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Abstract
Economic dispatch (ED) of a grid connected and renewable integrated microgrid system is considered in this paper. Two

wind farms take the renewable energy sources (RES) into consideration. A parameter worst-case-transaction-cost which

arises due to the stochastic availability and uncontrollable nature of wind farms is also emphasised and efforts have been

taken to minimize it too. Hence the paper’s focus into split objective functions and the generation costs and the worst case

transaction costs are optimised separately and also the net microgrid cost is optimized as a whole. Two different cases with

highly varying transaction prices are studied. Two meta-heuristic soft computing algorithms are applied for optimization

and a comparative analysis among them is studied. Numerical results are tabulated to justify the effectiveness of the novel

approach.

Keywords Energy management � Worst-case management cost � Optimization techniques � Wind farms, Symbiotic

organisms search

List of symbols
T, t Number of scheduling periods, period

index

M, m Number of conventional DG units

N, n Number of Dispatchable (class-1) loads,

load index

Q, q Number of energy (class-2) loads, load

index

J, j Number of DS units and their index

I, i Number of power production facilities

with RES, and facility index

Pmin
Gm

; Pmax
Gm

Minimum and maximum power output of

conventional DG unit m

Rm;upðdownÞ Ramp up (down) limits of conventional

DG unit m

SRt Spinning Reserve for conventional DG

Lt Fixed power demand of critical loads in

period t

Pmin
Dn

Pmax
Dn

Minimum and maximum power

consumption of load n

P
min;t
Eq

;P
max;t
Eq

Minimum and maximum power

consumption of load Q in period t

Sq; Tq Power consumption start and termination

times of load q

Emax
q Total energy consumption of load q from

start to termination time

Pmin
Bj

;Pmax
Bj

Minimum and maximum charging and

discharging power of DS unit j

Bmin
j

Minimum stored energy of DS unit j in

time T

Bmax
j Capacity of DS unit j

gj Efficiency of DS unit j

Pmin
R ;Pmax

R
Lower and upper bounds for Pt

R

Wt
i; �W

t
i Minimum and maximum forecasted

power output of RES i in time t

Wmin
s ;Wmax

s
Minimum and maximum forecasted total

wind power of all wind farms

at; bt Purchase and selling prices

pt
q Parameter of utility function of load q

Pt
Gm

(CG) Power output of DG unit m in period t

Pt
Dn

(CLASS1) Power consumption of load n in time t

Pt
Eq

(CLASS2) Power consumption of load q in period t
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Pt
Bj

Charging or discharging power of DS unit

j in time t

B
j
t

Stored energy of DS unit j at end of period

t

1 Introduction

A microgrid is a collection of electrical loads, communi-

cation facilities, control units and generating units that are

spread within a small geographical location. The dis-

tributed energy resources (DERs) included in the microgrid

may be micro turbines, fuel cells, reciprocating engines, or

any of a number of alternate power sources (Hatziargyriou

et al. 2007). Countries such as the USA, Germany, Greece,

Japan have seen the distribution of microgrids and have

benefited from them (Barnes 2007). The effective man-

agement of a microgrid system in order to supply the

required power without facing shortcomings and with a

minimized economy is the problem gaining attention

(Koutsopoulos and Tassiulas 2012; Khodayar et al. 2012).

The Energy Management system makes decisions regard-

ing the best use of the DERs for producing electric power

and heat, based upon the heat requirements of the local

equipment, the weather conditions, the price of electric

power, the cost of fuel and many other considerations.

Extensive literature survey on microgrid energy man-

agement has provided insight about the different method-

ologies employed so far to solve these problems. The

demand for electrical power is intensifying at a very fast

rate, which, in turn has caused a rapid growth of the real-

time market price of electricity. To accommodate these

high rising demands, electrical power sectors are growing

up significantly. In India most of the electrical energy is

derived from fossil fuel based power plants. In this

framework, smart grids and microgrids are the key in the

near future where a decentralization of energy generation is

expected. An advantage of these type of grids is that the

balance between energy generation, storage, and con-

sumption can be realized most efficiently. This reduces the

need for centralized communication, enables autonomous

operations of increasingly smaller sections of the distri-

bution grid and decreases the losses by distant distribution.

From the point of view of a microgrid energy management

system, economic scheduling of generation devices, stor-

age systems and loads is a crucial problem. Performance of

an optimization process is necessary to minimize the

operating costs while several operational constraints are

taken into account.

The cost of fuel is a major part of the running expenses

of various small power stations and this will be enhanced if

the efficiency of the plants is to be improved. Hence, the

minimization of operating costs has attracted a great deal

of attention from the power engineers. Mostly conventional

classical based dual decomposition optimization tech-

niques were employed to solve the basic energy manage-

ment based microgrid problems. However, these

approximations resulted in solution of reduced accuracy

and hence, huge revenue loss over time. Moreover, in most

of the above mentioned algorithms, the numbers of control

parameters (which control the performance of the algo-

rithm) are large. Therefore, a time consuming control

parameter tuning procedure is required before applying

these algorithms to a specific optimization problem

Various loads and the DERs are controlled and main-

tained by the microgrid energy manager (MGEM). All the

DERs and loads have dedicated local controllers that

coordinate with the MGEM for the timely operation of

resources in a distributed fashion. This disciplined and

distributed fashioned functioning of microgrids face the

challenge when the uncertainty and stochastic nature of

RES come into view. Economic dispatch and unit com-

mitment of a microgrid is done in Stluka et al. (2011)

