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Abstract
Suspension systems are essential parts in vehicles because of their usefulness for riding comfort and safety of passengers.

Suspension system is used to isolate the road disturbance experienced by the tires from being transmitted to the passengers.

The main objective of this paper is to propose a new intelligent control scheme based on using fuzzy logic and artificial bee

colony (ABC) optimization algorithm to improve the performance of suspension systems. Effects of the nonlinearities

forces that exist in damper, spring and actuator have been considered in this paper. The forces between the body of the

vehicle and tires are generated using nonlinear active suspension systems. Also, the parametric uncertainty in the spring,

damper and actuator has been taken into account; therefore, robust control scheme should be utilized. This necessitates a

very fast and accurate controller to meet as many control objectives as possible. This paper deals with fuzzy technique to

design a robust control scheme. The parameters of membership functions of fuzzy controllers have been tuned by using

ABC optimization algorithm. The advantage of proposed controller is that it can handle the nonlinearities faster than other

conventional controllers. The proposed control scheme attempts to minimize the vibration on each corner of the vehicle by

feeding suitable forces to suspension system when passing on rough road. The comparison between passive and active

suspension systems with the proposed ABCF control scheme is studied in order to illustrate the effectiveness of ABCF

control scheme in terms of improving the ride comfort and safety of traveling passengers.

Keywords Fuzzy logic control with bee colony algorithm (ABCF) � Eight degrees of freedom vehicle model �
Nonlinear active suspensions system � Nonlinear hydraulic actuator model

List of symbols
Ms Is the sprung mass (kg)

Mus5 Is the passenger seat mass (kg)

Mus1, Mus2 Are the front left and front right side

unsprung mass, respectively (kg)

Mus3, Mus4 Are the rear left and rear right side unsprung

mass, respectively (kg)

ks5 Is the passenger seat stiffness (N/m)

ks1, ks2 Are the front left and front right side spring

stiffness, respectively (N/m)

ks3, ks4 Are the rear left and rear right side spring

stiffness, respectively (N/m)

kt1, kt2 Are the front left and front right side tire

stiffness, respectively (N/m)

kt3, kt4 Are the rear left and rear right side tire

stiffness, respectively (N/m)

cs5 Is the passenger seat damping coefficient (N/

m)

cs1, cs2 Are the front left and front right side damping

coefficient, respectively (N/m)

cs3, cs4 Are the rear left and rear right side damping

coefficient, respectively (N/m)

ct1, ct2 Are the front left and front right side tire

damping coefficient, respectively (N/m)

ct3, ct4 Are the rear left and rear right side tire

damping coefficient, respectively (N/m)

l1 and l2 Are the distance between the center of gravity

of the sprung mass and center of front and

rear wheel axle, respectively (m)
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ls Is the distance of passenger seat position from

the center of gravity (m)

b Is the distance between the front and rear

wheels (m)

bs Is the distance of passenger seat position from

the center of gravity of the vehicle (m)

1 Introduction

The primary function of a vehicle suspension system is to

isolate passengers and the chassis from the roughness of

the road to provide a more comfortable ride and to increase

the road handling. In the other words, a very important role

of the suspension system is the riding control (Guclu and

Gulez 2008; Güçlü 2003).

Engineers and researchers in the automotive industry

field devoted particular attention to discuss the problem of

vehicle suspension control in order to improve the char-

acteristics of both ride comfort and driving safety. The

developments on suspension system start from passive

suspension system to intelligent suspension system. The

intelligent suspension system includes control strategies,

sensor technology and actuators that are added with passive

components to improve the riding and handling qualities

for modern vehicles. By using this arrangement, significant

achievements in vehicle response can be carried out, where

the suspension systems become controllable systems (Lajqi

and Pehan 2012; Lin and Lian 2011).

There are many types of actuators which can be con-

nected in parallel with the passive elements to improve the

riding control such as hydraulic actuator, magneto-rheo-

logical actuator or pneumatic actuator. In this work, non-

linear hydraulic actuators are used.

Due to fast developments in the control technology,

electronically controlled suspension has gained more

interest for improving the riding requirements. Many types

of controller systems such as adaptive control, LQR, LQG,

H1 control are developed for vehicle suspensions model

with active components to obtain more comfortable riding

for passengers and guarantee road handling for the vehicle

(Guclu and Gulez 2008; Ansari and Taparia 2013; Güçlü

2003).

