k

��1
HH

2;2;kw
UL;H
2;k k

;

k ¼ 1; . . .;K;

ð21Þ

where

R2;k ¼
XK

n¼1

�
k2;n

M
HH

2;2;kw
UL;H
2;n wUL

2;nH2;2;k

þ k1;n

N
H1;n;H

2;k vDL;H1;n vDL1;nH
1;n
2;k

�

;

k ¼ 1; . . .;K;

ð22Þ

and

p2;k ¼ðwUL
2;kH2;2;kv

UL
2;kÞ

2

�
� k2;k

M

�
1 þ 1

c2;k

�
�

IM þ R2;k

��1

HH
2;2;kw

UL;H
2;k

�
�2
;

k ¼ 1; . . .;K:

ð23Þ

In addition, we use (16) and (17) to find the Lagrangian

multipliers and consequently the following equation sys-

tem is obtained for them,

k1;k ¼
1

1
N

�
1 þ 1

c1;k

�
vDL1;kH

H
1;1;k

�
IN þ R1

��1
H1;1;kv

DL;H
1;k

;

k ¼ 1; . . .;K;

k2;k ¼
1

1
M

�
1 þ 1

c2;k

�
wUL

2;kH2;2;k

�
IM þ R2;k

��1
HH

2;2;kw
UL;H
2;k

;

k ¼ 1; . . .;K:

ð24Þ

Since the Lagrangian multipliers, i.e., k1;k and k2;k are

appeared in the equations of R1 and R2;k, Eq. (24) is a

system of simultaneous equations with two unknown

variables. In order to solve this equation system, we state

the following theorem.

Theorem 1 Assume that function f : R2K ! R2K be

defined as f ðk1; k2Þ ¼ ½f1;1; . . .; f1;K ; f2;1; . . .; f2;K �T , where

for all k,
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f1;kðk1; k2Þ

¼ 1

1
N

�
1 þ 1

c1;k

�
vDL1;kH

H
1;1;k

�
IN þ R1

��1
H1;1;kv

DL;H
1;k

;

k ¼ 1; . . .;K;

f2;kðk1; k2Þ

¼ 1

1
M

�
1 þ 1

c2;k

�
wUL

2;kH2;2;k

�
IM þ R2;k

��1
HH

2;2;kw
UL;H
2;k

;

k ¼ 1; . . .;K;

then the fixed point iteration algorithm (See Algorithm 2.2

in Burden and Faires (2010)) for finding the fixed point of

function f converges to a unique solution.

Proof See Appendix 8.1. h

Equation (24) is actually the equation for finding the fixed

point of the defined function in Theorem 1 and therefore

could be solved using the fixed point iteration algorithm.

It must be noted that variables p1;k and p2;k defined in

(20) and (23) are the power of the beamforming vectors

wDL
1;k and vUL2;k , respectively, and in order to find them, we

take attention to the other KKT condition, which is,

k1;kðc1;k � SINRDL
1;kÞ ¼ 0; k ¼ 1; . . .;K;

k2;kðc2;k � SINRUL
2;kÞ ¼ 0; k ¼ 1; . . .;K:

ð25Þ

Moreover, based on (18) and (21) each of the beamforming

vectors is proportional to one of the Lagrangian multipli-

ers; then, none of the Lagrangian multipliers could be equal

to zero. Hence, all the inequality constraints would be

forced to equality. Therefore, if the normalized beam-

forming vectors be denoted by ŵDL
1;k and v̂UL2;k , the following

equations would be satisfied,

p1;k

c1;k

jv̂DL1;kH
H
1;1;kŵ

DL
1;k j

2 �
X

m 6¼k

p1;mjv̂DL1;kH
H
1;1;kŵ

DL
1;mj

2�

XK

n¼1

p2;njv̂DL1;kH
1;k
2;nv̂

UL
2;nj

2 ¼ kv̂DL1;kk
2N0 k ¼ 1; . . .;K;

p2;k

c2;k

jŵUL
2;kH2;2;kv̂

UL
2;k j

2 �
X

m 6¼k

p2;mjŵUL
2;kH2;2;mv̂

UL
2;mj

2�

Xk

n¼1

p1;njŵUL
2;kH1;2ŵ

DL
1;nj

2 ¼ kŵUL
2;kk

2N0 k ¼ 1; . . .;K;

ð26Þ

which form a system of 2K linear equations with 2K

unknowns of pi;ks, where i ¼ 1; 2 and k ¼ 1; . . .;K. In

order to solve the equation system (26), we write it as

follows,

F

p1;1

..

.

p1;K

p2;1

..

.

p2;K

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

¼

kv̂DL1;1k
2N0

..

.

kv̂DL1;Kk
2N0

kŵUL
2;1k

2N0

..

