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Abstract
Periodically and quasiperiodically forced nonlinear oscillators are in the group of systems which can exhibit chaotic

behavior. Chaotic systems could be characterized by their strange attractor’s properties into one or more subtypes, e.g.,

chaotic systems with hidden attractors, megastability or extreme multistability. In this article, we propose a new

quasiperiodically forced chaotic system, which has megastability. The statistical properties, bifurcation diagram, Lyapunov

exponents and entropy analysis are considered to study this new system. Furthermore, for the first time, the bidirectional

and unidirectional coupling schemes between two quasiperiodically forced chaotic systems with megastability have been

studied. As it is observed, when the value of the coupling coefficient is increased in both coupling schemes, the coupled

systems undergo a transition from desynchronization mode to complete synchronization. Also, the simulation results reveal

the richness of the coupled system’s dynamical behavior. In particular, in the bidirectional coupling case, interesting

nonlinear dynamics, such as a transition from a chaotic to quasiperiodic desynchronization and finally to a complete

synchronization via an intermittent phenomenon, are observed. Furthermore, in the unidirectional coupling case, in which

the system passes from the desynchronization to complete synchronization through a region where the chaotic attractor of

the second coupled system is shifted and decreased, is also observed. Finally, the system’s realization has been done by

using a microcontroller.
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1 Introduction

Periodically forced nonlinear oscillators are in the group of

systems which can exhibit chaotic behavior, e.g., periodi-

cally forced form of the van der Pol oscillator (Sprott

2010). Furthermore, the driving term could be a

quasiperiodic forcing function, which makes the system

show more complex behavior. Designing chaotic differ-

ential equations and oscillators with desired properties has

been an attractive topic recently, especially designing and

analyzing chaotic systems with predefined number of
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equilibria (Pham et al. 2014, 2016), predefined attractors’

structure (Wang et al. 2017), delayed chaotic systems (Li

and Fu 2011; Li and Rakkiyappan 2013; Li et al.

2015a, 2018), hidden attractors (Kuznetsov et al. 2010;

Leonov et al. 2011; Dudkowski et al. 2016) and multi-

stable attractors (Li and Sprott 2014; Li et al. 2017a, b; Li

and Sprott 2018).

Systems with megastability (Sprott et al. 2017; Li and

Song 2017; Wang et al. 2018; Tang et al. 2018a, b; He

et al. 2018; Wei et al. 2018) and extreme multistability

(Bao et al. 2016, 2017a, b; Chen et al. 2018), recently

categorized and studied by researchers, are two subtypes of

multistable systems, which have infinite number of coex-

isting attractors.

In 2017, for the first time, the term megastability was

introduced by Sprott et al., which is defined by coexistence

of a countable infinity of attractors in a system. Their

proposed system is a periodically forced oscillator with a

spatially periodic damping term (Sprott et al. 2017). This

system has coexisting attractors including limit cycles, tori

and chaotic attractors which form a layered cabbage-like

structure. Wang et al. (2018) proposed a new oscillator

which has infinite coexisting asymmetric attractors and

hence is in the group of systems with megastability prop-

erty. In this system, some attractors are in the group of

hidden and the others are in the group of self-excited

attractors. A new two-dimensional nonlinear oscillator with

infinite coexisting whirlpool-like-structure limit cycles was

proposed in Tang et al. (2018a). Tang et al. (2018b) pro-

posed a megastable system whose coexisting attractors

form a carpet-like structure.

There are some linear and nonlinear methods to inves-

tigate the properties of the complex system, especially

chaotic systems. Considering the phase space of the system

for different initial conditions is one of the basic approa-

ches to show the multistability of a system. Also, consid-

ering the bifurcation diagram and Lyapunov exponents

(LEs) for different initial conditions can exhibit coexisting

attractors as the control parameter of the system changes.

Entropy is another measure that has the potential to show

the complexity of the systems. Many entropy measures

have been proposed in recent years, such as Kolmogorov,

approximate (ApEn), permutation (also modified permu-

tation) entropies.