One of the most important control systems is the self-

tuning fuzzy logic control that has developed rapidly in the

last two decades as the effective alternative to some con-

ventional controls. It has shown success in many control

strategies and engineering applications in particular when

the ability to describe the system model mathematically

becomes more difficult or even impossible due to highly

nonlinear, time variant and ill-defined processes. Mathe-

matical model of a system is required for designing the

conventional controllers. While the fuzzy logic-based

control theory is a rule based on system, hence it does not

require a mathematical model because it depends on the

expertise of designer (Lee 1990a; Yue et al. 2008; Rao and

Anusha 2013).

Without doubt, the nonlinearity and uncertainties

inherently exist in the suspension system; therefore, the

nonlinear effect has to be taken into account when

designing the robust control system. The complexity and

the nonlinearity inherently exist in most practical systems

which present a big challenge for designing robust con-

trollers for these systems (Buckley and Ying 1989).

Knowledge-based control more and more tries to integrate

the knowledge of human operators or process engineers

into the controller’s design. Fuzzy control shows good

performance for controlling nonlinear and uncertain sys-

tems that could not be controlled satisfactorily using con-

ventional PID controller. The main advantages of the fuzzy

logic controller (FLC) are: It can be applied to plants that

are difficult to model mathematically and the controller can

be designed to apply heuristic rules that reflect the expe-

rience of human experts.

Despite this success, there are some significant draw-

backs in this approach, especially in the design of fuzzy

controllers, which unlike traditional controllers has several

effective parameters that can be adjustable. While there is

no systematic process or general rules to tune these

parameters, the designing task is not easy and relies on the

quality of the human expert. In other words, it needs spe-

cialist knowledge and requires a great deal of time to adjust

the control parameters. Also, it is often hard to justify the

choices for many parameters in the fuzzy controller (e.g.,

the membership functions, rules and scaling gains)

(Buckley and Ying 1989; Layne and Passino 1996; Saeed

and Mehrdadi 2011).

The membership functions (MFs) and the rules base

represent the key components in fuzzy control system. The

determination of the most appropriate membership func-

tions and its boundaries consisting of the rule base makes

significant effects on the final implementation of the con-

troller. Traditionally, the selection of good performance

membership functions relies on human experience, or it can

be done by tedious trial and error method. These methods

consume effort and time while they do not always represent

an optimal fuzzy controller design. So that, one of the

optimization methods should be used for choosing the

optimal parameters of membership functions (Abedinia

et al. 2011; Pelusi 2011).

To overcome the drawbacks of traditional fuzzy control

system, some authors presented several optimization

techniques to optimize the parameters that define the
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membership functions. The techniques that have been uti-

lized to optimize the parameter of fuzzy membership

functions are genetic algorithm (GA), artificial neural

network (ANN), particle swarm optimization (PSO) and so

on. One of these algorithms is the artificial bee colony

(ABC) proposed by Karaboga (2005) and Turanoglu et al.

(2011).

In this paper, the mathematical model for full vehicle

nonlinear active suspension systems with eight degrees of

freedom and included a passenger seat with nonlinear

hydraulic actuators has been derived to take into consid-

eration all the motions of the vehicle (vertical motion,

pitching movement and rolling movement). To improve the

performance of the vehicle suspension system with FLC

and also to eliminate the previous fuzzy control drawback,

the ABC-based approach is proposed for the simultaneous

off-line tuning of MFs of a fuzzy logic controller by con-

sidering an efficient optimization formulation. This pro-

posed fuzzy control scheme based on ABC optimization

algorithm is called (ABCF). The ABC algorithm is a robust

searching and optimization technique that has been applied

in many practical researches and has proved its superior

capabilities, such as faster convergence and better global

minimum achievement (Turanoglu et al. 2011).

2 Mathematical Model for Full Vehicle
Nonlinear Active Suspension System
with Passenger Seat

A full vehicle model with eight degrees of freedom (8DOF)

is considered for analysis to investigate the problem of

balancing riding comfort and road handling, where a pas-

senger seat is included in the vehicle model to predict the

response of the passenger due to road disturbances as

shown in Fig. 1. A number of researchers dealt with the

suspension models as linear system by ignoring the non-

linear behavior of suspension systems in order to simplify

the mathematical model of full vehicle. But on the other

hand, the results will become more realistic when taking

into consideration the effects of nonlinearities behavior of

suspension systems such as dry friction on dampers and

springs. Therefore, in this work, the effects of the nonlin-

earities forces which inherently exist in damper, spring and

actuator have been taken into consideration.