.

kŵUL
2;Kk

2N0

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

; ð27Þ

where matrix F is,

F ¼ F1;1 F1;2

F2;1 F2;2


 �

; ð28Þ

and its components satisfy the following conditions,

F1;1
k;m ¼

1

c1;k

jv̂DL1;kH
H
1;1;kŵ

DL
1;k j

2 m ¼ k

�jvDL1;kH
H
1;1;kŵ

DL
1;mj

2 m 6¼ k

8
><

>:
; ð29Þ

F1;2
k;m ¼ �jv̂DL1;kH

1;k
2;mv̂

UL
2;mj

2; ð30Þ

F2;1
k;m ¼ �jŵUL

2;kH1;2ŵ
DL
1;mj

2; ð31Þ

F2;2
k;m ¼

1

c2;k

jŵUL
2;kH2;2;kv̂

UL
2;k j

2 m ¼ k

�jŵUL
2;kH2;2;mv̂

UL
2;mj

2 m 6¼ k

8
><

>:
; ð32Þ

then,

p1;1

..

.

p1;K

p2;1

..

.

p2;K

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

¼ F�1

kv̂DL1;1k
2N0

..

.

kv̂DL1;Kk
2N0

kŵUL
2;1k

2N0

..

.

kŵUL
2;Kk

2N0

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

: ð33Þ

So far the equations are found for the receive filters, the

beamforming vectors, the Lagrangian multipliers and the

power of the beamforming vectors, which form a system of

equations with multiple unknowns. Now, we propose an

iterative algorithm (Algorithm 1) to solve this equation

system. In this algorithm, first the initial values are set for

the receive filters, then the evaluation of the Lagrangian

multipliers, beamforming vectors and receive filters are

iterated, respectively, until the sum transmit power of the

beamforming vectors converges to a constant value.

Finally, the computation of the power of the beamforming

vectors happens out of the iteration process, and regarding

the equivalence of Eqs. (25) and (33), the values of the

SINRs would become the target values, i.e., c1;k and c2;k

k ¼ 1; . . .;K. We must note that the process of obtaining
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the Lagrangian multipliers solves the equation system (24)

using the fixed point iteration algorithm.

4 Sum Power Minimization Problem
in mMIMO Networks

In this section, it is assumed that the BSs and the users are

equipped with mMIMO antennas. Increasing the number of

antennas naturally increases the computational complexity

of Algorithm 1, and the algorithm would become inap-

propriate for coordinated beamforming in the mMIMO

scenario. Accordingly, the aim is to propose a simplified

coordinated beamforming algorithm for such system.

Obviously, the complexity of the fixed point iteration used

to find the Lagrangian multipliers is sensitive to the number

of antennas, and regarding (24), it could be observed that

the Lagrangian multipliers depend on the instantaneous

channel state information; therefore, when this information

changes, a complex process to find the Lagrangian multi-

pliers should be repeated in the main iteration part of the

Algorithm. Accordingly, we find a new equation system for

the Lagrangian multipliers, which only depends on the

channel statistics and thus should not be necessarily solved

in each run, and even in the main iteration, of the algo-

rithm. In addition, in Sect. 6, we will show that the new

equation system could be solved with lower complexity

than the fixed point iteration in Algorithm 1. As a pre-

requisite, the variances of the elements of the channel

matrices are denoted as shown in Table 2.

First, in the following theorem, we use the linear algebra

to find equivalent terms for the denominator terms of the

Lagrangian multiplies in Eq. (24), and therefore, we obtain

a new equation for the Lagrangian multipliers.
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Theorem 2 Let for k ¼ 1; . . .;K:

R0
1;k,R1 �

k1;k

N
H1;1;kv

DL;H
1;k vDL1;kH

H
1;1;k;

R0
2;k,R2;k �

k2;k

M
HH

2;2;kw
UL;H
2;k wUL

2;kH2;2;k;

ð34Þ

then if N;M �! 1 the following equation for the

Lagrangian multipliers k1;k, k ¼ 1; . . .;K is resulted from

(24),

k1;k ¼
c1;k

mR0
1;k
ð�1ÞkvDL1;kk

2r2
1;1;k

; ð35Þ

where mR0
1;k
ð�1Þ ¼ 1

N trf
�
R0

1;k þ IN
��1g. We could also

approximate k2;k, k ¼ 1; . . .;K by some mild assumptions

(explained in the proof of the theorem) as follows,

k2;k ’
c2;k

mR0
2;k
ð�1ÞkwUL

2;kk
2r2

2;2;k

; ð36Þ

where mR0
2;k
ð�1Þ ¼ 1

M trf
�
R0

2;k þ IM
��1g.

Proof See Appendix 8.2. h

We must note that mR0
1;k
ð�1Þ and mR0

2;k
ð�1Þ appeared in

Eqs. (35) and (36), depend on the channel coefficients;

Therefore, we use the following theorem to obtain an

equation system to derive mR0
1;k
ð�1Þ and mR0

2;k
ð�1Þ, which

only depends on the variances of the channel coefficients.

Theorem 3 Assume that for k ¼ 1; . . .;K, Eq. (34) is valid

and mR0
1;k
ð�1Þ ¼ 1

N trf
�
R0

1;k þ IN
��1g and

mR0
2;k
ð�1Þ ¼ 1

M trf
�
R0

2;k þ IM
��1g, then when N;M;K �!

