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Abstract
The following study presents a novel fault detection approach, based on nonlinear parity design using nonlinear unknown

input observers, for a class of nonlinear systems in the presence of sensor noise. Initially, fault and noise are decoupled via

splitting the system into two subsystems by a series of transformations on the states and output equations. The nonlinear

unknown input observer estimates the states in the subsystem subject to sensor noise, while the states in the other

subsystem are estimated with the proposed equation. The objective in this study is to ensure the asymptotic stability of the

error dynamics using the Lyapunov method. Hence, the results are formulated in the form of bilinear matrix inequalities. At

the same time, the nonlinear parity approach is employed to design residue signals in the subsystem subject to actua-

tor/component faults. Sufficient conditions are established to guarantee the convergence of the state estimation error. The

goal in the parity approach is to generate a specific residue indicating the difference between nominal and faulty states.

Finally, three simulations are provided to illustrate the efficiency of the proposed algorithm.

Keywords Fault detection � Nonlinear systems � Nonlinear parity approach � Unknown input observer � Mapping �
Residuals

1 Introduction

Over the past few decades, fault detection and diagnosis

played a significant role in crucial industries such as air-

craft, trains, power plants, and chemical plants. In practice,

many systems may be exposed to random variations, which

may result in component failure, abrupt changes in oper-

ating points, and measurement noise. Generally, the opti-

mal performance of such systems has a direct relationship

with the predetermined efficiency and profitability.

Therefore, the user must be aware of the performance and

working conditions of a particular system. Early fault

detection (i.e., when the system is functional in a controlled

condition) prevents abnormal incidents and reduces system

losses. Moreover, it can avoid sudden disasters and system

disability. Hence, fault detection and identification is a

significant issue for industrial practitioners and academic

researchers.

An extension of a multi-model approach was proposed

in Fair and Campbell (2011) to detect two or more

simultaneous faults in continuous-time linear systems in

the presence of model uncertainty. To achieve this objec-

tive, auxiliary signals for fault detection and identification

were developed. The ad-joint null-space method is used in

Russell (2011) for fault detection in both continuous and

discrete linear elastic systems. In the proposed approach,

parameter identification problems should be solved. Over

the past two decades, many studies have investigated fault

detection and identification approaches using analytical or

statistical methods. The parity relation-based optimization

approach, introduced in Chen and Patton (2012), is one of

the most significant optimal approaches for robust fault
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diagnosis systems. In the early 1980s, Linear Analytical

Redundancy (AR) was utilized for the first time in Chow

and Willsky (1984). In this approach, the null-space of the

extended observability matrix is determined to create

residuals vectors in the linear model.

Fault detection for a class of nonlinear impulsive swit-

ched systems was studied in Su (2014). In this study, the

proposed filters are designed to maintain the overall sta-

bility of the system. Using linear matrix inequalities, suf-

ficient conditions for convex optimization are ensured.

Robust fault detection in nonlinear systems approach based

on Lyapunov method is proposed in Chen et al. (2006),

where a sufficient condition guarantees local stability of the

proposed observer. An internal model approach for non-

linear systems subject to single and multiple faults is

introduced in Aßfalg and Allgöwer (2007), and sub-opti-

mal solutions are suggested to illustrate the high practical

relevance in the three-tank benchmark. A Robust Nonlinear

Analytical Redundancy (RNLAR) technique to detect and

isolate actuator and sensor faults in a mobile robot is

investigated in Halder and Sarkar (2007). The designed

residue vectors possessed the highest sensitivity to possible

faults and the least to a process disturbance or a model

plant mismatch. A novel approach entitled ‘‘quantized fault

detection in networked control systems with time delays’’

is studied in Zhang (2013). Model predictive control is

used to compensate for time delays, while linear matrix

inequality was employed to guarantee the H-infinity sta-

bility of the state predictive observer. Application of fault

detection and diagnosis for industrial gas turbine systems

using hierarchical clustering and self-organizing neural

network maps is demonstrated in Zhang (2017). Finally,

Zhang (2017) developed techniques to accommodate

transient system operation.

Takagi-Sugeno fuzzy models are proposed in Nguang

et al. (2007), and parity relation-based technique is used to

estimate faults in nonlinear systems. The residual generator

there is based on linear matrix inequalities. However, fault

detection and identification is rarely used in bilinear sys-

tems. In Yu et al. (1995) and Yu and Shields (2001), linear

parity space method with recursive algorithm is extended

in these systems. Parity space-based fault detection tech-

nique for linear discrete time-varying (LDTV) systems is

considered in Zhong et al. (2015) and Zhong (2010). To

find a solution under heavy online computational burdens,

authors employed projection to Krein space and increasing

parity space order. Construction of discrete time-varying

parity equations for linear systems under dwell-time

switching is shown in Sun et al. (2018).

Detection and isolation are critical in practical systems.

Since all processes are affected by unknown factors, fault

occurrence should be recognized in a process, and its dis-

tinction with issues such as disturbance, uncertainty, and

noise are determined in Wei and Verhaegen (2011) and

Ding et al. (1999). In this approach, residue array is

designed based on state-space realization. In Zhong et al.

(2015), a new fault detection method is proposed for linear

discrete time-varying systems subject to unknown inputs

with limited l2-norm. The basic idea is to design the fault

detection system with l2-norm unknown inputs, bound as

the threshold. The proposed Krein space projection tech-

nique adds a recursive factor to reduce the computational

burden. In Dong (2015), the dynamic plant is subject to

nonlinearities, while the faults occur randomly with Ber-

noulli distribution. The goal is to design a time-varying

fault estimator approach to mitigate exogenous distur-

bances and highlight randomly-occurring faults. The

desired fault estimator is designed using recursive linear

matrix inequality approach.