As shown in Fig. 1, the full vehicle nonlinear active

suspension system with a passenger seat model, which is

used in this study, consists of:

1. Sprung mass (Ms) refers to the part of the car that is

supported on springs.

2. Unsprung mass (Mus) refers to the mass of wheel

assembly or, in other words, the unsprung mass is the

total mass of the components under the suspension

system.

3. Passenger seat.

In this model, the tires have been replaced with their

equivalent stiffness and damping. The tires are modeled by

linear springs in parallel with linear dampers, while the

suspension systems and passenger seat are modeled by

nonlinear hydraulic actuators which are connected in par-

allel with nonlinear springs and nonlinear dampers. The

spring in the model of the tire and suspension system has

stiffness coefficient labeled as kti and ksi, respectively,

whereas the damper in the model of the tire and suspension

system has damping coefficient labeled as cti and csi,
respectively.

In order to control the vehicle body motions, the vehicle

model sprung mass is considered to have 3DOF. They are

represented by three types of motions: heave motion,

rolling motion and pitching motion. While passenger seat

and four unsprung mass have 1DOF for each, it is repre-

sented by heave motion. The mathematical model was

derived based on the work carried out in Riaz and Khan

(2016), Aldair (2012).

Based on the Newton’s third law of motion, the differ-

ential equations of the full vehicle nonlinear active sus-

pension system can be obtained as explained below.

The heave motion of sprung mass can be written as

Ms€zc ¼ �
X5

i¼1

Fksi �
X5

i¼1

Fcsi þ
X5

i¼1

Fi ð1Þ

where Fksi are the nonlinear forces of ith spring, Fcsi are the

nonlinear forces of ith damper, and Fi is the applied non-

linear force between the sprung mass and unsprung masses

which is generated from ith hydraulic actuator. Those

nonlinear forces can be written as

Fksi ¼ Ksi zsi � zusið Þ þ fKsi zsi � zusið Þ3 ð2Þ

Fcsi ¼ Csi _zsi � _zusið Þ þ fCsi _zsi � _zusið Þ2sgn _zsi � _zusið Þ ð3Þ
Fi ¼ Fhi � Ffi ð4Þ

where zusi (for i = 1,…,4) are vertical displacements for

each corner point of unsprung masses and zusi (for i = 5) is

the vertical displacement of passenger seat. f is the

empirical operator, Fhi is the ith nonlinear hydraulic force,

and Ffi is the ith nonlinear frictional force.

The force Fhi that is generated by the ith hydraulic

actuators can be written as

Fhi ¼ ApPLi ð5Þ

where PLi is the pressure across the ith actuator’s piston or

the load pressure, which can be written in terms of spool

valve displacement xvi as:
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_PLi ¼ �bPLi � rAp _xpi

þ rCdxxvi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
Psi � sgn xvið ÞPLið Þ

s
ð6Þ

where xpi is the difference between the vertical displace-

ment of ith corner of sprung mass zsi and the vertical dis-

placement of corresponding ith unsprung mass zusi, i.e.,

xpi ¼ zsi � zusi.

The actuator friction represents the friction associated

with mechanical surfaces rubbing together, bearing friction

and viscous friction. This frictional force is a significant

value and cannot be neglected. Frictional forces are mod-

eled with an approximation of Signum function (Rajamani

and Hedrick 1995). Therefore, the mathematical model of

frictional forces can be written as:

Ffi ¼
l sgn( _xpiÞ for _xpi

�� ��� 0:01

l sin
p _xpi
0:02

� �
for _xpi

�� ��\0:01

8
<

: ð7Þ

where l is the empirical operator.

The rolling motions of the sprung mass can be given as:

Jx€a ¼ Fks1 � Fks2 � Fks3 þ Fks4ð Þ b
2
þ bsFks5

� �

þ Fcs1 � Fcs2 � Fcs3 þ Fcs4ð Þ b
2
þ bsFcs5

� �

þ F3 � F1 þ F2 � F4ð Þ b
2
� bsF5

� �
þ Tx

ð8Þ

where Jx is the roll moment of inertia about x axis and Tx is

the cornering torque.