1 and M ¼ N, we have the following,

mR0
1;k
ð�1Þ �!a:s:

N;K�!1
�mR0

1;k
ð�1Þ;

mR0
2;k
ð�1Þ �!a:s:

N;K�!1
�mR0

2;k
ð�1Þ;

where �mR0
1;k
ð�1Þ and �mR0

2;k
ð�1Þ satisfy the following fixed

point equations,

�mR0
1;k
ð�1Þ ¼ 1

N

XK

i 6¼k

k1;i vDL1;i

�
�
�

�
�
�

2

r2
1;1;i

1 þ k1;i vDL1;i

�
�
�

�
�
�

2

r2
1;1;i �mR0

1;k
ð�1Þ

0

B
@

þ 1

M

XK

j¼1

k2;j wUL
2;j

�
�
�

�
�
�

2

r2
1;2

1 þ k2;j wUL
2;j

�
�
�

�
�
�

2

r2
1;2 �mR0

1;k
ð�1Þ

þ 1

1

C
A

�1

;

ð37Þ

�mR0
2;k
ð�1Þ ¼ 1

N

XK

i¼1

k1;i vDL1;i

�
�
�

�
�
�

2

ðr1;i
2;kÞ

2

1 þ k1;i vDL1;i

�
�
�

�
�
�

2

ðr1;i
2;kÞ

2 �mR0
2;k
ð�1Þ

þ

0

B
@

1

M

XK

j 6¼k

k2;j wUL
2;j

�
�
�

�
�
�

2

r2
2;2;j

1 þ k2;j wUL
2;j

�
�
�

�
�
�

2

r2
2;2;j �mR0

2;k
ð�1Þ

þ 1

1

C
A

�1

:

ð38Þ

Proof See Appendix 8.3. h

From Theorems 2 and 3, it could be concluded that

when N;M;K �! 1 and M ¼ N, the system of 2K equa-

tions with 2K unknowns (24) is equivalent to a system

consisting Eqs. (35), (36), (37) and (38). We must note that

this equation depends on the power of the receive filters,

which fortunately could be specified arbitrarily indepen-

dent of the receive filter vectors.1 Therefore, for coordi-

nated beamforming, we should first solve the above

equation system and then the equation system involving the

beamforming vectors and the receive filters could be

solved. Accordingly, we propose Algorithm 2 to design the

coordinated beamforming vectors in the mMIMO scenario.

In this algorithm, the steps of finding the Lagrangian

multipliers depend on the channel statistics, which change

very slower than the instantaneous of the channel coeffi-

cients (Viering et al. 2002). Thus, we could use the long-

term time constant of the channels2 and obtain the

Lagrangian multipliers only after expiration of this time.

Moreover, it must be noted that in Algorithm 2, as well as

Algorithm 1, the power of the beamforming vectors is

obtained at the final step and consequently the actual

amounts of the target SINRs are achieved for all users.

Table 2 The variances of the channels

r2
i;j

The variance of the channel between BS(i) and BS(j).

ðrj;ni;mÞ
2 The variance of the channel between UTði;mÞ and UTðj; nÞ.

r2
i;j;k

The variance of the channel between BS(i) and UTðj; kÞ.

1 Actually, since the power of the receive filter could be removed

from the numerator and denominator of the receive SINR, it has no

impact on the SINR
2 The long-term time constant is the time over which the statistics of

the channel change. In the urban areas, this time is about 100 times

the coherence time of the channel (Viering et al. 2002).
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Corollary 1 Although, the problem discussed above is for

two cells (one has downlink transmission and the other has

uplink transmission), one could generalize the scenario to

the case of multicell, i.e., some cells with downlink trans-

mission and others with uplink transmission. The problem

is formulized as in the following,

min
wDL

i;k
;vUL

j;k
8k

PK
k¼1

PL1

i¼1 kwDL
i;k k

2 þ
PL2

j¼1 kvULj;k k
2

� �

s:t: SINRDL
i;k � cDLi;k k ¼ 1; . . .;K; i ¼ 1; . . .; L1;

SINRUL
j;k � cULj;k k ¼ 1; . . .;K; j ¼ 1; . . .; L2;

where L1 is the number of downlink cells, L2 is the number

of uplink cells, and K is the number of users per cell.

Moreover, wDL
i;k , SINRDL

i;k and cDLi;k denote the beamforming

vector, the SINR and the threshold of the SINR corre-

sponding to the kth user in the ith downlink cell, respec-

tively. Similarly, vULj;k , SINRUL
j;k and cULj;k represent the

beamforming vector, the SINR and the threshold of the

SINR for the kth user in the jth uplink cell, respectively. It

must be noted that this problem could be the subject of the

future research.

5 Computational Complexity

In this section, we compare the computational complexity

of the proposed algorithms. As an example, it is assumed

that the users in the downlink cell and the BS in the uplink

cell are equipped with MRC receivers. We consider that

the iteration number of each of the algorithms is 15 times

to make sure both the algorithms are converged (Fig. 3).