Fault detection using fuzzy observer for nonlinear sys-

tems in the presence of external disturbances is studied in

Li (2016). In this study, Takagi Sugeno fuzzy models were

employed to approximate nonlinear systems. Then, using l2
stability theory, the observer-based FD systems were

investigated. In Krokavec and Filasová (2015), a PD

observer-based fault estimator was implemented for a class

of TS descriptors to perform fault estimation in continuous-

time nonlinear systems. An intermediate estimator was

proposed in Zhu (2015) and Wang and Yi (2017) to esti-

mate the states and faults in a class of Lipschitzian non-

linear systems. A bank of Kalman estimators is generated

in Chang (2017) and Oliaee et al. (2019) to identify the

faulty sensors by comparing the measurements with the

proposed estimated signals. An analytical fault-tolerant

strategy, with sliding-mode observer, is used in Hasani

et al. (2017) to improve the reliability of the aerospace

launch vehicle.

Fault detection and isolation in nonlinear time-varying

dynamic systems with uncertainty, along with a compar-

ison between parity space-based and observer-based

approaches, are discussed in Frank (1994). As demon-

strated there, parity space-based and observer-based

approaches can be converted to each other. A novel Non-

linear Minimum Variance (NMV) estimator is imple-

mented in Alkaya and Grimble (2016) to generate a

residual vector and, consequently, provide fault detection

in nonlinear systems. In Leuschen et al. (2005), the NLAR

technique was applied to a class of nonlinear systems.

However, the proposed residues are sensitive to occurred

faults and are dependent on the system inputs. Therefore, a

particular mapping is implemented in Aldeen and Sharma

(2008) and Sedigh Ziyabari and Shoorehdeli (2018) to

decouple fault and unknown disturbances in a class of

nonlinear systems through a series of transformations.

Recently, other classes of approximation models for

nonlinear systems have been proposed in the literature.
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Fractional neural networks were proposed in Lodhi et al.

(2019) to find an approximate model for nonlinear systems

based on Riccati equations. Reachable set estimation and

verification in safety-critical nonlinear systems is discussed

in Xiang et al. (2019). Non-empty intersections between

unsafe regions and the estimated reachable set will produce

the verified model. The quasilinear approximation, which

is capable of reproducing many properties of exact non-

linear systems, is employed in Pausch (2019) to approxi-

mate Navier–Stokes equation. Recently, there have been

many studies on different classes of approximation models

for nonlinear systems, which is an important issue for

designing nonlinear parity family approaches. A finite-time

fault-tolerant control for a class of switched nonlinear

systems with finite-time stability is considered in Liu et al.

(2018). The effectiveness of the theoretical result in that

study is evaluated by an illustrative simulation.

On the other hand, since many practical nonlinear sys-

tems suffer significantly from linearization, a design

approach that is implemented directly on a class of non-

linear systems is inevitable. In this paper, we are intro-

ducing a method to detect the occurrence of fault in a class

of nonlinear systems subject to component/actuator faults,

in the presence of measurement noise. Moreover, unlike

the approach introduced in Leuschen et al. (2005) and

Yang and Fang (2019), the residues signals in this paper are

not sensitive to input variations, and all designed residues

will be stimulated in the event of an occurrence of faults.

This paper is organized as follows. Problem formulation

to decouple the two subsystems is provided in Sect. 2. The

proposed fault detection scheme based on nonlinear

unknown input observer and nonlinear parity approach is

presented in Sect. 3. The validity of this approach on three

practical examples and simulation results are demonstrated

in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Problem Formulation and Preliminaries

Nonlinear systems are significantly different from linear

systems. Some fundamental behaviors such as limit cycle,

finite escape time, multiple isolated equilibrium points, and

chaos are not considered in linear systems. Therefore,

control and fault detection and identification are more

important and more complex in nonlinear systems.

Since high-order differentiation amplifies high-fre-

quency noise in continuous nonlinear systems, designing a

mapping mechanism to decouple noise in high frequencies

is inevitable.

The following can be considered as the nonlinear state-

space realization of the system:

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ Gðx; uÞ þ FfcðtÞ
yðtÞ ¼ CxðtÞ þ knðtÞ

�
ð1Þ

where xðtÞ 2 Rn; uðtÞ 2 Rm; yðtÞ 2 Rny ; fcðtÞ 2 Rnc ; nðtÞ
2 Rns are the states, input, output, fault, and noise vectors,

respectively. Moreover, A, B, F, C and k are constant

matrices with appropriate dimensions. It is assumed that

measurement noise is not determined, while the coefficient

k is determined. The known nonlinear function G(x, u) is

assumed to be locally Lipschitz (Isidori 2013; Khalil 2002)

with Lipschitz constant c0. That is,

k Gðx1; uÞ � Gðx2; uÞ k � c0 k x1 � x2 k 8x1; x2 2 Rn

ð2Þ

Lemma 2.1 There always exists a correspondent system in

which the matrices ð �A; �B; �F; �C; �kÞ have the following

structures respectively:
�

A11 A12

A21 A22

" #
;

B1

B2

" #
;

0ðn�ncÞ�nc

f

" #
;

C11 C12

C21 C22

" #
;

l

0ðny�nsÞ�ns

" #�

ð3Þ

where A11 2 Rðn�ncÞ�ðn�ncÞ, A12 2 Rðn�ncÞ�ðncÞ,

A21 2 RðncÞ�ðn�ncÞ, A22 2 Rnc�nc , B1 2 Rðn�ncÞ�m,

B2 2 Rnc�m, f 2 Rnc�nc , C11 2 Rns�ðn�ncÞ, C12 2 Rns�nc ,

C21 2 Rðny�nsÞ�ðn�ncÞ, C22 2 Rðny�nsÞ�nc , l 2 Rns�ns

Proof Using singular value decomposition, matrix k 2
Rny�ns can be expressed as:

k ¼ URkV
T ¼ ½u1u2�

R2

0ðny�nsÞ�ns

" #
VT ð4Þ

where U 2 Rny�ny , Rk 2 Rny�ns , VT 2 Rns�ns ,

u1 2 Rny�ns , u2 2 Rny�ðny�nsÞ, R2 2 Rns�ns . (1) may then

be rewritten as:

yðtÞ ¼ CxðtÞ þ URkV
TnðtÞ ð5Þ

Then, (5) can be pre-multiplied by UT to obtain:

