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Abstract

This paper studies the fractional optimal control problems (FOCPs) with inequality constraints. Using the Caputo defi-
nition, an optimization method based on a set of basis functions, namely the fractional-order Bernoulli wavelet functions
(F-BWFs), is proposed. The solution is expanded in terms of the F-BWFs with unknown coefficients. In the first step, we
convert the inequality conditions to equality conditions. In the second step, we use the operational matrix (OM) of
fractional integration and the product OM of F-BWFs, with the help of the Lagrange multipliers technique for converting
the FOCPs into an easier one, described by a system of nonlinear algebraic equations. Finally, for illustrating the efficiency
and accuracy of the proposed technique, several numerical examples are analysed and the results compared with the
analytical or the approximate solutions obtained by other techniques.

Keywords Fractional optimal control problems - Fractional-order Bernoulli wavelet functions - Operational matrix of
fractional integration - Product operational matrix - Lagrange multipliers

1 Introduction

Fractional differential equations (FDEs) occur in the mod-
elling of many phenomena in various fields of science and
engineering. Several studies by some researchers (Bagley and
Torvik 1985; Kulish and Lage 2002; Oldham 2010; Dahaghin
and Hassani 2017; Bhrawy and Zaky 2017; Parsa Moghaddam
and Tenreiro Machado 2017; Karamali et al. 2018; Hassani
and Naraghirad 2019; Hassani et al. 2019a; Heydari et al.
2019) have shown that many complex physical and engi-
neering problems can be described with great success via
FDEs. We refer the interested reader to refer (Tenreiro
Machado et al. 2011) for a historical perspective on fractional
calculus. Most of FDEs do not have analytic solutions, so
approximate and numerical techniques must be used. Several
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analytical and numerical methods to solve FDEs have been
given such as extrapolation method (Diethelm and Walz
1997), Predictor-Corrector method (Diethelm et al. 2002),
Adomian decomposition method (Elsayed and Gaber 2006),
multistep method (Galeone and Garrappa 2006), Homotopy
perturbation method (Odibat et al. 2010), linear B-spline
method (Lakestani et al. 2012), product integration method
(Garrappa and Popolizio 2012) and wavelets method (Reh-
man and Khan 2011; Heydari et al. 2013).

Optimal control theory is a branch of optimization theory
concerned with minimizing a cost or maximizing a pay-off.
Optimal control theory has various applications in sciences,
engineering, and industry. Several studies have been con-
ducted by some researchers on the optimal control problems
(Swan 1990; Martin 1992; Feichtinger et al. 1994; Howlett
2000; Vittek et al. 2017; Kheiri Sarabi et al. 2017; Liu et al.
2019). Despite the fact that the optimal control theory has
been under development for years, the fractional optimal
control theory is a new area in mathematics. Fractional
optimal control problems (FOCPs) can be defined with
respect to different definitions of fractional derivatives, like
the Riemann-Liouville and Caputo fractional derivatives as
the most important ones (Agrawal 2004). Yousefi et al.
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(2011) applied the Legendre multiwavelet basis with the aid
of a collocation method to obtain the approximate solution
for the FOCPs. Alipour et al. (2013) proposed a technique
based on Bernstein polynomials OM for multi-dimensional
FOCPs. An application of the Ritz method and polynomials
OM in solving FOCPs were investigated in (Nemati and
Yousefi 2016; Nemati et al. 2016). Sabouri et al. (2017)
applied a neural network for the solution of a class of FOCPs.
Zaky and Tenreiro Machado (2017) derived an analytical
and numerical approach for an unconstrained convex dis-
tributed-order FOCPs. Behroozifar and Habibi (2018) tried
Bernoulli polynomials for the approximate solution of
FOCPs. Rahimkhani and Ordokhani (2018) introduced a
numerical technique based on Miintz-Legendre wavelets for
2D FOCPs. Rahimkhani and Ordokhani (2019) implemented
the generalized fractional-order Bernoulli-Legendre func-
tions for solving 2D-FOCPs. The interested reader can refer
to (Keshavarz et al. 2015; Safaie et al. 2015; Soradi Zeid
et al. 2016; Rahimkhani et al. 2016; Mirinejad and Inanc
2017; Rabiei et al. 2017; Zahra and Hikal 2017; Haber and
Verhaegen 2018; Heydari 2018; Mashayekhi and Razzaghi
2018; Hassani et al. 2019b; Heydari 2019; Li et al. 2019;
Lotfi 2019; Olivier and Pouchol 2019; Rabiei and Parand
2019; Treanta 2019) for some works on FOCPs.