In the past 3 decades, the phenomenon of synchroniza-

tion between coupled nonlinear systems and especially

systems with chaotic behavior has attracted the interest of

the research community due to the broad range of appli-

cations, such as in various complex biological, physical

and chemical systems (Szatmári and Chua 2008; Tognoli

and Kelso 2009; Mosekilde et al. 2002; Holstein-Rathlou

et al. 2001; Pikovsky et al. 2003), in secure and broadband

communication system (Kocarev et al. 1992; Jafari et al.

2010; Feki et al. 2003; Wu and Chua 1993; Sheng-Hai and

Ke 2004; Cuomo et al. 1993; Dmitriev et al. 2006) and in

cryptography (Dachselt and Schwarz 2001; Khan et al.

2018; Baptista 1998; Volos et al. 2006; Klein et al. 2005;

Alvarez and Li 2006; Annovazzi-Lodi et al. 1997; Grassi

and Mascolo 1999). However, having two chaotic systems

being synchronized is a major surprise, due to the expo-

nential divergence of the nearby trajectories of the systems.

A great number of researches based on synchronization of

nonlinear systems have been carried out. Complete or full

chaotic synchronization, phase synchronization, lag syn-

chronization, generalized synchronization, antisynchro-

nization, anti-phase synchronization, projective,

anticipating, inverse lag synchronization and fractional-

order synchronization are the most interesting synchro-

nization types which have been investigated numerically

and experimentally by many research groups (Voss 2000;

Cao and Lai 1998; Kim et al. 2003; Tolba et al. 2017; Li

2009; Kyprianidis and Stouboulos 2003; Dykman et al.

1991). However, the most interesting and the most studied

case of synchronization is the complete or full synchro-

nization. In this case, the interaction between two coupled

identical nonlinear circuits leads to a perfect coincidence of

their chaotic trajectories, i.e.,

x1 tð Þ ¼ x2 tð Þ; as t ! 1 ð1Þ

Furthermore, chaotic systems are used today in many

applications due to their interesting characteristics, such as

highly sensitive dependence on initial conditions and sys-

tem’s parameters, non-periodicity, unpredictability, wide

spectrum (as well as noise) and limited orbits in the phase

space (Azzaz et al. 2013; Liu and Zhang 2013; Yu 2011).

So, it is necessary to have real circuits for the purpose of

using chaotic systems in engineering applications. There-

fore, the realization of chaotic systems with analog elec-

tronic devices (resistance, capacitor, operational amplifier)

is often used. On the other hand, embedded digital devices,

such as field-programmable gate array (FPGA) (Shah et al.

2017; Tlelo-Cuautle et al. 2015; Alçın et al. 2016), field-

programmable analog array (FPAA) (Caponetto et al.

2005; Kilic and Dalkiran 2009; Dalkiran and Sprott 2016),

digital signal processor (DSP) (Guglielmi et al. 2009) and

microcontroller (Kaçar 2016; Zambrano-Serrano et al.

2017; Volos 2013; Acho 2015), are used in the digital

design of chaotic systems. Digital designs have advantages

over analog designs due to some features, such as the lower

energy consumption, small physical dimensions and the

easy way of making changes.

In this article, we first introduce our proposed

quasiperiodically forced chaotic oscillator with megasta-

bility and its statistical properties in Sect. 2. Dynamical

behavior of this novel system is analyzed using Lyapunov

exponents (LEs), bifurcation diagram and entropy in
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Sect. 3. In Sect. 4, the study of the synchronization

between bidirectionally or unidirectionally coupled

dynamical systems with megastability is presented for the

first time as far as we know. The proposed system’s real-

ization by using a microcontroller is introduced in Sect. 5.

The paper is concluded in the last section.