UTyðtÞ ¼
uT1 yðtÞ

uT2 yðtÞ

" #
¼D

�y1ðtÞ
�y2ðtÞ

" #
¼

uT1

uT2

" #
CxðtÞ

þ
R2

0

" #
VTnðtÞ

ð6Þ

Singular value decomposition of matrix F 2 Rn�nc yields:

F ¼ QRFR
T ¼ ½q1q2�

0ðn�ncÞ�nc

R1

� �
RT ð7Þ
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where Q 2 Rn�n, RF 2 Rn�nc , RT 2 Rnc�nc ,

q1 2 Rn�ðn�ncÞ, q2 2 Rn�nc , R1 2 Rnc�nc . By defining:

�x¼DQTx ¼
�x1

�x2

� �
) x ¼ Q�x ð8Þ

(1) becomes as:

_�xðtÞ ¼QTAQ�xðtÞ þ QTBuðtÞ þ QTGðQ�x; uÞ

þ
0

R1

" #
RTfcðtÞ

ð9Þ

Now, by substituting (8) into (6), we have:

�y1ðtÞ
�y2ðtÞ

� �
¼ UTCQ�xðtÞ þ

R2

0

� �
VTnðtÞ ð10Þ

In (9) and (10):

QTAQ ¼
A11 A12

A21 A22

" #
; QTB ¼

B1

B2

" #
;

UTCQ ¼
C11 C12

C21 C22

" # ð11Þ

h

3 Development of Fault Detection
Scheme Based on Unknown Input
Observer

In this section, the proposed unknown input observer-based

fault detection approach will be introduced. Then, the

structure formulation demonstrated in Sect. 2 will be

implemented. To consider the problem of fault detection

design, regarding the transformations in Lemma 2.1. are

essential. The original system in (1) can be divided into the

following two subsystems:

_�x1ðtÞ ¼ A11 �x1ðtÞ þ A12 �x2ðtÞ þ B1uðtÞ þ G1ðQ�x; uÞ
_�x2ðtÞ ¼ A21 �x1ðtÞ þ A22 �x2ðtÞ þ B2uðtÞ þ G2ðQ�x; uÞ

þ R1R
TfcðtÞ

�y1ðtÞ ¼ C11 �x1ðtÞ þ C12 �x2ðtÞ þ R2V
TnðtÞ

�y2ðtÞ ¼ C21 �x1ðtÞ þ C22 �x2ðtÞ

ð12Þ

where �x1 2 Rn�nc ; �x2 2 Rnc are partitioned transformed

states, and �y1 2 Rns ; �y2 2 Rny�ns are partitioned transformed

outputs of the original system. For the sake of simplicity,

matrices f ¼D R1R
T 2 Rnc�nc and l¼D R2V

T 2 Rns�ns are

defined. Moreover, it is assumed that

ny � ns þ nc; ny þ nc [ nþ ns. This assumption is not

restrictive since there are many practical systems with

similar assumptions.

3.1 Decoupling the Faulty and Noisy Subsystems

Since C22 2 Rðny�nsÞ�ðncÞ is full column rank, a ðny � nsÞ �
ðny � nsÞ non-singular matrix may be constructed from:

N2 ¼
Cþ
22

M2

� �
ð13Þ

where Cþ
22 2 RðncÞ�ðny�nsÞ is the pseudo-inverse of C22,

defined as Cþ
22 ¼ ðCT

22C22Þ�1CT
22, and M2 2 Rðny�ns�ncÞ

�ðny � nsÞ is an arbitrarily selected matrix so that N2 2
Rðny�nsÞ�ðny�nsÞ will be non-singular. Premultiplying the

second subsystem output by (14) yields:

Cþ
22

M2

� �
�y2ðtÞ ¼

Cþ
22

M2

� �
C21 �x1ðtÞ þ

Cþ
22

M2

� �
C22 �x2ðtÞ ð14Þ

Since Cþ
22C22 ¼ Inc , (14) yields:

�x2ðtÞ ¼Cþ
22

�
�y2ðtÞ � C21 �x1ðtÞ

�
ð15Þ

M2 �y2 ¼M2C21 �x1 þM2C22 �x2 ð16Þ

Substituting (15) into (12) results in:

_�x1ðtÞ ¼ ~A1 �x1ðtÞ þ ~B1 ~uðtÞ þ G1ðQ�x; uÞ
~y1ðtÞ ¼ ~C1 �x1ðtÞ þ lnðtÞ;

ð17Þ

where ~A1 ¼ A11 � A12C
þ
22C21; ~B1 ¼ ½B1A12C

þ
22�; ~uðtÞ ¼

½uTðtÞ�yT2 ðtÞ�
T ; ~y1ðtÞ ¼ �y1ðtÞ � C12C

þ
22 �y2ðtÞ; ~C1 ¼ C11 � C12

Cþ
22C21.

Similarly, since C21 2 Rðny�nsÞ�ðn�ncÞ is full-column

rank, a ðny � nsÞ � ðny � nsÞ non-singular matrix may be

constructed from:

N1 ¼
Cþ
21

M1

� �
ð18Þ

where Cþ
21 2 Rðn�ncÞ�ðny�nsÞ is the pseudo-inverse of C21,

defined as Cþ
21 ¼ ðCT

21C21Þ�1CT
21, and M1 2

Rðny�ns�nþncÞ�ðny�nsÞ is an arbitrarily selected matrix so

that N1 2 Rðny�nsÞ�ðny�nsÞ will be non-singular. Premulti-

plying the second subsystem output by (18) gives:

Cþ
21

M1

� �
�y2ðtÞ ¼

Cþ
21

M1

� �
C21 �x1ðtÞ þ

Cþ
21

M1

� �
C22 �x2ðtÞ ð19Þ

Since Cþ
21C21 ¼ In�nc , (19) yields:

�x1ðtÞ ¼Cþ
21

�
�y2ðtÞ � C22 �x2ðtÞ

�
ð20Þ

M1 �y2 ¼ M1C21 �x1 þM1C22 �x2 ð21Þ

Substituting (20) into (12) results in:
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_�x2ðtÞ ¼ ~A2 �x2ðtÞ þ ~B2 ~uðtÞ þ G2ðQ�x; uÞ þ ffcðtÞ ð22Þ

where ~A2 ¼ A22 � A21C
þ
21C22; ~B2 ¼ ½B2A21C

þ
21�; ~uðtÞ ¼

½uTðtÞ�yT2 ðtÞ�
T : Finally, by substituting (20) into (21), we

have:

M1ðIny�ns � C21C
þ
21Þ�y2

¼ M1ðIny�ns � C21C
þ
21ÞC22 �x2

ð23Þ

Define ~y2¼
D
M1ðIny�ns � C21C

þ
21Þ�y2 and ~C2¼DM1ðIny�ns �

C21C
þ
21ÞC22 yields ~y2 ¼ ~C2 �x2.