The main purpose of this paper is to propose an opti-
mization method based on the fractional-order Bernoulli
wavelet functions (F-BWFs) for the following FOCPs

min J = /0 F(t,x(0), u()) dr, (1)

subject to the fractional dynamical system and inequality
constraints

CDya(t) = G (ta(t),ult)),
Sj(t7 J?(t)., “(t)) <0,

0<v, tel0,1], (2)

J=1...s
and the initial conditions

x(0) = x0,%(0) = x1, .. .,21(0) = x, (3)

where x; forj = 0, 1,.. ., [v] are real constants, F and G are
continuous functions and ¢ D¥z(t) denotes the fractional
derivative of order v in the Caputo sense of x(f).

Hereafter, an optimization method based on the F-BWFs
is introduced, new OM of fractional integration and the
product OM are constructed, and a numerical scheme to
solve Egs. (1)—(3) is developed.

This paper is organized as follows. Section 2 presents
the fundamental aspects of the fractional calculus and
fractional-order Bernoulli wavelet functions. Section 3
develops the operational matrices of F-BWFs. Section 4
presents a numerical method based on the F-BWFs. Sec-
tion 5 includes illustrative examples demonstrating the
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accuracy and efficiency of the present method. Finally,
Sect. 6 summarizes the main conclusions.

2 Definitions and Mathematical
Preliminaries

This section introduces the fractional calculus and reviews
the F-BWFs.

Definition 1 The Caputo fractional derivative of order v,
when g — 1<v<gq, of f(t) is defined by (Hassani et al.
2019a, b)

1 t f(q)(g)
- S, -1 s
F(q—v),/u (t—s)(”‘*'l—‘Z)dq q <v<gq, q€N,

a1 ()
dta

CDYf(t) =

v=q,

(4)

where g = [v] + 1, that [v] denotes the integer part of v and
I'(-) denotes the gamma function defined for z > 0 as

I'(z)= / e Mdr.
0

Definition 2 The Riemann-Liouville fractional integral
operator of order v of f(¢) is defined by (Rahimkhani and
Ordokhani 2019)

v>0,t>0,

L)y
I'f(1) = F(v)/o (r—s)“vd’ (5)
f(@), v=0.

The useful relation between the Riemann-Liouville
operator and Caputo operator is given by the following
expression (Rahimkhani and Ordokhani 2019)

n—1

1Y SDLF) = 1) = 3 19(0)

, t>0, n—1<v<n,

(6)

ti

where n is an integer, and f € CJ.

Also, it is worth noting that based on the definition of
the fractional derivative in the Caputo sense as above, we
have the following useful property (Hassani et al. 2019b)

I'im+1)
I'(m—-v+1)
0, m=0,1,...

m—v _
CDVtm’— t 7m_Qaq+17"'7
0=t -

yq — 1a
(7)

where ¢ — 1 <v<gq.
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2.1 Fractional-Order Bernoulli Wavelets

The fractional-order Bernoulli wavelets of order «,

n=1,2,...,2" m=0,1,...,M, on the interval [0,1)
defined by (Rahimkhani et al. 2016)
k—]~ k—1 00 n—1 o n
VE (1) = 276,25 —n+1), S <P <5
' 0, otherwise,
(8)
that k can assume any positive integer and
B2 —n 4 1)
1, m =0,
1
= 1 2 ﬁm(zkilﬂ_nﬁ_l)a m>07
(D" V)’
(2m)! am
9)

where f3,,(¢) are Bernoulli polynomials of order m on
[0, 1]. The Bernoulli polynomials of degree m, f3,,(¢), is
defined by (Keshavarz et al. 2015)

fu) =" (’j.’)/sm_if‘,

i=1

(10)

where f; are rational numbers called Bernoulli numbers
which are obtained using the series expansion of trigono-
metric functions

i

Xt
= Z b5
i—0 !
The first few Bernoulli numbers are

—1 1 —1
:1 = — = — e —
ﬁO 7ﬁ1 2 aﬁZ 67ﬁ4 307

Wlth ﬁ2i+1 = 0, l = 1,2, ..
polynomials are

o) =1, 1 (1) =

., and the first few Bernoulli

1
= —t+-,

(5 Bal0) ;

2.2 The Functions Approximation
An arbitrary function f{#) which is square integrable in the

interval [0, 1] can be expanded by F-BWFs as (Rahim-
khani et al. 2016)

t) = iicnmw

n=1 m=0

(11)

The infinite series in Eq. (11) is truncated to approximate
f(t) in terms of the F-BWFs as

21y

z Z Cn mlpn m

n=1 m=

= CT¥*(1), (12)

where T indicates transposition and the unknown vector C
and P*(t) are 2*"!(M + 1) column vectors and given by

C= [Cl_(),Cl_J, e CIM>C205C2 15+ - 3 COMy - - oy
Cok=10, Cok=1 15 - - -7C2"",M}T>
V(1) = (W00, 050 (1), W ar (0,050 ), (13)
Yaa(0)s b0,
Wi o0 V10, W0 (0)]
and
cl =F'p!
DzwmwwzlumeWm“w,
D = [dumis];  dumis = Wy Vi),
F=[fio. i1, o fiss 20205 foMs - o (14)
f2k*1 07f2"*‘ NERRE 2"*1M]Ta
=y} = /f nlde,
l:LLmJ“,FﬂﬂwwM

that (.,.) denotes the inner product in L*[0, 1].