Moreover, t1 is the iteration number of each of the inner

loops in the process of finding the Lagrangian multipliers

in Algorithm 2, t2 is the iteration number of outer loop in

the process of finding the Lagrangian multipliers in

Algorithm 2 and t3 is the iteration number in process of

finding the Lagrangian multipliers in Algorithm 1. By this

assumptions, we count the number of multipliers per-

formed in each algorithm as the computational complexity.

Then, the computational complexity of beamforming in the

downlink and uplink cells would be as shown in Table 3.

It could be observed that the complexity of the beam-

forming in downlink and uplink cells in Algorithm 1 is of

the order of OðKðN3 þM3Þ þ K2ðM2 þMNÞÞ and the

complexity of Algorithm 2 is of the order of

OðK2ðM2 þMNÞÞ. Thus, with respect to the number of

antennas M and N, Algorithm 2 is computationally simpler

than Algorithm 1. Moreover, it must be noted that since in

algorithm 2, the Lagrangian multipliers are obtained using
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the statistics of the channels, it is not necessary to recal-

culate them until the channel statistics change.

6 Simulation Results

In order to evaluate and compare the proposed beam-

forming schemes, some simulation examples are provided.

A two-cell system is considered, in which the distance

between the BSs of different cells is D meters, and K users

are uniformly distributed in each cell in the coordination

region (Fig. 2), where the users are more affected by the

intercell interference compared to the remaining area of the

cells. The simulation parameters are set as shown in

Table 4.

First, the convergence of the proposed beamforming

algorithms is investigated. In Fig. 3, the sum transmit

power of the beamforming vectors in the downlink and

uplink cells are plotted versus the number of iterations of

the algorithms for MRC, local MMSE and MMSE recei-

vers, individually. In this simulation, M ¼ N ¼ 32,K ¼ 2

and the desired SINR for all the users is equal to c ¼ 3dB.

It could be observed that for all the receivers both the

algorithms converge from sum transmit power point of

view. Moreover, for evaluation of the algorithms we cal-

culate the mean and standard deviation of the achieved

Fig. 2 The coordination region of the cells, where the users

experience more intercell interference compared to the remaining

area of the cell. In this region, the minimum distance of the users from

their corresponding BS is equal to 0:25D

Table 4 The simulation settings

The distance between the BSs D=1000m

Variance of each channel coefficient (dB)

d: Distance between corresponding

transmitter and receiver.

r2 ¼ �36 � 36 log ddB

The power spectral density of AWGN �174 dBm/Hz

The channel bandwidth W ¼ 10 MHz

PBS
0

40 dBm

PUT
0

20 dBm

PBS
C

20 dBm

PUT
C 15 dBm

(a)

(b)

(c)

Fig. 3 Sum transmit power versus the number of iterations of

Algorithms 1 and 2, K ¼ 2, M ¼ N ¼ 32, c ¼ 3dB a Using MRC

receiver. b Using local MMSE receiver. c Using MMSE receiver
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SINRs over the variations of the channel coefficients, for

various number of antennas by setting c ¼ 3dB. We

observe that the mean of the achieved SINRs of two

algorithms is equal to 3dB and the standard deviations of

them are in the order of 10�16 dBm, which is negligible.

For the performance evaluation of Algorithm 2, the sum

transmit power variation is illustrated versus the desired

(a)

(b)

(c)

Fig. 4 Sum transmit power versus desired SINR c, K ¼ 2 M ¼ N ¼
32 a Using MRC receiver. b Using local MMSE receiver. c Using

MMSE receiver

(b)

(c)

(a)

Fig. 5 Sum transmit power versus the number of antennas, K ¼ 2,

c ¼ 3 dB a Using MRC receiver. b Using local MMSE receiver.

c Using MMSE receiver
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SINR c in Fig. 4. In this example, K ¼ 2 and M ¼ N ¼ 32

are set. It could be observed that for all the receivers, the

consumed power in both the downlink and uplink cells for

Algorithm 2 is close to that of Algorithm 1. This subject

confirms the performance of Algorithm 2 and shows the

near optimality of the algorithm in this scenario.

In order to investigate the performance of Algorithm 2

for various number of antennas, the sum transmit power of

the algorithms is plotted versus the number of antennas at

each BS and user (which are assumed to be equal) in Fig. 5

by setting K ¼ 2 and c ¼ 3dB. It could be observed that by

increasing the number of antennas, the sum transmit power

decreases, which is expected, since more antennas focus

the power more accurately on the desired receiver. More-

over, as the number of antennas increases, the sum transmit

power of Algorithm 2 more accurately tracks the perfor-

mance of Algorithm 1.