3.2 Nonlinear Unknown Input Observer Design

In this section, we propose a theorem to design a NUIO for

the fault-free part of the system, provided by (17). The

proposed approach estimates �x1ðtÞ in the presence of

measurement noise. Moreover, the stability of the error

system is guaranteed in this method.

State-space realization of the NUIO is as follows:

_zðtÞ ¼ FzðtÞ þ J ~uðtÞ þ g1 ~y1ðtÞ þWG1ðQ �̂x; uÞ
�̂x1ðtÞ ¼ zðtÞ � g2 ~y1ðtÞ;

(
ð24Þ

where F; J; g1;W and g2 are constant matrices with

appropriate dimensions defined as:

g2l ¼ 0 ) g2 2 nullspaceðlÞ

Fg2lþ g1l ¼ 0 ) g1 2 nullspaceðlÞ

W ¼ I þ g2 ~C1; J ¼ g2 ~C1
~B1 þ ~B1

F þ Fg2 ~C1 þ g1 ~C1 � g2 ~C1
~A1 � ~A1 ¼ 0

ð25Þ

where zðtÞ 2 Rn�nc is the observer state that constructs the

exact estimated state �̂x1ðtÞ. To have an answer to the last

equation in (25), g2 must be in the null-space of l. Plus,

I þ g2 ~C1 is not a singular matrix (Chen and Patton 2012;

Hosseini et al. 2019a, b). The necessary and sufficient

conditions for asymptotical stability of e1ðtÞ ¼ �̂x1ðtÞ �
�x1ðtÞ for NUIO, given by (24) and (25), are described in the
following theorem. It should be noted that �̂x2ðtÞ ¼
Cþ
22ð�y2ðtÞ � C21 �̂x1ðtÞÞ will be obtained simultaneously.

Lemma 3.1 The following property holds for any positive

scalar � and for any matrices P and Q with appropriate

dimensions (Hosseini et al. 2019b):

PTQþ QTP� �PTPþ ��1QTQ ð26Þ

Theorem 3.2 Consider the nonlinear system given by (17)

with a Lipschitz constant c0 and the NUIO structure

demonstrated in (24) and (25). The observer error

dynamics is asymptotically stable for any positive scalar �,

if the following linear matrix inequality holds:

���1I X12

XT
12 X

" #
\0 ð27Þ

where X and X12 are defined as:

X ¼ 2FT þ ��1c20I;X12 ¼ W ð28Þ

Proof In the decoupling of the nonlinear system according

to the transformed state errors e1 ¼ �̂x1 � �x1 and

e2 ¼ �̂x2 � �x2, the positive definite Lyapunov function V ¼
eT1 e1 þ eT2 e2 is introduced.

Equations (17) and (24) obtain:

_e1ðtÞ ¼ Fe1ðtÞþ ðFþFg2 ~C1þ g1 ~C1� g2 ~C1
~A1� ~A1Þx1ðtÞ

þ ðJ� g2 ~C1
~B1� ~B1Þ~uðtÞþ ðFg2lþ g1lÞnðtÞ� g2l _nðtÞ

þWG1ðQ �̂x;uÞ� g2 ~C1G1ðQ�x;uÞ�G1ðQ�x;uÞ
ð29Þ

Using (25), we have:

_e1 ¼ Fe1 þWðG1ðQ �̂x; uÞ � G1ðQ�x; uÞÞ ¼ Fe1 þW ~G1

ð30Þ

The time derivative of the Lyapunov function is given by:

_V ¼ 2 _eT1 e1 þ 2 _eT2 e2 ð31Þ

The second subsystem error dynamic is:

e2 ¼ �̂x2 � �x2 ¼ Cþ
22

�
�y2ðtÞ � C21 �̂x1ðtÞ

�

� Cþ
22

�
�y2ðtÞ � C21 �x1ðtÞ

�
)

e2 ¼ �Cþ
22C21ð �̂x1 � �x1Þ ¼ �Cþ

22C21e1 )
_e2 ¼ �Cþ

22C21 _e1

ð32Þ

Substituting (32) into (31) yields:

_V ¼ 2 _eT1 e1 þ 2 _eT1 ðCþ
22C21ÞTðCþ

22C21Þe1

¼ 2eT1F
Te1 þ ~G

T

1W
Te1 þ eT1W

~G1

þ 2 _eT1 ðCþ
22C21ÞTðCþ

22C21Þe1

ð33Þ

Using Lemma 3.1., and considering P ¼ WTe1;Q ¼ ~G1,

we have:

_V\ 2eT1F
Te1 þ �eT1WWTe1 þ ��1 ~G

T

1
~G1

þ 2 _eT1 ðCþ
22C21ÞTðCþ

22C21Þe1
ð34Þ

Also, we know that:
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2 _eT1 ðCþ
22C21ÞTðCþ

22C21Þe1\2�r
�
ðCþ

22C21ÞTðCþ
22C21Þ

�
_eT1 e1

ð35Þ

Therefore, we have:

_V\2eT1F
Te1 þ ��1 ~G

T

1
~G1 þ �eT1WWTe1

þ 2�rðCþ
22C21ÞTðCþ

22C21Þ _eT1 e1
ð36Þ

where �rðCþ
22C21ÞTðCþ

22C21Þ is the maximum singular value

of ðCþ
22C21ÞTðCþ

22C21Þ.
Using (2) and (36) leads to:

_V\
�
1þ �rðCþ

22C21ÞTðCþ
22C21Þ

�

�
�
2eT1F

Te1 þ ��1c20e
T
1 e1 þ �eT1WWTe1

� ð37Þ

The stability condition for the estimation error dynamic is

provided when the time derivative of the Lyapunov func-

tion is negative definite.

