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Abstract
The focus of this paper is the analysis and design scheme of simultaneous fault detection and control (SFDC) for linear

continuous-time fractional-order systems assumed to be affected by sensor, actuator and process faults as well as dis-

turbances. In essence, this simultaneous design unifies both the control and the detection modules into a single unit that is

called the controller/detector unit. This unit is designed such that it generates two signals, namely the residual and the

control signals. The system can be stabilized using the control signal, and the residual signals can detect the fault based on

model-based fault detection and isolation algorithms. The SFDC module should be designed so that the effects of faults and

disturbances on the residual signals are maximized and minimized, respectively. To this end, the SFDC problem is

formulated as the mixed H�=H1 optimization problem. Stability and fault detection are both considered through certain

performance indices, and new sufficient conditions in the form of linear matrix inequalities are obtained. Finally, some

simulation examples are given to illustrate the effectiveness of the proposed design method.

Keywords Fault detection � Fractional-order system � LMI � Norms

1 Introduction

Fractional calculus, as a branch of mathematical analysis,

started a new challenge about traditional integration and

differentiation and introduced the concepts of noninteger-

order integration and differentiation (Butzer and Westphal

2000; Kenneth and Bertram 1993). It provides powerful

mathematical tools whose application in various fields of

science and engineering is amazing (Sharma et al. 2019;

Ahmed et al. 2019; Sayyaf and Tavazoei 2018; Boukal

et al. 2018; Poojary and Gangadharan 2018). In the process

of modeling, it has been found that the expression of

dynamical equations of systems by the fraction-order (FO)

model is very simple, explicit and closer to the real situa-

tion (Abdeljawad et al. 2019; Hernandez et al. 2014; Yang

et al. 2015). Furthermore, in many systems such as thermal

systems (Battaglia et al. 2000) and batteries (Tian et al.

2019; Bankupalli et al. 2018), the FO models have fewer

parameters than integer-order systems.

Another interesting topic in the fractional discussion is

the design of a fractional controller. The PIkDl controller

(Ren et al. 2019), the fractional-order lead–lag compen-

sator (Raynaud and Zergaınoh 2000) and the CRONE

control (Morand et al. 2016) are some illustrious FO con-

trollers, which are proved to have more flexibilities and

robustness in terms of their applications compared to

integer-order ones. Many studies have been done for the

stabilization and stability conditions of fractional-order

systems (FOSs). To mention a few, in Zhang et al. (2017),

some simplified linear matrix inequality (LMI) stability

conditions for linear and nonlinear FOSs can be found. In

Khandani et al. (2017), stochastic systems with fractional

Gaussian noise (fGn) are stochastically stabilized. Con-

sidering the application of norms in robust control, in Malti

et al. (2011), for the H2 norm of FOSs, an analytical

computation technique was obtained. Authors of Fadiga

et al. (2011), Sabatier et al. (2005) present new methods for

the H1 norm computation of FOSs. A FOSs bounded real

lemma was presented in Moze et al. (2008). In Farges et al.
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(2013), the problem of H1 analysis and control of com-

mensurate FOSs were addressed.

On the other hand, it has been widely observed that even

a small fault in the system will cause great damage to it.

Therefore, the rapid detection of fault and its control can

prevent system failure, as well as the damage to the sub-

system. According to dynamic systems, a fault is a devia-

tion of the system structure or the system parameters from

the nominal situation. Examples for structural changes are

the disconnection of a system component, the blocking of

an actuator or the loss of a sensor. In recent decades, the

development of fault detection algorithms and monitoring

of dynamic systems are of paramount importance due to

their unique role in ensuring system reliability and system

safety (Chadli et al. 2018; Sakthivel et al. 2017; Shi et al.