2 Quasiperiodically Forced Oscillator (QFO)

Let us consider the following oscillator which is discussed

in Kahn and Zarmi (2014):

_x ¼ y

_y ¼ �xþ y cos xð Þ
ð2Þ

Modifying system (2) by forcing it with a quasiperiodic

function gives a system as:

Fig. 1 QFO coexisting

attractors when initial

conditions ( x0; y0; t0½ �) are,

respectively, [0, 0, 0], [0.5, 0,

0], [1, 0, 0], [1.3, 0, 0], [1.5, 0,

0], [2, 0, 0], [3, 0, 0], and [3.5, 0,

0] in plot1 to plot8

Fig. 2 a Bifurcation diagram of

the QFO system as parameter b

increases and the other

parameters are taken as

A ¼ 0:07; a ¼ 0:3, c ¼
ffiffiffiffiffiffiffi

0:5
p

,

d ¼
ffiffiffiffiffiffiffi

0:2
p

and initial condition

0; 0; 0½ �. b corresponding

Lyapunov exponents
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_x ¼ y

_y ¼ � cosðaxÞ � by cos xð Þ þ A sin ctð Þ þ sin dtð Þð Þ
ð3Þ

If the ratio c
d

is irrational, the forcing term is quasiperiodic.

System (3) is a nonautonomous system; hence, calculating

fixed points for this system is not possible. Therefore, we

consider unforced form of the system, A ¼ 0, and thus this

system has infinite number of equilibrium points in

2n� 1ð Þ p
2a
; 0

� �

where n is an integer number.

The Jacobian of the above system in its equilibria is:

Fig. 3 a Bifurcation diagram of

the QFO when the initial

condition x0 changes and the

other parameters are taken as

A ¼ 0:07; a ¼ 0:3, b ¼ 0:55,

c ¼
ffiffiffiffiffiffiffi

0:5
p

, d ¼
ffiffiffiffiffiffiffi

0:2
p

and

y0 ¼ 0. Existence of these

coexisting attractors shows the

megastability of this system.

b Corresponding Lyapunov

exponents

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b

-0.2
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0.6

0.8

1

1.2

A
pE

n

Fig. 4 ApEn of system (2) as

the control parameter, b,

changes. Other parameters are

taken as A ¼ 0:07; a ¼ 0:3,

b ¼ 0:55, c ¼
ffiffiffiffiffiffiffi

0:5
p

, d ¼
ffiffiffiffiffiffiffi

0:2
p

and initial condition 0; 0; 0½ �.
Also, m and r are chosen 8 and

0.1, respectively
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0 1

a sin axð Þ þ by sin xð Þ �b cos xð Þ

� �

ð4Þ

The characteristic polynomial can be derived as:

k2 þ b cos 2n� 1ð Þ p
2a

� �

k� a sin 2n� 1ð Þ p
2

� �

ð5Þ

So, the eigenvalues will be:

k1;2 ¼ �B� B2 � 4Cð Þ0:5

2

B ¼ b cos 2n� 1ð Þ p
2a

� �

C ¼ �a sin 2n� 1ð Þ p
2a

� �

ð6Þ

For a specific value of a and b, it can be concluded that if

bcos 2n� 1ð Þ p
2a

	 


\0, the corresponding equilibrium is

unstable and when bcos 2n� 1ð Þ p
2a

	 


[ 0, it is stable.

Considering that b; a[ 0, the equilibrium is unstable if
aþ1

2
\n\ 3aþ1

2
and is stable if n\ aþ1

2
or 3aþ1

2
\n\ 4aþ1

2
.

As per Routh–Hurwitz criterion, all the principal minors

need to be positive in order to have stable equilibrium. The

principal minors are,

d0 [ 0; D1 ¼ d1 [ 0; D2 ¼ d1d2 [ 0 ð7Þ

where d0 ¼ 1, d1 ¼ b cos 2n� 1ð Þ p
2a

	 


and d2 ¼
�a sin 2n� 1ð Þ p

2a

	 


. Again we can conclude from the

Routh–Hurwitz criterion that the equilibrium is stable if
3aþ1

2
\n\ 4aþ1

2
and is unstable otherwise.

Now our interest is finding chaotic solutions in system

(3), and it should be noted that the system shows chaotic

solutions for various combinations of A; a; b; c and d. The

forcing term is quasiperiodic when the ratio c
d

is irrational;

hence, we choose c ¼
ffiffiffiffiffiffiffi

0:5
p

and d ¼
ffiffiffiffiffiffiffi

0:2
p

. The other

parameters are taken as A ¼ 0:07; a ¼ 0:3 and b ¼ 0:55.