Since ð1þ �rðCþ
22C21ÞTðCþ

22C21ÞÞ is a positive number,

we have:

2FT þ ��1c20In�nc þ �WWT\0 ð38Þ

Using X¼D 2FT þ ��1c20In�nc , X12¼DWT , and Schur comple-

ment, LMI in (27) is concluded. h

3.3 Residual Generation Using Nonlinear Parity
Approach

In this section, nonlinear parity approach is expanded for

the composition of residuals. By considering subsystem 2

subjected to fault fcðtÞ in the state equation,

_�x2ðtÞ ¼ ~A2 �x2ðtÞ þ ~B2 ~uðtÞ þ G2ðQ�x; uÞ þ ffcðtÞ
~y2ðtÞ ¼ ~C2 �x2ðtÞ

(
ð39Þ

Parity relations are derived by differentiating output. By

applying the proposed transformations, measurement noise

will be eliminated from the subsystem. Otherwise, due to

the amplification of high-frequency noise, nonlinear parity

approach is infeasible.

~y2ðtÞ ¼ ~C2 �x2ðtÞ
_~y2ðtÞ ¼ ~C2

~A2 �x2 þ ~C2
~B2 ~uþ ~C2G2 þ ~C2ffcðtÞ

€~y2ðtÞ ¼ ~C2
~A
2

2 �x2 þ ~C2
~A2

~B2 ~uþ ~C2
~A2G2

þ ~C2
~A2ffcðtÞ þ ~C2

~B2
_~uþ ~C2

_G2 þ ~C2f _fcðtÞ

:

:

:

ð40Þ

where _G2 in (38) is the derivative of G2 with respect to

time ( _G2 ¼ oG2

o �x
_�xþ oG2

ou
_u). Next, we need to determine how

many derivatives of the output must be retained to generate

a minimal set of residuals. In nonlinear systems, it is nc,

which is equal to the number of the states �x2. The residuals
obtained using the proposed approach are described in the

following proposition.

Proposition 3.3 Retaining the output derivatives yields

ys ¼ Hos �̂x2 þ Husus þ Hfsfs. To determine parity matrix vs,

it is sufficient that vs 2 nullspaceofHos matrix where Hos �̂x2
is as follows:

Hos �̂x2 ¼

~C2

~C2
~A2

~C2
~A
2

2

:

:

:

2
6666666664

3
7777777775
�̂x2 ð41Þ

Residuals are obtained via multiplying the parity matrix

vs and the nonlinear dynamically derived matrix

ys � Husus.

R ¼ vsðys � HususÞ ð42Þ

where ys and Husus are given by:

ys ¼

~y2

_~y2

€~y2

:

:

:

2
666666666664

3
777777777775

; Husus ¼

0

~C2
~B2 ~uþ ~C2Ĝ2

~C2
~A2

~B2 ~uþ ~C2
~A2Ĝ2þ

~C2
~B2
_~uþ ~C2

_̂G2

:

:

:

2
666666666666664

3
777777777777775

ð43Þ

where Ĝ2 is defined as G2ðQ �̂x; uÞ.

Remark 3.4 The system matrix Hfsfs given by (39) can be

rewritten as:

Hfsfs ¼

0

~C2ffcðtÞ
~C2

~A2ffcðtÞ þ ~C2f _fcðtÞ
:

:

:

2
666666664

3
777777775

ð44Þ
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In faulty conditions, R 6¼ 0 and the otherwise the residue

vector will approximately be zero.

4 Numerical Examples and Simulation
Results

To demonstrate the efficiency of the approach expressed in

Sects. 2–3, three practical examples of nonlinear systems

are investigated, and the results are examined.

Example 4.1 In this example, the proposed approach is

implemented to (1) decouple fault and measurement noise,

and (2) estimate unknown states and detect faults in the

train system presented in Fig. 1. This system consists of an

engine E, and a carriage C, coupled by a spring with a

stiffness coefficient k, and q representing the linear and

nonlinear characteristics, respectively. The engine mass

and the carriage mass are represented by ME and MC,

respectively. The train is moving using the engine traction

force, u, which, for practical reasons, is assumed to be

influenced by fault. In this system, the loss of traction force

is modeled as a fault. The state-space realization for the

train subject to possible faults is considered as follows:

_xðtÞ ¼

0 1 0 0

� k

ME
� ag

k

ME
0

0 0 0 1

k

MC
0 � k

MC
� ag

2
66666664

3
77777775
xðtÞ

þ

0

1

ME

0

0

2
6666664

3
7777775
uðtÞ þ

1
1

ME

� 1

ME
0:2

0 � 1

0 0

2
666666664

3
777777775

f1ðtÞ

f2ðtÞ

" #
þ

0
q
ME

ðx2þ

x4Þ2

0
q
MC

ðx2þ

x4Þ2

2
66666666666664

3
77777777777775

;

yðtÞ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775
xðtÞ þ

2

1

�1

�3

2
666664

3
777775
nðtÞ;

ð45Þ

where a is the rolling friction, and f(t) and n(t) represent

loss of traction (fault) and measurement noise, respec-

tively. The state vector is defined as x ¼ ½x1x2x3x4�T , where
x1 and x2 are engine’s position and velocity, respectively,

and x3 and x4 are similar characteristics of the carriage. For

simulation purpose, the following assumptions are

considered: ME ¼ 10kg;MC ¼ 5kg; k ¼ 4:87N/s; a ¼
0:5s/m; q ¼ 1N/sandg ¼ 9:8m/s2.

