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Abstract
In this paper, we propose two new blind digital signature protocols based on the difficulty of the discrete logarithm problem

(DLP) modulo a composite number n = p � q. These are the first protocols of such type that are based on the computational

difficulty of the DLP modulo a composite number. The use of the last difficult problem provides increased security of the

signature protocols due to reducing the probability of the potential breaking the protocols, which is connected with

potential appearance of the breakthrough solutions of the following two computationally difficult problems: (1) finding

discrete logarithm modulo prime and (2) factoring composite number n containing two unknown prime divisors. The

designed protocols are based on using finite groups possessing two-dimensional cyclicity. When selecting parameters

providing 80-bit security, the signature size in the proposed blind protocols is equal to 240 bits.

Keywords Cyclicity � Cryptographic protocol � Blind digital signature � Hard problem � Factoring � Discrete logarithm

1 Introduction

In automated information systems, digital signatures (DSs)

to electronic documents are usually computed using public-

key DS protocols (Menezes et al. 1996). The security of DS

protocols is based on the following two facts: (1) the best

known algorithms for forging a signature are computa-

tionally infeasible, and (2) the probability of the appear-

ance of a breakthrough algorithm for solving the

computationally difficult problem put in the base of the

protocols is negligibly small.

In practice, the well-known DS schemes based on the

difficulty of the discrete logarithm problem (DLP)

(Menezes et al. 1996) have the 4q-bit signature size and

provide q-bit security (i.e. successful forging a signature

requires 2q exponentiation operations). The DS schemes

based on the difficulty of the integer factoring problem

(IFP) usually have a much larger signature size (Menezes

et al. 1996; Rivest et al. 1978).

An important class of digital signature schemes involved

in information technologies relates to the blind digital

signature (DS) protocols (Chaum 1982, 1983). The last are

used in online voting systems and electronic cash schemes

(Chaum et al. 1988, 1989). The basic idea of the blind

signature schemes, first introduced by Chaum (1982), is

that the person that signs some electronic message

M (signer) does not know the content of the message

M. The person presenting M for signing is called requester.

They are formulated in the following two requirements to

the blind DS protocols: (1) the signer cannot get access to

the content of the message, while signing M; (2) later after

the signature generation the signer cannot link signed

message to requester. The last requirement is known as the

requirement of anonymity (untraceability). Thus, blind DS

protocols are useful for applications in which anonymity is

desirable (Abe 2001; Boldyreva 2003; Fischlin and
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Schroder 2009; Fuchsbauer et al. 2015; Hanzlik and

Kluczniak 2016; Moldovyan et al. 2012).

To improve the security of blind DS protocols, the

papers (Minh et al. 2012; Tahat et al. 2008, 2009) propose

a design for which forging a signature requires simulta-

neously solving two independent computationally difficult

problems: the IFP and the DLP. In these blind DS proto-

cols, the DLP with the prime p having the following

structure p = en ? 1 is used, where the composite number

n is difficult for factoring. Such blind DS protocols are

composed so that forging a signature requires both com-

puting the discrete logarithm problem modulo p and fac-

toring n. However, the known design method gives

sufficiently low performance, large size of the signature,

and it is not evident how to apply it to construct the crypto

schemes of other type based on difficulty of simultaneously

solving the DLP and IFP.

The present paper introduces a new method to design the

blind DS protocols, which requires both the IFP and the

DLP to be solved simultaneously. The idea of the proposed

method relates to the fact that, excluding the exhaustive

search algorithms, finding discrete logarithm modulo a

composite number n can be performed by factoring n and

finding discrete logarithm modulo for each prime factor

(Menezes et al. 1996). Therefore, if the difficulty of fac-

toring n is sufficiently large and approximately equal to the

difficulty of finding DL modulo the largest prime factor of

n, while using the best algorithms for solving these prob-

lems, then breaking some cryptosystem based on difficulty

of computing DL modulo n requires solving two different

difficult problems simultaneously, the IFP and the DLP.

Therefore, the difficulty of breaking a blind DS protocol

based on the DL modulo n problem does not change its

order in the case when a breakthrough algorithm for

solving the IFP or for solving the DLP will be invented.