3 The Operational Matrices

The main objective of this section is to derive the F-BWFs
OM of fractional integration and product OM.

3.1 The Operational Matrix of Fractional
Integration

The Riemann-Liouville fractional integral of the vector

Y*(t) defined in Eq. (13) can be obtained as
(1) ~ PO p(p), (15)

where P denotes the 2¢7'(M +1) x 251(M + 1)
dimensional OM for Riemann—Liouville fractional inte-
gration defined by
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21 M
> Z EyoWn(1)
n=1 m=
2k-1 M
Z Z El )ﬂ n m( )
n=1 m=
B Iv o ¢ LT uye
pM . (EX) T (1)
o ;zmxwo (E7) #5(0)
. n n .
mp“' ([) ARl 2,0,/,% .M T s
A 2 2 Ennn(t) (EH) Pt
oo || R CAti
W2 3 2 B (B2 #7(1)
'Y (1) = : ~ | :
DN N (B 0
: ZZﬁM“U :
, 1' e nm ¥ nm 2k1‘0.T i}
I (1) E ) ) (1)
g (1) (BT (n)
: T Z B, (D) :
. . P Moy n,m nm 2k r )
It lpzk—lyM([) k-1 M 2’< ¥ (E ) ¥ (t)
- = o
Zl Z Evn Vam(D)
n m=!
2 M
1
;z:ﬁmM%m>
Ln=1m .

10 1,0 1,0 1,0 1,0 1,0
Epy Epy Ely Ex, Eyy Eyciy
1,1 1,1 1,1 1,1 1,1 1,1
Ey Ey, E\y Eyiig Ey Eyici i
.M .M M M 1M 1M
Eyy Eyy Evy Ex5, EyC E) oy
2,0 2,0 2,0 2,0 2,0 2,0
El,o El 1 El,M Ezkfl 0 Ezkfl 1 Ezkfl,M
2,1 2,1 2,1 2,1 1,0 1,0
Eto Eiy Etum By By Eyim
= : ; : L) = PO (),

2.M 2.M 2.M 2.M 2.M
Ey) ET) Ey ESC E5C EXC y
ok-1 g 2k-1 ¢ 2k-1 o 21{:71 0 21571’0 21{:7170
EI,O El.,l El.,M Ezkfl,o Ezk 11 261 M
21{717] 2k71 1 21(7] 1 21{71 ] 2k71 1 21(7],1
10 11 Elm Ey iy ES iy 2ty
ok 21 ok zkil_’M zkilvM 2Ky
E EY, Ely Eyily Eyr Ey iy |

) @ Springer
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where 21 M T
g i 0= 3> i) = A1) (19)
i i.j A NNy Ay
o {EIO,E,1,...,ELM,...,EZO,EM,...,EZSM,..., and
fol 071%{4 L ,’E;{AM]T’ Ai = G100, @it 15+ ity G20, G150 Gia s - o
; ~ T
Ai ! alzk 107 2k 1 1,...,ai72k—17M] .
Ev = (V5 0,07,0)), 20)
n=1,...,2" m=0,.. .M. , ,
Using Eq. (19) we obtain
To illustrate the calculation procedure, we choose (v = 1, Sl
=3, k=1, M =2). Thus, we have av = <Zzaznm%m W )>
_ - n=1 m
3 VR . o)
5 20 220 = iy ki
i,n,m%n,m.k.js
p(13) _ | 3V3 9 51V15 ZTZ:O
10 220 1540 | k=1,...,251 j=0,1,....M,
6v5  39VIs 87 N
| 55 1540 5236 where
k.j o o o
also by choosing (v = o = %, k=1, M = 2), we have aij = (a;, ‘//k,j>a dnmkj = <¢n,m7 ‘//k.j>- (22)
0.3761263890318 0.2171566719569 0
P(3) = | —0.3956383388839 — 0.1545696576686 0.05720570205399 |,
0.234689686294 0.02705211835561 —0.04961323923435
where So by considering
2 0 0 A=[alal a0
_ _ 1T
p=|o 2 o e ] I
3
0 0 % we have
3 .
AT = A/ D,
3.2 The Product Operational Matrix of F-BWFs or
Al =AD",

The product of two F-BWFs vectors satisfies in the fol-
lowing equation

P (1) P (1)A ~ APH(1), (17)

where A is an arbitrary (M + 1) x 1 vector and A is a
(M+1) x (M +1) matrix. For obtaining A, we can
approximate ¥*(¢)¥*T(1)A by ¥*(t) as follows

lao(1), ..., au(1)]", (18)

PP (HA

where

therefore the OM of multiplication is obtained.