Decoupling Fault and the Measurement Noise: The

transformations matrices Q and U, as denoted by (4) and

(7) are as follows:

Q ¼

0 0:097 0:75 � 0:66

0 0:97 � 0:2 � 0:09

0 0:2 0:6 0:7

1 0 0 0

2
666664

3
777775
;

U ¼

0:52 � 0:26 0:26 0:77

0:26 0:96 0:04 0:13

�0:26 0:04 0:96 � 0:13

�0:77 0:13 � 0:13 0:60

2
666664

3
777775

ð46Þ

The proposed transformation applied to the system repre-

sented in (9) and (10) yields the following two subsystems:

_�x1ðtÞ ¼
�4:9 � 0:1

0:2 � 4:5

� �
�x1ðtÞ þ

0:1 � 1:4

0:9 1:1

� �
�x2ðtÞ

þ
0

0:097

� �
uðtÞ þ

0:2ð0:97�x12 � 0:2�x21�
0:09�x22 þ �x11Þ2

0:097ð0:97�x12 � 0:2�x21�
0:09�x22 þ �x11Þ2

2
6664

3
7775

�y1ðtÞ ¼ �0:77 0:25½ ��x1ðtÞ þ 0:17 � 0:56½ ��x2ðtÞ þ 3:9nðtÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð47Þ

_�x2ðtÞ ¼
0:6 1:7

0:7 � 0:2

� �
�x1ðtÞ þ

�0:35 � 0:3

0:05 � 0:04

� �
�x2ðtÞ

þ
�0:02

�0:01

� �
uðtÞ þ

�0:02ð0:97�x12 � 0:2�x21�
0:09�x22 þ �x11Þ2

�0:009ð0:97�x12 � 0:2�x21�
0:09�x22 þ �x11Þ2

2
6664

3
7775

þ
0:8 � 0:6

�0:6 � 0:8

� �
fcðtÞ

�y2ðtÞ ¼
0:13 0:9

�0:13 0:26

0:6 0:18

2
64

3
75�x1ðtÞ þ

�0:36 0:11

0:79 0:54

0:47 � 0:62

2
64

3
75�x2ðtÞ

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð48Þ

Fig. 1 A train system (Aldeen and Sharma 2008)

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2021) 45:321–333 327

123



Using (17), (22), (23) we have:

_�x1ðtÞ ¼
�5:8 0:2

0:7 � 4:7

� �
�x1ðtÞ

þ
0 � 0:3 � 0:8 1:4

0:1 � 0:1 1:4 � 0:5

� �
~uðtÞ

þ 0:2ð0:97�x12 � 0:2�x21 � 0:09�x22 þ �x11Þ2

0:097ð0:97�x12 � 0:2�x21 � 0:09�x22 þ �x11Þ2

" #

~y1ðtÞ ¼ �1:2 0:4½ ��x1ðtÞ þ 3:9nðtÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð49Þ

where �x2 ¼ Cþ
22ð�y2 � C21 �x1Þ, �x1 ¼ ½�xT11 �xT12�

T
and

�x2 ¼ ½�xT21 �xT22�
T
.

_�x2ðtÞ ¼
�0:39 � 0:2

�0:3 1

� �
�x2ðtÞ

þ
�0:02 1:6 0:3 0:8

�0:01 � 0:3 � 0:5 1:2

� �
~uðtÞ

þ �0:02ð0:97�x12 � 0:2�x21 � 0:09�x22 þ �x11Þ2

�0:009ð0:97�x12 � 0:2�x21 � 0:09�x22 þ �x11Þ2

" #

þ
0:8 � 0:6

�0:6 � 0:8

� �
fcðtÞ

~y2ðtÞ ¼ �0:9 � 0:3½ ��x2ðtÞ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð50Þ

where �x1 ¼ Cþ
21ð�y2 � C22 �x2Þ.

Observer Design. Initially, the Lipschitz constant should

be determined to ensure that (2) is satisfied.

This is calculated as the supremum of the partial

derivative of the nonlinear function G(x) with respect to x,

which is:

c0 ¼k oGðxÞ
ox

k1 atx ¼ xð0Þ ð51Þ

where xð0Þ represents the equilibrium point of the train

system. After calculations, the Lipschitz constant is deter-

mined as c0 ¼ 0:088.

The UIO observer gains for the fault-free subsystem,

(24), are obtained by solving the BMI under the constraints

in (25), (27), and (28), as:

g1 ¼ g2 ¼ 02�1;W ¼ I2; J ¼ ~B1;F ¼ ~A1 ð52Þ

The observer gain matrix F, with � ¼ 1, results in

2FT þ ð1þ c20ÞI2, which is negative definite with eigen-

values of ð�10:8;�8:1Þ, and satisfies the conditions given

by (27) and (28).

Residual Generation. To demonstrate the performance

of the proposed observer and parity approach, the follow-

ing simulation is executed. It is assumed that the initial

conditions for the proposed observer are not equal to the

main system, given by the (45). It is assumed that two

abrupt faults occurred in the system at t ¼ 3ðsÞ; t ¼ 6ðsÞ.
From (41), the parity vector is:

Vs ¼ �0:35 �0:49 0:8½ � ð53Þ

After the simulation, the proposed residue signals are

generated using (42). As can be seen, the estimated states

are compared with the actual states in Figs. 2 and 3. For a

fair comparison, the mean square estimation error for the

engine’s position (reported in Aldeen and Sharma (2008))

and the proposed method in this paper are considered as

0.67 and 0.13, respectively. It can be seen that the proposed

estimation approach is more efficient.

