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Abstract
This paper offers an enhanced adaptive moth flame optimization (AMFO) algorithm to solve the optimal power flow (OPF) 
problems efficiently. The idea of moth flame optimization (MFO) is motivated by the movement of moth headed about the 
moon direction. AMFO is primarily centered on the notion of MFO with adjusting the direction of moths in an adaptive 
manner around the flame. AMFO is compared with standard MFO for 14 different benchmark test suites. Standard IEEE 
118-bus test system is used to substantiate the effectiveness and robustness of AMFO algorithm. The authentication of the 
suggested algorithm is established on 12 case studies for various single-objective functions like fuel cost minimization, 
emission minimization, active power loss minimization, voltage stability enhancement and voltage profile improvement. The 
simulation findings of the suggested algorithm are compared with those found by other well-known optimization methods. 
The achieved results demonstrate the ability and strength of AMFO approach to solving OPF problems. The outcomes divulge 
that AMFO algorithm can obtain accurate and improved OPF solutions compared with the other methods. A comparison 
among the convergence qualities of AMFO and the different techniques demonstrates the predominance of AMFO to achieve 
the optimal power flow solution with rapid convergence.

Keywords Adaptive moth flame algorithm · Optimal power flow · Power system optimization

1 Introduction

Since the initiation of the concept—the optimal power flow 
by Carpentier (1962) in 1962, the OPF worth has been 
increasingly recognized, and in the present time, it has 
developed to be the most critical and essential instrument to 
determine the most cost-effective and secure state of plan-
ning and operation of power system. Diverse models have 
been established and adopted to form numerous types of 

OPF problems, objectives, set of state/control variables and 
limitations.

The OPF is an optimization problem which aims to fine-
tune continuous and discrete control variables to enhance a 
predefined objective function while accomplishing opera-
tional equality and inequality limitations. Conventionally, 
the persistence of the OPF was to minimize the overall gen-
erating cost, i.e., economic dispatch. However, difficulties 
and restrictions like multifuels, valve-point effect, security 
constraint, prohibited zones must be incorporated to examine 
the more realistic OPF problem covering optimization of 
emission, voltage deviation and stability, active and reactive 
power loss, etc. The presence of these complexities makes 
the OPF problem an extremely constrained, mixed-integer, 
nonlinear and non-convex problem.

Primarily, numerous deterministic techniques were 
employed to solve the OPF problem. Such methods are 
found suitable for convex, smooth, continuous and differ-
entiable objective functions. The optimal power flow (OPF) 
is a nonlinear, non-convex, intermittent problem owing to 
the presence of multifuels, valve-point effect, and prohibited 
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zones, etc., and hence, gradient-based approaches fail to 
solve the OPF problem. Authors can find a thorough survey 
of deterministic methods in Pandya and Joshi (2005).

The evolutionary methods, i.e., metaheuristics, have wit-
nessed tremendous development in the past decade. These 
techniques optimize a problem by attempting to improve a 
candidate solution iteratively about the given measure of 
quality. Metaheuristics make almost no assumptions regard-
ing the problem being solved and are derivative free. The 
benefit of metaheuristics is that objective function can be 
discontinuous and differentiable as they do not employ a 
gradient search or Hessian matrix. Nevertheless, metaheuris-
tics never ensure the optimal solution. Also, as suggested by 
no free lunch theorem (Wolpert and Macready 1997), if an 
algorithm works well on a particular category of problems, 
then it necessarily works degraded for another type of prob-
lem. It implies that the average rank of all the algorithms is 
same. This aspect has motivated the development of new 
and the enhancement of current approaches leading to a new 
form of metaheuristics.

As already stated, a specific metaheuristic may produce 
very efficient outcomes on a set of problems, but the same 
algorithm may show poor performance on another set of 
problems. This limitation has led to the application of dif-
ferent methods to solve an issue like the OPF problem. Vari-
ous techniques such as genetic algorithm (GA) (Paranjothi 
and Anburaja 2002; Lai et al. 1997), particle swarm opti-
mization (PSO) (Abido 2002a), tabu search algorithm (TS) 
(Abido 2002b), Simulated Annealing (SA) (Roa-Sepulveda 
and Pavez-Lazo 2001), differential evolution (DE) (Abou 
El Ela et al. 2010), imperialist competitive algorithm (ICO) 
(Ghanizadeh et al. 2011), harmony search algorithm (HAS) 
(Sinsuphan et al. 2013), black hole (BH) (Bouchekara 2014), 
teaching–learning-based algorithm (TLBO) (Bouchekara 
et al. 2014a), moth flame optimization algorithm (MFO) 
(Trivedi et  al. 2016a; Buch et  al. 2017), artificial bee 
colony algorithm (ABC), moth swarm algorithm (MSA) 
(Mohamed et al. 2017), league championship algorithm 
(LCA) (Bouchekara et  al. 2014b), backtracking search 
algorithm (BSA) (Chaib et al. 2016), improved colliding 
bodies algorithm (ICBO) (Bouchekara et al. 2016), hybrid 
genetic-teaching–learning-based algorithm (H-TLBO) 
(Güçyetmez and Çam 2016), glowworm swarm optimiza-
tion algorithm (GSA) (Surender Reddy et al. 2014), Krill 
Herd Algorithm (KHA) (Mukherjee and Mukherjee 2015), 
multi-verse optimizer (MVO) (Trivedi et al. 2016b), bat 
algorithm (BA) (Trivedi et al. 2016a) and many others are 
employed to solve the OPF problem. A comprehensive study 
of various metaheuristics applied to solve the OPF problem 
is presented in Niu et al. (2014), AlRashidi and El-Hawary 
(2009) and Frank et al. (2012).

In Buch and Trivedi (2018), eight different algorithms are 
compared to optimize the OPF problem. However, due to the 

complex kind of objectives included in the OPF problem, 
there is a continual need to apply a new and enhanced algo-
rithm that can optimize the OPF problem reasonably. This 
fact has motivated us to develop and present an enhanced 
version of the moth flame optimization algorithm, i.e., adap-
tive moth flame optimization. The objective of this paper 
is to evaluate the performance of AMFO with MFO (Mir-
jalili 2015a) for optimizing the benchmark functions and 
also to implement AMFO for solving OPF on medium size 
test system, and compare its results with MFO (Mirjalili 
2015a), GWO (Mirjalili et al. 2014), DA (Mirjalili 2016), 
SCA (Mirjalili 2015b), ALO (Mirjalili 2015c), MVO (Mir-
jalili et al. 2016), GOA (Saremi et al. 2017) and IMO (Javidy 
et al. 2015).

The key contributions of this work are summarized 
below:

1. Development of improved version of MFO, i.e., adaptive 
MFO and its implementation on standard benchmark 
functions.

2. A solution of the realistic OPF problem embedded with 
practical restraints like prohibited zones (POZ), valve-
point effect (VP) and multifuels (MF) on a 118-bus test 
system.

3. Implementation of a complete set of tests to assess 
AMFO using different OPF problems on 118-bus test 
systems with different objective functions and limita-
tions.

4. Utilization of nonparametric statistical assessments like 
Quade test (Quade 1979), Friedman (1937) and Fried-
man aligned test (Friedman 1940) for confirmation of 
results.

The structure of the rest of the paper is as follows: In 
Sect. 2, the OPF problem is framed. In Sect. 3, standard 
MFO is described in brief. Section 4 focuses on newly 
introduced adaptive MFO and its performance assessment 
on standard benchmark functions. In Section 5, the applica-
tions and results for solving the 118-bus OPF problem are 
discussed. Section 6 deals with the evaluation of AMFO 
based on the statistical test while the conclusion is drawn 
in the last section.

1.1  Devising the Optimal Power Flow (OPF) Problem

The optimal power flow is a problem which offers the best 
possible settings of the control variables for a specified set 
of the load by curtailing a predefined objective function such 
as the cost of power generation, voltage deviation, voltage 
stability index or transmission line losses. The majority of 
optimal power flow formulations may be characterized using 
the following standard equations:
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Here u represents the vector of independent variables or con-
trol variables. x represents the vector of dependent variables 
or state variables. J(x, u) represents the system’s optimiza-
tion goal or objective function. g(x, u) represents the set of 
equality constraints. h(x, u) represents the set of inequality 
limitations.

1.2  Control Variables

These variables are adjusted to meet the load flow equations. 
The collection of control variables in the optimal power flow 
is as follows:

• PG symbolizes active power generation at the PV buses 
except for the slack bus

• VG symbolizes the voltage magnitude at PV buses
• T represents the tap setting of the transformer
• Qc signifies the shunt VAR compensation

Hence, u can be expressed as:

where NG, NT and NC represent the number of genera-
tors, regulating transformers and VAR compensators, 
respectively.