To illustrate the calculation procedure, we choose
k=1, M=2,0=1).

Thus, we have

Al A2 A3
25 25
A=[A| A Ay A= |42 At A s 4 (23)
2 2
Az %‘x‘h A1+—fA%
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Also, by choosing (k =1, M =2, o = 3/2), we have

1.4142135A, + 1.5¢7%4,
- | 1.5¢704, 4 1.41421354,

1.5¢7%0A; + 1.4142135A,
1.4142135A, 4 1.5¢7°A,

1A x+i—1\*
f”:Az%J<(2kl)>@w“

0 0
0 0

0 0 1.4142135A5 — 1.2¢73%A4 1.4142135A4
0 0 — 1.01e A5 + 1.4142135A, 1.4142135A45 + 1.5¢7 194,
(24)
3.3 Convergence Analysis We know that if |f(x)| <M, Vx € [0, 1] then, | F(x})| < M,

The following theorems will be useful in subsequent
results. Here, we assume D~ = [di/ ], max |d}/ | = M.

Theorem 1 Suppose f € L*[0, 1] be a continuous function

and If ()] <My, vt € 10,1] and
k—1
22 Zm o Cn, ,,,lp . Then, we have
k-1 M
16] MleA
nl S M, )
i=1 T
where
1

T2
% (21(1 ﬁzf

Proof Suppose that f*(¢) is approximate of f(¢) by using F-
BWFs. Then, using Eq. (12) we have

261 M
chnmwnm CT'P“U)?
n=1 m=

where CT = F'D~!. Then, we get

k-1 ym

=D fidiis fii =
i=1 j=0

/f:

77)
:/ 2TAF(NB(2 P — i+

i

i)

o( ldt

RI—

1 ldr.

Here, by changing the variable 2¥'#* —i4 1 =1x, we
achieve
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and using the following property of Bernoulli polynomials
(Sahu and Saha Ray 2017)

! 165!
()]dr< —2— j>0.
j€\5x>\ e

we have
A Y (xrie 1)
lfi.j\ﬁﬁ/o f((T)

16j!M,A

2ryt' 2T

|B(x)]dx

On the other hand, max |d,/, | = Ma, so |d}?

n,m

| < Mz. Con-
sidering the above discussion, we get the following relation

21 M 21 M
ICnmI<IZqud” E93Y
i=1 j=0
21 M
il < >0 IfigIMa
i=1 j=0
k—1
ZZXM: 16]'M1M2A
1
i=1 j= 0 27-[ a

Theorem 2 Assume that f € L2[0,1] be a continuous
function and |f(t)| <My, ¥t € [0,1]. If f*(t) be the trun-
cated F-BWFs expansion then, the norm of truncated error
E(t) can be bounded as

IE@), = [lf () = £ @)l
Sﬁ: i Bij+ i

m=0 p=2k-141 m=M+1 n=

ol 26
B, (26)
1

where
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M2 1651M MoA 1
b= 2 2z T o
j=0 i=1 @ Py

Proof Using Eq. (11) if f*(¢) be the truncated F-BWFs
expansion, then the truncated error term can be computed
as

then, we derive

IE@, < If (1) =f (D)l < Z Z ¥ (t)
m=0 p=2k"141
0 o0
Cnm‘,bnm
m=M+1 n=1 2
M 00
<y cn,mwz,mmi\z
m=0 p=2k-141
o0 o0
+ Z Z Cn,mlpzﬁm(t)Hz
m=M+1 n=1
M 00
:Z Z |C”~,m|’l//fl,m(t)H2
m=0 p=2k"141
o0 o0
+ Z Z|Cnm|’ nm H2
m=M+1 n=1

Moreover, we have

120l = / (W2 () dr

RI—

@
:/2 (2TAB, (2 — n+1))% .

1
= T

By changing the variable 2~ '#* —n 4 1 = x, we get

/ﬁ

1
ol = [ 27 028,00° 5

1 (m-) 1.

1
2
ﬁ2m = &

=AY G

Thus, using the above equation and Theorem 1, we have

EOL<Y S Hewl+ 3 Z cund

m=0 n:2k*1+1 m=M+1 n=
M 00
<0 mr Y Yom
m=0 p=2k-141 m=M+1 n=1
where
k-1
5 izz 16j!M,M,A
W= (VI 2
j=0 i=1 (2m) o?