The pitching motion of sprung mass can be written as

Jy€g ¼ Fks3 þ Fks4ð Þl2 � Fks1 þ Fks2ð Þl1 þ lsFks5

þ Fcs3 þ Fcs4ð Þl2 � Fcs1 þ Fcs2ð Þl1 þ lsFcs5

þ F1 þ F2ð Þl1 � F3 þ F4ð Þl2 � lsF5 þ Ty

ð9Þ

where Jy is the pitch moment of inertia about y axis. Ty is

the braking torque.

The heave motion of unsprung masses can be governed

by the following equation

Musi€zusi ¼ �kti zusi � urið Þ � cti _zusi � _urið Þ þ Fksi þ Fcsi

� Fi

ð10Þ

where uri is the road input.

3 Fuzzy Logic Controller (FLC)

The first fuzzy logic controller was developed by E.

H. Mandeni in 1975 for practical application to a steam

engine. The dynamic behaviors of a fuzzy system in the

FLC are characterized by a set of linguistic description

rules based on expert knowledge and do not demand the

mathematical modeling knowledge (Singh and Aggarwal

2016). These rules are linguistic in nature and always uti-

lize a simple cause and effect relationship to link a fuzzy

partitioning of a certain state space of the system to a

Fig. 1 Full vehicle model with

8DOF
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precise control signal utilizing an appropriate defuzzifica-

tion process (Lee 1990a; Al-Holou et al. 1996).

Typical FLC consists of three principal components:

fuzzification, inference mechanism and defuzzification as

illustrated in Fig. 2.

• Fuzzification

The first step in the FLC is the fuzzifier, which is

associated with the inaccuracy and vagueness in natural

language. The fuzzification is the process that converts the

numerical input (the most variables in the real word are

found as crisp or classical variables) to the relevant fuzzy

variable known as linguistic variable which utilized its own

fuzzy sets and their proper membership functions. Then,

these data are used in the fuzzy inference process to obtain

the desired output. Fuzzification plays a main role in

coping with uncertain information which may be subjective

or objective in nature (Yue et al. 2008; Bai and Wang

2006).

• Inference mechanism

The inference mechanism has two principal jobs. In the

first job, the premises of all rules are compared to the

controller inputs to determine which rules can be applied to

the present status. This step is called matching. In the

second job, the conclusions are calculated utilizing the

active present rules. This step is called inference. The

important item to focus on is how to quantify the logical

operation ‘‘and’’ in the premise part of the rules. There are

several methods for introducing the value of the premise

part of qth fuzzy rule ðlpremise qð ÞÞ when the ‘‘and’’ operator

is used (Aldair 2012).

1. Minimum It is defined as:

lpremise qð Þ ¼ min lAj;q
1
ðu1Þ;lAj;q

2
ðu2Þ; . . .; lAj;q

n
ðunÞ

n o
:

2. Product It is defined as:

lpremise qð Þ ¼ lAj;q
1
ðu1Þ � �lAj;q

2
ðu2Þ � . . . � lAj;q

n
ðunÞ:

The value of the conclusion part of qth fuzzy rule

(l qð ÞðysÞ) can be explained by utilizing one of the following
shapes

i. Minimum It is defined as:

l qð Þ ysð Þ ¼ min lpremise qð Þ; l ~Br;q
s

ysð Þ
n o

:

ii. Product It is defined as:

l qð Þ ysð Þ ¼ lpremise qð Þ � l ~Br;q
s

ysð Þ

where l ~Br;q
s

ysð Þ is the output membership function that

corresponds to the present rule.

• Defuzzification

It is the last step in the FLC, where the control outputs

are derived from the incorporation of input, membership

function and fuzzy rules. The defuzzification is mapping

from a space of the fuzzy control action defined over an

output universe of discourse into a space of the nonfuzzy

control action. This process is necessary because the crisp

control action is required in many practical applications. In

most cases, the input for the defuzzification process is a

fuzzy set and the output is a single number (Yue et al.

2008; Lee 1990b).