without considering the stochastic nature of RES. Consid-

ering the Wei bull distribution for wind speed an ED

problem deals with minimization of risk of over-estimation

and under-estimation of wind in Hetzer et al. (2008). For a

single period, probabilistic study of supply of power is

studied with an ED problem involving RES in Liu and Xu

(2010). Authors in Guan et al. (2010) considered the

stochastic availability nature of demand and PV generation

while minimizing the microgrid net cost. Robust schedul-

ing problems with fine incorporated for the uncertainty of

supply and demand without considering DSM have been

studied in Bertsimas et al. (2013). Some heuristic algo-

rithms are implemented by the authors in Jiang and Low

(2011) and Zhao and Zeng (2012) to perform demand side

management in RES integrated microgrids. Model predic-

tive control is used for planning problem of a microgrid

with DS in Jin and Ghosh (2011). The unreliable and time

varying nature of RES is neglected and then distributed

algorithm is used to supply a given load including DER in

Dom (2011). Considering a microgrid with a single wind

farm and no DS, a worst-case transaction based energy

management is done in Zhang and Gatsis (2012). Energy

management of co-operative microgrids was performed in

Lahon and Gupta (2017) to minimize the net operating cost

which includes the cost of distributed generation and worst

case transaction cost. In Govardhan and Roy (2012) a

microgrid with wind turbine, PV array, diesel engine, fuel

cell and micro-turbine are studied. The proposed cost

functions considered are the cost of the emissions NOx,

SO2 and CO2, operating and maintenance cost as well as

start-up costs of different sources. The total operating cost

of the microgrid is minimized with the help of Ant Bee
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Colony optimization technique. The isolation niche

immune genetic algorithm (INIGA) is used in Liao (2013)

to confirm the accuracy and validity of the mathematic

model through some actual examples. This method is then

compared with some other optimization approaches that

are usually applied to solve the energy management and

optimization operation problem to show the superiority and

usability of the approach mentioned in it. Authors in Shi

et al. (2015) designed a distributed energy management

strategy (DEMS) based on IEC 61850 bounded by system

operational constraints. This DEMS was then implemented

on a real microgrid system of China consisting of a photo-

voltaic system, wind turbines (WT), diesel generators and

battery storage device. Three different optimization tech-

niques viz. genetic algorithm (GA), particle swarm opti-

mization (PSO) and honey bee mating optimization

(HBMO) were used by authors in Ahmadnia and Tafehi

(2017) to improve the voltage stability margin for seven

different scenarios of a microgrid system which consisted

of DERs like PV, WT, STATCOM and capacitors. A

multi-objective optimization method was presented in

Chen et al. (2018) to jointly optimize the planning and

operation of a grid-connected microgrid system that

included PV, WT and DS. The author used fuzzy satis-

faction maximization method for five different scenarios of

the microgrid system. A memory based GA (MGA) tech-

nique was used in Askarzadeh (2017) to optimize the

sharing of power generation among the DERs of a micro-

grid system to minimize its operating cost. This proposed

technique was then compared with GA and two variants of

PSO to prove its superiority.

Evolvement of soft computing tools, which are not

restricted by the complexity of system models, inspired the

research workers to apply them in the field of power system

optimization. The versatile properties and attractive per-

formance of genetic algorithm (GA), particle swarm opti-

mization (PSO) and differential evolution (DE) over a wide

range of benchmark functions have inspired the many

researchers to implement these algorithms for solving

energy management issues of microgrids involving optimal

costs and load scheduling. Nevertheless, GA, PSO and DE

have their own list of disadvantages too. The very basic

disadvantage of GA is its unguided mutation. The mutation

operator in GA functions like adding a randomly generated

number to a parameter of an individual of the population.

This is the only reason for the very slow convergence of

genetic algorithm. DE suffers from unstable convergence

and easily drops down to regional optimum. Likewise, PSO

also drops down to regional optimum and has untimely

convergence. In addition, multiplicity of population is not

enough in PSO. Also, some time is consumed in tuning the

control parameters present in all of the aforementioned

optimization techniques.

However, there is also a recently developed, simple yet

powerful meta-heuristic algorithm called symbiotic

organisms search (SOS). In this algorithm the symbiotic

interaction tactics that organisms generally use to survive

in an ecosystem are simulated. SOS showed better results

in various fields of power engineering where optimization

is of prime concern. In Das and Bhattacharya (2016), SOS

has been implemented in short term hydro thermal

scheduling problems and better results were obtained. SOS

algorithm has been implemented in Datta et al. (2016) to

determine the optimal coordination of directional over

current relays. It is worth mentioning that SOS outper-

formed the various optimization techniques considered for

comparative study in this case too. SOS also gave better

results than some prior optimization techniques when

implemented for real power loss minimization in

Balachennaiah and Suryakalavathi (2015).

To avoid the suboptimal solution and to accelerate the

convergence speed, the theory of quasi-oppositional based

learning (Q-OBL) is integrated with original SOS and used

to solve the microgrid energy management based problem.