4 Description of the Proposed Method

In this section, the F-BWFs expansion and their OM of
fractional derivative are used together to solve the fol-
lowing FOCPs with inequality constraints

min J = [i F (t,2(t), u(t)) dt,

%Dt”m(t) =G (tz(t),u(t), v>0, tel0,1], 27)
St u(t) <0, j=1.. s
z(0) = z0,2'(0) = 21,...,2(0) = T,

where x(7) and u(t) are state and control functions.
For do this, we expand CO Dy x(t) by the F-BWFs as

CDYa(t) =~ CTwe(t). (28)

By integrating from order v on both sides of Eq. (28) with
respect to ¢, considering Eq. (15) and the initial conditions
expressed in Eq. (27), we get

]

v T Xit
x(t) = I'(CT¥W*(r § —!
[ (29)
T p(v,0) yro Xt
= TPy §_0—!

= CTPU W (1) + d" ¥ (1),
where

Dl
il
Y H (),

!
i—0 =

and we suppose u(t) ~ UTP*(¢).
By substituting Eq. (29) and u(f) ~ UT¥W*(t) in
Eq. (27), our problem is converted to following problem
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min J
1
z/ ]—'(t, CTPU W2 (1) 4 dT W (1), UT‘P“(t))dt,
0
cTy(1)
= g(r, CTPUD (1) + d"W* (1), UT 'I’“(t)),

O<v, r€]0,1],
Si(t, CTPU ) (1) + dT W (1), UTW*(1)) <0,
j=1,...s

(30)

We convert the inequality constraint to the equality con-
straint by slack variables as

Si(t, TP W (1) + d" W (1), U (1)) + ZF (1) = 0.
31)

By expanding Z;(t) by F-BWFs and using the product OM

of F-BWFs Eq. (17), we have

Si(t, CTPU (1) + dT W (1), UTW*(1)) 32)

+ ZJTZ, P*(1) = 0.

Applying the above equations and removing P*(z) from
Eq. (30), we obtain

1
min J = / f(t, CT PO (1) 1 dl (1), UTW(z))dt,
0

CT:Q(t,CTP("’“)+dT,UT), 0<v, telo,1],

Sj(t,CTP(V*“) +dT,UT)+ZJTZ~j:0’ j=1,...s.

(33)
Now, by using the method of Lagrange multipliers method,
we have

T=J+ (CT - G(z, CTPO) 4 T, UT)))L

(34)
 (S6CTPO £ 0 4 95)s,

where the vectors A and J; are the unknown Lagrange
multipliers of dimension 2*~!(M + 1) x 1. Also, the nec-
essary conditions for the extremum are given by following
system

oJ oJ oJ oJ

%:0,@20’&:07520,
o7 (35)
6(5 =0, j=1,...,s

We can determine C and U by means of packages such as
MATLAB, and we obtain the approximate solution of
Eq. (27).

22, Q) Springer

5 lllustrative Test Problems

In this section, some numerical examples are provided to
demonstrate the efficiency and reliability of the proposed
method. All the numerical computations have been done
using MATLAB 2018a.

Example 1 Consider the following FOCP with inequality
constraint described by (Lotfi 2019)

min J = [ ( )+ ul(t) 4 23 (t) — 2(1 — t%)) u(t))dt,
§Dfa(t) = 2 (a(t) — u(t)),

2(0) = #(0) = 0,

(t) <0,

0<u(t) <1

(36)

For this problem, the values x(1) = —# and u(f) =1 — 72
are the minimizing solutions for the state and control
variables, respectively, and the performance index J has

the minimum value of 7 = —0.7. Let
CpEa(t) = CTU (1), (37)
then

x(1) = CTPEI W (1), u(r) = U9 (1), (38)

where C and U are unknown coefficient vectors to be
calculated. By substituting Eq. (38) into Eq. (36), we have

win g = [ (e w) (0o

+28(cTPED v (1))
A1)
subject
€ w(e) = 2V (TP - U7 9,

and also, we have x(¢) <0 and 0 <u(¢) < 1. Therefore, by
using slack variables, we have

x(1) +5%(t) =0, u(r) — (1) =0,
where s(t) = STY*(1), z(t) = ZTW*(1), w(t) = WTP*(z),

1 = ET¥* and S, Z and W are unknown coefficient vectors.
Thus,

u(t) +wi(t) =1,

CTPED W (1) + STW (1) W*(1)7'S =
Ut (r) = 2" ()P (1) Z = 0,
Ut (1) + W (1) w*(1)"w = ETw*,
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Table 1 The value of the performance index J with k =1, M =1 and k = 1, M = 2 for Example 1

k=1M=1 k=1,M=2

o J o J

1 —0.696326653061 1 —0.6999503188947
1.1 —0.696776379794 1.1 —0.6999546485260
12 —0.698788230495 12 —0.6999588995082
13 —0.699475668624 13 —0.6999753536707
1.4 —0.699871301375 1.4 —0.6999921339567
L5 ~0.699999999999 L5 ~0.699999999999