The different nested attractors of the system for various

initial conditions are shown in Fig. 1. It should be noted

that t in Eq. (3) is considered as state variable and t0 ¼ 0 as

initial condition.

3 Dynamical Behavior of the QFO

To analyze the complete dynamical behavior of the QFO,

we derive the bifurcation diagrams of the system by con-

sidering b as the control parameter. The QFO shows

chaotic oscillations for 0:0595� b� 0:06,

0 10 20 30 40 50 60 70 80 90 100
x0

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
pE

n

Fig. 5 ApEn of system (2) as

the control parameter, x0,

changes and the other

parameters are taken as

A ¼ 0:07; a ¼ 0:3, b ¼ 0:55,

c ¼
ffiffiffiffiffiffiffi

0:5
p

, d ¼
ffiffiffiffiffiffiffi

0:2
p

and

y0 ¼ 0. Also, m and r are

chosen 8 and 0.1, respectively

Fig. 6 Bifurcation diagram of (y2 - y1) versus n of the bidirection-

ally coupling system (15), with the same initial conditions in each

iteration. The parameters are: A ¼ 0:07; a ¼ 0:3, b ¼ 0:55, c ¼
ffiffiffiffiffiffiffi

0:5
p

,

d ¼
ffiffiffiffiffiffiffi

0:2
p

and initial conditions (x1, y1, x2, y2)0 = (0, 0, 3.5, 0)
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Fig. 7 Simulation phase portraits of y2 versus y1 of the bidirectionally

coupled system (15) with A ¼ 0:07; a ¼ 0:3, b ¼ 0:55, c ¼
ffiffiffiffiffiffiffi

0:5
p

, d ¼
ffiffiffiffiffiffiffi

0:2
p

and initial conditions (x1, y1, x2, y2)0 = (0, 0, 3.5, 0), for

a n = 0.002 (chaotic desynchronization), b n = 0.0095 (complete

synchronization), c n = 0.015 (quasiperiodic desynchronization),

d n = 0.0433 (chaotic desynchronization), e n = 0.05 (quasiperiodic

desynchronization), f n = 0.065 (complete synchronization)
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Fig. 8 Bifurcation diagram of (y2 - y1) versus n of the unidirection-

ally coupling system (16), with the same initial conditions in each

iteration. The parameters are: A ¼ 0:07; a ¼ 0:3, b ¼ 0:55, c ¼
ffiffiffiffiffiffiffi

0:5
p

,

d ¼
ffiffiffiffiffiffiffi

0:2
p

and initial conditions (x1, y1, x2, y2)0 = (0, 0, 3.5, 0)

Fig. 9 Simulation phase portraits of y2 versus y1 of the unidirection-

ally coupled system (16) with A ¼ 0:07; a ¼ 0:3, b ¼ 0:55, c ¼
ffiffiffiffiffiffiffi

0:5
p

,

d ¼
ffiffiffiffiffiffiffi

0:2
p

and initial conditions (x1, y1, x2, y2)0 = (0, 0, 3.5, 0), for

a n = 0.002 (chaotic desynchronization), b n = 0.01 (chaotic desyn-

chronization), c n = 0.06 (chaotic desynchronization), d n = 0.12

(complete synchronization)

Fig. 10 Simulation phase portraits of y2 versus x2 of the unidirec-

tionally coupled system (16) with A ¼ 0:07; a ¼ 0:3, b ¼ 0:55,

c ¼
ffiffiffiffiffiffiffi

0:5
p

, d ¼
ffiffiffiffiffiffiffi

0:2
p

and initial conditions (x1, y1, x2, y2)0 = (0, 0,

3.5, 0), for n = 0.06
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0:175� b� 0:2148, 0:335� b� 0:34, 0:528� b� 0:595,

0:607� b� 0:787 and 0:8423� b� 1 as shown in Fig. 2a.