2015; Zolghadri et al. 2014). A great number of FD algo-

rithms have been developed (Dong et al. 2012; Li and

Yang 2015; Meskin and Khorasani 2009; Liu et al. 2019;

Luo et al. 2019), but model-based fault diagnosis method

has a vital and practical role in the research and engi-

neering domains. Furthermore, the efficiency of this algo-

rithm in dynamic systems for detecting faults has been

proven by a great number of successful applications in

industry (Ding 2008; Wei et al. 2019; Li et al. 2019). In the

first step, model-based fault detection and isolation (FDI)

algorithms are based on the design of state observers or

filters. In the second step, using the system output and the

output of the observer, the residual signal is constructed. In

the third step, this signal is compared to the predefined

threshold and an alarm is generated if the residual evalu-

ation function has a value larger than the threshold, which

means there is a fault in the system. The presence of dis-

turbances as fault false alarms can corrupt the performance

of FDI system. Then, the fault detection system should be

designed in such a way that it is sensitive to faults and

simultaneously robust to disturbances (Wang et al. 2007).

As faults may be hidden by control actions and the early

detection of low-frequency faults is more troublesome, the

design of FDI in closed-loop feedback system is a different

argument. To solve this problem, the researchers proposed

SFDC. This method creates an integrated unit of feedback

controller and FDI unit that is called control/detector unit,

rather than design of the detector units and the controller

separately. Also, this leads to less complexity (Ding 2009).

One of the approaches to solving SFDC problems is to use

the theoretical framework of LMIs robust control. In

Khosrowjerdi et al. (2004), Davoodi et al. (2012), Zhai

et al. (2016), the SCFD problem is addressed by multi-

objective H2=H1 framework. Wang and Yang (2009),

Davoodi et al. (2012), Li and Yang (2012), Zhong and

Yang (2016) and Davoodi et al. (2016) investigated the

problem in the mixed H�=H1 optimization method. In

Shokouhinejad et al. (2017), Soltani et al. (2015), Wang

et al. (2017), the SCFD problem is formulated as an H1
filtering problem.

The main purpose of this paper is now simultaneous

control and fault detection in FOSs. In recent years,

researchers have shown interest in the issue of fault

detection problem of FOSs considering the importance of it

in both theory and applications. In Aribi et al. (2014),

firstly, the thermal system is modeled by a fractional order

and then the Luenberger observer is designed for the

diagnosis of fault in the systems. The focus in Pisano et al.

(2011) has been on the estimation and fault detection by

second-order sliding mode in FOS subject to unknown

inputs. Discontinuous dynamical observer for FDI in FOSs

is presented in Pisano et al. (2014). To the best of our

knowledge, the SCFD problem for FOSs has not been

investigated yet. The contributions of this paper can be

summarized as follows:

(i) In this paper, for the first time in the literature, the

problem of SFDC for continuous-time linear

fractional-order systems using mixed H�=H1
index is studied.

(ii) Based on the so-called generalized KYP lemma

and the bounded real lemma corresponding to H1
norm (H-BR) and applying the advantages of

classical Luenberger observers, new sufficient

conditions in the form of LMI for solving the

SFDC problem are obtained.

(iii) The controller/detector unit design is to generate

two signals, namely the residual and the control

signals. Using the residual signal, based on model-

based fault detection, faults can be detected and

the control signal can stabilize the system.

(iv) The SFDC module is designed such that the

effects of faults and disturbances on the residual

signals are maximized and minimized, respec-

tively (for accomplishing the fault detection task),

while the effects of disturbances and faults on the

specified control outputs are minimized (for

accomplishing the state or model reference

problems).

This paper is organized as follows. Section 2 presents

the definitions and theorems needed to solve the problem.

The solutions to the SFDC problem for linear FO system

are given in Sect. 3. To demonstrate the validity and

effectiveness of the results, a numerical example is pre-

sented in Sect. 4. Finally, Sect. 5 presents some concluding

remarks of the work.