In this paper, it is shown that using the computational

complexity of the DLP modulo a composite number that is

difficult for factoring enables one to significantly reduce

the signature size and simultaneously increase the perfor-

mance of the protocol. Besides, using this computationally

difficult problem represents an attractive approach for

extending the class of cryptographic protocols based on the

computational difficulty of simultaneously solving the IFP

and DLP modulo a prime number.

We consider the construction of a blind signature pro-

tocol with a 3q-bit signature size, which provides the q-bit
security. The proposed protocols are based on the difficulty

of the DLP modulo a composite number. These protocols

are constructed using finite non-cyclic subgroup G of the

multiplicative group Z�
n ; namely subgroup with two-di-

mensional cyclicity, i.e. subgroup generated by two gen-

erators of the same prime order r, such subgroup contains

r2 elements. The paper considers probabilistic and deter-

ministic methods for setting such finite groups.

The rest of the paper is organized as follows: In Sect. 2,

two methods are described for setting finite subgroups with

two-dimensional cyclicity. In Sect. 3, we construct a new

blind DS protocol and a new blind collective digital sig-

nature (CDS) protocol based on the difficulty of the DLP

modulo a composite number. In Sect. 4, we analyse the

output. The last section concludes our research work.

2 Setting Subgroups with Two-Dimensional
Cyclicity

2.1 Deterministic Method

In this section, we construct a non-cyclic subgroup G of the

multiplicative group Z�
n of a finite ring Zn; where n is a

natural number equal to the product of two strong primes

q and p (Gordon 1985) having the size |q| & k bits and

|p| & 2k bits, respectively. The parameter k is selected

depending on the required security level, for example,

k & 512 bits in the case of 80-bit security and k & 1232

bits in the case of 128-bit security. Numbers q and p are

secret and have the following structure: p = Npr ? 1 and

q = Nqr ? 1, where Np and Nq are two large even numbers;

r is a q-bit prime number (q = 80 in the case of a security

level equal to 280 exponentiation operations).

One can note that the values p and q represent members

of the arithmetic progression 1 ? ir, where i = 1, 2,…. The

Dirichlet’s theorem shows the existence of many infinite

prime numbers in arithmetic progressions a ? ib with

relatively prime values a and b. The progression 1 ? ir

satisfies the last condition; therefore, the required pair of

primes p and q exists. The prime number theorem (PNT) by

Gauss describes asymptotic distribution of the prime

numbers among the positive integers x as follows:

w(x) = x(lnx)-1, where w(x) is the prime counting function

and lnx is the natural logarithm of x. Using the PNT, one

can estimate that a uniformly random positive integer

p0 \ x is prime with probability Pr = x(lnx)-1. For the

cases x\ 21232 and x\ 22464, we have Pr & 0.0012 and

Pr & 0.0006, correspondingly. For the cases of the

1232-bit uniformly random x (21231\ x\ 21232) and

2464-bit uniformly random x (22463\ x\ 22464), we have

Pr & 0.0006 and Pr & 0.0003, correspondingly.

The subgroup G has the order r2 and is generated by two

integers a and b that generate two different cyclic sub-

groups of Z�
n ; which have order equal to the prime r.

We use the following deterministic algorithm to find

values a and b that generate a non-cyclic primary subgroup

G having order equal to r2.
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Algorithm 1:

(1) Generate a value c having order equal to r modulo p.

(2) Generate a value d having order equal to r modulo q.

(3) Select at random values 0\ h\ r and 0\ k\ r,

and find the value a that satisfies the following

system of congruence:

a � ck mod p

a � dh mod q

�
: ð1Þ

(4) Select at random values 0\ g\ r and 0\m\ r

satisfying the condition gh = km mod r, and find the

solution b of the following system of congruence:

b � cg mod p

b � dm mod q

�
: ð2Þ

The output parameters a and b belong to different cyclic

subgroups having order r; thus, the products (modulo n) of

all possible powers of the values a and b compose a pri-

mary subgroup having order r2. The order of each of the

numbers a and b is equal to r since the following formulas

hold:

ar � ckr � 1 mod p
� �

[ ar � dhr � 1 mod q
� �� �

) ar

� 1 mod n;

ð3Þ

br � cgr � 1 mod pf g [ br � dmr � 1 mod qf gf g ) br

� 1 mod n:

ð4Þ

The following statement also holds.