The commonly utilized strategies to perform the

defuzzification process may be described as:

A. The center of area (COA) method

The COA method is widely used to describe the

defuzzification stage. It generates the center of gravity

(COG) of the possibility distribution of the implication

fuzzy output. The output of the fuzzy system can be cal-

culated by the following equation (Lee 1990b):

ycrisps ¼
P

q bq
R
l qð Þ ysð Þ

P
q

R
l qð Þ ysð Þ ð11Þ

where bq denotes the center of the membership function of

the consequent of qth rule, at which the membership

Fig. 2 Block diagram of the

FLC
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function reaches the maximum value. The term
R
l qð Þ ysð Þ is

the area under the membership function l qð Þ ysð Þ.

B. The mean of maximum (MOM) method

The MOM method generates a control action which

represents the mean value of all local control actions whose

membership functions reach the maximum. More specifi-

cally, in the case of a discrete universe, the control action

may be expressed as (Lee 1990b)

ycrisps ¼
P

q bq

n
ð12Þ

where n is the number of output that has the highest values.

4 Artificial Bee Colony Algorithm (ABC)

In the last years, with the growth of computer technology,

the Swarm Intelligence (SI) inspired by social insects has

become one of the most interesting research areas to many

scientists of related fields and has attracted much attention.

Swarm Intelligence is defined by Bonabeau as (any trying

to design algorithms or distributed problem-solving devi-

ces inspired by the collective behavior of social insect

colonies and other animal societies…). In general manner,

the term swarm is utilized to indicate any restrained col-

lection of individuals or interacting agents (Karaboga

2005; Liao et al. 2014). The development of Swarm

Intelligence algorithms has been expanded in the utilization

of optimization techniques and improved the reliability of

the optimization results obtained by classic approaches.

The aim of these optimization algorithms is to find a set of

values for the parameters that have been suggested for

solving difficult optimization problem due to their pro-

duction of effective solutions for problems in an accept-

able time and simple structure. There are many complex

multivariable optimization problems with arbitrarily high

dimensionality which cannot be certifiably solved within

bounded computation time. So search algorithms capable

of finding near-optimum or at least practically good solu-

tions within reasonable computation time have drawn the

attention of the scientific community (Yan and Li 2011;

Alam and Islam 2011).

One of these algorithms is the ABC algorithm proposed

by Karaboga (2005). The natural behavior of bees and their

collective activities in their colony such as memorizing,

learning and information sharing characteristics in their

hives have attracted researchers for developing optimiza-

tion algorithm (Yan and Li 2011).

Artificial bee colony is a bio-inspired optimization

algorithm that mimics food foraging behavior of bee

colonies, where the action of the honey bees foraging is the

main element of the ABC algorithm. This algorithm has

attracted much attention due to it has lesser number of

control variables and superior convergence, so it is well

suited to solve multidimensional optimization problems.

The colony of artificial bees contains two kinds of bees:

employed and unemployed bees (Pareek et al. 2014).

In the ABC algorithm, the first half of the colony con-

stitutes the employed bees and the second half constitutes

the onlooker bees, and it is assumed that for every food

source there is only one employed bee. In other words, the

number of employed bees is equal to the number of food

sources around the hive, so the number of the employed

bees or the onlooker bees is equal to the number of solu-

tions in the population (Karaboga and Basturk 2007).

5 The Procedures of ABC Algorithm

The classical ABC algorithm includes four phases: ini-

tialization, employed, onlooker and scout bee phase as will

be discussed below.

5.1 Initialization Phase

In this phase, at first the ABC parameters like maximum

cycle number, colony dimension, limit parameter and

numbers of variables are initialized. Then, initializing the

population with FS feasible solution (food sources)

xs s ¼ 1; 2; . . .; FSð Þ is generated randomly for each

employed bee, where FS denotes the size of population (or

number of employed bees) and each solution of xi is rep-

resented by D-dimensional vector, and D represents num-

ber of food source or the number of optimization

parameters (Kishor and Singh 2015).

After producing new solutions for the employed bees,

the fitness values (nectar amount) of each individual

solution are calculated (Kishor and Singh 2015), and the

fitness function used in this study is described in Eq. (13)

fits ¼
1

1þ f Xsð Þ ð13Þ

where f Xsð Þ is the objective function, and in this study an

objective function is ISE cost function determined from

Eq. (14):

Jc ¼
X

e tð Þ2 ð14Þ

where e(t) is the error signal.