1.3  State Variables

State variables represent the electrical state of systems. State 
variables are given as follows:

• PG1 is active power output at slack bus
• VL symbolizes the voltage magnitude at PQ buses, load 

buses
• QG is the reactive power output of all generator units
• Sl is the transmission line loading (or line flow)

Hence, x can be expressed as:

where NL and nl are the numbers of load buses and the num-
ber of transmission lines, respectively.

(1)Minimize J(x, u)

(2)Subject to g(x, u) = 0

(3)and h(x, u) ≤ 0

(4)
uT =

[
PG2

…PGNG
,VG1

…VGNG
,QC1

…QCNC
, T1 …TNT

]

(5)xT =

[
PG1

,VL1
…VLNL

,QG1
…QGNG

, Sl1 … Slnl

]

1.4  Constraints

The OPF constraints can be classified into equality and 
inequality constraints, which are described in the following 
subsections:

1.5  Equality Limits

The equality constraints reflect the behavior of the power sys-
tem. The equality constraints are as follows:

• Real power limits

• Reactive power limits

where �ij is the bus voltage angle difference between bus i 
and j , i.e., �ij = �i − �j , NB is the number of buses, PG is 
the active power generation, QG is the reactive power gen-
eration, PD and QD are active and reactive power demand, 
respectively, and Gij and Bij are elements of the admittance 
matrix representing conductance and susceptance between 
bus i and j, respectively.

1.6  Inequality Constraints

The inequality constraints represent the restrictions on physical 
gadgets present in the power system. These constraints also 
present the limits created to guarantee system security. These 
inequality constraints are as follows.

1.7  Generator Limits

For all generators comprising a slack bus, voltage, active and 
reactive outputs should be restricted by their upper and lower 
boundaries as follows:

Vmin
Gi

 and Vmax
Gi

 are the minimum and maximum bus voltage 
limits, Pmin

Gi
 and Pmax

Gi
 are the minimum and maximum active 

(6)PGi − PDi − Vi

NB∑
j=1

Vj

[
Gij cos(�ij) + Bij sin(�ij)

]
= 0

(7)QGi − QDi − Vi

NB∑
j=1

Vj

[
Gij sin(�ij) − Bij cos(�ij)

]
= 0

(8)

Vmin
Gi

≤ VGi
≤ Vmax

Gi
i = 1,… ,NG

Pmin
Gi

≤ PGi
≤ Pmax

Gi
i = 1,… ,NG

Qmin
Gi

≤ QGi
≤ Qmax

Gi
i = 1,… ,NG
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power generation limits, while Qmin
Gi

 and Qmax
Gi

 are the mini-
mum and maximum reactive power generation limits.

1.8  Transformer Constraints

Transformer tap settings should be confined within their speci-
fied lower and upper limits as follows:

Tmin
i

 and Tmax
i

 are the minimum and maximum transformer 
tap setting limits.

1.9  Shunt VAR Compensator Constraints

Shunt VAR Compensator settings are to be confined within 
their specified lower and upper bounds as follows:

Qmin
ci

 and Qmax
ci

 are the minimum and maximum shunt reactive 
power compensation limits.

1.10  Security Constraints

Transmission line loadings and voltage magnitude at load 
buses are part of this category. The voltage of each load bus 
VLi

 must be confined within its lower and upper operating lim-
its, i.e., Vmin

Li
 and Vmax

Li
 . Line flow Sli through every transmission 

line is restricted by its capacity limits Smax
li

 . These constraints 
can be mathematically formulated as follows:

(9)Tmin
i

≤ Ti ≤ Tmax
i

i = 1, 2,… ,NT

(10)Qmin
Ci

≤ QCi
≤ Qmax

Ci
i = 1,… ,NC

(11)
Vmin
Li

≤ VLi
≤ Vmax

Li
i = 1,… ,NL

Sli ≤ Smax
li

i = 1,… , nl

1.11  Adaptive Moth Flame Optimization Algorithm

1.11.1  Inspiration

Moths are tiny insects quite like the family of butterflies. 
The sheer motivating fact about moths is their distinct steer-
ing approaches during the night. They maintain a fixed angle 
concerning the moon to travel long expanses over a straight 
line. Due to the more considerable distance among the moth 
and the moon, such mechanism guarantees flying in a straight 
line. Artificial lights trick moths, and hence, moths fly spirally 
around the human-made lights. Moths try to retain a similar tilt 
for artificial light to fly in a straight line. As artificial lights are 
incredibly close to the moth, keeping a similar angle triggers 
a dangerous spiral route for moths. In result, the moth ulti-
mately converges on the artificial light. Figure 1a, b presents 
movement of moths about the moon and an artificial light, 
respectively.

1.12  MFO Algorithm

MFO algorithm articulates the spiral movement of moth 
toward the flame (light). In the present algorithm, moths and 
position of moths represent candidate solutions and problem’s 
variables, respectively. The set of moths M is represented in 
the following matrix:

where n is the number of moths and d is the number of vari-
ables, respectively.

The following array presents sorted fitness values.

(12)M =

⎛⎜⎜⎝

m11 … m1d

⋮ ⋱ ⋮

mn1 ⋯ mnd

⎞⎟⎟⎠

Fig. 1  Movement of moth with 
respect to moon and artificial 
light (Mirjalili 2015a)
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All moths are passed through the fitness function, and their 
return value is the fitness value of objective function. OM 
array is identical to the fitness function output. Flames rep-
resent an underlying matrix of MFO. Flames matrix can be 
presented as follows:

The dimension of the flame’s matrix and moth’s matrix is 
equal. Flames are sorted as per the following array based on 
the fitness values.

Another critical component in the suggested approach is 
flames, which present the best position of moths. Hence, 
every moth searches about the flame and revises itself in 
the case of obtaining a superior solution. Such mechanism 
assures that moth never loses its best position.

The position of each moth with respect to flame is 
updated using the following expression:

where Mi indicates the ith moth, Fj presents the jth flame, 
and S is the spiral function. The spiral function is defined as:

Here Di shows the distance between ith moth and jth flame, 
b is a constant identifying the shape of spiral, and t is a ran-
dom number between [−1, 1].

Equation (17) represents spiral search path of the flying 
moths while updating their position with respect to flames. 
Parameter t  presents closeness of moth with flame. When 
t = −1 , the moth is closest to the flame, while when t = 1 , 
the moth is furthest from the flame. Flames are considered as 
best solutions to enhance the search around the better solu-
tions. Moths update their positions with respect to flames 
according to Eqs. (16) and (17).

(13)OM =

⎡⎢⎢⎢⎣

OM1

OM2

⋮

OMn

⎤⎥⎥⎥⎦

(14)F =

⎛
⎜⎜⎝

f11 … f1d
⋮ ⋱ ⋮

fn1 ⋯ fnd

⎞
⎟⎟⎠

(15)OF =

⎡⎢⎢⎢⎣

OF1

OF2

⋮

OFn

⎤⎥⎥⎥⎦

(16)Mi = S
(
Mi,Fi

)

(17)S
(
Mi,Fj

)
= Die

bt cos(2�t) + Fj

(18)Di =
|||Fj −Mi

|||

The position updating in Eq. (17) necessitates the moths 
to move toward a flame, yet it causes the MFO algorithm 
to be stuck in local optima rapidly. To avoid this, each 
moth revises its position utilizing only one of the flames in 
Eq (17). Another worry here is that the position updating of 
moths with respect to the number of different flames in the 
search space may damage the exploitation of the best capa-
ble results. To solve this concern, an adaptive mechanism 
is devised for the number of flames. With the increasing the 
number of iterations, the number of flames decreases as per 
Eq. (19).

where l is the current iteration, N is a maximum number of 
flames, and T is the maximum number of iterations. The pro-
gressive reduction in the number of flames throughout itera-
tions balances among exploration and exploitation within 
the search space.

1.13  Adaptive MFO

In stochastic metaheuristics methods, introducing randomi-
zation plays a vital role. Authors in Bhesdadiya et al. (2017), 
Li et al. (2016) and Soliman et al. (2016) presented differ-
ent variants of MFO using Levy flight and Cauchy opera-
tors. With the standard scenario, the MFO updates its agents 
toward the candidate solution based on Eq. (17). The effi-
cacy of the standard MFO (Mirjalili 2015a) is undeniable, 
meaning that when assumed adequate computation period, 
it is sure to converge to the optimum answers ultimately. 
However, the search process may be sluggish. To improve 
the convergence rate while upholding the noticeable physi-
ognomies of the MFO, an enhanced searching procedure 
which is, likewise to the adaptive cuckoo search algorithm 
(Ong 2014; Kumar et al. 2015) is presented here. Figure 2 
shows a flowchart of the adaptive MFO approach.