The success of QOSOS algorithm is established by com-

paring the dynamic performances of concerned microgrid

system with those obtained by SOS and some recently

published algorithms available in the literature. Further-

more, the robustness and sensitivity are analysed for the

concerned microgrid system to judge the efficacy of the

proposed QOSOS approach.

2 Mathematical formulation of Microgrid
Energy Management System

Let us consider a grid-connected microgrid system com-

prised of conventional (fossil fuel) generators, RES facil-

ities (wind-farms) supported by DS units supplying power

to both elastic and inelastic loads (Fig. 1). The modelling

of various DERs for the optimal scheduling of the micro-

grid system is done in the next sub-sections.

2.1 Load Demand Model

There are generally two types of loads: inelastic loads and

elastic loads. Inelastic loads are the ones which are fixed

and their demand should be satisfied at all times. For e.g.

hospitals, schools and colleges, government and adminis-

trative offices, etc. Elastic loads are those type of loads

whose demand may be compromised in case of power

shortage and can be scheduled as per time horizon. There

are two types of elastic loads:
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1. Say, the N number of class-1 dispatchable loads have

power consumption Pt
Dn

2 ½Pmin
Dn

;Pmax
Dn

�, where

n 2 N :¼ f1; . . .;Ng, and t 2 s. For this class of elastic

loads, the consumption of power varies directly with

the utility of the end user. The increasingly concave

utility function of the nth dispatchable load,

Ut
Dn
ðPt

Dn
Þ(Chen et al. 2010). The utility of the class-1

type of loads is calculated using the equation

UnðPDn
Þ ¼ cnP2

Dn
þ dnPDn

ð1Þ

2. The Q number of class-2 type of elastic loads denoted

by q 2 Q :¼ f1; 2; . . .Qg with power consuming capa-

bility ranging from Pmin
Eq

to Pmax
Eq

, and permissible

energy desired Eq is attained from the start time Sq to

termination time Tq (Mohsenian-Rad et al. 2010).

Plug-in hybrid electric vehicles (PHEVs) can be

considered as a better illustration of this type of load.

The time-varying function on which the qth load will

operate is a concave function Ut
Eq
ðPt

Eq
Þ and is calcu-

lated with the relation:

Ut
Eq
ðPt

Eq
Þ :¼ pt

qPt
Eq

ð2Þ

with weights fpt
qg decreasing in t from slots Sq to Tq.

2.2 Distributed Storage Model

For stable operation to balance any instantaneous mismatch

in active power, efficient DS must be used. Distributed

storage enhances the overall performance of microgrid

systems in many ways. Firstly, it stabilizes and permits DG

units to run at a constant and stable output, despite load

fluctuations. Secondly, it provides the ride-through capa-

bility when there are dynamic variations of primary energy

(such as those of sun, wind, and hydropower sources). It

also permits DG to seamlessly operate as a dispatchable

unit. Moreover, energy storage can benefit power systems

by damping peak surges in electricity demand. In addition

to all of these a DS counters momentary power distur-

bances and provides outage ride-through while backup

generators respond. The property of a DS to reserve energy

for future demand is of utmost importance.

Let Bt
j be the energy stored at the jth battery when the

time slot t ends. Suppose the energy which was initially

available is B0
j while Bmax

j indicates maximum energy of

the battery, such that 0\Bt
j\Bmax

j ; j 2 J :¼ f1; 2. . .Jg. Let

Pt
Bj

be considered as the exchanged power to or from the jth

storage device during time slot t which causes charging

ðPt
Bj
� 0Þ or discharging ðPt

Bj
� 0Þ of the battery. Energy

stored in the battery can be defined as:

Bt
j ¼ Bt�1

j þ Pt
Bj

ð3Þ

Fig. 1 Architecture of a typical

microgrid
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Constraints of Pt
Bj

are:

1. The discharging and charging of the battery obeys the

equation:

Pmin
Bj

�Pt
Bj
�Pmax

Bj

�gjB
t�1
j �Pt

Bj

ð4Þ

where Pmin
Bj

\ 0, Pmax
Bj

[ 0, and gj 2 ð0; 1� is the effi-

ciency of the battery j.
2. Final stored energy at any instant of time is also

limited so that DS can be used for future scheduling

horizons. This limit is represented as BT
j �Bmin

j .

The lifetime of the DS can be maximized by

employing a storage cost Ht
j ðBt

jÞ so that the stored

energy maintains a specific level of charge (Vytelin-

gum et al. 2011; Alimisis and Hatziargyriou 2013). To

validate greater value of power exchange one can even

select Ht
jðBt

jÞ � 0 altogether.

2.3 Generation Cost of Conventional Generators

Let PGm
be the power output of the mth conventional fossil

fuelled generator. Then the generator cost function which is

quadratic in nature is represented by the equation:

CmPGm
¼ amP2

Gm
þ bmPGm

ð5Þ

where am and bm are the generator cost coefficients.

Hence the generation cost of the microgrid system is the

sum of the generation costs of the conventional fossil-fuelled

generators and the storage devices minus the utility of dis-

patchable loads and can be mathematically formulated as:

F1 ¼
XT

t¼1

XM

m¼1

Ct
mðPt

Gm
Þ �

XN

n¼1

Ut
Dn

�
XQ

q¼1

Ut
Eq
ðPt

Eq
Þ þ

XJ

j¼1

Ht
j ðBt

jÞ
 !