5.2 Employed Bee Phase

Each employed bee flies to the food source (solution) area

which exists in its memory since it visited that food source
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by itself previously and then produced a modification on

this solution (position) by means of the local information,

and a new food source within the neighborhood of its

current food source is determined by the following Eq. (15)

(Karaboga et al. 2007):

vsj ¼ xsj þ usj xsj � xnj
� �

; s; n 2 1; 2; . . .; FSf g; j
2 1; 2; . . .;Df g ð15Þ

where vsj is the candidate food source (new solution). usj is

a uniformly distributed real number determined randomly

within the range [- 1, 1]. xnj is the jth dimension of the

neighbor employed bee. s represents the current iteration.

n, j are the index of the solution determined randomly

(n 6¼ s).

Then, the nectar amounts (i.e., fitness value) for the new

sources (new solution) are evaluated by Eq. (13), after that

a greedy selection process is applied between old and new

solutions. If the nectar amount of the new source is higher

than the old one, then the employed bee memorizes and

exploits the new solution and ignores the old one. Other-

wise, the new food source will be forgotten and the old one

will be retained, and it should be mentioned that of all

given cycles only one solution of an employed bee is

modified at each iteration (Liao et al. 2014).

5.3 Onlooker Bee Phase

After all employed bees complete their search process, they

share the position of food source and nectar amount

information with onlooker bee which is waiting at the

dance area, observing the waggle dance. Then, the quantity

of a solution (xs) is evaluated by the probability value (Ps)

described in Eq. (16) (Liao et al. 2014).

Ps ¼
fitsPFS

m¼1 fitm
ð16Þ

where fits is the fitness value of the solution vs.

Then, each onlooker bee chooses an employed bee (food

source) depending on the probability value of food source,

after that each onlooker bee xs carries out a random search

around the selected food source to produce the new solu-

tion vs by using its employed bee vn as in Eq. (15). Then,

the fitness of each onlooker bee is evaluated and greedy

selection scheme is applied, and if the new solution is

better than the old solution, the old solutions are replaced

with the new one (Alam and Islam 2011; Ren et al. 2016).

5.4 Scout Bee Phase

If the profitability (fitness) of a particular food source is not

improved further through a certain number of cycles, it is

considered that this food source is abandoned and the

employed bee associated with this solution becomes a

scout bee, and these scout bees begin a search randomly in

order to discover new solution using Eq. (15) (Kishor and

Singh 2015).

Fig. 3 ABC fuzzy controller

structure with plant

Table 1 Rule base for the fuzzy control

um _e

NB NM NS Z PS PM PB

e

NB NM NS NS NS Z PS PM

NM NM NM NM NS PS PM PM

NS NB NM NM NS PM PB PB

Z NB NB NM Z PM PB PB

PS NB NB NM PS PM PM PB

PM NM NM NS PS PM PM PM

PB NM NS Z PS PS PS PM

Table 2 Parameters of ABC algorithm

Parameter Value

Colony size 40

Number of food sources 20

Maximum number of cycles 30

Number of optimization parameters 7
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xsj ¼ xmin
j þ rand 0; 1ð Þ � xmax

j � xmin
j

� 	
ð17Þ

where xmax
j and xmin

j are the upper and lower bound of the

parameter to be optimized.

Then, the abandoned food position and objective func-

tion are updated, if the new solution is better compared to

the existing solution, at last the abandonment counter is

reset, and the scout bee becomes an employed bee again.

The predetermined number of cycles for abandoning the

food source called ‘‘limit’’ is an important control param-

eter determined by the following Eq. (16) (Karaboga et al.

2007).

limit ¼ number of onlooker bees � D ð18Þ

Table 3 Optimal solutions of

ABC
Center ABCF controller

Controller 1 Controller 2 Controller 3 Controller 4 Controller 5

c1 0 0 0 0 0

c2 - 30.1142 - 30.0183 - 31.0642 - 31.1257 - 30.112

c3 - 220.6008 - 220.5655 - 226.0205 - 226.0657 - 220.6018

c4 - 0.0382 - 0.0382 - 0.0422 - 0.0422 - 0.0382

c5 220.4156 220.4509 225.959 225.8539 220.1066

c6 29.7895 29.8854 31.0394 30.9779 30.0895

c7 0 0 0 0 0

Fig. 4 Output membership function of the fuzzy controller

Fig. 5 Vertical displacement at P1 for a first seven training periods,

b last seven training periods

Fig. 6 Vertical displacement at P2 for a first seven training periods,

b last seven training periods

S296 Iran J Sci Technol Trans Electr Eng (2019) 43 (Suppl 1):S289–S302

123



The ABC is an iterative algorithm where for each cycle the

updating phases are repeated and the best solution obtained

so far is stored at each iteration. This continues until the

maximum cycle number (MCN) which is specified previ-

ously is reached, and then, the searching process is stopped.