The standard MFO algorithm updates the moth position 
based on the distance of moth with respect to the flame. 
Here, we attempt to include the step size based on the best 
and worst moth position as well as current moth position. 
The step size determines how far a new moth position is 
located from the current position. As presented in Eq. (20), 
step size varies inversely with generation, i.e., with an 
increase in the iteration, step size reduces. As shown in 
Eq. (21), the calculated step size is added to the current 
moth position to obtain a new moth position.

(19)Flame no. = N − l ∗
(
N − 1

T

)

(20)Xt+1
i

=

(
1

t

)||||
(best f (t)−fi (t))

best f (t)−worst f (t)

||||
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In Eq. (21), is a random number between [0, 1] introduc-
ing arbitrary component in position update equation. Next 
subsection presents performance assessment of AMFO on 
various standard single-objective benchmark functions.

1.14  Results on Benchmark Test Functions

To assess the proposed adaptive moth flame optimization 
(MFO) algorithm, we carried out the performance study on 
14 well-known benchmark functions (Yao et al. 1999). The 
benchmark functions used are of two types: unimodal and 
multimodal with flexible dimension. Unimodal functions 
are those which have only one local minimum, while mul-
timodal ones have multiple local minima. Table 1 presents 
details of benchmark functions, their mathematical depic-
tion, the range of search and theoretical ideal values.

Function F1 is continuous, convex and unimodal having 
n global minima except the global one. The second func-
tion, i.e., Schwefel’s function 2.22, is a continuous, convex, 
unimodal, non-differentiable and separable function. Func-
tion F3 is Schwefel’s function 1.2, an extension of the axis 
parallel hyper-ellipsoids. This function is also continuous, 

(21)Moth_pos(t + 1) = Moth_pos(t) + p ∗ Xt+1
i

convex and unimodal. Function F4 is also continuous, con-
vex, unimodal, non-differentiable and separable function 
like F2. The fifth function, i.e., Rosenbrock function, is 
non-convex function. The global minimum is inside a long, 
narrow parabolic-shaped valley. Step function is the demon-
strative of the problem of flat surfaces. Flat surfaces do not 
guide algorithms about search in favorable directions. Unless 
the algorithm has variable step size, the algorithm is likely 
to get stuck at one of the plateaus. Thus, the step function 
makes the search process more difficult by injecting small 
plateaus in continuous function. The quartic function, i.e., 
F7, is continuous, non-convex, multimodal, differentiable 
and separable function. Schwefel’s function is somewhat 
easier than Rastrigin’s function and is characterized by a 
second-best minimum which is far away from the global 
optimum. In optimization studies, Rastrigin function (F9) 
is a fairly difficult problem to optimize because of its large 
search space and large number of local minima. It is a typical 
example of nonlinear multimodal non-convex problem. The 
Ackley function (F10) is extensively applied for analysis of 
optimization algorithms. It has a nearly flat outer region and 
a large hole at the center. The function presents a threat for 
optimization algorithms to be trapped in one of its various 
local minima. The generalized Griewank function (F11) has 

Fig. 2  Flowchart of AMFO
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many widespread regularly distributed local minima. The 
generalized penalized function is a multimodal non-convex 
benchmark test function. The fourteenth function, i.e., De 
Jong (Shekel’s Foxholes) (F14), is multimodal benchmark 
function with very sharp drops on a primarily even surface. 
Table 1 presents each benchmark function, their associated 
variables and applicable limits.

Our primary focus is to augment the basic moth flame 
search algorithm for improved searchability. Table 2 com-
pares the results of AMFO with MFO. The comparison 
criteria are the average value, best value, standard devia-
tion and average simulation time. The best results are bold 
faced. Figure 3 presents the convergence curve of AMFO 

and MFO for each test function. For almost all test functions, 
AMFO presents smooth convergence characteristics. 

Figure 4 presents a comparison between AMFO and 
MFO for optimizing standard benchmark functions. Aver-
age simulation time presents a calculated central value of a 
set of numbers, while the standard deviation is a measure 
stating by how much the elements of a group vary from the 
mean value of a group. Standard deviation is a measure of 
the distribution of data, while the average value presents 
the “center of mass” of data. Higher standard deviation 
represents a higher deviation from the mean value. The 
algorithm having lower average value may not have lower 
standard deviation also. In this study, both algorithms are 

Table 1  Benchmark functions used

BF benchmark functions, Dim dimension, ROS range of search, TI theoretical ideals

BF Mathematical depiction Dim ROS TI

Sphere (F1) f (x) =
∑n

i=1
x2
i
∗ R(x) 10 [− 100, 100] 0

Schwefel’s function 2.22 (F2) f (x) =
∑n

i=1
��xi�� +

∏n

i=1
��xi�� ∗ R(x) 10 [−10, 10] 0

Schwefel’s function 1.2 (F3)
f (x) =

∑n

i=1

�∑n

j=1
xj

�2

∗ R(x)
10 [− 100, 100] 0

Schwefel’s function 2.21 (F4) f (x) = maxi
{||xi||, 1 ≤ i ≤ n

}
10 [− 100, 100] 0

Generalized Rosenbrock’s func-
tion (F5)

f (x) =
∑n−1

i=1
[100(xi+1 − x2

i
)2 + (xi − 1)2] ∗ R(x) 10 [− 30, 30] 0

Step function (F6) f (x) =
∑n

i=1
([xi + 0.5])2 ∗ R(x) 10 [−100, 100] 0

Quartic function, i.e., noise (F7) f (x) =
∑n

i=1
ix4

i
+ random[0,1] ∗ R(x) 10 [− 1.28, 1.28] 0

Generalized Schwefel’s prob-
lem 2.26 (F8) F(x) =

∑n

i=1
−xi sin

����xi��
�

∗ R(x)
10 [− 500, 500] 0

Generalized Rastrigin’s function 
(F9)

F(x) =
∑n

i=1
[x2

i
− 10 cos

�
2�xi

�
+ 10] ∗ R(x) 10 [− 5.12, 5.12] 0

Ackley’s function (F10)
F(x) = −20 exp

�
−0.2

�
1

n

∑n

i=1
x2
i

�
− exp

�
1

n

∑n

i=1
cos

�
2�xi

��
+ 20 + e ∗ R(x)

10 [− 32, 32] 0

Generalized Griewank function 
(F11)

F(x) =
1

4000

∑n

i=1
x2
i
−
∏n

i=1
cos

�
xi√
i

�
+ 1 ∗ R(x) 10 [− 600, 600] 0

Generalized penalized function 
1 (F12)

F(x) =
�

n

⎧⎪⎨⎪⎩

10 sin
�
�y1

�
+
�n−1

i=1

�
yi − 1

�2
�
1 + 10 sin2

�
�yi+1

��
+
�
yn − 1

�2
⎫⎪⎬⎪⎭

yi = 1 +
xi+1

4

u(xi, a, k,m) =

⎧⎪⎨⎪⎩

k
�
xi − a

�m
xi > a

0 −a < xi < a

k
�
−xi − a

�m
xi < −a

10 [− 50, 50] 0

Generalized penalized function 
2 (F13)

F(x) = 0.1

⎧⎪⎪⎨⎪⎪⎩

sin2
�
3�x1

�
+
�n

i=1

�
xi − 1

�2
�
1 + sin2

�
3�xi + 1

��

+
�
xn − 1

�2�
1 + sin2

�
2�xn

��

⎫⎪⎪⎬⎪⎪⎭
+
�n

i=1
u
�
xi, 5, 100, 4

�
∗ R(x)

10 [− 50, 50] 0

De Jong (Shekel’s Foxholes) 
(F14) F(x) =

�
1

500
+
∑25

j=1

1

j+
∑2

i=1 (xi−aij)
6

�−1 2 [− 65.536, 
65.536]

1
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independently compared for average value and standard 
deviation values, respectively, to assess the overall perfor-
mance of both the algorithms. It is observable that AMFO 
provides better results for majority criteria. Thus, to sum 
up, global searchability of the MFO algorithm is enhanced 
using an adaptive approach. AMFO provides more efficient 
outcomes mainly for unimodal and multimodal benchmark 
functions.