Example 4.2 The state-space realization for the nonlinear

system considered in this example is assumed to have

component faults and measurement noises. The dynamical

model of this system is expressed as follows:

_x1ðtÞ ¼ x2ðtÞ þ sinðx1ðtÞuðtÞÞ þ f1cðtÞ � f3cðtÞ
_x2ðtÞ ¼ x3ðtÞ þ x2ðtÞsinðx3ðtÞÞ þ uðtÞ þ f2cðtÞ

�2f3cðtÞ
_x3ðtÞ ¼ x4ðtÞ þ uðtÞ þ f1cðtÞ � f2cðtÞ þ 0:5f3cðtÞ

_x4ðtÞ ¼ x5ðtÞ þ x2ðtÞuðtÞ þ uðtÞ � f1cðtÞ
_x5ðtÞ ¼ �3:75x1ðtÞ � 17:25x2ðtÞ � 28:125x3ðtÞ

�21:25x4ðtÞ � 7:5x5ðtÞ þ sinðx1ðtÞx2ðtÞÞ
þ2f2cðtÞ � 1:5f3cðtÞ

yðtÞ ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
xðtÞ þ

�1 0

0 1

1 � 1

�2 1:5

1 0

2
6666664

3
7777775

n1ðtÞ
n2ðtÞ

� �

ð54Þ

Fig. 2 Proposed residual based on nonlinear parity approach
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where x1; x2; x3; x4 and x5 are the states for the given

nonlinear system, and u(t) and fcðtÞ are control inputs and

component faults, respectively. Finally, nðtÞ ¼
½nT1 ðtÞ; nT2 ðtÞ�

T
represents the measurement noise. In this

example, the conditions and the accuracy of the theorems

are evaluated. It can be seen that:

Gðx; uÞ ¼

sinðx1uÞ

x2sinðx3Þ

0

x2u

sinðx1x2Þ

2
666666664

3
777777775

ð55Þ

Decoupling Fault and Measurement Noise. The system

can be converted to the two subsystems given by (4), (7)

using the transformations Q and U:

Q ¼

�0:2 0:7 � 0:2 � 0:6 � 0:2

0:02 � 0:5 � 0:6 � 0:2 � 0:6

0:7 � 0:2 0:04 � 0:6 0:3

0:5 0:5 � 0:5 0:5 � 0:01

0:4 0:2 0:6 0:08 � 0:7

2
666666664

3
777777775
;

U ¼

�0:3 0:5 0:3 � 0:6 0:4

�0:2 � 0:7 0:4 � 0:5 � 0:3

0:4 0:2 0:8 0:3 � 0:05

�0:8 � 0:05 0:3 0:5 0:2

0:3 � 0:5 � 0:004 0:1 0:8

2
666666664

3
777777775

ð56Þ

The nonlinear model in (54) can be rewritten as (9) and

(10), with the following matrices:

A11 ¼
�11:7 0:7

�5:5 � 0:2

" #
;A12 ¼

5:9 4:1 2:7

2:4 1:7 0:3

" #
;

A21 ¼

�21:1 0:4

�3 0:2

23:6 0:1

2
664

3
775;A22 ¼

9:4 6:4 5:2

2:3 0:8 0:7

�11:3 � 6:6 � 5:8

2
664

3
775;

B1 ¼
1:3

�0:2

" #
;B2 ¼

�1:1

�0:2

�0:3

2
664

3
775; l ¼

2:6 � 1:8

�0:7 � 0:96

" #
;

f ¼

0:35 0:57 0:49

�1:69 0:56 0:56

0:11 � 2:31 2:6

2
664

3
775;C11 ¼

0:05 � 0:51

�0:18 0:54

" #
;

C12 ¼
0:74 � 0:42 0:13

0:05 � 0:38 0:73

" #
;C21 ¼

0:7 � 0:1

0:7 0:01

0:2 0:7

2
664

3
775;

C22 ¼

�0:4 � 0:6 � 0:1

0:2 0:6 0:4

0:5 � 0:1 � 0:5

2
664

3
775;

ð57Þ

It should be noted that G1 is the first two rows of

QTGðQ�x; uÞ, while G2 is the remaining rows.

Using (17), (22), and (23), we have:

_�x1ðtÞ ¼
�43:2 � 8:5

�13:1 � 3:2

� �
�x1ðtÞ

þ
1:3 16:6 25:3 14:9

�0:2 3:2 6:6 4:8

� �
~uðtÞ þ G1

~y1ðtÞ ¼
�8:7 � 2:9

�8:3 � 0:9

� �
�x1ðtÞ þ

2:5 � 1:8

�0:7 � 0:96

� �
nðtÞ

8>>>>>>>><
>>>>>>>>:

ð58Þ

where �x2 ¼ Cþ
22ð�y2 � C21 �x1Þ, �x1 ¼ ½xT11xT12�

T
and

�x2 ¼ ½xT21xT22xT23�
T
.

_�x2ðtÞ ¼
6:1 5:4 10:35

1:7 0:6 1:5

�8:1 � 5:5 � 11:1

2
64

3
75�x2ðtÞ

þ
�1:1 � 16:3 � 14:7 � 0:7

�0:2 � 2:4 � 2:1 0:1

�0:3 18:1 16:3 1:5

2
64

3
75~uðtÞ þ G2

þ
0:3 0:6 0:5

�1:7 0:6 0:6

0:11 � 2:3 2:6

2
64

3
75fcðtÞ

~y2ðtÞ ¼ �0:6 � 1:2 � 0:6½ ��x2ðtÞ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð59Þ

Fig. 3 Real states and estimated ones with NUIO
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where �x1 ¼ Cþ
21ð�y2 � C22 �x2Þ.

Observer Design. Initially, the Lipschitz constant is

determined as the supremum of the magnitude of the partial

derivative of the nonlinear function G(x, u) with respect to

x to ensure the satisfaction of (2) as:

c0 ¼k oGðx; uÞ
ox

k1 atx ¼ xð0Þ ð60Þ

where xð0Þ represents the equilibrium point, and x and u are

within the domain of the nonlinear system under consid-

eration. For this example, the Lipschitz constant is deter-

mined as c0 ¼ 0:447.

The UIO observer gains for the fault-free subsystem,

(24), are obtained by solving the BMI under the constraints

in (25), (27), and (28), as:

g1 ¼ 1:0e� 08�
0:01 0:03

0:19 0:47

" #
;W ¼ I2

g2 ¼ 1:0e� 12�
0:004 0:02

0:07 0:44

" #
;

J ¼
1:3 16:6 25:3 14:9

�0:2 3:2 6:6 4:8

" #
;F ¼

�43:2 � 8:5

�13:1 � 3:2

" #

ð61Þ

The observer gain matrix F, with � ¼ 1, results in

2FT þ ð1þ 0:4472ÞI2, which is negative definite with

eigenvalues of ð�90:5;�0:04Þ, and satisfies the condition

given by (27) and (28).