These intervals are confirmed by the Lyapunov spectrum

given in Fig. 2b. To show the effect of initial conditions on

the QFO, we have also derived the bifurcation-like diagram

of the system when the initial condition xo changes

(Fig. 3a). Actually, as this system shows infinite coexisting

attractors, we can conclude that it is in the group of systems

with megastability property. Also, this figure shows that

this system has the state variable x as offset boostable and

the DC offset of this variable can boost the system to any

level (Li et al. 2015b; Li and Sprott 2016). We could see

alternative regions of chaotic attractor and attracting tori

which are confirmed by the corresponding Lyapunov

exponents shown in Fig. 3b.

Approximate entropy is also used to measure the com-

plexity of the system as the control parameter changes.

Considering a series of data u 1ð Þ; u 2ð Þ; . . .; u Nð Þ, for each

control parameter, forms a sequence vector

x 1ð Þ; x 2ð Þ; . . .; x N � mþ 1ð Þ 2 Rm in which m is a positive

integer. This vector is defined by,

x ið Þ ¼ u ið Þ; u iþ 1ð Þ; . . .; u iþ m� 1ð Þ½ �;
1� i�N � mþ 1

ð8Þ

For each i, we have

d x ið Þ; x jð Þ½ � ¼ max
k¼1;2;...;m

u iþ k � 1ð Þ � u jþ k � 1ð Þj jð Þ

ð9Þ

To measure the similarity of other sequences (x jð Þ) to x ið Þ,
cmi rð Þ is defined as,

cmi rð Þ ¼ ðnumber of jwhich satisfies d½xðiÞ; xðjÞ� � rÞ= N � mþ 1ð Þ
ð10Þ

/m rð Þ ¼
PN�mþ1

j¼1 logCm
i rð Þ

N � mþ 1
ð11Þ

where r is the tolerance of this similarity and is defined by

r ¼ k � std u tð Þð Þ and 0:1� k� 0:2. Finally, approximation

entropy is defined as

ApEn m; r;Nð Þ ¼ /m rð Þ � /mþ1 rð Þ ð12Þ

Figure 4 shows the corresponding approximation

entropy of the QFO as the parameters are the same as

Fig. 2 and m and r are chosen as 8 and 0.1, respectively.

Fig. 11 ‘‘Chaos Generator’’ device (front side)

Fig. 12 Main parts of the

‘‘Chaos Generator’’ device as

they have been placed inside the

custom board
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Comparing Figs. 4 and 2, we claim that ApEn can distin-

guish quasiperiodic attractor from chaotic as it assigns

positive values to chaotic responses. The equivalent ApEn

of Fig. 3 is shown in Fig. 5 which approves previous

results.

4 The Coupling Schemes

Generally, there are various methods of coupling between

coupled nonlinear systems available in the literature.

However, two are the most interesting. In the first method

due to Pecora and Carroll (1990), a stable subsystem of a

Fig. 13 QFO coexisting

attractors, produced by the

device, when initial conditions

( x0; y0; t0½ �) are: a [0, 0, 0], b
[0.5, 0, 0], c [1, 0, 0], d [1.5, 0,

0], e [2, 0, 0], f [2.5, 0, 0], g [3,

0, 0], and h [3.5, 0, 0]. Also, the

other parameters are c =
ffiffiffiffiffiffiffi

0:5
p

,

d =
ffiffiffiffiffiffiffi

0:2
p

, A = 0.07, a = 0.3 and

b = 0.55
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chaotic system could be synchronized with a separate

chaotic system under certain suitable conditions. In the

second method, chaos synchronization between two non-

linear systems is achieved due to the effect of coupling

without requiring any stable subsystem be constructed

(Kyprianidis and Stouboulos 2003; Chua et al. 1992).

The second method can be divided into two classes:

drive response or unidirectional coupling and bidirectional

or mutual coupling. In the first case, one system drives

another one called the response or slave system. The sys-

tem of two unidirectional coupled identical systems is

described by the following set of differential equations:

_x ¼ F xð Þ
_y ¼ F yð Þ þ n x� yð Þ

ð13Þ

where F is a vector field in a phase space of dimension

n and n is the coupling factor, which describes the nature

and strength of the coupling between the oscillators. It is

obvious from (13) that only the first system influences the

dynamic behavior of the other.

In the second case, both the coupled systems are con-

nected and each one influences the dynamics of the other.