1.15  Solving OPF Using the AMFO Algorithm

To test the performance of AMFO on complex and larger 
dimensional system AMFO along with other contempo-
rary algorithms such as moth flame optimization algorithm 
(MFO) (Mirjalili 2015a), grey wolf optimization algorithm 
(GWO) (Mirjalili et al. 2014), Dragonfly algorithm (DA) 
(Mirjalili 2016), sine–cosine algorithm (SCA) (Mirjalili 
2015b), ant lion optimizer (ALO) (Mirjalili 2015c), multi-
verse optimizer (MVO) (Mirjalili et al. 2016), Grasshop-
per optimization algorithm (GOA) (Saremi et al. 2017), ion 
motion optimization algorithm (IMO) (Javidy et al. 2015) 
are implemented to solve the OPF problem on standard IEEE 
118-bus test system. Total of 13 different objective func-
tions test cases are considered as presented in Table 3. In 
this work, the population size is selected to be 25, and each 
algorithm is analyzed for thirty independent runs with 500 
iterations per run.

1.16  IEEE 118‑Bus Test System

As shown in Table 4, the system includes fifty-four ther-
mal units, 118 buses, 177 branches and nine transformers 

(Fig. 5). Table 4 also presents upper and lower bounds of 
voltage and transformer tap settings.

Table 5 represents cost and emission coefficients of IEEE-
118 bus test system. Tables 6 and 7 present cost coefficients 
considering multifuel and prohibited operating zone.

1.17  Cast Studies

As previously mentioned, 13 test cases are considered in this 
article. These cases are listed in Table 3.

2  Results and Discussion

All algorithms have been applied to the investigated cases, 
and the optimal results are given in Tables 8, 9 and 10. In 
these tables, the best results are bold faced while the worst 
results are bold underlined. A detailed study of each objec-
tive function is described in the following subsections.

2.1  Minimization of Quadratic Fuel Cost

The objective function, in this issue, is to optimize the fuel 
cost as formulated by Eq. (22)

where ai , bi and ci are the cost coefficients of ith generator. 
For this case, the AMFO produces the best fuel cost solution 
as compared to other algorithms, whereas fuel cost obtained 
by SCA is the highest among the rest of the algorithms. 

(22)f =

(
NG∑
i=1

aiP
2
Gi
+ biPGi + ci

)

Table 2  Results obtained by AMFO and MFO on standard benchmark test functions

F Moth flame optimization (MFO) Adaptive moth flame optimization (AMFO)

Average Best SD Avg. time Average Best SD Avg. time

F1 1.37E−32 1.28E−28 3.75752E−28 0.611 5.75E−34 1.84E−30 2.90466E−30 0.593
F2 5.18E−20 2.24158E−19 1.38605E−19 0.624 6.89E−20 2.49226E−18 5.90337E−18 0.703
F3 4.79E−09 2.39782E−06 4.30939E−06 0.562 1.16E−09 4.27541E−07 6.41762E−07 0.641
F4 5.36E−04 0.054712809 0.115761161 0.780 1.95E−05 0.037250486 0.062669362 0.722
F5 8.23E−03 6.03190889 6.246514319 0.781 5.95E−02 5.1247847 4.626332327 0.702
F6 1.85E−32 2.49647E−30 4.78636E−30 0.657 1.23E−32 2.18631E−30 2.72004E−30 0.686
F7 1.78E−03 0.005663175 0.002540046 0.655 2.41E−03 0.00664573 0.006171464 0.576
F8 −3.89E + 03 −3261.00077 434.0208788 0.689 −4.07E+03 −3329.93773 349.5922389 0.668
F9 6.96 18.062025 8.877682154 0.766 2.98 14.2279 7.050150222 0.705
F10 4.44E−15 4.97381E−15 1.06581E−15 0.737 4.44E−15 5.15144E−15 1.42108E−15 0.672
F11 4.67E−02 0.13395505 0.047527982 0.675 1.97E−02 0.1498496 0.122346947 0.576
F12 4.83E−32 2.22712E−29 7.93594E−29 0.688 4.76E−32 2.64868E−30 7.13047E−30 0.532
F13 1.35E−32 0.00164805 0.0043948 0.816 1.60E−32 0.0010987 0.0032961 0.765
F14 9.98E−01 1.59166 1.515994971 0.480 9.98E−01 1.39443 0.907697672 0.467
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AMFO has smooth and speedy convergence rate as com-
pared to other algorithms as shown in Fig. 6a. Tables 8 and 
9 present a comparison of algorithms in terms of the best 

and average objective function value. For both the cases, 
AMFO obtains the least value proving its superiority. MFO 
has least simulation time. 

Fig. 3  Convergence curve for benchmark test functions (F1–F14)
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Fig. 3  (continued)

Fig. 4  Comparison between 
AMFO and MFO on standard 
benchmark functions



1041Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2019) 43:1031–1051 

1 3

2.2  Minimization of Quadratic Fuel Cost 
with Valve‑Point Loadings

In this case, valve-point loading is modeled as an absolute 
sinusoidal function added to the cost characteristics.

where ai , bi , ci , di and ei are the cost coefficients of ith gener-
ator. Due to valve-point loading effect, the optimum value of 
fuel cost increases as shown in Table 8. In this case, AMFO 
provides the best solution, while SCA provides the worst 

(23)

f =

(
NG∑
i=1

aiP
2

Gi
+biPGi + ci

)
+
|||di sin(ei(P

min

Gi
− PGi))

|||
∀i = 1 to NG

solution. Concerning simulation speed, IMO outperform the 
rest of the algorithms. Figure 6b presents the convergence 
trend of all algorithms.

2.3  Minimization of Quadratic Fuel Cost 
with Multifuel

From a practical point of view, thermal generating plants may 
have multifuel sources like coal, natural gas and oil. Hence, 
the following piecewise quadratic function expresses fuel cost 
function:

(24)

f =

n∑
i=1

(aikP
2
i
+ bikPi + cik) + Penalty if Pmin

ik
≤ Pi ≤ Pmax

ik

Table 3  Summary of case studies for IEEE 118-bus test systems

Test system Case # Objective

IEEE 118-bus test system Case #1 Quadratic fuel cost minimization
Case #2 Cost minimization with valve-point loading effect
Case #3 Cost minimization with multifuel
Case #4 Cost minimization with prohibited operating zone
Case #5 Cost minimization by combining valve-point loading effect and multifuel
Case #6 Cost minimization by combining valve-point loading effect and prohib-

ited operating zone
Case #7 Cost minimization by combining prohibited operating zone and multifuel
Case #8 Cost minimization by combining valve-point loading effect, prohibited 

operating zone and multifuel
Case #9 Emission minimization
Case #10 Voltage stability enhancement
Case #11 Voltage deviation minimization
Case #12 Active power loss minimization
Case #13 Reactive power loss minimization

Table 4  Characteristics of the IEEE 118-bus test system

System characteristics Value Details

Thermal units 54
Active power demand 4242 MW
Reactive power demand 1438 MVAR
Buses 118 Group, IIT Power (2017)
Branches 186 Group, IIT Power (2017)
Generators 54 Buses: 1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25, 26, 27, 31, 32, 34, 36, 40, 

42, 46, 49, 54, 55, 56, 59, 61, 62, 65, 66, 69, 70, 72, 73, 74, 76, 77, 80, 
82, 85, 87, 89, 90, 91, 92, 99, 100, 103, 104, 105, 107, 111, 112, 113, 
116

Shunts 14 Buses: 5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83, 105, 107, 110
Transformers 9 Branches: 8, 32, 36, 51, 93, 95, 102, 107, 127
Transformer tap setting 0.9 p.u. to 1.1. p.u.
Voltage bounds 0.95 p.u. to 1.1 p.u.
Control variables 131 –
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where aik , bik and cik represent the cost coefficients of the ith 
generator for fuel type k . The optimal cost obtained by AMFO 
among all algorithms for this case is 64,970.59 $/h, while 
SCA provides the worst solution. Minimum average simula-
tion time and the standard deviation are offered by AMFO 
and GWO, respectively, while maximum average simulation 
time and the standard deviation are provided by GOA and DA, 
respectively. Figure 7a presents convergence characteristics 
for optimum fuel cost value with multifuel. It is evident that 
AMFO approaches final solution smoothly, while SCA high-
lights maximum tendency of stagnation throughout iterations.

2.4  Minimization of Quadratic Fuel Cost 
with the Prohibited Operating Zone (POZ)

In practical systems, the entire unit operating range is not 
forever accessible for operation. Some of the online units 
may have prohibited operating zones due to physical oper-
ating limitations. Units can have prohibited zones due to 
intensified vibrations in a shaft bearing in an operating 
region, faults in the machines themselves or the associated 
auxiliaries, such as boilers, feed pumps. The use of units in 
these regions leads to volatilities, leaving them incapable 

of holding any load for any considerable time. Hence, the 
avoidance of operation in these zones will improve the eco-
nomic condition and performance.