ð6Þ
2.4 Worst-case Transaction Cost

Let Wt
i be the wind power generated by the ith RES facility

(hereafter wind farm) for the time period t. Further, let w

comprise Wt
i , i.e. w :¼ fW1

1 ; . . .W
T
1 ; . . .W

1
I ; . . .W

T
I g. The

combined power output from the wind farms when postu-

lated for a period t within the time scheduling horizon can

be expressed as:

Wt
i �Wt

i � �Wt
i

s:t: Wmin
s �

PI

i¼1

Wt
i �Wmax

s

ð7Þ

where Wt
i & �Wt

i stands for the higher and lower limits of

Wt
i respectively. The total wind energy harvested over the

region is bounded by Wmin
s and Wmax

s (Zhao and Zeng

2012) and the deterministic lower and upper bounds can be

determined via inference schemes based on historical data

(Pinson and Kariniotakis 2010).

Since the paper considers a microgrid operating in a grid

connected mode, there exists a buying/selling mechanism

between the main grid and microgrid. Let Pt
R denote the net

power delivered to the microgrid at time t from the

renewable energy sources and the storage devices when the

transaction mechanism is going on. The mathematical

expression (Pt
R �

PI
i¼1 Wt

i þ
PJ

j¼1 Pt
Bj

) calculates the

shortage or surplus of energy. at is the cost price of pur-

chasing power in case of deficit and bt is the selling price

of the power when the microgrid yields an excess of it.

Worst-case-transaction cost can be mathematically

expressed as:

F2 ¼
XT

t¼1

at Pt
R �

XI

i¼1

Wt
i þ
XJ

j¼1

Pt
Bj

" #þ 

�bt Pt
R �

XI

i¼1

Wt
i þ

XJ

j¼1

Pt
Bj

" #�! ð8Þ

where {Pt
R} collects Pt

R for t = 1,2…T and fPt
Bj
g collects

fPt
Bj
g for j = 1,2,…J, t = 1,2,…T.

2.5 Microgrid Energy Management Objective
Function

Considering the cost of various DERs and the worst case

transaction cost levied by the high penetration and

dependability on the RES, the overall microgrid net social

cost, which is to be minimized, can be mathematically

represented as:

F ¼ min
x

F1 þ min
x

F2

also F ¼ min
x

F1 þ F2ð Þ
ð9aÞ

F ¼ min
x

XT

t¼1

XM

m¼1

Ct
mðPt

Gm
Þ �

XN

n¼1

Ut
Dn

�
XQ

q¼1

Ut
Eq
ðPt

Eq
Þ þ

XJ

j¼1

Ht
j ðBt

jÞ
 !"

þ
XT

t¼1

at½Pt
R �

XI

i¼1

Wt
i þ
XJ

j¼1

Pt
Bj
�þ � bt½Pt

R �
XI

i¼1

Wt
i þ
XJ

j¼1

Pt
Bj
��

 !#

ð9bÞ

where x collects all the primal variables

fPt
Gm
;Pt

Dn
;Pt

Eq
;Pt

Bj
;Bt

j;Pt
R;Wt

i g. Both the generation cost of

the microgrid system F1ð Þ and the worst case transaction

cost F2ð Þ are minimized separately and the overall micro-

grid net social cost is optimized as a whole using a bio-

inspired meta-heuristic optimization technique and its

improved variant. The results are then compared in a later

section of this paper.
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The above objective functions are subject to the con-

straints which are listed below:

2.5.1 Generation Limits

The conventional generator outputs should lie between its

maximum and minimum limits.

Pmin
Gm

�Pt
Gm

�Pmax
Gm

ð10aÞ

2.5.2 Ramp Up/Down Limits

The inequality constraints due to ramp rate limits for unit

generation changes are given as:

For increase in generation

Pt
Gm

� Pt�1
Gm

�Rm;up ð10bÞ

For decrease in generation

Pt�1
Gm

� Pt
Gm

�Rm;down ð10cÞ

where Rm,up and Rm,down are the up ramp limit and the

down ramp limit of the conventional generators

respectively.

2.5.3 Spinning Reserve Constraint

The spinning reserve inequality for the conventional gen-

erator outputs at any time slot t denoted by SRt is given as:

XM

m¼1

Pmax
Gm

� Pt
Gm

� �
� SRt ð10dÞ

2.5.4 Class-1 Loads Constraint

The power consumption of Class-1 type of elastic loads

should lie between their minimum and maximum limits.

Pmin
Dn

�Pt
Dn

�Pmax
Dn

ð10eÞ

2.5.5 Class-2 Loads Constraints

The power consumption of Class 2 type of loads should be

within their upper and lower limits as assigned. Also, the

total energy requirements which are targeted by the run-

ning duration of these loads must be equal to Eq.