Table 2 The estimated values of J using the Ritz method and the F-BWFs method for v = o = % for Example 1

Methods J

Epsilon penalty with Ritz method (Lotfi 2019)

m=0,n=k=4 —0.699989
Present method
k=1, M=1 —0.699999

Table 3 The absolute errors in the state and control variables with k=1, M =1l and v=a = % for Example 1

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ex 1.7E—14 97E—-14 24E-13 43E-13 6.6E—13 9.1E-13 12E-12 15E-12 1.8E—-12 22E-12 2.6E-12
e, 26E-12 25E-12 24E-12 21E-12 19E-12 16E-12 13E-12 93E-13 5.6E-13 1.6E-13 2.6E-13
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Fig. 1 The behaviour of the approximate state and control variables x(f) and u(f) with k =1, M =2 and o = 1,% for Example 1

and By removing ¥*(¢) from both side of Eq. (39), we have
CTPEI W (1) + STSW* (1) = 0, P ¢ §T§ =0, UT-Z'Z=0, (40)
ury(t) — 2"2v* (1) = 0, (39) UT+wW'W-E"=0.

T Tyowe sy — 5T
U W (1) + W W¥(r) = E ¥ Now Eq. (36) is converted to

@ Springer



1522 Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2020) 44:1513-1528

(a (b)
6F T 10 T
v=1 _z _ A \ _1/:(1)9
= = =1=0.9 P =" \ == =y=0.
s - \ =
5L v=0.8 > ] 9—\\ A\ ___V_g_g,
- = =y=0.7 - N =
R ARRY
- LYY
. %o L 4
v % 8 \ A
47 ’, ’ 7 \ ~
-, ’ N ~
-, .
’ ’ A\ N
£ RN s T M S i
= 3 B X > S
< 3 ,¢ ,/ N \\ D
. ’ N \\
’ ’ 6 R N ]
4 ’ <
2r ’ ’ B SO
’ 4 \\
’ ,' 51 S b
L 2% 1 N -
1 1, ~s~~\\
1 4+ - N i
'y I==3
0 | | | | | | | | | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2 The behaviour of the approximate state variables x;(¢), x,(¢) for different values of v for Example 2 with k =3, M =2 and ¢ = 1

Table 4 The values of the performance index J with v = o = 1 for Example 2

Methods J

Rationalized Haar functions (Ordokhani and Razzaghi 2005)

k=4 8.07473

k=38 8.07065
Hybrid of block-pulse and Bernoulli polynomials (Mashayekhi et al. 2012)

k=4, M=1 8.07071

k=4, M=2 8.07058

k=4, M=3 8.07055
Bernstein polynomials (Alipour et al. 2013)

M=1 8.07061

M=9 8.07059
Generalized fractional-order of Chebyshev functions (Rabiei and Parand 2019)

M=5 8.07373

M=10 8.07059

M=15 8.07055
Boubaker hybrid functions (Rabiei and Ordokhani 2018)

N=3,M=2 8.07417

N=3,M=3 8.07073

N=4M=2 8.07272

N=4M=3 8.07055
Present method

k=2, M=1 8.074913

k=2, M=2 8.070579

k=3, M=1 8.070709

k=3, M=2 8.070544
Exact value 8.07054
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Table 5 The estimated values of the performance index J for different values of v, « and k = M = 2 for Example 2

o v=0.8 v=09 v=1
J J J

0.5 8.7952402 8.4785361 8.0709776
0.6 8.7924622 8.4663923 8.0706749
0.7 8.7911522 8.4659519 8.0700736
0.8 8.7916229 8.4662012 8.0696417
0.9 8.7921489 8.4668538 8.0699295
1 8.7911277 8.4665063 8.0705799
1.1 8.7879760 8.4649056 8.0704216
1.2 8.7823216 8.4609959 8.0680279
1.3 8.7742692 8.4544256 8.0624638
1.4 8.7642731 8.4448529 8.0534055
1.5 8.7527600 8.4322691 8.0409555
2 8.6819510 8.3413951 7.9449517

Table 6 The estimated value of u(f) with v = oo = 1 for Example 2

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Estimated value -1 -1 -1 —0.9621 —0.7803 —0.5735 —0.3884 —0.2318 —0.1083 —0.0284 0.0001