The POZ is accounted for by the insertion of penalty to 
decrease the fitness of the fuel cost function. As presented 
in Table 8, AMFO provides the best solution as compared 
to the rest of the algorithms with smooth convergence 
characteristics, whereas fuel cost obtained by SCA is 
worst among all algorithms with stagnant convergence 
characteristics.

2.5  Minimization of Fuel Cost with Combined 
Valve‑Point Effect and Multifuel

This case is a combination of case 2 and case 3. In this case, 
best-optimized fuel cost value obtained is 65,241.5878 $/h 
which is higher than 64,636.9307 $/h due to the introduction 
of valve-point loading effect. This case presents a combina-
tion of non-sinusoidal objective function superimposed on 
a piecewise quadratic fuel cost function. Figure 8a shows a 
convergence trend for this case. It is observable that AMFO 
converges to its final solution smoothly contrary to SCA 
which follows stepwise convergence behavior.

Fig. 5  Single-line diagram of IEEE 118-bus test system
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Table 5  Cost and emission 
coefficients of IEEE 118-bus 
test system

G Bus a b c d e α β γ σ xci

1 1 31.67 26.2438 0.0697 0 0 6.131 5.555 5.151 0.00001 6.667
2 4 31.67 26.2438 0.0697 0 0 6.131 5.555 5.151 0.00001 6.667
3 6 31.67 26.2438 0.0697 0 0 6.131 5.555 5.151 0.00001 6.667
4 8 6.78 12.8875 0.0109 100 0.084 2.543 6.047 5.638 0.00005 3.333
5 10 6.78 12.8875 0.0109 100 0.084 6.131 5.555 5.151 0.00001 6.667
6 12 31.67 26.2438 0.0697 0 0 5.326 3.55 3.38 0.00002 2
7 15 10.15 17.82 0.0128 0 0 6.131 5.555 5.151 0.00001 6.667
8 18 31.67 26.2438 0.0697 0 0 6.131 5.555 5.151 0.00001 6.667
9 19 31.67 26.2438 0.0697 0 0 2.543 6.047 5.638 0.00005 3.333
10 24 6.78 12.8875 0.0109 100 0.084 4.091 5.554 6.49 0.00002 2.857
11 25 32.96 10.76 0.003 120 0.0077 6.131 5.555 5.151 0.00001 6.667
12 26 31.67 26.2438 0.0697 0 0 6.131 5.555 5.151 0.00001 6.667
13 27 31.67 26.2438 0.0697 0 0 5.326 3.55 3.38 0.00002 2
14 31 10.15 17.82 0.0128 0 0 6.131 5.555 5.151 0.00001 6.667
15 32 31.67 26.2438 0.0697 0 0 5.326 3.55 3.38 0.00002 2
16 34 10.15 17.82 0.0128 0 0 6.131 5.555 5.151 0.00001 6.667
17 36 31.67 26.2438 0.0697 0 0 6.131 5.555 5.151 0.00001 6.667
18 40 31.67 26.2438 0.0697 0 0 5.326 3.55 3.38 0.00002 2
19 42 10.15 17.82 0.0128 0 0 2.543 6.047 5.638 0.00005 3.333
20 46 28 12.3299 0.0024 0 0 2.543 6.047 5.638 0.00005 3.333
21 49 28 12.3299 0.0024 0 0 5.326 3.55 3.38 0.00002 2
22 54 10.15 17.82 0.0128 0 0 5.326 3.55 3.38 0.00,002 2
23 55 10.15 17.82 0.0128 0 0 4.258 5.094 4.586 0.00001 8
24 56 39 13.29 0.0044 0 0 4.258 5.094 4.586 0.00001 8
25 59 39 13.29 0.0044 0 0 5.326 3.55 3.38 0.00002 2
26 61 10.15 17.82 0.0128 0 0 4.091 5.554 6.49 0.00002 2.857
27 62 64.16 8.3391 0.0106 150 0.063 2.543 6.047 5.638 0.00005 3.333
28 65 64.16 8.3391 0.0106 150 0.063 5.326 3.55 3.38 0.00002 2
29 66 6.78 12.8875 0.0109 0 0 6.131 5.555 5.151 0.00001 6.667
30 69 74.33 15.4708 0.0459 0 0 6.131 5.555 5.151 0.00001 6.667
31 70 31.67 26.2438 0.0697 0 0 6.131 5.555 5.151 0.00001 6.667
32 72 31.67 26.2438 0.0697 0 0 5.326 3.55 3.38 0.00002 2
33 73 17.95 37.6968 0.0283 0 0 5.326 3.55 3.38 0.00002 2
34 74 10.15 17.82 0.0128 0 0 2.543 6.047 5.638 0.00005 3.333
35 76 10.15 17.82 0.0128 0 0 5.326 3.55 3.38 0.00002 2
36 77 6.78 12.8875 0.0109 105 0.081 6.131 5.555 5.151 0.00001 6.667
37 80 10.15 17.82 0.0128 0 0 4.258 5.094 4.586 0.00001 8
38 82 31.67 26.2438 0.0697 0 0 6.131 5.555 5.151 0.00001 6.667
39 85 32.96 10.76 0.003 0 0 4.258 5.094 4.586 0.00001 8
40 87 6.78 12.8875 0.0109 0 0 2.543 6.047 5.638 0.00005 3.333
41 89 17.95 37.6968 0.0283 0 0 2.543 6.047 5.638 0.00005 3.333
42 90 58.81 22.9423 0.0098 0 0 2.543 6.047 5.638 0.00005 3.333
43 91 6.78 12.8875 0.0109 200 0.042 6.131 5.555 5.151 0.00001 6.667
44 92 6.78 12.8875 0.0109 200 0.042 5.326 3.55 3.38 0.00002 2
45 99 6.78 12.8875 0.0109 200 0.042 5.326 3.55 3.38 0.00002 2
46 100 17.95 37.6968 0.0283 0 0 6.131 5.555 5.151 0.00001 6.667
47 103 10.15 17.82 0.0128 0 0 4.258 5.094 4.586 0.00001 8
48 104 10.15 17.82 0.0128 0 0 5.326 3.55 3.38 0.00002 2
49 105 17.95 37.6968 0.0283 0 0 5.326 3.55 3.38 0.00002 2
50 107 58.81 22.9423 0.0098 0 0 5.326 3.55 3.38 0.00002 2
51 111 10.15 17.82 0.0128 0 0 4.258 5.094 4.586 0.00001 8
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2.6  Minimization of the Quadratic Fuel Cost 
Function with Prohibited Operating Zone 
and Valve‑Point Loading Effect

In this case, the objective function is a mixture of cases 
2 and 4 resulting in non-convex and nonlinear objective 

function. For such a complex objective function, AMFO 
provides the best solution among all algorithms, while SCA 
provides the worst solution. Figure 8b illustrates that AMFO 
reaches the best solution smoothly, while the convergence 
curve of SCA presents the poor search of solution space.

Table 5  (continued) G Bus a b c d e α β γ σ xci

52 112 10.15 17.82 0.0128 0 0 25 100 0 0 0
53 113 10.15 17.82 0.0128 0 0 25 100 0 0 0
54 116 58.81 22.9423 0.0098 0 0 25 50 0 0 0

Table 6  Cost coefficients for multifuel

G P
min

P
1

P
max

c1 b1 a1 e1 f1 c2 b2 a2 e2 a2

4 150 200 300 0.010875 12.8875 6.78 0 0 0.04875 12.8875 6.78 0 0
27 100 200 420 0.01059044 8.339147142 64.16 0 0 0.059044049 9.339147142 64.16 0 0
39 100 210 300 0.03 10.76 32.96 0 0 0.003 10.76 32.96 0 0

Table 7  Power generation 
boundaries for IEEE 118-bus 
system

Generator Bus Prohibited zones

Zone 1 Zone 2 Zone 3

Min Max Min Max Min Max

1 7 35 50 65 85 – –
2 10 120 145 180 190 220 235
3 30 40 50 60 70 – –
4 34 40 50 70 90 – –
5 35 40 50 70 90 – –
6 47 40 60 – – – –