6 Numerical Simulation and Results

In this section, the simulation results for full vehicle non-

linear active suspension systems including passenger seat

with hydraulic actuators are presented. To improve the

performance of the FLC and to eliminate the previous

fuzzy control drawback, the ABC-based approach has been

used to adapt the centers of the output membership func-

tions of the fuzzy logic controller. The MATLAB/SIMU-

LINK program package has been utilized to simulate the

ABCF control scheme with the controlled system, where

five fuzzy controllers have been designed: one for each

suspension system and one for the passenger seat. The

ABCF control scheme together with the controlled system

(during the training phase) is illustrated in Fig. 3. The

adaptation factor p kTð Þ which comes from bee colony

algorithm is utilized to adapt the center of the output MFs

of fuzzy controller. To modify the centers of the output

membership functions, the active set of rules for the fuzzy

controller at time kT � Tð Þ is first determined

(li e kT � kð Þ; ce kT � Tð Þð Þ[ 0Þ, and then, only the centers
of the output membership functions (which were found in

the active set of rules) are modified by using the following

equation:

cm kTð Þ ¼ cm kT � Tð Þ þ p kTð Þ ð19Þ

where cm kTð Þ represents the center of the mth output

membership function at the time kT.

Each input and output of the fuzzy control have seven

membership functions linked with seven linguistic values

defined as: NB negative big, NM negative medium, NS

negative small, ZE zero, and PS positive small, PM posi-

tive medium and PB positive big. These MFs are selected

to be symmetric triangular in shape because they are

widely used and convenient. The input membership func-

tions are equally distributed on the normalized input uni-

verse of discourse, while the distributed output MFs on the

output universe of discourse are initialized randomly.

The fuzzy controller rules table, which is given in

Table 1, represents linguistic values of IF–THEN rules,

Fig. 7 Vertical displacement at P3 for a first 7 training periods, b last

7 training periods

Fig. 8 Vertical displacement at P4 for a first 7 training periods, b last

7 training periods
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and the total number of rules is 7 9 7 = 49 which is

designed heuristically based on the knowledge of the

controlled system.

Then, the COG defuzzification method is utilized to

obtain the crisp output. This output represents the control

output signal or the input signal to the controlled system.

As illustrated previously, the first step in designing ABC

algorithm for the optimal tuning is producing the initial

population, which illustrates the food source locations

randomly, and the parameters of ABC algorithm which are

used in this case are listed in Table 2.

The road profile inputs are imposed as a periodic square

input with 0.01 m amplitude and 0.3334 Hz frequency to

implement the training task. After training phase, the

optimal values of the centers (cm) of output MFs of the five

fuzzy controllers that are obtained from using the ABCF

control are given in Table 3, where all the initial values are

selected equal to zero.

The output membership functions of the fuzzy controller

are given in Fig. 4.

The vertical displacement for each corner of the vehicle

body (P1, P2, P3 and P4), passenger seat (P5) and vehicle

center (Pc), which are obtained during training phase with

ABCF approach, are shown in Figs. 5, 6, 7, 8, 9 and 10.

In order to evaluate the effectiveness of the proposed

controller, the designed controller with optimal values of

the center output MFs must be examined. Figure 11 illus-

trates the comparison between outputs response of con-

trolled system with ABCF and corresponding outputs

response of the passive system for vertical displacement at

each corner of the vehicle body (P1, P2, P3, P4) and vertical

displacement at passenger seat (P5), while Fig. 12 illus-

trates the comparison between outputs response of con-

trolled system with ABCF and corresponding outputs

response of the passive system for vertical displacement at

vehicle center point (Pc), pitch angle and roll angle. For

obtaining those responses, the square input has been pro-

vided as a road profile with a range [- 0.01, 0.01] m.