Mathematically,

P
min;t
Eq

�Pt
Eq
�P

max;t
Eq

PTq

t¼Sq

Pt
Eq

¼ Eq

P
min;t
Eq

¼ P
max;t
Eq

¼ 0 for t 62 Sq; . . .Tq

� �
ð10fÞ

2.5.6 Distributed Storage Constraints

Equation 7(h) and 7(i) bounds the stored energy and the

amount of charging (discharging) between their maximum

possible limits as

0�Bt
j �Bmax

j ;BT
j �Bmin

j ð10gÞ

Pmin
Bj

�Pt
Bj
�Pmax

Bj
ð10hÞ

A fraction gj of the energy which is stored to be dis-

charged is represented as

�gjB
t�1
j �Pt

Bj
ð10iÞ

Bt
j ¼ Bt�1

j þ Pt
Bj

ð10jÞ

2.5.7 Constraints for the Auxiliary Variable

The auxiliary variable should lie between the minimum and

maximum limits as follows:

Pmin
R �Pt

R �Pmax
R ð10kÞ

2.5.8 Power Supply–demand Balance Equation

The sum of the generated powers of all units must be equal

to sum of the power demanded by the load.

XM

m¼1

Pt
Gm
þPt

R ¼ Lt þ
XN

n¼1

Pt
Dn

þ
XQ

q¼1

Pt
Eq

ð10lÞ

In this present work the above formulated objective

functions aims to minimize the overall microgrid net social

cost. Different optimization techniques that are used to

solve the objective functions are illustrated below in detail.

3 The Symbiotic Organisms Search
Algorithm

Symbiotic organisms search is a relatively new powerful

and meta-heuristic algorithm applied to optimize many

mathematical and engineering problems (Cheng and

Prayogo 2014). It works by simulating the symbiotic

strategies acquired by the organisms among themselves to

survive and be sustained in the ecosystem. The fact that

SOS does not require any algorithm specific parameters

makes it superior to many other meta-heuristic algorithms.

The symbiotic relationships that are found in nature of

three types viz. mutualism, commensalism and parasitism.

These relationships are further formulated below and the

SOS algorithm is developed as below:
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3.1 Mutualism Phase

In the mutualism phase of SOS, both the species involved

benefit. One common example is the relationship between

honey bees and flowers (Fig. 2). The bees collect nectar

from flowers and turn it into honey and hence benefit from

the flowers. In this process the bees also carry the pollen

grains from one flower to another and thus assist in polli-

nation. This phase can be mathematically developed by the

following equations:

Xinew ¼ Xi þ randð0; 1Þ � ðXbest � Mutual Vector � BF1Þ
ð11Þ

Xjnew ¼ Xj þ randð0; 1Þ � ðXbest � Mutual Vector � BF2Þ
ð12Þ

Mutual Vector ¼ Xi þ Xj

2
ð13Þ

where Xi is an organism of the ith member of the ecosystem

and Xj is randomly selected from the ecosystem to interact

with Xi. rand(0,1) denotes a vector of random numbers.

BF1 and BF2 denote the benefit factors and are kept either 1

or 2. Mutual_Vector represents the mutual relation between

the organisms Xi and Xj.

3.2 Commensalism Phase

Commensalism is a relationship existing in nature between

individuals of two species where one species gathers its food

or one benefits from the other without harming or benefitting

the latter. The remora fish, for instance, is always attached to

the shark and eats the leftover food of a shark without harming

or benefitting it. In this way there exists a commensalism

relation between the shark and remora fish (Fig. 3). Similar to

the mutualism phase, Xj is selected randomly to interact with

Xi and a new organism Xinew can be calculated as:

Xinew ¼ Xi þ randð�1; 1Þ � ðXbest � XjÞ ð14Þ

where (Xbest - Xj) portrays the beneficial advantage pro-

vided by Xj to help Xi increase its survival advantage in

ecosystem to the highest degree Xbest in current organism.

3.3 Parasitism Phase

Parasitism is the name given to the relationship between

two organisms in the ecosystem where one is harmed and

the other benefits. The organism that benefits is called

‘parasite’ and the one that faces harm is called the ‘host’.

Example can be taken of the deer tick (Fig. 4) which

attaches to the host to suck its blood and thus benefits. But

it also carries some Lyme disease, causing joint damage

and kidney problems and also the animal suffers from lack

of blood.

In SOS, Xj is selected randomly to act as the host.

Parasite_Vector is an artificial organism created in the

search space. If fitness value of Parasite_Vector is better

than Xj, it will replace organism Xj. And if the fitness value

of Xj is better, it will have immunity and the Para-

site_Vector will no longer survive in that ecosystem.

Fig. 2 Honey bee and flower

Fig. 3 Remora fish and shark

Fig. 4 Deer tick feeding on the blood of a host
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4 Quasi-Oppositional Based Learning

The idea of oppositional based learning (OBL) theory was

originally introduced by Tizhoosh (2005). Later, it gained

huge acceptability from the researchers in the field of

computation intelligence. The basic aim of using OBL in

the evolutionary computation is to enhance the solution

accuracy and accelerate the convergence rate towards the

global solution. It has a high probability to look after the

optimization scheme to produce a suboptimal solution. In

this process, current population and opposite number are

simultaneously generated to produce better candidate

solution. The theory of OBL is derived by defining three of

its important mathematical attributes:

(a) Opposite number: It is the mirror location of the

candidate solution from the centre of search space. If

X is a randomized initial candidate solution which

lies in the interval [a,b], then the opposite number Ox

in a d-dimensional space can be mathematically

formulated as

OXj
¼ aj þ bj � Xj ð15Þ

where j ¼ 1; 2; 3; . . .d and Xj ¼ X1;X2;X3; . . .Xd .

(b) Quasi opposite number: the quasi-opposite number

finds its position between the centre of search space

and the opposite number and is often closer to the

global optimum solution than the opposite number.