Residual Generation. To demonstrate the performance

of the proposed observer and parity approach, the follow-

ing simulation is executed. The observer is switched on

with �̂xð0Þ 6¼ �xð0Þ. It is assumed that three abrupt faults

occurred in the system at t ¼ 15ðsÞ; t ¼ 30ðsÞ; t ¼ 45ðsÞ.
From (41), the parity vector is:

Vs ¼ �0:04 0:93 0:35 0:08½ � ð62Þ

After the simulation, the actual states are compared with

the estimated states and the residue signals generated using

(42) in Figs. 4, 5 and 6.

Example 4.3 The state space realization for the DTS200

setup, a three-vessel water tank system (TTS) depicted in

Fig. 7, is expressed as follows (Yang and Fang 2019):

A _h1ðtÞ ¼ Q1 � Q13

A _h3ðtÞ ¼ Q13 � Q32

A _h2ðtÞ ¼ Q2 þ Q32 � Q20

8><
>: ð63Þ

Q13 ¼ s13a1sgnðh1 � h3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g j ðh1 � h3Þ j

p
Q32 ¼ s23a3sgnðh3 � h2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g j ðh3 � h2Þ j

p
Q20 ¼ s0a2

ffiffiffiffiffiffiffiffiffiffi
2gh2

p

8><
>: ð64Þ

Fig. 4 Real states and estimated ones with NUIO (x1tox3)

Fig. 5 Real states and estimated ones with NUIO (x4; x5)

Fig. 6 Proposed residual based on nonlinear parity approach
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where A ¼ 0:054m2; g ¼ 9:81m/s2; s23; s13; s0 ¼ 0:00005;

a1 ¼ 0:49; a2 ¼ 0:61; a3 ¼ 0:45, Q1 ¼ 4� 10�5m3=s and

Q2 ¼ 1:4� 10�5m3=s. In this system, h2 and h3 (water

height in tanks 2 and 3) are assumed to be measured.

Observer Design. Initially, the Lipschitz constant is

determined as the supremum of the magnitude of the partial

derivative of the nonlinear function G(x, u) with respect to

x to ensure the satisfaction of (2) as:

c0 ¼k oGðx; uÞ
ox

k1 atx ¼ xð0Þ ð65Þ

where xð0Þ represents the equilibrium point, and x and u are

within the domain of the nonlinear system under consid-

eration. For this example, the Lipschitz constant is com-

puted as c0 ¼ 0:354.

The UIO observer gains for the fault-free subsystem,

(24), are obtained by solving the BMI under the constraints

in (25), (27), and (28). The observer gain matrix F, with

� ¼ 1, results in 2FT þ ð1þ c20ÞI2 which is negative defi-

nite with eigenvalues of ð�8:1;�1:4Þ, and satisfies the

condition given by (27) and (28).

Residual Generation. To demonstrate the performance

of the proposed observer and parity approach, the follow-

ing simulation is executed. The observer is switched on

with �̂xð0Þ 6¼ �xð0Þ. It is assumed that one abrupt fault occurs

in the system at t ¼ 300ðsÞ.

From (41), the parity vector is:

Vs ¼ �0:45 0:3½ � ð66Þ

For a fair comparison, we adopted a one-step fault detec-

tion approach using the modified Mann–Whitney test

proposed in Yang and Fang (2019), along with the non-

linear analytical redundancy proposed in Leuschen et al.

(2005), and the nonlinear parity-based fault detection

method proposed in this paper. Table 1 summarizes the FD

results, including the conclusion output (0 for no fault and

1 for the occurrence of fault), False Positive Ratio (FPR),

and False Negative Ratio (FNR). In specific, FPR is the

number of false alarms divided by the total number of

actual fault-free events, while FNR is the number of missed

detections divided by the total number of actual faulty

events.

The simulation results for the three water tank system

using the method proposed in Leuschen et al. (2005) and

the method proposed in this paper, illustrated in Figs. 8 and

9, confirm the efficiency of the proposed approach.

It can be concluded that in the method proposed in

Leuschen et al. (2005), the decision on the occurrence of

fault is dependent on changes in input during interval 0s to

500s. However, using the residue signal proposed in this

paper, fault diagnosis is dependent on the moment of fault

occurrence. Furthermore, the FPR and FNR indices pro-

posed in this paper are considerably lower than those

obtained in Yang and Fang (2019) and Leuschen et al.

(2005).

5 Conclusion

In this study, issues in fault detection for a class of non-

linear systems subject to actuator/component faults and

measurement noises are investigated. In contrast to the

existing detection methods, we have proposed a novel

approach to detect the occurrence of faults in a wide range

of nonlinear systems without loss of generality. To this

end, a mapping approach was designed to split the original

system into two subsystems, namely a system with a pos-

sible fault, and another with measurement noise. Then, the

nonlinear unknown input observer formulation was

described to estimate the states of the former subsystem.

Sufficient conditions for asymptotical stability were

examined using the Lyapunov method, and formulating the

Fig. 7 The three-vessel water tank system

Table 1 Performance

comparison
Method/result 0 1 FPR FNR

One-step FD in Yang and Fang (2019) 415 85 0.07 0.88

Analytical redundancy in Leuschen et al. (2005) 419 81 0.72 0.56

Proposed method in this paper 403 97 0.0003 0.02
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results in the form of bilinear matrix inequalities (BMI). To

detect possible faults in the latter subsystem, nonlinear

parity approach relations were expressed to construct

residue vectors. The parity approach proposed in this study

is feasible using the proposed mapping to decouple noise

and faults. Finally, simulation results illustrated the effi-

ciency of the proposed method. As an extension of our

current research, the fault-tolerant control for the presented

systems can be considered and studied in future studies, by

regarding some recent investigations in this field (Liu et al.

2018). In addition, another possible extension future

direction will be instructing multiple Lyapunov functions

in piece-wise quadratic form to provide sufficient condi-

tions for asymptotic stability and less conservatism for

Discrete-Time Switched Piecewise-Affine Systems Under

Dwell-Time Constraints (Zhu and Zheng 2019).
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