Table 8  Best value obtained by different algorithms for case 1 to case 13

Case # AMFO MFO GWO DA SCA ALO MVO GOA IMO

1 64,337.1857 64,986.4682 65,321.4822 65,149.8083 69,682.4881 65,643.0665 66,581.3632 65,716.5534 66,970.2663
2 64,748.0741 65,220.893 65,948.8033 67,196.1249 70,339.4785 66,367.0934 67,526.9341 67,938.2316 67,777.9746
3 64,636.9307 65,559.5052 66,075.4233 66,580.1423 69,703.3689 66,718.8294 67,228.4096 67,131.247 68,170.9496
4 64,055.17 64,878.1972 65,502.6685 65,321.2214 69,256.2838 65,944.0186 66,530.2263 65,539.8698 66,640.8124
5 65,241.5878 66,133.8623 66,553.8878 68,149.9077 70,989.2011 67,304.6818 67,717.7889 68,047.8763 68,008.5765
6 64,537.665 65,471.2423 66,093.6657 65,982.9886 70,361.4918 66,444.4729 66,876.9991 67,640.5598 67,108.2717
7 63,549.7006 64,515.7297 65,192.151 64,916.6604 69,019.6882 66,783.5684 67,465.0439 67,060.1753 68,365.842
8 64,056.4343 65,258.7414 65,525.8987 67,043.2587 70,060.0148 67,483.2107 67,684.9752 68,337.5191 68,394.2614
9 6.7791 6.8163 7.0316 7.1561 8.7803 7.2231 7.0727 7.1572 7.387
10 0.050,204 0.050204 0.050204 0.050205 0.050211 0.050205 0.050204 0.050204 0.050205
11 0.26495 0.25664 0.29993 0.49122 1.0707 0.2898 0.35458 0.40276 0.36258
12 23.635 32.1991 49.3499 28.4817 121.8916 33.9076 50.9927 38.627 30.1149
13 − 1752.6162 − 1730.547 − 1419.5535 − 1688.1883 − 901.4022 − 1558.9009 − 1412.4968 − 1441.0359 − 1683.593
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Fig. 6  Convergence curve for case 1 and case 2

Table 9  Average value obtained by different algorithms for case 1 to case 13

Case # AMFO MFO GWO DA SCA ALO MVO GOA IMO

1 64,985.1501 65,825.5534 65,957.2012 67,221.283 70,478.7446 66,665.292 67,539.5427 66,268.3522 67,822.5193
2 65,473.971 66,225.0723 66,424.6769 68,654.8012 71,239.4581 67,348.3127 68,687.1136 69,059.0896 68,619.4705
3 65,493.8999 66,411.8286 66,582.5908 68,864.896 71,503.1791 67,840.1545 68,441.9779 68,011.4268 69,178.3949
4 64,699.6836 65,669.2674 65,925.8766 67,354.6531 70,359.8849 66,640.6049 67,877.5858 66,241.954 67,750.8756
5 65,968.6196 66,947.5534 67,160.4524 70,006.5745 72,308.8061 68,513.5415 68,859.0632 69,626.2731 69,640.6333
6 65,104.7535 66,311.5205 66,605.2792 68,093.2991 71,195.2108 67,505.6941 68,348.5475 68,756.7117 68,705.9474
7 64,314.1969 65,489.1629 65,597.7857 67,587.4676 70,200.4736 67,852.9186 68,475.5022 67,992.9606 69,145.5722
8 64,859.6856 65,983.6118 65,993.7649 68,636.5943 70,914.7937 68,564.1333 68,752.0305 69,722.6272 69,926.2274
9 6.8176 7.0825 7.1626 8.1141 10.9927 7.5724 7.1789 7.3705 7.8051
10 0.050205 0.050206 0.050205 0.050206 0.050449 0.050206 0.050205 0.050272 0.050,206
11 0.38385 0.39939 0.38219 0.78555 1.283 0.37521 0.42641 0.56847 0.41287
12 25.0752 42.9503 57.4422 38.4745 135.7891 41.747 63.4967 48.3841 33.9501
13 − 1734.3727 − 1603.0571 − 1345.8385 − 1504.9807 − 785.4632 − 1485.8685 − 1314.041 − 1363.9144 − 1639.4945

Fig. 7  Convergence curve for case 3 and case 4
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2.7  Minimization of Fuel Cost Considering 
Prohibited Operating Zone and Multifuel

Combining case 3 and 4 results in this case, i.e., optimal 
power flow with a disjoint and piecewise quadratic fuel cost 
function. Tables 8 and 9 present the best values and average 
values. For both values, AMFO and SCA provide the best 
and worst results, respectively. As presented in Table 10, 
GWO optimizes the objective function in minimum simula-
tion time. Figure 8a presents the convergence curve of all the 
algorithms. AMFO and MFO present smooth convergence, 
while SCA presents poor convergence characteristics.

2.8  Minimization of Fuel Cost Combining 
Valve‑Point Loading Effect, Prohibited 
Operating Zone and Multifuel

Combining cases 2, 3 and 4 results in this case, i.e., opti-
mal power flow with a nonlinear, discontinuous, disjoint 

and piecewise quadratic fuel cost function. Observing 
Table 8 suggests that MFO provides the optimum fuel cost 
closely followed by AMFO as compared to the rest of the 
algorithms, while SCA provides the worst solution. GWO 
and AMFO prove to be best contenders regarding standard 
deviation and average simulation speed, while GOA and DA 
stand last regarding simulation speed and standard deviation, 
respectively. Figure 9b highlights the convergence trend of 
all algorithms for this case. It reflects that MFO and AMFO 
present smooth convergence trend, while SCA and MVO 
highlight stepwise convergence.

2.9  Minimization of Emission

In the present case, the objective is to lessen the emission 
level of pollutants. The objective function can be written as:

Fig. 8  Convergence curve for case 5 and case 6

Table 10  Average simulation 
time for case 1 to case 13

Case AMFO MFO GWO DA SCA ALO MVO GOA IMO

1 146.8057 104.8021 105.8021 129.4161 139.5401 275.2698 107.1552 376.937 106.5594
2 140.7911 121.3224 158.1563 123.225 112.0984 173.1021 126.9266 391.8667 105.7943
3 147.2229 113.3943 105.2406 108.2078 106.1677 234.7927 111.4214 363.5854 108.3458
4 149.5484 190.8526 136.2135 126.8979 115.7224 242.9885 121.4875 339.9089 110.074
5 139.0406 135.2734 150.1833 112.6396 106.3495 234.1438 133.1349 452.8599 133.6896
6 142.9391 181.4594 163.601 111.9354 107.0182 168.3755 113.0099 327.6453 109.4656
7 153.4615 111.6823 106.3401 112.7724 107.3823 191.625 116.5266 416.1521 112.8818
8 145.8052 141.2312 115.437 123.338 107.0438 237.8906 138.5255 417.4318 136.6958
9 192.8 105.7417 100.7813 108.9255 103.1333 162.0828 105.2901 322.8797 104.7083
10 150.8573 157.3122 157.3626 171.7631 160.5243 172.7146 142.2323 337.4839 130.149
11 101.6661 99.9286 101.2708 104.4245 102.3318 162.1219 104.6865 329.874 139.4552
12 153.8375 103.4849 101.5307 118.8594 109.5333 168.7188 104.3443 322.5151 107.7422
13 144.3984 106.1172 101.9385 109.6984 103.4984 169.8031 104.3349 322.6995 106.8745
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where �i , �i , �i , �i and �i are the emission coefficients of ith 
unit. In this case, AMFO provides the best solution of emis-
sion, i.e., 6.7791 ton/h. SCA provides the highest emission 
value of 8.7803 ton/h. GWO and GOA are the top and worst 
performers in terms of average simulation time. GOA pre-
sented the worst performance in terms of simulation speed. 
Figure 10a shows the sketch of convergence behavior of all 
the algorithms.

2.10  Voltage Stability Enhancement

The voltage stability is an essential index for verification of 
power system ability to preserve the voltage continually at 

(25)
f =

NG∑
i=1

�iP
2
Gi
+ �iPGi + �i + �ie

(�iPGi) (ton/h)

each power system bus within a suitable level under nominal 
operating conditions. A disturbance, any change in system 
configuration, and a rise in load demand are the main rea-
sons for the voltage instability state in the power system, 
which may lead to a progressive reduction in voltage. There-
fore, the minimization of voltage stability indicator, called 
L-index (Kessel and Glavitsch 1986), is a significant objec-
tive function for power system planning and operation. The 
degree of voltage collapse of jth bus can be expressed, based 
on local indicators Lj as follows:

From Table 8, AMFO, MFO, GWO, MVO and GOA achieve 
the best solution, while SCA provides the worst solution. 