Let ‘C’ be the centre of the search space. Mathe-

matically C ¼ ajþbj

2
. Then the quasi-opposite number

can be obtained by the following pseudo code:

if ðOx\CÞ
QOx ¼ C þ ðOx � CÞ � rand;

else

QOx ¼ Ox þ ðC � OxÞ � rand;

end

ð16Þ

where QOx is the quasi-opposite number and

rand 2 ð0; 1Þ.
(c) Jumping rate: This parameter is specifically needed

to help the algorithm avoid any sub-optimal solution.

The jumping rate also accelerates the algorithm

attain a globally optimal solution. The value of

jumping rate is normally selected between [0,0.6]

and is mathematically defined as

JR ¼ JRmax � JRmin � ðJRmax � JRminÞ

� fcmax � fc

fcmax

� �
ð17Þ

where ‘JRmax’ and ‘JRmin’ are the maximum and

minimum values of jumping rate. ‘fcmax’ is the

maximum number of function call and ‘fc’ is the

number of function call at the present iteration.

5 Symbiotic organisms search (SOS)
and quasi-oppositional symbiotic
organisms search (QOSOS) applied
to energy management problem

Step 1: Formation of Ecosystem: The parameters con-

sidered for microgrid energy management include fuel

cost-coefficients of conventional generators, power

generation limits, ramp rate limits, power demand of

various types of loads and limits of forecasted wind

power. Also, the size of ecosystem i.e. the total number

of organisms in the ecosystem (eco_size) and maximum

iteration (max_iter) is set in this step.

Step 2: Let Xi be the trial vector designating the ith

organism of the initial ecosystem where Pi consists of

generators outputs, class-1 loads, class-2 loads, an

auxiliary variable and wind turbine outputs for 8 h

intervals. Hence Pi can be represented as Xi = [Pgi11,-

i = [Pgi11,Pgi12…Pgi18,Pgi21,Pgi22…Pgi28,Pgi31,

Pgi32…Pgi38,Di11,Di12….Di18,Di21,Di22….Di28,Di31,Di32….

Di38, Di41,Di42….Di48, Di51,Di52….Di58, Di61,Di62….Di68,

Ei11,Ei12…Ei18,Ei21,Ei22…Ei28,Ei31,Ei32…Ei38,Ei41,Ei42…
Ei48,PtRi1,PtRi2…PtRi8, Wi11,Wi12…Wi18,Wi21,

Wi22…Wi28];

Now for n number of members of the ecosystem

(pop_size) i varies from i = 1, 2, 3….n. Hence the

ecosystem matrix can be represented as

X ¼

X1

X2

X3

. . .

Xn

2

6666664

3

7777775

Step 3: Mutualism phase: Here i is initially set at 1,

organism X1 is matched to Xi and organism Xj is formed

randomly from the ecosystem. In this case, X2 is selected

as Xj. Mutual_Vector is calculated using (13). Benefit

Factors (1 and 2) are set at 2. Organism Xi and Xj are

modified based on their mutual relationship using (11)

and (12) and the constraints checking is done. Once it is
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found that Xi and Xj abide by the constraints, the fitness

value is then accounted, if found better than the initial

fitness value, we go to next step else we reject modified

and keep the initial solution and proceed to next step.

Step 4: Commensalism phase: Organism Xj(Xj = Xi) is

generated from the ecosystem on a random basis. New

candidate solutions X1 are calculated using (14). Con-

straint checking is done and fitness value is calculated.

Like the previous step, if fitness value of the modified

organism in this step is better than the previous value

then we go to the next step else the modified organism is

rejected and the previous solution is kept before

proceeding to the next step.

Step 5: Parasitism phase: Organism Xj (Xj = Xi) is

randomly selected from the ecosystem. Parasite_Vector

is formed by mutating Xi in random dimensions using a

random number within a given range. Constraint check-

ing is done and fitness value is calculated. If Para-

site_Vector is found better than the previously calculated

fitness value, then the previous fitness value is replaced

with the Parasite vector else the Parasite_Vector is

rejected and then we proceed to the next step.

Step 6: We proceed to step 2 if the current Xi is not the

last member of the ecosystem; otherwise we proceed to

next step.

Step 7: We stop if one of the termination criteria i.e. the

maximum number of iterations is reached; otherwise we

return to step 2 and start the next iteration.

Subsequently, the SOS algorithm was modified by

incorporating the quasi-oppositional features in it and a

modified and novel Quasi-Oppositional Symbiotic Organ-

isms Search (QOSOS) algorithm was developed to mini-

mize the same objective functions of the microgrid energy

management problem. Figure 5 below shows the steps

followed to minimize the microgrid net social cost using

QOSOS.

6 Numerical Results and Analysis

6.1 Description of the Test System

The considered microgrid consists of 3 conventional fossil-

fuelled generators, 6 class-1 dispatchable loads, 4 class-2

dispatchable loads, 3 storage units and 2 renewable energy

sources (wind farms). The time horizon spans for 8 h

corresponding to the interval 4 PM–12 AM. Genetic

Algorithm (GA), Particle swarm optimization (PSO) and

Differential evolution (DE) were applied in Dey (2015) and

have proved themselves better than the classical techniques

applied for this work. In this section symbiotic organisms

search (SOS) and proposed QOSOS techniques are

implemented to evaluate their performance for solving

microgrid energy management problems. The proposed

algorithm to solve the energy management problem is

coded in MATLAB R2013a and executed on a personal

computer having 2.53 GHz core i3 processor with 3 GB

RAM. The basic system parameters are listed in Table 1.