Notations Throughout this paper, the notation AT

denotes the transpose of the matrix A and the superscript

‘*’ denotes the conjugate transpose of the matrix. For a

symmetric matrix, A[ 0 and A\0 represent positive
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definiteness and negative definiteness. SymðAÞ is short for
Aþ A�, and rmaxðAÞ denotes the maximum singular value

of A. The operator � is the Kronecker’s product. Rn, and

Rn�m denotes n-dimensional Euclidean space and the set of

all n� m real matrices, respectively.

2 The Problem Statement and Preliminaries

Consider a class of LTI commensurate FOSs that are

assumed to be affected by sensor, actuator and process

faults as well as disturbances:

G :

Dax tð Þ ¼ Ax tð Þ þ Bu tð Þ þ Bdd tð Þ þ Bf f tð Þ
y tð Þ ¼ Cx tð Þ þ Du tð Þ þ Ddd tð Þ þ Df f tð Þ
z tð Þ ¼ Ex tð Þ þ Fdd tð Þ þ Ff f tð Þ
x tð Þ ¼ / tð Þ t 2 �h1; 0½ �

8
>><

>>:

ð1Þ

where 0\a\1 and a is the fractional commensurate order,

xðtÞ 2 Rn is the pseudo-state vector, yðtÞ 2 Rr is the

measured output and zðtÞ 2 Rt denotes the regulated out-

put. Likewise, uðtÞ 2 Rm is the control input, dðtÞ 2 Rp is

the disturbance and f ðtÞ 2 Rq is the fault vector./ðtÞ is the
initial function defined on �h1; 0½ � where h1 is known

positive scalar. The appropriately dimensioned matrices

A;B;Bd;Bf ;C;E;Dd;Ff and Fd are real known constant

matrices. Da is the fractional differentiation operator of

order a.
The Caputo’s definition of fractional-order derivative

can be written as:

aD
a
t ,

1

C k � að Þ

Z t

a

f kð Þ sð Þ
t � sð Þaþ1�k

ds ð2Þ

where K is a positive integer and ðK � 1Þ� a\K. If the

FOS (1) is relaxed at t ¼ 0, it can be displayed by the

fractional-order transfer function (FOTF) matrix. The

FOTFs from disturbance input and fault input to regulated

output, respectively, are

Gzd sð Þ ¼ E SaI � Að Þ�1
Bd þ Fd ð3Þ

Gzf sð Þ ¼ E SaI � Að Þ�1
Bf þ Ff ð4Þ

The following controller (state feedback) filter and Luen-

berger-like state observer for the fault detector are pro-

posed for system (1):

Dax̂ tð Þ ¼ Ax̂ tð Þ þ Bu tð Þ þ Lr tð Þ
ŷ tð Þ ¼ Cx̂ tð Þ þ Du tð Þ
r tð Þ ¼ y tð Þ � ŷ tð Þ
u tð Þ ¼ Kx̂ tð Þ
x̂ tð Þ ¼ u tð Þ t 2 �h2; 0½ �

8
>>>><

>>>>:

ð5Þ

where x̂ðtÞ 2 Rn is the state vector of detection filter and

ŷðtÞ 2 Rr represents the observer output vectors, rðtÞ 2 Rr

denotes the so-called residual, K 2 Rm�n is the controller

gain and L 2 Rn�r is the filter gain. By defining new

pseudo-state vector nT ¼ xðtÞT eðtÞT
� �

where eðtÞ ¼
xðtÞ � x̂ðtÞ and combining the filter unit (5) and system (1)

together, the closed-loop FOS is governed by:

G :
DanðtÞ ¼ ~AnðtÞ þ ~BddðtÞ þ ~Bf f ðtÞ
rðtÞ ¼ ~CnðtÞ þ DddðtÞ þ Df f ðtÞ
zðtÞ ¼ ~EnðtÞ þ FddðtÞ þ Ff f ðtÞ

8
<

:
ð6Þ

where

~A ¼
Aþ BK �BK

0 A� LC

� �

; ~Bd ¼
Bd

Bd � LDd

� �

;

~Bf ¼
Bf

Bf � LDf

� �

; ~C ¼ 0 C½ �; ~E ¼ E 0½ �
ð7Þ

2.1 The Distributed SFDC Problem Definition

For the FOS model (1), a detector/controller (5) should be

designed such that the closed-loop system (6) is stable, and

also to ensure that the fault detection is done correctly.