7 Robustness Test of the FMRLC

The robustness is an important matter of any suggested

controller in order to confirm the effectiveness of the

controller. The system must stay stable and have an

Fig. 9 Vertical displacement at P5 for a first seven training periods,

b last seven training periods
Fig. 10 Vertical displacement at Pc for a first seven training periods,

b last seven training periods
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acceptable response when the various types of disturbance

inputs are applied on it. So, in this section the robustness of

the ABCF controller will be studied by applying four types

of disturbances to test the efficiency of proposed controller.

• Sine wave signal with different amplitude is applied as

the road profile

The amplitude of the sine signal is changed from 0.01 to

0.1 m with fixed frequency (0.1 Hz) and is applied as road

profile input, where the cost function for each value is

computed by using the following equation:

Jc ¼ 0:5
X5

i¼1

z2si ð20Þ

Fig. 11 Time response of vertical displacement at a P1, b P2, c P3, d P4, e P5
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The response of the cost function against the different

amplitude values of sine signal input for passive and active

vehicle is shown in Fig. 13a.

• Square wave with different amplitude is applied as the

road profile

The square input signal is proved as input road profile

with frequency (0.1 Hz); its amplitude is varied from 0.01

to 0.1 m. Figure 13b illustrates the response of the cost

function against the different amplitude values of square

signal input.

• A bending inertia torque (Tx) is applied with different

values

The values of bending torque changed from 1000 to

10,000 N/m with random road profile input have been

applied to the system. The response of cost function is

plotted as function of Tx as shown in Fig. 13c.

• The braking inertia torque (Ty) is applied with different

values

The values of braking torque from 1000 to 10,000 N/m

with random signal applied as road profile have been

applied to the system. The response of the cost function is

plotted as function of Ty as shown in Fig. (13d).

8 Conclusions

According to this study, ABCF technique is proposed to

improve the performance of full vehicle active suspension

system and the simulation results have been presented. The

motivation of utilizing the proposed ABCF control

scheme is to improve the vehicle suspension system and

overcome the drawback of using the fuzzy system alone as

a controller, where it is hard to justify the selection of fuzzy

controller parameters using classical methods.

The suggested control scheme has the ability of tuning

some of its parameters depending on the errors between the

system outputs and the desired outputs. The designed con-

trollers generate suitable control signals to modify the

hydraulic actuators forces to reduce the tendency of vehicle to

rollover during sharp maneuvers such as cornering and

breaking. Also, the designed controllers have the ability to

minimize the vertical displacements at each suspension when

traveling on rough roads and achieve the objectives control.

Five ABCF controllers have been designed, one for each

suspension system. The center parameters of the output

membership functions, obtained from using the ABCF

controller approach during the training phase, are set as

parameters of the output membership functions of the

fuzzy controller during the working phase. The results of

proposed model are compared with the passive system.

According to the results of the computer simulation when

only the square input has been applied as road profile, the

suspension system with the ABCF control scheme gives the

superior performance compared to the passive system.

Also, the obtained results show that the full vehicle active

suspension system responses have been improved by 95%

in terms of passive suspension system when ABCF con-

trollers are used.

Fig. 12 Time response for a vertical displacement at Pc, b pitch

angle, c roll angle
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Eventually, the robustness of the proposed approach is

tested against changes in parameters, where four types of

disturbances are applied; the results demonstrate that the

fuzzy controller improves the performance of the cost

function of the controlled system. From the results, the

performances of the cost functions by using the ABCF

control are superior compared to the performances of the

cost functions for passive system for the same disturbances

applied.

Appendix: Variable design parameters
values

Parameters Values Unit

ks1, ks2 19,960 N/m

ks3, ks4 17,500 N/m

ks5 1,00,000 N/m

kt1, kt2, kt3, kt4 1,75,500 N/m

Parameters Values Unit

cs1, cs2 1290 N s/m

cs3, cs4 1620 N s/m

cs5 500 N s/m

ct1, ct2, ct3, ct4 14.6 N s/m

Ms 1460 kg

Mus1, Mus2 40 kg

Mus3, Mus4 35.5 kg

Mus5 100 kg

Jx 460 kg m2

Jy 2460 kg m2

ls 0.234 m

l1 1.011 m

l2 1.803 m

bs 0.375 m

b 1.51 m

f 0.1 –

Fig. 13 Cost functions against the different amplitude of a sine wave, b square wave, c bending torque, d braking torque
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