This is the reason for which this method is called mutual

(or bidirectional). The coupled system of two mutually

coupled chaotic oscillators is described by the following set

of differential equations:

_x1 ¼ F x1ð Þ þ n x2 � x1ð Þ
_x2 ¼ F x2ð Þ þ n x1 � x2ð Þ

ð14Þ

In this work, the study of the dynamic behavior of the

bidirectionally and unidirectionally coupled systems of

Eq. (3) has been investigated numerically by employing

the fourth-order Runge–Kutta algorithm. It is the first time,

as far as we know, that the synchronization between cou-

pled chaotic systems with megastability has been

investigated.

So, the system of differential equations that describes

the bidirectionally coupled systems’ dynamics is:

_x1 ¼ y1 þ n x2 � x1ð Þ
_y1 ¼ � cosðax1Þ � by cos x1ð Þ þ A sin ctð Þ þ sin dtð Þð Þ
_x2 ¼ y2 þ n x1 � x2ð Þ
_y2 ¼ � cosðax2Þ � by cos x2ð Þ þ A sin ctð Þ þ sin dtð Þð Þ

ð15Þ

The first two equations of system (15) describe the first of

the two coupled identical systems with megastability, while

the other two describe the second one. Also, the parameter

n is the coupling coefficient and it is present in the equa-

tions of both systems since the coupling between them is

mutual.

In the case of unidirectionally coupled systems (3), the

following system of differential equations is produced:

_x1 ¼ y1

_y1 ¼ � cosðax1Þ � by cos x1ð Þ þ A sin ctð Þ þ sin dtð Þð Þ
_x2 ¼ y2 þ n x1 � x2ð Þ
_y2 ¼ � cosðax2Þ � by cos x2ð Þ þ A sin ctð Þ þ sin dtð Þð Þ

ð16Þ

The coupling coefficient n is present only in the second

coupled system since only the first system affects the

dynamics of the second.

The parameters of the system are chosen as:

A ¼ 0:07; a ¼ 0:3, b ¼ 0:55, c ¼
ffiffiffiffiffiffiffi

0:5
p

, d ¼
ffiffiffiffiffiffiffi

0:2
p

. So, by

solving numerically the coupled systems’ Eqs. (15) and

(16), the bifurcation diagrams of the signal’s difference

(y2 - y1) versus the coupling factor n are produced. These

diagrams are produced by increasing the coupling factor n,

from n = 0 (uncoupled systems) with step Dn = 4 9 10-5,

by using the same initial conditions in each iteration (x1, y1,

x2, y2)0 = (0, 0, 3.5, 0). With these initial conditions, the

two coupled systems have different chaotic attractors, as

they are depicted in Fig. 1.

4.1 Bidirectional Coupling

The bifurcation diagram of the bidirectionally coupling

system (15) in Fig. 6 shows that the coupled system

undergoes from full desynchronization, for n\ 0.00356

(Fig. 7a), where each system is in a chaotic state and lies

on its own manifold to complete chaotic synchronization

for n C 0.05836 (Fig. 7f), where their manifolds coincide

through an intermediate region where the system shows a

Fig. 14 Bifurcation diagram of the QFO system, produced by the

microcontroller-based device, as parameter b increases and the other

parameters are taken as A ¼ 0:07; a ¼ 0:3, c ¼
ffiffiffiffiffiffiffi

0:5
p

, d ¼
ffiffiffiffiffiffiffi

0:2
p

and

initial condition [0, 0, 0]
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more complex dynamic behavior. This is an interesting

transition from full desynchronization to complete

synchronization.

So, the intermediate region of the bifurcation diagram of

Fig. 6 is more complicated and it can be divided into two

discrete regions:

• Region I: 0.00356 B n\ 0.03724 (quasiperiodic

desynchronization). This type of behavior (Fig. 7c) is

interrupted by small regions of chaotic desynchroniza-

tion as well as a small region of complete synchro-

nization (Fig. 7b).