Furthermore, the disturbance should not be assumed as a

fault; this will lead to:

ðiÞ: sup zðtÞk k2
dðtÞk k2

c1; c1h i0 ðiiÞ: sup zðtÞk k2
f ðtÞk k2

c2; c2h i0

ðiiiÞ: sup rðtÞk k2
dðtÞk k2

c3; c3h i0 ðivÞ: sup rðtÞk k2
f ðtÞk k2

b;bh i0

The performance indices (i), (ii) and (iii) are H1 opti-

mization problems, and the performance index (IV) is H�
optimization problem. The H1 is used to reduce the effects

of disturbance on the residuals and the control outputs as

well as to reduce the fault effects on the control outputs.

The H� index is used to guarantee the sensitivity of the

residuals to the faults. The following definitions and lem-

mas are presented for later developed.

Definition 1 (Green and Limebeer 1995) The H1 norm of

GðsÞ is defined by

G sð ÞH1
, sup

Re sð Þ	 0

rmax G sð Þð Þ ð8Þ

Lemma 1 (Sabatier et al. 2010) The FOS Dax tð Þ ¼ Ax tð Þ,
0\a\1, is asymptotically stable if and only if:

(1) Arg spec Að Þð Þj j[ a p
2
, where spec Að Þ is the set of

eigenvalues of A

or

(2) There exist P[ 0 and Q[ 0 such that

sym rAPþ �rAQð Þ\0 where r ¼ ej 1�að Þp
2.

Lemma 2 (H-BR, Liang et al. 2015) For the FOS (1) with

its transfer function Gyu sð Þ ¼ C SaI � Að Þ�1
Bþ D. Then,

Gyu sð ÞH1
\c if there exist P[ 0 and Q[ 0 such that:
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sym AXð Þ � �
CX �cI �
BT DT �cI

2

4

3

5\0 ð9Þ

where

X ¼ ejhPþ e�jhQ; if 0\a\1

ejh if 1� a\1

�

h ¼ p
2

1� að Þ:

Lemma 3 (Iwasaki and Hara 2005) Let matrices

A 2 Rn�n, B 2 Rn�m, U 2 H2 H 2 H nþmð Þ and w 2 H2. Set

K is defined as

K U;Wð Þ, k 2 C
k
I

� ��
U

k
I

� �

¼ 0;
k
I

� ��
W

k
I

� �

	 0

�
�
�
�

� �

:

ð10Þ

According to the following two statements, for

H kð Þ, kIn � Að Þ�1
, there holds

H kð Þ
Im

� ��
H

H kð Þ
Im

� �

\0; 8k 2 K ð11Þ

there exist P;Q 2 Hn and Q[ 0 such that

A B

In 0

� ��
U� PþW� Qð Þ A B

In 0

� �

þH\0 ð12Þ

then ‘‘ð2Þ ) ð1Þ.’’
If K represents a curve in the complex plane, then

‘‘ð2Þ , ð1Þ.’’

Lemma 4 (Liang et al. 2015) If � U;Xð Þ is defined as

� U;Wð Þ, k 2 C
k
I

� ��
U

k
I

� �

	 0;
k
I

� ��
W

k
I

� �

	 0

�
�
�
�

� �

:

ð13Þ

then condition (11) holds 8k 2 � if there exist positive

definite symmetric matrices P and Q such that LMI con-

dition (12) holds.

Lemma 5 (Projection lemma, Gahinet and Apkarian

1994) For two matrices U and V of column dimension m

and a symmetric matrix Z 2 Sm, there exists an unstruc-

tured matrix X that satisfies:

UTXV þ VTXTU þ Z\0 ð14Þ

if and only if the following inequalities are satisfied:

NT
UZNU\0 ð15aÞ

NT
VZNV\0 ð15bÞ

where NU and NV are null spaces of U and V , respectively.