Table 2 contains the various parameters of the conven-

tional fossil fuelled generators. Tables 3 and 4 lists the

operating limits and cost coefficients of class-1 and class-2

type of dispatchable loads respectively. The forecasted

upper and lower limits of the wind farms, transaction prices

Fig. 5 Flowchart of QOSOS
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for case A and case B and the values of inelastic loads are

all listed in Table 5. The forecasted upper and lower limits

of the wind farms are gathered from the MISO day-ahead

wind forecast data (Zhang et al. 2013) and are rescaled to

the order of 1 to 40 kWh, which, according to authors in

Wu et al. (2011), is a typical wind power generation for a

microgrid. Likewise, the hourly values of the fixed loads Lt

which are listed in Table 5, are also collected and re-scaled

from the daily report data provided by MISO in Federal

Energy Regulatory Commission (2012). The program is

run with different population sizes and 100 iterations for 50

trials using SOS. Benefit_Factor value is set at 2 and best

result was found at a jumping rate of 0.45 while using

QOSOS.

6.2 Comparative Study

1. Solution Quality: The minimized generation cost,

worst transaction cost and microgrid net social cost for

case A with the classical techniques used in literature,

GA, PSO, DE, SOS and QOSOS algorithms are dis-

played in Table 6. It can be seen that proposed QOSOS

gives the best and minimized solutions with $10.1022

for net generation cost, $7.9652 for worst transaction

cost and $22.0051 for net microgrid cost. Similarly, for

case B it can be seen from Table 7 that QOSOS yiel-

ded better solutions with $13.6527 for microgrid gen-

eration cost, $80.9699 for worst transaction cost and

$135.9970 for microgrid net social cost respectively.

From these results it is quite clear that proposed

QOSOS algorithm gave better and least operation cost

of the considered microgrid system compared to other

algorithms. The optimal microgrid power schedules of

both the cases are shown in Figs. 3 and 4. The stair

steps include conventional power generation CG, and

total elastic demands for classes 1 and 2 respectively.

Quantity WORSTCASE denotes the total worst case

wind energy at the respective time slot which is

obtained with optimal Pt
R. A common observation from

Figs. 3 and 4 is that the total conventional power

generation varies with the same trend across t as the

fixed load demand FIXEDLOADS, while the class-1

elastic load exhibits the opposite trend. Because the

conventional generation and the power drawn from the

main grid are limited, the optimal scheduling by

solving (P2) dispatches less power for CLASS1 when

FIXEDLOADS is large (from 6 P.M. to 10 P.M.), and

vice versa. This behaviour indeed reflects the load

Table 1 Basic parameters of the microgrid system

Parameter Magnitude

M 3 conventional generators

N 6 class-1 dispatchable loads

Q 4 class-2 dispatchable loads

J 3 storage units

I 2 renewable energy facilities (wind farms)

T 8 h time span (4 PM to 12 AM)

SRt 10 kWh

pt
q {4, 3.5, 3,… 0.5} for t = 4 PM,… 11 PM

Bmax
j 30 kWh

Bmin
j ¼ B0

j
5 kWh

gj 0.95

Wmin
s

40 kWh

Wmax
s 360 kWh

P
t;min
R

0 kW

P
t;max
R

50 kW

Table 2 Conventional fossil-

fuelled generators parameters
Unit Pmin

Gm
(kW) Pmax

Gm
(kW) RmupðdownÞ (kW) am [$/(kWh)2] bm [$/kWh]

1 10 50 30 0.006 0.5

2 8 45 25 0.003 0.25

3 15 70 40 0.004 0.3

Table 3 Class 1 Dispatchable loads parameters

Pmin
Dn

(kW) Pmax
Dn

(kW) cn [$/(kWh)2] dn [$/kWh]

Load 1 0.5 10 - 0.002 0.2

Load 2 4 16 - 0.0017 0.17

Load 3 2 15 - 0.003 0.3

Load 4 5.5 20 - 0.0024 0.24

Load 5 1 27 - 0.0015 0.15

Load 6 7 32 - 0.0037 0.37

Table 4 Class-2 Dispatchable load parameters

Pmin
Eq

(kW) Pmax
Eq

(kW) Emax
q (kW) Sq Tq

Load 1 0 1.2 5 6 PM 12 AM

Load 2 0 1.55 5.5 7 PM 11 PM

Load 3 0 1.3 4 6 PM 12 AM

Load 4 0 1.7 8 6 PM 12 AM
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Table 6 Costs (in $) obtained for minimum value of objective functions (Case A)

Methods used Generation cost F1ð Þ Worst-case Transaction cost F2ð Þ Overall Microgrid net cost Fð Þ

Classical method Zhang et al. (2013) 14.4665 16.0211 30.4876

GA Dey (2015) 14.0002 15.3397 30.4522

PSO Dey (2015) 13.2644 13.9057 30.3684

DE Dey (2015) 12.1754 13.7400 29.6390

SOS

(Studied)

10.5035 8.3320 23.7534

QOSOS

(Proposed)