• Region II: 0.03724 B n\ 0.05836 (intermittent syn-

chronization). Intermittent synchronization has been

observed in a variety of different experimental settings

in physics and beyond and is an established research

topic in nonlinear dynamics (Pomeau and Manneville

1980). When coupled oscillators exhibit relatively

weak, intermittent synchrony, the trajectory in the

phase space spends a substantial fraction of time away

from a vicinity of a synchronized state. Thus, to

describe and understand the observed dynamics, one

may consider both synchronized episodes and desyn-

chronized episodes (the episodes when oscillators are

not synchronous). Briefly, the desynchronized episodes

in these cases can be either chaotic or quasiperiodic, as

it is depicted in Fig. 7d, e, respectively.

So, in this case of coupling, a sudden transition from the

extended quasiperiodic desynchronization region to the

also extended intermittent synchronization region, which is

very rare in the literature, has been reported.

Fig. 15 QFO attractors,

produced by the

microcontroller-based device,

when initial conditions are [0, 0,

0], for a b = 0.06, b b = 0.25,

c b = 0.45, d b = 0.73,

e b = 0.86 and f b = 0.93
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4.2 Unidirectional Coupling

In the case of unidirectionally coupling system (16), the

bifurcation diagram, which has been obtained numerically,

is depicted in Fig. 8. From this diagram, another interesting

system’s (3) behavior can be observed. The coupled system

undergoes full desynchronization for n\ 0.00248

(Fig. 9a), where each system is in a chaotic state and lies

on its own manifold to complete chaotic synchronization

for n C 0.1075 (Fig. 9d), where their manifolds coincide,

through an intermediate region where the system shows a

more complex dynamic behavior. In this region, the chaotic

attractor of the first coupled system keeps its features,

while the chaotic attractor of the second coupled system, as

the coupling factor n is increased, is slightly shifted and its

dimensions are decreased in the phase plane (Fig. 10). As a

consequence, a shift in the plane of y1–y2 (Fig. 9b) and a

decrease (Fig. 9c) in the direction of y2 are also observed,

as the coupling factor n is increased, which is a very

interesting phenomenon. Finally, for n C 0.1075, the sys-

tem enters the region of a complete chaotic synchronization

state.

5 Experimental Setup

The feature of megastability of system (3) makes it

attractive for an electronic realization using discrete elec-

tronics, like microcontroller units, in order to be used in a

variety of chaos-based applications, like cryptography or

random generators. Today, microcontrollers are found in a

huge number of applications in automotive, consumer,

communications and industrial manufacturing (Predko

2000). The microcontrollers are also important because

they make electronic circuits cheaper and easier to build

(Bates 2011). The objective of this paper is to use system

(3) and a low-cost microcontroller-based device (Chaos

Generator), which has been constructed at the Laboratory

of Nonlinear Systems, Circuits & Complexity, in order to

produce chaos by using C language.

Many well-known development platforms, like Arduino,

have been used in such implementations. However,

demands on computational power and data memory require

a microcontroller from the latest series. For this reason, the

Microchip Microcontroller which belongs to the MZ series

microcontrollers has been chosen. Also, the ARM series

microcontroller, with corresponding performance, as well

as the Raspberry Pi development board could also be used

for development because they meet the above

requirements.