Assumption 1 Considering Bi 2 Rn�m with full column

rank, equality (16) holds:

Bi ¼ Ui
Ri

0

� �

VT
i ð16Þ

where Ri 2 Rm�m is a diagonal matrix with positive diag-

onal elements and Ui 2 Rn�n and Vi 2 Rm�m are unitary

matrices.

Lemma 6 (Liu et al. 2016) Consider B 2 Rn�m with

rank(BÞ ¼ m and X 2 Rn�n is a symmetric matrix; then,

there exists an X̂ 2 Rm�m such that XB ¼ BX̂ if and only if

X ¼ U
X11 0

0 X22

� �

UT ð17Þ

where X22 2 R n�mð Þ� n�mð Þ and X11 2 Rm�m.

Lemma 7 (Matignon 1998) The fractional-order system

G sð Þ is stable if and only if G sð ÞH1
is bounded.

Assumption 2 k d tð Þ k 2\k where k is known positive

scalar.

3 Main Results

As stated in the previous section, the SFDC distributed

problem can indeed be cast as designing a controller/detector

unit such that the augmented system (6) is stable and all multi-

objective H�=H1 performance indices (i)–(iv) are satisfied

simultaneously. In this section, each performance index will

be converted into the LMI conditions in Theorems 1–4. Then,

a feasible solution to the problem is obtained by considering

all of Theorems 1–4 simultaneously in Corollary 1. First,

Theorem 1 proposes an LMI condition for performance index

(i), such that the effect of disturbance on regulated output is

minimized and fractional-order system (6) is stable.

Theorem 1 For given scalars c1 [ 0 and k[ 0, the

augmented fractional-order system (6) is stable and guar-

antees the performance index (i) if there exist positive

definite symmetric matrices P1; Q1 and matrices

X1; X2; X̂1, N and M that satisfy the following LMI:

Her Pð Þ þ N1 N2 Xþ N3Fd

� �k X þ XTð Þ kX
� � FT

d Fd � c21I

2

4

3

5\0 ð18Þ

where

N1 ¼ ET 0
� � E

0

� �

; N3 ¼ E 0½ �T ; X ¼
XT
1Bd

XT
2 Bd � NTDd

� �

P ¼
ATX1 þMTBT 0

�MTBT ATX2 � CTNT

� �

; X ¼ diag X1;X2ð Þ;

N2 ¼ kX� XT þ �rP1 þ rQ1; r ¼ ejh; h ¼ 1� að Þ p
2
:

123

Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2020) 44:485–494488



The filter gains L and the controller gains K are now

specified as follows:

L ¼ X�T
2 N

K ¼ X̂�T
1 M

ð19Þ

Proof Based on Definition 1, G sð Þzd
	
	

	
	
H1

can be written

as

G sð Þzd
	
	

	
	
H1

, sup
Re sð Þ	 0

�r G sð Þzd

 �

¼ sup�r
Re sð Þ	 0

EðSaI � AÞ�1
Bd þ Fd

� 
 ð20Þ

By some basic matrix calculations, we have

G sð Þk kH1
\c , G sð ÞG sð Þ��c2I\0 8Re sð Þ	 0

,
H kð Þ
Im

� ��
H

H kð Þ
Im

� �

\0; 8k 2 K

ð21Þ

where H kð Þ, kIn � ~A

 ��1 ~Bd and K U;Wð Þ is defined in

Eq. (10), also:

H ¼
~ET ~E ~ETFd

FT
d
~E FT

d Fd � c21I

� �

ð22Þ

By invoking Lemma 3, the last part of (21) is also equiv-

alent to the statement that 9P;Q 2 Hn;P[ 0 and Q[ 0

such that the following LMI holds:

I 0
~A ~Bd

� ��
U� PþW� Qð Þ I 0

~A ~Bd

� �

þH\0 ð23Þ

Similar to Davoodi et al. (2012),

U ¼
0 �r

r 0

� �

W ¼
0 r

�r 0

� � ð24Þ

Now inequality (23) can be reformulated as NT
UZNU\0

where NU and Z are given by:

Z ¼
~ET ~E �rP1 þ rQ1

~ETFd

rP1 þ �rQ1 0 0

FT
d
~E 0 FT

d Fd � c21I

2

6
4

3

7
5

NU ¼
I 0

~A ~Bd

0 I

2

6
4

3

7
5

ð25Þ

By designing NV and V as:

NV ¼
kI 0

�I 0

0 I

2

4

3

5 ! V ¼ I kI 0½ � ð26Þ

Also, according to Lemma 5, the inequality NT
UZNU\0 is

equivalent to:

Z þ
~AT

�I
~BT
d

2

4

3

5 X kX 0½ � þ
XT

kXT

0

2

4

3

5 ~A �I ~Bd

� �
\0

ð27Þ

Partitioning X into X ¼ diag X1;X2ð Þ; Xi 2 Rn�n; i ¼ 1; 2

and substituting (25)–(26) in (27) result in:

Her Dð Þ þ N1 N2 Xþ N3Fd

� �k X þ XTð Þ kX
� � FT

d Fd � c21I

2

4

3

5\0 ð28Þ

where

N2 ¼ kX� XT þ �rP1 þ rQ1 ð29Þ

D ¼ ATX1 þ KTBTX1 0

�KTBTX1 ATX2 þ CTLTX2

� �

ð30Þ

Let partition X1 as:

X1 ¼ U
X11 0

0 X22

� �

UT ð31Þ

Then, from Lemma 6, there exists X̂1 ¼ VR�1X11RVT such

that BTX1 ¼ X̂1B
T where X̂�1

1 ¼ VR�1X�1
11 RV

T and by

substituting NT ¼ LTX2, M
T ¼ KTX̂1, in Eq. (30) inequal-

ity (18) is obtained, and the proof is completed.

Remark 1 LMI (23) is equivalent to LMI (9), and the

feasibility of LMI (9) implies sym ~AX

 �

\0 which is suf-

ficient LMI condition for the FOSs stability based on

Lemma 1.

Remark 2 Lemma 7 shows that H1 norm can guarantee

the stability of FOS. To minimize the effect of fault on

regulated output, Theorem 2 proposes an LMI condition

such that the overall system (6) is stable and performance

index (ii) holds.

Theorem 2 For a given positive real number c2 and

k[ 0, the augmented FOS (6) is stable and guarantees the

performance index (ii) if there exist positive definite sym-

metric matrices P2;Q2 and matrices X1;X2; X̂1;N and M

such that the following LMIs hold:

Her Pð Þ þ N1 N2 Xþ N3Ff

� �k X þ XTð Þ kX
� � FT

f Ff � c22I

2

4

3

5\0 ð32Þ

where
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N1 ¼ ET 0
� � E

0

� �

; N3 ¼ E 0½ �T ; X ¼
XT
1 Bf

XT
2 Bf � NTDf

" #

P ¼
ATX1 þMTBT 0

�MTBT ATX2 � CTNT

� �

; X ¼ diag X1;X2ð Þ

N2 ¼ kX� XT þ �rP2 þ rQ2; r ¼ ejh; h ¼ 1� að Þ p
2
:

The filter and controller gains L and K are specified by

Eq. (19).

Proof The proof of this theorem is similar to that of

Theorem 1, so it is omitted for the sake of brevity.

In the following theorem, the LMI feasibility condition

to achieve stability of the augmented system (6) by con-

sidering H1 performance given in (iii) is obtained such

that the effect of disturbance d tð Þ on residual signal r tð Þ is
minimized.