(26)Lj =

||||||
1 −

NG∑
i=1

Fji

Vi

Vj

||||||
∀j = 1, 2,…NL

Fig. 9  Convergence curve for case 7 and case 8

Fig. 10  Convergence curve for case 9 and case 10
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IMO optimizes in minimum average simulation time, while 
AMFO and GWO attain best average function values. Fig-
ure 10b presents the convergence trend of all the algorithms. 
Most of the algorithms reach final solution quite smoothly 
and speedily.

2.11  Voltage Deviation Minimization

It is necessary to continuously retain load bus voltages inside 
stipulated deviation boundaries typically within ± 5% of the 
nominal value. In this case, control variables are adjusted to 
curtail voltage deviation. Voltage deviation can be described 
as:

From Table 8, MFO achieves the best solution closely fol-
lowed by AMFO, while SCA provides the worst solution 
of voltage deviation minimization. ALO and MFO provide 
minimum average value and simulation time, respectively. 
Figure 11a presents convergence trend of all the algorithms 
suggesting that MVO, GWO and SCA have flat convergence 
profile for a maximum number of iterations, whereas AMFO, 
IMO and MFO reach the optimized value quite smoothly.

2.12  Active Power Loss Minimization

In this case, the goal is to reduce the power losses, which can 
be indicated as follows:

(27)f =

NG∑
i=1

|Vi − 1.0|

(28)f =

NB∑
i=1

Pi =

NB∑
i=1

PGi −

NB∑
i=1

PDi

Analyzing results obtained, it is found that AMFO performs 
the best regarding the best solution and average solution, 
while SCA provides the worst solutions. GWO and GOA 
are the fastest and slowest algorithms, respectively. Fig-
ure 11b presents that SCA fails to find global optimum due 
to flat convergence profile. AMFO, MFO, IMO and GOA 
present the continuous variation in objective function values 
throughout the iterations.

2.13  Minimization of Reactive Power Losses

Transportation of real power from the source to sink depends 
upon the availability of reactive power support. Voltage 
stability margin also hinges on reactive power support or 
accessibility. Based on the idea, the reactive power losses 
are reduced employing the following equation:

Fig. 11  Convergence curve for case 11 and case 12

Fig. 12  Convergence curve for case 13
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It is noticeable that reactive power losses are negative. As 
derived from Table 8, AMFO achieves the best solution, 
while SCA lands into the worst solution. GWO and GOA 
provide the lowest and highest simulation time. Figure 12 
presents a convergence trend of all the algorithms. AMFO 
exhibits smooth convergence, while SCA, GWO and MVO 
present partially stagnant characteristics.

2.14  Robustness Test

To assess the performance of an optimization algorithm, 
most of the approaches focus only on best values achieved 
for each case to voice their verdicts. This approach is not 
correct considering the stochastic nature of algorithms. In 
this article, the evaluation of the algorithm is based on rank-
ing achieved by the Friedman test, Quade test and Friedman 
aligned test to detect whether any significant statistical dif-
ferences occur. Moreover, these methods rank the algorithms 
from the best in performance to the poorest one.

The Friedman test (Friedman 1937) aims to decide 
whether there are noteworthy variances between the algo-
rithms considered over given sets of information. The test 
determines the positions of the algorithms for each discrete 
data set, i.e., the best performing algorithm is ranked 1, 
the second best 2, etc.; in the case of ties, average rank is 
assigned. This test equates the average ranks of algorithms, 
and the null hypothesis asserts that all the algorithms per-
form equally, and hence, ranks of all algorithms should be 
equal.

Friedman rank test permits only intra-set comparisons. 
Therefore, this may become a drawback when the number of 
algorithms for comparison is small, as inter-set correlations 
may not be meaningful. In Friedman aligned test (Fried-
man 1940), a value of location is calculated as the average 
performance attained by all metaheuristics in each problem. 
Then, the alteration amid the performance achieved by an 

(29)f =

NB∑
i=1

Qi =

NB∑
i=1

QGi −

NB∑
i=1

QDi

algorithm and the value of location is acquired. This step is 
replicated for each blend of metaheuristics and problems.

The Quade test (Quade 1979) in contrast to Friedman’s 
test (Friedman test assumes that all problems are equally 
hard) takes into consideration the datum that a few problems 
are harder or that the changes recorded on the run of numer-
ous algorithms over them are higher. Moreover, the ranking 
calculated for each problem relies on the changes noted in 
the algorithms’ behavior.

All three statistical tests are done for each objective func-
tion, and the average rank for a given test system is found. 
Algorithms are positioned according to their average ranking 
from lowest to highest. Table 11 compares different algo-
rithms based on various statistical tests. It is visible that 
AMFO stands first in all statistical analyses as well demon-
strating its effectiveness to solve the OPF problem.

3  Conclusion

As a first contribution, an enhanced version of basic MFO, 
i.e., adaptive MFO, is proposed. The suggested method is 
employed on thirteen different benchmark functions. Per-
formance of AMFO is equated with MFO for different 
attributes on these single-objective benchmark functions. 
As discussed, for majority attributes AMFO performed bet-
ter than MFO. After validating the performance of AMFO 
on benchmark functions, nine different algorithms includ-
ing AMFO are implemented to optimize the OPF problem. 
To generalize the assessment of the performance of all the 
algorithms, thirteen different test cases are optimized hav-
ing complex and practical restraints. Evaluation is done 
established on the best solution, average simulation time 
and average solution. It can be inferred that AMFO, MFO, 
GWO and MVO perform well as compared to the remaining 
algorithms on most attributes. To validate the results, three 
statistical checks are performed on results obtained by each 
algorithm. We can conclude from the results of statistical 

Table 11  Comparison of 
various algorithms based on a 
statistical test on the IEEE 118-
bus test system

Position Algorithm Friedman Algorithm Quade Algorithm Friedman aligned

1 AMFO 1.6077 AMFO 1.3467 AMFO 240.0038
2 MFO 2.8462 MFO 2.5318 MFO 287.4577
3 GWO 3.5462 GWO 3.1504 GWO 362.9231
4 ALO 4.9269 ALO 4.8824 ALO 513.8731
5 GOA 5.6308 GOA 5.6459 GOA 666.4308
6 MVO 5.7923 DA 5.9544 DA 683.8538
7 DA 5.8538 MVO 6.1984 MVO 748.0885
8 IMO 5.9038 IMO 6.3157 IMO 765.7385
9 SCA 8.8923 SCA 8.9743 SCA 1001.13
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tests that AMFO performs the best irrespective of the com-
plexity of the objective function.

As a future work, enhanced variants of MFO and other 
contemporary algorithms can be proposed and applied to 
solve complex real-world problems. Moreover, design, 
development and application of multi-objective versions of 
enhanced algorithms can also be a promising field.

Acknowledgements The authors would like to thank Prof. Seyedali 
Mirjalili and Shri. Pradeep Jangir for their valuable support.

Compliance with Ethical Standards 

Conflict of interest In compliance with the journal’s policy and our 
ethical obligation as researchers, no potential conflict of interest should 
be reported. The authors certify that they are not involved in any or-
ganization or entity with any financial interest or non-financial interest 
in the subject matter discussed in this manuscript.

References

Abido MMAM (2002a) Optimal power flow using particle swarm opti-
mization. J Electr Power Energy Syst 24(7):563–571

Abido MA (2002b) Optimal power flow using tabu search algorithm. 
Electr Power Components Syst 30:469–483

Abou El Ela AAA, Abido MAA, Spea SRR (2010) Optimal power 
flow using differential evolution algorithm. Electr Power Syst Res 
80(7):878–885

AlRashidi MR, El-Hawary ME (2009) Applications of computational 
intelligence techniques for solving the revived optimal power flow 
problem. Electr Power Syst Res 79(4):694–702

Bhesdadiya RH, Trivedi IN, Jangir P, Kumar A, Jangir N, Totlani R 
(2017) A novel hybrid approach particle swarm optimizer with 
moth-flame optimizer algorithm. Springer, Singapore, pp 569–577

Bouchekara HREH (2014) Optimal power flow using black-hole-based 
optimization approach. Appl Soft Comput 24:879–888

Bouchekara HREHEH, Abido MA, Boucherma M (2014a) Optimal 
power flow using Teaching-Learning-Based Optimization tech-
nique. Electr Power Syst Res 114:49–59

Bouchekara HREH, Abido MA, Chaib AE, Mehasni R (2014b) Opti-
mal power flow using the league championship algorithm: a case 
study of the Algerian power system. Energy Convers Manag 
87:58–70