For investigation of the performance of Algorithm 2 for

various number of UTs, the sum transmit power in the cells

versus the number of UTs in each cell (K) is depicted in

Fig. 6. In this figure each BS and UT has N ¼ M ¼ 64

antennas and the desired SINR is equal to c ¼ 3dB. It could

be observed that the performance of algorithm 2 is affected

by the number of UTs per cell, so that by increasing the

value of K we have a small gap between the sum transmit

power of two algorithms. This is because the number of

approximations in Algorithm 2 is equal to K (for more

details see the proof of Theorem 2 in Sect. 8.2) and

increasing the number of approximations can affect the

performance of the algorithm.

Now, we compare the performance of the algorithms

from the energy efficiency (EE) point of view. The EE of a

communication system could be defined as the ratio of the

sum rate to the total power consumption of the system (Li

et al. 2015; He et al. 2015; Tervo et al. 2018). Thus, in our

scenario it could be expressed as,

EE ¼
P2

i¼1

PK
k¼1 logð1 þ SINRi;kÞ

PK
k¼1 kwDL

1;kk
2 þ kvUL2;kk

2
� �

þ NPBS
C þ PBS

0 þ KMPUT
C þ PUT

0

;

ð40Þ

where SINRi;k is the SINR of the UT(i, k), and PBS
C and PUT

C

are the constant power consumption per antenna at each BS

and user, respectively. Moreover, PBS
0 and PUT

0 are,

respectively, the basic power consumption at each BS and

user and are independent of the number of transmit

antennas (Ng et al. 2012). In Fig. 7, the EE of the algo-

rithms versus the number of UTs per cell is illustrated. In

(b)

(c)

(a)

bFig. 6 Sum transmit power versus the number of UTs per cell,

M ¼ N ¼ 64, c ¼ 3 dB a Using MRC receiver. b Using local MMSE

receiver. c Using MMSE receiver
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this example, the number of Antennas at each BS and UT

and the desired SINR are, respectively, set to N ¼ M ¼ 64

and c ¼ 3dB. It could be observed that, as expected, by

increasing the number of UTs the EE of the algorithms

increases. Moreover, for the various number of UTs per

cell the EE of Algorithm 2 is close to that of Algorithm 1.

This subject shows that the small gap between the sum

transmit power of two algorithms could not affect the

performance of Algorithm 2 from the EE point of view. In

Fig. 8, the EE of the algorithms versus the number of

antennas (N) at each BS and UT is depicted. As it is

expected that more antennas bring us a higher rate, in this

example, the desired SINR in dB is chosen to be propor-

tional to N, i.e., c ¼ 0:25N dB. It could be observed that

although, by increasing the number of antennas, the system

have more total power consumption, the EE of the system

is growing. Furthermore, it could be noted that the EEs of

the algorithms versus N closely track each other.

7 Conclusion

In this paper, the problem of coordinated multicell beam-

forming was investigated in a two-cell MIMO network,

where there are downlink transmission in one cell and

uplink transmission in the other cell. The coordinated

beamforming vectors were designed for the downlink BS

and the uplink users to minimize the sum transmit power of

the beamforming vectors subject to per user SINR con-

straints. Next, the sum power minimization problem was

extended to a mMIMO network, and using random matrix

theory, an algorithm was proposed for coordinated beam-

forming, in which the number of computations is reduced.

Using simulation examples, it was shown that the mMIMO

algorithm achieves nearly optimal results in terms of the

amount of power consumption. Also, the energy efficiency

of the algorithms were compared and it was observed that

the energy efficiency of the mmMIMO algorithm is com-

parable to the optimal coordinated beamforming algorithm.

bFig. 7 Energy efficiency versus the number of UTs per cell,

M ¼ N ¼ 64, c ¼ 3 dB a Using MRC receiver. b Using local MMSE

receiver. c Using MMSE receiver

(b)

(c)

(a)
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Appendix

The proof of Theorem 1

In order to prove Theorem 1, we use the concept of stan-

dard function defined in Yates (1995) and Lemma 1.

Definition 1 A function f : Rn ! Rn, where for

x ¼ ½x1; . . .; xn�, f ðx1; . . .; xnÞ ¼ ½f1ðxÞ; . . .; fnðxÞ�T is said

to be a standard function if it satisfies the following

conditions,

1.Positivity: If x ¼ ½x1; . . .; xn�T and 8i xi � 0 then 8i
fiðxÞ� 0.

2. Monotonicity: If x ¼ ½x1; . . .; xn�T , y ¼ ½y1; . . .; yn�T
and for all i, xi � yi then 8i fiðxÞ� fiðyÞ.

3. Scalability: For all q� 0, and x, 8i qfiðxÞ� fiðqxÞ.

Lemma 1 If f be a standard function, then the fixed point

iteration algorithm converges to a unique solution.