In brief, the implemented device consists of two boards

(Fig. 11): a small board with a relatively new

microcontroller from MZ series of Microchip Corp.,

namely PIC32MZ2048EFH144. It is a 32-bit microcon-

troller with FPU (floating-point unit) for 32-bit and 64-bit

floating-point math, running at 250 MHz with large flash

memory (2 Mbytes), large static RAM (512 Kbytes) and up

to 120 I/O pins, to name only a few of the features of this

microcontroller. On the same small board, there is also a

crystal oscillator working at 12 MHz some anti-coupling

capacitors and a LED indicator. On the main board, there is

a 16-key keypad, a 2 9 16 (two lines of 16 characters per

line) LCD, a USB type B connector, an SD card socket and

a reset button. On the back side of the main board (solder

side), there are two DACs which consist of resistors with

R2R configuration, driving two BNC connectors. The

device can numerically solve the QFO, by using the fourth-

order Runge–Kutta algorithm. Two output signals pro-

duced by the DACs correspond to the state variables (x and

y) of the system. The device can produce three of the most

well-known diagrams from nonlinear theory: the bifurca-

tion diagram, the phase portrait and the Poincaré map. The

obtained data are displayed on an oscilloscope (digital or

analog) or can also be stored on an SD card as time-series

data. Figure 12 shows the place of all aforementioned parts

of the chaos generator device. By using different initial

conditions, the megastability of the system implemented

with the device has been highlighted in the phase portraits

of Fig. 13. It should be noted that the value of the

parameters is the same as Fig. 1 (c =
ffiffiffiffiffiffiffi

0:5
p

, d =
ffiffiffiffiffiffiffi

0:2
p

,

A = 0.07, a = 0.3 and b = 0.55). Comparing Figs. 1 and

13, the accuracy of our implemented device in generating

different attractors of the system for different initial con-

ditions is observed.

Fig. 16 Bifurcation diagram of the QFO, produced by the microcon-

troller-based device, when the initial condition x0 changes and the

other parameters are taken as: A ¼ 0:07; a ¼ 0:3, b ¼ 0:55, c ¼
ffiffiffiffiffiffiffi

0:5
p

,

d ¼
ffiffiffiffiffiffiffi

0:2
p

and y0 ¼ 0
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In Fig. 14, the bifurcation diagram of system (3), by con-

sidering b as the control parameter, produced by the micro-

controller device, which is obtained in an analog oscilloscope,

is depicted. By comparing this bifurcation diagram with the

respective diagram produced in MATLAB (Fig. 2), a diver-

gence is observed. This divergence occurred due to the

different way of calculation of the trigonometric functions

between the MATLAB and microcontroller compiler library.

However, in this case, the aforementioned divergence is not

essential because the use of microcontroller highlights the

main feature of the system, which is the megastability. So, we

could also see regions of chaotic attractors and attracting tori

Fig. 17 QFO attractors,

produced by the

microcontroller-based device,

when parameters are taken as

A ¼ 0:07; a ¼ 0:3, b ¼ 0:55,

c ¼
ffiffiffiffiffiffiffi

0:5
p

, d ¼
ffiffiffiffiffiffiffi

0:2
p

and y0 ¼ 0

and initial condition of x0 is

a x0 = 5, b x0 = 30, c x0 = 40,

d x0 = 50, e x0 = 60, f x0 = 70,

g x0 = 90 and f x0 = 99
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which are confirmed by the phase portraits shown in Fig. 15,

for various values of parameter b.

To verify the effect of initial conditions on the QFO, the

bifurcation-like diagram of the system when the initial

condition xo changes has been obtained by using the analog

oscillator (Fig. 16). Alternative regions of chaotic attractors

and attracting tori are confirmed by the phase portraits in x–y

plane for various values of the initial condition x0 (Fig. 17).

6 Conclusion

To search for the coexistence of infinite countable attrac-

tors, megastability, it is necessary to examine different

initial conditions as the control parameters are fixed. In this

paper, we design a quasiperiodic forced nonlinear oscillator

which is chaotic and megastable. State space, bifurcation

diagram, Lyapunov exponents and basin of attraction of the

proposed system were investigated. Furthermore, the phe-

nomenon of synchronization of two bidirectionally and

unidirectionally coupled quasiperiodic forced nonlinear

systems with megastability was studied for the first time. In

the case of bidirectional coupling, interesting dynamics

such as a transition from a region of chaotic desynchro-

nization to quasiperiodic desynchronization and finally to a

complete synchronization via an intermittent phenomenon

was observed. On the other hand, in the unidirectional

coupling case, the coupled system passed from the desyn-

chronization to complete synchronization through a region

where the chaotic attractor of the second coupled system

was shifted and decreased. Also, the proposed system’s

realization was done by using a microcontroller-based

device. The feature of the megastability was also observed

making the device with the quasiperiodically forced

oscillator capable of using it in chaos-based applications,

like cryptography and random number generators. The

proposed schemes of coupling (unidirectional and bidi-

rectional), between chaotic oscillator with megastability,

implemented with integrated nonlinear circuits, for a

communication over the Internet, could be an interesting

subject of a future study. In this direction, practical prob-

lems related to noise and mismatches, which may affect the

chaotic synchronization, could be studied.
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