Bouchekara HREH, Chaib AE, Abido MA, El-Sehiemy RA (2016) 
Optimal power flow using an Improved Colliding Bodies Opti-
mization algorithm. Appl Soft Comput 42:119–131

Buch H, Trivedi IN (2018) On the efficiency of metaheuristics for solv-
ing the optimal power flow. Neural Comput Appl 1–19

Buch H, Trivedi IN, Jangir P (2017) Moth flame optimization to 
solve optimal power flow with non-parametric statistical evalu-
ation validation. Cogent Eng 4:1. https ://doi.org/10.1080/23311 
916.2017.12867 31

Carpentier J (1962) Contribution to the economic dispatch problem. 
Bull la Soc Fr des Electr 3(1):431–447

Chaib AEAAEA, Bouchekara HREHREH, Mehasni R, Abido MAA 
(2016) Optimal power flow with emission and non-smooth cost 
functions using backtracking search optimization algorithm. Int J 
Electr Power Energy Syst 81:64–77

Frank S, Steponavice I, Rebennack S (2012) Optimal power flow: a 
bibliographic survey II. Energy Syst 3(3):259–289

Friedman M (1937) The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance. J Am Stat Assoc

Friedman M (1940) A comparison of alternative tests of significance 
for the problem of m rankings. Ann Math Stat

Ghanizadeh GB, Mokhtari AJ, Abedi G, Gharehpetian M (2011) Opti-
mal power flow based on imperialist competitive algorithm. Int 
Rev Electr Eng 6(4):1847–1852

Group, IIT Power One-line Diagram of IEEE 118-bus Test System. 
[Online]. http://motor .ece.iit.edu/data/IEEE1 18bus _inf/IEEE1 
18bus _figur e.pdf. Accessed 15 Jan 2017

Güçyetmez M, Çam E (2016) A new hybrid algorithm with genetic-
teaching learning optimization (G-TLBO) technique for optimiz-
ing of power flow in wind-thermal power systems. Electr Eng 
98(2):145–157

Javidy B, Hatamlou A, Mirjalili S (2015) Ions motion algorithm for 
solving optimization problems. Appl Soft Comput J 32:72–79

Kessel P, Glavitsch H (1986) Estimating the voltage stability of a power 
system. IEEE Trans Power Deliv 1(3):346–354

Kumar NM, Wunnava A, Sahany S, Panda R (2015) A new adaptive 
Cuckoo search algorithm. In: 2015 IEEE 2nd int. conf. recent 
trends inf. syst., no. December, pp 1–5

Lai LL, Ma JT, Yokoyama R, Zhao M (1997) Improved genetic algo-
rithms for optimal power flow under both normal and contingent 
operation states. Int J Electr Power Energy Syst 19(5):287–292

Li Z, Zhou Y, Zhang S, Song J (2016) Lévy-flight moth-flame algo-
rithm for function optimization and engineering design problems. 
Math Probl Eng

Mirjalili S (2015a) Moth-flame optimization algorithm: a novel nature-
inspired heuristic paradigm. Knowl Based Syst 89:228–249

Mirjalili S (2015b) SCA: a Sine Cosine Algorithm for solving optimi-
zation problems. Knowl Based Syst

Mirjalili S (2015c) The ant lion optimizer. Adv Eng Softw 83:80–98
Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimi-

zation technique for solving single-objective, discrete, and multi-
objective problems. Neural Comput Appl 27(4):1053–1073

Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv 
Eng Softw 69:46–61

Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a 
nature-inspired algorithm for global optimization. Neural Comput 
Appl 27(2):495–513

Mohamed A-AAAA, Mohamed YS, El-Gaafary AAM, Hemeida AM 
(2017) Optimal power flow using moth swarm algorithm. Electr 
Power Syst Res 142:190–206

Mukherjee A, Mukherjee V (2015) Solution of optimal power flow 
using chaotic krill herd algorithm. Chaos Solitons Fractals

Niu M, Wan C, Xu Z (2014) A review on applications of heuristic 
optimization algorithms for optimal power flow in modern power 
systems. J Mod Power Syst Clean Energy 2(4):289–297

Ong P (2014) Adaptive cuckoo search algorithm for unconstrained 
optimization. Sci World J 2014:943403

Pandya KS, Joshi SK (2005) A survey of Optimal Power Flow meth-
ods. J Appl Inf Technol 4(5):450–458

Paranjothi SR, Anburaja K (2002) Optimal power flow using 
refined genetic algorithm. Electr Power Components Syst 
30(10):1055–1063

Quade D (1979) Using weighted rankings in the analysis of complete 
blocks with additive block effects. J Am Stat Assoc

Roa-Sepulveda CAA, Pavez-Lazo BJJ (2001) A solution to the optimal 
power flow using simulated annealing. Int J Electr Power Energy 
Syst 25(1):47–57

Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algo-
rithm: theory and application. Adv Eng Softw 105:30–47

Sinsuphan N, Leeton U, Kulworawanichpong T (2013) Optimal power 
flow solution using improved harmony search method. Appl Soft 
Comput J 13(5):2364–2374

https://doi.org/10.1080/23311916.2017.1286731
https://doi.org/10.1080/23311916.2017.1286731
http://motor.ece.iit.edu/data/IEEE118bus_inf/IEEE118bus_figure.pdf
http://motor.ece.iit.edu/data/IEEE118bus_inf/IEEE118bus_figure.pdf


1051Iranian Journal of Science and Technology, Transactions of Electrical Engineering (2019) 43:1031–1051 

1 3

Soliman G, Khorshid M, Abou-El-Enien T (2016) Modified moth-
flame optimization algorithms for terrorism prediction. Int J Appl 
Innov Eng Manag 5(7):47–59

Surender Reddy S et al (2014) Faster evolutionary algorithm based 
optimal power flow using incremental variables. Int J Electr Power 
Energy Syst

Trivedi IN, Bhoye M, Jangir P, Parmar SA, Jangir N, Kumar A (2016a) 
Voltage stability enhancement and voltage deviation minimiza-
tion using BAT optimization algorithm. In: 2016 3rd International 
conference on electrical energy systems (ICEES), pp 112–116

Trivedi IN, Jangir P, Jangir N, Parmar SA, Bhoye M, Kumar A (2016b) 
Voltage stability enhancement and voltage deviation minimization 
using multi-verse optimizer algorithm. In: 2016 International con-
ference on circuit, power and computing technologies (ICCPCT), 
pp 1–5

Wolpert DH, Macready WG (1997) No free lunch theorems for opti-
mization. IEEE Trans Evol Comput 1(1):67–82

Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. 
IEEE Trans Evol Comput 3(2):82–102


	An Efficient Adaptive Moth Flame Optimization Algorithm for Solving Large-Scale Optimal Power Flow Problem with POZ, Multifuel and Valve-Point Loading Effect
	Abstract
	1 Introduction
	1.1 Devising the Optimal Power Flow (OPF) Problem
	1.2 Control Variables
	1.3 State Variables
	1.4 Constraints
	1.5 Equality Limits
	1.6 Inequality Constraints
	1.7 Generator Limits
	1.8 Transformer Constraints
	1.9 Shunt VAR Compensator Constraints
	1.10 Security Constraints
	1.11 Adaptive Moth Flame Optimization Algorithm
	1.11.1 Inspiration

	1.12 MFO Algorithm
	1.13 Adaptive MFO
	1.14 Results on Benchmark Test Functions
	1.15 Solving OPF Using the AMFO Algorithm
	1.16 IEEE 118-Bus Test System
	1.17 Cast Studies

	2 Results and Discussion
	2.1 Minimization of Quadratic Fuel Cost
	2.2 Minimization of Quadratic Fuel Cost with Valve-Point Loadings
	2.3 Minimization of Quadratic Fuel Cost with Multifuel
	2.4 Minimization of Quadratic Fuel Cost with the Prohibited Operating Zone (POZ)
	2.5 Minimization of Fuel Cost with Combined Valve-Point Effect and Multifuel
	2.6 Minimization of the Quadratic Fuel Cost Function with Prohibited Operating Zone and Valve-Point Loading Effect
	2.7 Minimization of Fuel Cost Considering Prohibited Operating Zone and Multifuel
	2.8 Minimization of Fuel Cost Combining Valve-Point Loading Effect, Prohibited Operating Zone and Multifuel
	2.9 Minimization of Emission
	2.10 Voltage Stability Enhancement
	2.11 Voltage Deviation Minimization
	2.12 Active Power Loss Minimization
	2.13 Minimization of Reactive Power Losses
	2.14 Robustness Test

	3 Conclusion
	Acknowledgements 
	References