Table 7 The estimated values of

the performance index J for k=LM=1 * k=l M=2
different values of «, v for y=1 y=0.9 y=0.8 v=1 y=20.9 v=0.8
Example 3
0.5 5.7372662 5.5423602  5.3417987 0.5 5.7660277 5.5672843 5.3622387
0.6 5.7382499 5.5436655 5.3453419 0.6 5.7657191 5.5666711 5.3615186
0.7 5.7463321 5.5530662 5.3546368 0.7 5.7652008 5.5663118 5.3614592
0.8 5.7564507 5.5620716 5.3620094 0.8 5.7652715 5.5666155 5.3620094
0.9 5.7635445 5.5671123 5.3645534 0.9 5.7657364 5.5671123 5.3624390
1 5.7660277 5.5670093 5.3615626 1 5.7660271 5.5671041 5.3619649
1.1 5.7635621 5.5617212  5.3533094 1.1 5.7655556  5.5659758 5.3599930
1.2 5.7564107 5.5517142  5.3404568 1.2 5.7638539  5.5632957 5.3561638
1.3 5.7450972 5.5376450 5.3237764 1.3 5.7606146 5.5588183 5.3503197
1.4 5.7302305 5.5202042 5.3040188 1.4 5.7556739 5.5524506 5.3424530
1.5 5.7124153 5.5000426 5.2818594 1.5 5.7489834 5.5442113 5.3326567
2 5.5964308 5.3760404 5.1523514 2 5.6920579 5.4794336 5.2608749
2.0328 5.5879540 5.3672385 5.1434106 2.6127 5.5879543 5.3684943 5.1454143
min J = / < CT PEApr (g > + UT'}”(t To solve this problem, we use the proposed method with
different values of k and M. Table 1 lists the values
+27 (CTP(E’“) P*(1) ) ( t’)(UT‘I”(t))) obtained for the performance index J with k=1, M =1
N , and k = 1, M = 2 for different values of o. In Table 2, the
¢ —( i ) 0, (41) results for 7 of this paper and Epsilon penalty with Ritz
TP 4§75 — 0, method are compared. Table 3 contains the absolute errors
Ul - 717 — 0, in the state and control variables with k =1 and M = 1.

Figure 1 demonstrates the behaviour of the numerical

T Twr _ T — . . |
U+Ww-E =0 solutions for the state variable x(¢) and the control variable

2
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Table 8 The values of the performance index J with v =1 for

Example 3
Methods J
Chebyshev finite difference (El-Kady 2003)
M=13 5.58797
Boubaker hybrid functions (Rabiei and Ordokhani 2018)
k=1, M=2 5.60276
k=1, M=3 5.59196
k=2, M=2 5.58796
Present method
k=1, M=1 5.5879540
k=1, M=2 5.5879543
k=2, M=2 5.5879559
Exact value 5.5879556

u(t) with k=1, M=2 and a«a=1 and o=
Tables 1, 2, 3 and Fig. 1, we verify that the F-BWFs

%. From

method  provides  approximate  solutions  with
acceptable accuracy.
(a)
-1.8F T *w *%w;v;*****
exact " o x ¥ * * %
q9F|T T~ =v=1 * * K
® =1 ** .*-*
=09 *
L * ,
2 ¥=0.9 P
- = =08 RV
21r| ® =08 o ,° g
= = =207 L.
= ’
= 221 ® =07 ,/ , i
h=3 ’
x 7 4
’
23¢ 0 1
L4
4
241 Pad i
a4
7 ¢
25 72 b
’¢
77
-26p¢ ]
4
0 01 02 03 04 05 06 07 08 09 1

Example 2 Consider the following FOCP with inequality
constraint described by (Kirk 1970)

min J = 1 jol(x%(t) + u?(t))dt,
SD:;.CL'l(t =T t)

oDy x1(t) = —xo(

lu(t)] <1,

’1,1(0) = 0, ”LQ(O) = 10.

;‘) + u(t), (42)

For this problem, the performance index 7 has the mini-
mum value of 7 = 8.07054 with v =1. To solve this
problem, we use the proposed method with different values
of k and M. Figure 2 demonstrates behaviour of the state
functions for different values of v with £k =3, M = 2 and
o = 1. In Table 4, we compared the results for [ that v =
o =1 of the proposed method with others methods.
Table 5 shows the estimated value of J with different
values of v, o and k = M = 2. Table 6 shows estimated
value of u(f) with v = o = 1. From these tables and fig-
ure one can see that the F-BWFs method is efficient and
accurate.

Example 3 Consider the following FOCP with inequality
constraint described by (Hager and Lanculescu 1984)

(b)
~ T
1 Y ~ exact
St — e
L SN V=
0.9 LSRN v=0.9
MR - - -.=08
08 N et 4
AT
0.7 LSRN b
AJERY
L A i
0.6 \ \\
= \
S o5f N :
\
04 N 1
W
031 KU
W
02 R
W
L A3
0.1 q
0 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Fig. 3 The behaviour of the approximate state and control variables x(f) , u(¢) for some different values of v for Example 3 with k =2, M =2