10.1022 7.9652 22.0051

Table 7 Costs (in $) obtained for minimum value of objective functions (Case B)

Methods used Generation cost F1ð Þ Worst-case Transaction cost F2ð Þ Overall Microgrid net cost Fð Þ

Classical method Zhang et al. (2013) 35.8303 146.5729 182.4032

GA Dey (2015) 20.3472 140.3374 18.3249

PSO Dey (2015) 16.3831 137.4613 178.1224

DE Dey (2015) 15.6372 100.1991 157.8656

SOS

(Studied)

14.9789 81.3140 137.9810

QOSOS

(Proposed)

13.6527 80.9699 135.9970

Table 5 Boundary limits of the wind farms, fixed loads and real time transaction prices for both the cases

Time slot Wt
1 (kW) �Wt

1 (kW) Wt
2 (kW) �Wt

2 (kW) Lt (kW) Case A Case B

at (¢/kWh) bt (¢/kWh) at (¢/kWh) bt (¢/kWh)

1 2.47 24.7 2.57 25.7 57.8 2.01 1.81 40.2 36.18

2 2.27 22.7 1.88 18.8 58.4 2.2 1.98 44 39.6

3 2.18 21.8 2.16 21.6 64 3.62 3.26 72.4 65.16

4 1.97 19.7 1.56 15.6 65.1 6.6 5.94 132 118.8

5 2.28 22.8 1.95 19.5 61.5 5.83 5.25 116.6 104.94

6 2.66 26.6 3.07 30.7 58.8 3.99 3.59 79.8 71.82

7 3.1 31 3.44 34.4 55.5 2.53 2.28 50.6 45.54

8 3.38 33.8 3.11 31.1 51 2.34 2.11 46.8 42.12
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Fig. 6 Optimal power schedule by QOSOS (Case A)
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Fig. 7 Optimal power schedule by QOSOS (Case B)
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shifting ability of the proposed design for the micro-

grid energy management. Furthermore, by comparing

the two cases in Figs. 6 and 7 it is interesting to note

that the difference between Pt
R and WORSTCASE is

the shortage power needed to purchase (if positive) or

the surplus power to be sold (if negative).

2. Computational Efficiency: Table 8 highlights the low

computational time and iteration counts taken by

QOSOS to converge to the best solutions. It can be

seen for case A, QOSOS takes 0.2150 iter/s and 0.2000

iter/s for case B. Also Figs. 5 and 6 show the

convergence characteristics implying the fast conver-

gence criteria of SOS and QOSOS than the rest of the

soft computing techniques applied. It means that the

time taken by QOSOS algorithm is much less and

hence has significantly better computational efficiency

to solve energy management problem. Also, Table 7

reflects the number of hits to optimum solution is far

more with QOSOS than the other algorithms thus

proving its robustness better than GA, PSO, DE and

SOS used.

7 Conclusion

Access to reliable source of electricity is a basic need for

every individual. Implementation of microgrids can be

considered as the most promising solution for rural or small

area electrification. Moreover, providing a suitable means

of power exchange between the microgrid and utility grid

can be beneficial in terms of both objectives. An optimal

strategy for supplying the required energy in an autono-

mous grid connected microgrid is developed in this paper

by means of wind farms, distributed storage and conven-

tional generators only. Based on the financial and opera-

tional perspective, the optimization problem was

formulated and a new and modified algorithm QOSOS was

presented to solve the optimization problem. The effec-

tiveness of the proposed strategy in finding the optimum

design was portrayed by the simulation results. The results

also showed the proposed system is capable to meet elec-

tricity demand of microgrid. In addition, the paper focussed

on minimizing the worst case transaction cost which arose

due to the stochastic nature of RES. Finally, the accuracy

and robustness of QOSOS compared with other conven-

tional algorithms were shown. Since this paper mainly

concentrated on cost minimization of the hybrid energy

system, involvement of other RES and their reliability

check can be a subject of future research (Figs. 7, 8, 9).

Table 8 Solution quality analysis of various optimization techniques used for minimizing microgrid net social cost

Algorithm Maximum

cost ($)

Minimum

cost ($)

Average

cost ($)

No. of hits to

optimum solution

Standard

deviation

Simulation

time (iter/s)

Case A

GA Dey (2015) 30.4791 30.4522 30.4590 38 0.0116 0.7544

PSO Dey (2015) 30.4216 30.3684 30.3790 40 0.0215 0.6646

DE Dey (2015) 30.0012 29.6390 29.6969 42 0.1341 0.4510

SOS (studied) 24.2066 23.7534 23.7805 47 0.1087 0.2255

QSOS (proposed) 22.9643 22.0051 22.4847 47 0.6782 0.2150

Case B

GA Dey (2015) 181.0003 180.3249 180.5140 36 0.3063 0.7988

PSO Dey (2015) 179.0316 178.1224 178.2860 41 0.3528 0.6743

DE Dey (2015) 158.9686 157.8656 158.0200 43 0.3866 0.4666

SOS (studied) 138.0002 137.9810 137.9829 45 0.0058 0.2016

QSOS (proposed) 136.5702 135.9970 136.2836 46 0.4053 0.2000

Bold indicates the best value obtained by the proposed approach

Fig. 8 Convergence characteristics of net microgrid cost during Case

A
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