Proof The proof could be found in Yates (1995). h

Now, we prove that the function defined in Theorem 1 is

standard and then its fixed point could be found using the

fixed point iteration algorithm. Accordingly, we investigate

the conditions of the standard function,

1. Positivity: It must be shown that for i ¼ 1; 2, 8k,

fi;kðki; k2Þ[ 0

8kk1;k; k2;k [ 0 ¼) R1 	 0 ¼)
�
R1 þ IN

�
	 0

¼)
�
R1 þ IN

��1 	 0 ¼)
8k f1;kðk1; k2Þ[ 0:

8kk1;k; k2;k [ 0 ¼) R2;k 	 0 ¼)
�
R2;k þ IM

�
	 0 ¼)

�
R2;k þ IM

��1 	 0 ¼) 8k f2;kðk1; k2Þ[ 0:

2. Monotonicity: It must be confirmed that,

8i; k ki;k [ k0i;k ¼) fi;kðk1; k2Þ[ fi;kðk01; k02Þ:
R1 ¼ R0

1 þ
�
R1 � R0

1

�
¼) R1 ¼

XK

m¼1

�
k01;m
N

H1;1;mv
DL;H
1;m vDL1;mH

H
1;1;m þ

k02;m
M

HH
1;2w

UL;H
2;m wUL

2;mH1;2

�

þ

XK

m¼1

� ðk1;m � k01;mÞ
N

H1;1;mv
DL;H
1;m vDL1;mH

H
1;1;m

þ
ðk2;m � k02;mÞ

M
HH

1;2w
UL;H
2;m wUL

2;mH1;2

�

:

As mentioned, ki;k [ k0i;k and then R1 � R0
1 	 0; on the

other hand, based on the Proposition 4 in Wiesel et al.

(2006), for nonnegative matrices C and D and vector x

in the range of C, the following equation is satisfied,

(b)

(c)

(a)

Fig. 8 Energy efficiency versus the number of Antennas, K ¼ 2, c ¼
0:25N dB a Using MRC receiver. b Using local MMSE receiver.

c Using MMSE receiver
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1

xH
�
Cþ D

��1
x
� 1

xHC�1x
; ð41Þ

then with defining x ¼ H1;1;kv
DL;H
1;k , C ¼ IN þ R0

1 and

D ¼ R1 � R0
1, the result would be,

1

1
N

�
1 þ 1

c1;k

�
vDL1;kH

H
1;1;k

�
IN þ R1

��1
H1;1;kv

DL;H
1;k

�

1

1
N

�
1 þ 1

c1;k

�
vDL1;kH

H
1;1;k

�
IN þ R0

1

��1
H1;1;kv

DL;H
1;k

;

then, f1;kðk1; k2Þ[ f1;kðk01; k02Þ. This equation could be

similarly proved for f2;k.

3. Scalability: It should be proved that for q[ 1,

8i; k qfi;kðk1; k2Þ[ fi;kðqk1; qk2Þ:

Assume that q[ 1 be arbitrary, then,

qf1;kðk1; k2Þ ¼
1

1
N

�
1 þ 1

c1;k

�
vDL1;kH

H
1;1;k

�
qIN þ qR1

��1
H1;1;kv

DL;H
1;k

;

where

qIN þ qR1 ¼ qIN þ q
XK

m¼1

�
k1;m

N
H1;1;mv

DL;H
1;m vDL1;mH

H
1;1;mþ

k2;m

M
HH

1;2w
UL;H
2;m wUL

2;mH1;2

�

¼ ðq� 1ÞIN þ IN

þ q
XK

m¼1

�
k1;m

N
H1;1;mv

DL;H
1;m vDL1;mH

H
1;1;m

þ k2;m

M
HH

1;2w
UL;H
2;m wUL

2;mH1;2

�

:

As mentioned, q[ 1 and then, ðq� 1ÞIN 
 0; hence,

defining C ¼ IN þ qR1 and D ¼ ðq� 1ÞIN , based on (41),

the following equation is resulted,

qf1;kðk1; k2Þ ¼
1

1
N

�
1 þ 1

c1;k

�
vDL1;kH

H
1;1;k

�
qIN þ qR1

��1
H1;1;kv

DL;H
1;k

�

1

1
N

�
1 þ 1

c1;k

�
vDL1;kH

H
1;1;k

�
IN þ qR1

��1
H1;1;kv

DL;H
1;k

¼ f1;kðqk1; qk2Þ:

This equation could be similarly confirmed for f2;k.
Accordingly, f is a standard function, and based on

Lemma 1, the fixed point of this function could be found

using the fixed point iteration algorithm.

The Proof of Theorem 2

In order to prove Theorem 2, we first state the following

Lemmas.