Table 9 The value of performance index J with k = 1,2, M = 1,2 for Example 4

k=1M=1 k=1,M=2 k=2, M=1 k=2,M=2
o J J J J

1 —0.2481632 —0.2499773 —0.2498522 —0.2499985
1.5 —0.2499999 —0.2499999 —0.2499999 —0.2499999
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(a) (b)
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Fig. 4 The behaviour of the approximate state and control variables x(¢), u(f) for Example 4 with k =2, M =2 and o = 1,%
Table 10 The value of performance index J with different k, M for Example 5
k=1,M=1 k=1, k=2,
M=2 M=1
o J J J
1 0.06736041 0.00766171 0.01334910
3
1 0.00653031 0.00003636 0.00044820
4 0.00241390 0.00002128 0.00020935
3
k=2, M=2 k=3, k=3,
M=1 M=2
o J J J
1 0.00561535 0.00141290 0.00001805
3
1 0.00000320 0.00003031 0.00000014
4 0.00000250 0.00001698 0.00000010
3
Table 11 The estimated value k=3 M—2
of J for different v with o = 1 v min J = jg (22(t) + u?(t))dt,
and k =3, M = 2 for v J ¢y
Example 5 oDi m(t)lfgf(t)’ 0<v <, (43)
0.7 003796953  (0) = 555¢,
0.8 001551470  ult) = 1.
0.9 0.00312301  For this problem, the exact values for state and control
1 0.00000014

variables x(t), u(t) are

o — @ Springer
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Fig. 5 The behaviour of the approximate state and control variables x(¢), u(f) for some different values of v for Example 5 with k = 3, M = 2 and

1+ 3e 1 1
t 0<tr< -, _
20—e) =7 ! O<t<7,

x(t)i et_"_ezf; 1 u(t) el — o2t 1
— <1<, - <t<1

Vei—o 2°'S Vell—¢) 2

and the performance index J has the minimum value of

J =232 ~ 55879556 with o = v = 1.
48(e—1)

To solve this problem, similar to the previous examples,
we use the proposed method with different values of K and
M. Table 7 lists the values obtained for the performance
index J withk =1, M =1and k = 1, M = 2 for different
values of «, v. In Table 8, the results for 7 of this paper
and other methods are compared. Figure 3 demonstrates
the behaviour of the numerical solutions for the state
variable x(¢#) and the control variable u(f) with k =2, M =
2 and o = 1, for different values of v =0.7,0.8,0.9, 1.

Example 4 Consider the following FOCP with inequality
constraint described by (Lotfi 2019)

min J = fo (22(t) + 2t22(t))dt
( ) 3\/_(5171 (z(t)) U(t)), (44)
x(O) =2(0) =0,
x(t) <0,
0<ult) <
For this problem, the exact solutions are J = —0.25,

x(t) = =2, u(t) = I+ 1sin? (). To solve this problem, we
use the proposed method with different values for k and M.

o @ Springer

Table 9 lists the values obtained for the performance index
J with k=1,2, M =1,2 for « =1 and cx:%, Figure 4
demonstrates the behaviour of the numerical solutions for
the state variable x(z) and the control variable u(r) with
k=2, M=2 and « =1 and oc:%. From Table 9 and
Fig. 4 we verify that the F-BWFs method provides
approximate solutions with acceptable accuracy and we see
the good effect of the fractional order o for F-BWFs basis.

Example 5 Consider the following FOCP with inequality
constraint

min 7 = [y (@(t) = £2)2 + (u(t) - $)%dt,

eDYx(t) = tha(t)u(t) + (—t* + 2t),
x(0) =0,
0<z(t)+ut) <2

(45)

For this problem, the exact solutions with v =1 are 7 = 0,
x(t) = —12, u(r) = £. To solve this problem, we use the
proposed method with different values for k& and M.
Table 10 shows the estimated value of J with v =1 and
different values of «, k and M. Table 11 shows the esti-
mated value of J with oo = 1 and different values of v, for
k =3, M = 2. Figure 5 demonstrates behaviour of the state
variable x(f) and the control variable u(f) for different
values of v with k=3, M =2 and o = 1. From these
tables and figure one can see that the F-BWFs method is
efficient and accurate. In this exam, like the other
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examples, the effect of the fractional order of the used basis
is visible.

Figure 5 shows the behaviour of the numerical solutions
of the problem at k =3, M =2, for different values of
v=20.7,0.8,0.9,1.

6 Conclusion

This paper introduced a new efficient numerical method
based on the F-BWFs and the Lagrange multipliers for
solving FOCPs with inequality constraint. The main idea
consists of expanding the solution by means of F-BWFs.
The FOCPs was successfully reduced to a system of
algebraic equations using the F-BWFs basis, their opera-
tional matrices and Lagrange multipliers. From the
numerical results, it is obvious that the proposed method
provides better accuracy and efficiency than other methods.

Acknowledgements The authors are very grateful to the reviewers for
carefully reading the paper and for their comments and suggestions
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