Theorem 3 For a given positive real number c3 and

k[ 0, the augmented FO system (6) is stable and guar-

antees performance index (iii) if there exist positive definite

symmetric matrices P3;Q3 and matrices X1;X2; X̂1;N and

M that satisfy the following LMI:

Her Pð Þ þ N1 N2 Xþ N3Dd

� �k X þ XTð Þ kX
� � DT

dDd � c22I

2

4

3

5\0 ð33Þ

where

N1 ¼ 0 CT
� � C

0

� �

; N3 ¼ 0 C½ �T ;

X ¼
XT
1 Bd

XT
2 Bd � NTDd

� �

P ¼ ATX1 þMTBT 0

�MTBT ATX2 � CTNT

� �

;

X ¼ diag X1;X2ð Þ

N2 ¼ kX� XT þ �rP2 þ rQ2; r ¼ ejh; h ¼ 1� að Þ p
2
:

The filter and controller gains L and K, are specified by

Eq. (19).

Proof The proof of this theorem is similar to that of

Theorem 1, so it is omitted for the sake of brevity.

Now, the sufficient conditions in the form of LMI are

obtained such that the effect of fault on residual is maxi-

mized according to H� performance defined in (iv) and the

effect of fault on residual is maximized.

Theorem 4 For a given positive real number b and k[ 0;

the augmented FOS (6) is stable and guarantees the per-

formance index (iv) if there exist positive definite

symmetric matrices P4;Q4; and matrices X1;X2; X̂1;N and

M such that

Her Pð Þ � N1 N2 X� N3Df

� k X þ XTð Þ kX
� � �DT

f Df þ b2I

2

4

3

5\0 ð34Þ

where

N1 ¼ 0 CT
� � C

0

� �

; N3 ¼ 0 C½ �T ; X ¼
XT
1Bf

XT
2 Bf � NTDf

" #

P ¼
ATX1 þMTBT 0

�MTBT ATX2 � CTNT

� �

; X ¼ diag X1;X2ð Þ

N2 ¼ kX� XT þ �rP2 þ rQ2; r ¼ ejh; h ¼ 1� að Þ p
2
:

The filter and controller gains L and K are specified by

Eq. (19).

Proof By changing H and Z as follows:

H ¼ �~ET ~E �~ETDf

�DT
f
~E �DT

f Df þ b2I

� �

ð35Þ

Z ¼
� ~ET ~E �rP1 þ rQ1 � ~ETDd

rP1 þ �rQ1 0 0

�DT
d
~E 0 �DT

f Df þ b2I

2

4

3

5 ð36Þ

The rest of the proof is similar to that of Theorem 1, and

the inequality in Eq. (34) is satisfied.

At this point, all LMI feasibility solutions of the pro-

posed detection and control objectives in Theorems 1–4 are

obtained. The next corollary gives a procedure for solving

the optimization SFDC problem.

Corollary 1 Given c1; c2 and c3, a feasible solution to the

SFDC problem for system (6) is obtained by solving the

following convex optimization problem:

max b
X1;X2;P1;P2;P3;P4;Q1;Q2;Q3;Q4;N;M

s.t 18ð Þ; 32ð Þ; 33ð Þ; 34ð Þ
ð37Þ

Proof By invoking Theorems 1, 2, 3 and 4 in previous

sections, Corollary 1 can be proved without difficulty.

Remark 3 Now, after all the works that were done to

detect the fault in this article, the last and most vital stage

in the SFDC techniques is to define threshold Jth and

evaluation function J tð Þ for developing an FD deductive

logic. In this work, the residual evaluation function is

defined as Frank and Ding (1997)

J tð Þ ¼ h�1

Z h

0

rT sð Þr sð Þds
� �1=2

ð38Þ

where h represents the detection time range. The upper

threshold values are calculated as
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Jth ¼ sup
f tð Þ¼0

d tð Þ2L2

J tð Þ ð39Þ

The following logic relationship can diagnose whether

there is a fault or not:

J tð Þ[ Jth ) Alarm ða fault is detectedÞ
J tð Þ� Jth ) No alarm ðfault freeÞ

4 Numerical Example

To show the effectiveness and capabilities of the proposed

methodology and solution in this paper, consider the FO-

LTI system (1) with the following parameters where

0\a\1:

A ¼
1 2

2 �1

� �

; C ¼ 0:1 0½ �; E ¼ 00:1½ �;

B ¼ 0:2; 0½ �T ; D ¼ 0; a ¼ 0:5; k ¼ 1

The disturbance and fault models are supposed as:

Bd ¼
0:2
0

� �

; Bf ¼
0:2
0:1

� �

;

Dd ¼ Df ¼ 0:2;Ff ¼ Fd ¼ 0:1;

dðtÞ is assumed to be 0:1 exp �0:4kð Þ cos 0:03pkð Þ. The

fault signal f tð Þ is a square wave of unit amplitude that

occurred from 40 to 60 steps. It is favorable to detect the

fault f ðtÞ in the presence of the disturbance d tð Þ. For given
c1 ¼ 1:7017; c2 ¼ 1:7874 and c3 ¼ 1:1944, we solve the

optimization problem (37) by YALMIP toolbox in

MATLAB and obtain b ¼ 0:0836. Furthermore, the

observer and controller gains were obtained, respectively,

as follows:

L ¼ 50:1036
13:6360

� �

; K ¼ �61:3024
�10

� �

Given the initial condition x 0ð Þ ¼ 00½ �T , the simulation

results are shown in Figs. 1, 2, 3, 4, 5 and 6. In Fig. 1, the

eigenvalues of matrix A are depicted. It is easy to see that

the open-loop system is unstable. Figure 2 shows the step

response of an open-loop system. The state trajectories

(x1ðtÞ and x2ðtÞ) are depicted in Figs. 3 and 4. These step

responses confirm that the closed-loop system is stable with

our proposed control strategy in this paper. The residual

signal rðtÞ is shown in Fig. 5. It can be concluded that the

robustness against disturbance and the fault sensitivity are

both amplified, and the fault is well separated from dis-

turbance. Hence, by using a threshold test, the fault f ðtÞ can
be effectively detected. The regulated output of the closed-

loop system is depicted in Fig. 6. It can be understood that

the effects of disturbance and fault on the regulated output

have been weakened. At this point, by selecting

dðtÞ ¼ 0:01wðtÞ, where wðtÞ is an energy-limited white

noise, the effect of noise on the system will be investigated.

Figure 7 shows the residual response to noise and fault

Fig. 1 Eigenvalues of matrix A

Fig. 2 Step response of the open-loop system

Fig. 3 Step response of the closed-loop system

Fig. 4 Step response of the closed-loop system
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input. It demonstrates that the system is robust against

noise, and moreover, the fault sensitivities are enhanced.

The regulated output zðtÞ is shown in Fig. 8. From Fig. 8, it

can be concluded that the effects of noise and fault on the

regulated output have been attenuated. For a given

c1 ¼ c2 ¼ c3 ¼ 1, we solve the optimization problem (37)

and obtain b ¼ 0:0282. This result shows a larger value of

b is obtained in comparison with the study performed by

Davoodi et al. (2012). It shows more sensitivity of residual

generator to fault signal. Note that, we only compared the

results, systems and methods were different.

5 Conclusion

In this paper, a robust distributed simultaneous fault

detection and control (SFDC) problem for fractional-order

systems using observer detector and state feedback con-

troller is proposed and developed. An LMI approach for

SFDC design in fractional-order system has been intro-

duced in order to stabilize the closed-loop system and

guarantee some control and detection objectives. Finally,

some simulation results are given to illustrate the effec-

tiveness and capabilities of the proposed approach. In

future work, this problem will be solved by considering

other types of filters and also the use of fuzzy algorithms

can develop this issue.
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