Lemma 2 (Silverstein and Bai (1995)) Assume that A 2
CN�N be a hermity and invertible matrix. Then, for any

vector x 2 CN�1 and s 2 C, if Aþ sxxH is an invertible

matrix, then the following equations are held

ðAþ sxxHÞ�1 ¼ A�1 � A�1sxxHA�1

1 þ sxHA�1x
; ð42Þ

xHðAþ sxxHÞ�1 ¼ xHA�1

1 þ sxHA�1x
: ð43Þ

Lemma 3 (Bai and Silverstein (1998)) Assume that

x; y�CN ð0; 1
N INÞ 2 CN be independent and A be a

hermity matrix independent of x and y, then

xHAx �!a:s:
N!1

1
N trfAg and xHAy �!a:s:

N!1
0:

Lemma 4 For k ¼ 1; . . .;K,

H1;1;kv
DL;H
1;k �CN ð0; kvDL1;kk

2r2
1;1;kINÞ;

HH
2;2;kw

UL;H
2;k �CN ð0; kwUL

2;kk
2r2

2;2;kIMÞ:

Proof The proof is straightforward. h

Now, considering (24) we have,

k1;k ¼
1

1
N

�
1 þ 1

c1;k

�
vDL1;kH

H
1;1;k

�
IN þ R1

��1
H1;1;kv

DL;H
1;k

;

and on the other hand based on Lemma 2,

vDL1;kH
H
1;1;k

�
IN þ R1

��1
H1;1;kv

DL;H
1;k

¼
vDL1;kH

H
1;1;k

�
IN þ R0

1

��1
H1;1;kv

DL;H
1;k

1 þ k1;k

N vDL1;kH
H
1;1;k

�
IN þ R0

1

��1
H1;1;kv

DL;H
1;k

;

then,

k1;k ¼
1 þ k1;k

N vDL1;kH
H
1;1;k

�
IN þ R0

1

��1
H1;1;kv

DL;H
1;k

1
N

�
1 þ 1

c1;k

�
vDL1;kH

H
1;1;k

�
IN þ R0

1

��1
H1;1;kv

DL;H
1;k

;

hence,

k1;k ¼
c1;k

1
N v

DL
1;kH

H
1;1;k

�
IN þ R0

1

��1
H1;1;kv

DL;H
1;k

: ð44Þ
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Also, based on Lemma 4,

H1;1;kv
DL;H
1;k �CN ð0; kvDL1;kk

2r2
1;1;kINÞ and it is clear that the

matrix R0
1;k and vector H1;1;kv

DL;H
1;k are independent, then

based on Lemma 3,

1

N
vDL1;kH

H
1;1;k

�
IN þ R0

1

��1
H1;1;kv

DL;H
1;k

�!a:s:
N!1

1

N
kvDL1;kk

2r2
1;1;ktrf

�
IN þ R0

1

��1g:

On the other hand, according to the assumption of the

theorem, mR0
1;k
ð�1Þ ¼ 1

N trf
�
R0

1;k þ IN
��1g, hence,

1

N
vDL1;kH

H
1;1;k

�
IN þ R0

1

��1
H1;1;kv

DL;H
1;k

�!a:s:
N!1

kvDL1;kk
2r2

1;1;kmR0
1;k
ð�1Þ;

ð45Þ

then considering (44), we result the following equation for

the Lagrangian multipliers,

k1;k ¼
c1;k

kvDL1;kk
2r2

1;1;kmR0
1;k
ð�1Þ

:

Now, we prove the second equation of Theorem 2; con-

sidering (24), we have,

k2;k ¼
1

1
M

�
1 þ 1

c2;k

�
wUL

2;kH2;2;k

�
IM þ R2;k

��1
HH

2;2;kw
UL;H
2;k

;

also based on Lemma 2,

wUL
2;kH2;2;k

�
IM þ R2;k

��1
HH

2;2;kw
UL;H
2;k ¼

¼
wUL

2;kH2;2;k

�
IM þ R0

2;k

��1
HH

2;2;kw
UL;H
2;k

1 þ k2;k

M wUL
2;kH2;2;k

�
IM þ R0

2;k

��1
HH

2;2;kw
UL;H
2;k

;

then,

k2;k ¼
1 þ k2;k

M wUL
2;kH2;2;k

�
IM þ R0

2;k

��1
HH

2;2;kw
UL;H
2;k

1
M

�
1 þ 1

c2;k

�
wUL

2;kH2;2;k

�
IM þ R0

2;k

��1
HH

2;2;kw
UL;H
2;k

;

hence,

k2;k ¼
c2;k

1
MwUL

2;kH2;2;k

�
IM þ R0

2;k

��1
HH

2;2;kw
UL;H
2;k

: ð46Þ

But based on (22), the matrix R0
2;k is not independent of the

vector HH
2;2;kw

UL;H
2;k then the term

1

M
wUL

2;kH2;2;k

�
IM þ R0

2;k

��1
HH

2;2;kw
UL;H
2;k

could not be accurately approximated. However, if it be

assumed that the eliminated term of matrix R2;k,
k2;k

M HH
2;2;kw

UL;H
2;k wUL

2;kH2;2;k is the dominant term among the

terms containing the random matrix HH
2;2;k,

then R0
2;k and HH

2;2;kw
UL;H
2;k could be considered inde-

pendent, then based on Lemma 3 and Lemma 4,

1

M
wUL

2;kH2;2;k

�
IM þ R0

2;k

��1
HH

2;2;kw
UL;H
2;k

�!a:s:
M!1

1

M
kwUL

2;kk
2r2

2;2;ktrf
�
IM þ R0

2;k

��1g;

hence, based on the assumption of the theorem we have,

1

M
wUL

2;kH2;2;k

�
IM þ R0

2;k

��1
HH

2;2;kw
UL;H
2;k

�!a:s:
M!1

kwUL
2;kk

2r2
2;2;kmR0

2;k
ð�1Þ;

then based on (45), the result would be,

k2;k ’
c2;k

mR0
2;k
ð�1ÞkwUL

2;kk
2r2

2;2;k

;

where using ’ is because of that it was connived to con-

sider R0
2;k and HH

2;2;kw
UL;H
2;k independent.

The proof of Theorem 3

In order to prove Theorem 3, we first state the following

theorem from the random matrix theory,

Theorem 4 (See Theorem 5 in Lakshminarayana et al.

(2015)) Consider matrix B ¼ XTXH , where X ¼ 1ffiffiffi
N

p Y 2
CN�LK with components Yðp; qÞ� CN ð0; 1Þ and T ¼
diag

�
t1; . . .; tLK

�
2 RLK�LK be a non-random diagonal

matrix. Assume that mBðzÞ ¼ 1
N trf

�
B� zIN

��1g, z 2 R

then,

mBðzÞ �!a:s:
N;K!1

�mBðzÞ;

where �mBðzÞ is the unique solution of following fixed point

equation,

�mBðzÞ ¼
�

1

N

XLK

i¼1

ti
1 þ ti �mBðzÞ

� z

��1

: ð47Þ

Now, we rewrite matrix R0
1;k as,
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R0
1 ¼

XK

m 6¼k

k1;m

N
H1;1;mv

DL;H
1;m vDL1;mH

H
1;1;m

þ
XK

m¼1

k2;m

M
HH

1;2w
UL;H
2;m wUL

2;mH1;2

¼


H1;1;1v

DL;H
1;1ffiffiffiffi

N
p

r1;1;1

; . . .;
H1;1;k�1v

DL;H
1;k�1ffiffiffiffi

N
p

r1;1;k�1

;
H1;1;kþ1v

DL;H
1;kþ1ffiffiffiffi

N
p

r1;1;kþ1

;

. . .;
H1;1;Kv

DL;H
1;Kffiffiffiffi

N
p

r1;1;K

;
HH

1;2w
UL;H
2;1ffiffiffiffiffi

M
p

r1;2

; . . .;
HH

1;2w
UL;H
2;Kffiffiffiffiffi

M
p

r1;2

�

diag

�

k1;1r
2
1;1;1kvDL1;1k

2; . . .; k1;k�1r
2
1;1;k�1kvDL1;k�1k

2;

k1;kþ1r
2
1;1;kþ1kvDL1;kþ1k

2; . . .; k1;Kr
2
1;1;KkvDL1;Kk

2

�



H1;1;1v

DL;H
1;1ffiffiffiffi

N
p

r1;1;1

; . . .;
H1;1;k�1v

DL;H
1;k�1ffiffiffiffi

N
p

r1;1;k�1

;
H1;1;kþ1v

DL;H
1;kþ1ffiffiffiffi

N
p

r1;1;kþ1

;

. . .;
H1;1;Kv

DL;H
1;Kffiffiffiffi

N
p

r1;1;K

;
HH

1;2w
UL;H
2;1ffiffiffiffiffi

M
p

r1;2

; . . .;
HH

1;2w
UL;H
2;Kffiffiffiffiffi

M
p

r1;2

�H

¼ X1T1X
H
1 ;

where

X1 ¼


H1;1;1v

DL;H
1;1ffiffiffiffi

N
p

r1;1;1

; . . .;
H1;1;k�1v

DL;H
1;k�1ffiffiffiffi

N
p

r1;1;k�1

;
H1;1;kþ1v

DL;H
1;kþ1ffiffiffiffi

N
p

r1;1;kþ1

;

. . .;
H1;1;Kv

DL;H
1;Kffiffiffiffi

N
p

r1;1;K

;
HH

1;2w
UL;H
2;1ffiffiffiffiffi

M
p

r1;2

; . . .;
HH

1;2w
UL;H
2;Kffiffiffiffiffi

M
p

r1;2

�

;

and matrix T is,

diag

�

k1;1r
2
1;1;1kvDL1;1k

2; . . .; k1;k�1r
2
1;1;k�1kvDL1;k�1k

2;

k1;kþ1r
2
1;1;kþ1kvDL1;kþ1k

2; . . .; k1;Kr
2
1;1;KkvDL1;Kk

2

�

:

The vector Y1 ¼
ffiffiffiffi
N

p
X1 is a zero mean normal random

vector with variance one, then based on Theorem 4 when N

and K limit to infinity, the following would be resulted,

mR0
1;k
ð�1Þ ¼ 1

N
trf
�
R0

1;k þ IN
��1g �!a:s:

N;K�!1
�mR0

1;k
ð�1Þ;

where �mR0
1;k
ð�1Þ is the unique solution of Eq. (37).

Equation (38) could be similarly proved by rewriting

matrix R0
2;k.
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