Statement 1 The output of Algorithm 1 is the values a
and b such that inequality a = bd mod n holds for all

values d [ {1, 2, …, r}.

Proof Clearly, the inequality a = br mod n holds.

Suppose that for some value d [ {1, 2, …, r}, the equality

a = bd mod n holds.

From (1), one can obtain the following:

{bd : ck mod p} ) {b : ck/d mod p}

and

{bd : dh mod q} ) {b : ch/d mod q}

From (2), one can obtain the following:

{cg : ck/d mod p} ) {g : k/d mod r}

and

{dm : dh/d mod q} ) {m : h/d mod r}.

Therefore, we have {d : k/g mod r} and {d : h/m

mod r}; thus, km : hg mod r. This result contradicts

condition gh = km mod r, used in step 4 of the algorithm

when choosing g and m. The assertion is thus proven. h

Due to Statement 1, the product (mod n) of all pos-

sible powers of the values a and b generates r2 different

values of the form aib j mod n; each of which has order

equal to r:

aib j
� �r� airbjr � 1 � 1 � 1 mod n:

2.2 Probabilistic Method

In this section, we construct a non-cyclic subgroup G of the

multiplicative group Z�
n of a finite ring Zn; where n is a

natural number equal to the product of two strong primes q

and p having the size |q| & |p| & 512 bits. Numbers q and

p are secret and have the following structure: p = Npr
2-

? 1, and q = Nqr
2 ? 1, where Np and Nq are two large

even numbers containing a large prime divisor; r is a q-bit
prime number (q = 80 in the case of a security level equal

to 280 exponentiation operations). The multiplicative group

Z�
n of a finite ring Zn is generated by a basis containing two

elements. This result follows from the fact that the value of

the generalized Euler function L(n) of the number n is less

than the value of the Euler function /(n) of the number n:

/ nð Þ ¼ q� 1ð Þ p� 1ð Þ
¼ gcd q� 1; p� 1ð Þlcm q� 1; p� 1½ �
¼ gcd q� 1; p� 1ð ÞL nð Þ � r2L nð Þ;

where gcd is the greatest common divisor and lcm is the

least common multiple.

We use a primary subgroup G having order r2 of the

multiplicative group Z�
n ; having two-dimensional cyclicity

and generated by two elements a and b having prime order

r.

All the elements of the subgroup G, except an identity

element, have order r. The values of the basic elements a
and b are generated by the following probabilistic

algorithm:

Algorithm 2:

(1) Select a random value b such that 1\ b\ n;

(2) Compute the values c = L(n)/r and z = bc mod n;

(3) If z = 1, then the number a (the number b) takes the
number z. Otherwise, repeat steps 1–3.

The correctness of the proposed algorithm is easy to

prove. Indeed, if z = 1 holds for the generated number

z then the equation z = bL(n)/r mod n also holds, and

therefore according to the generalized Fermat theorem zr-

: bL(n) : 1 mod n, i.e. the order of the number z equals

r. (It is known that if zr : 1 mod n holds the order of

z divides number r. Since the number r is prime divisor of

the value L(n), r is the order of some numbers modulo n.)

When implementing this procedure twice, the two random

numbers of an order r modulo n could be obtained.

The probability that these two numbers belong to the

same cyclic subgroup is the ratio of the number of non-
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identity elements in the cyclic subgroup of prime order r to

the number of all elements having order r and contained in

Z�
n : Group Z

�
n contains the primary subgroup of order r2 and

is generated by two elements having order r. This primary

subgroup contains r2 - 1 elements having order r. Conse-

quently, the previously specified probability is r/

(r2 - 1) & 1/r & 2-80. This probability can be ignored,

and the time-consuming procedure verifies that the gener-

ated numbers a and b that belong to the same cyclic sub-

group of order r do not have to be performed.

This probability can be reduced to a value & 2-160

when generating numbers a and b according to the fol-

lowing modified algorithm:

Algorithm 3:

(1) Select a random value b such that 1\ b\ n;

(2) Compute the values c = L(n)/r2 and z = bc mod n;

(3) If z = 1 and a0(b0) = zr mod n = 1, then the

number a0 (the number b0) takes the number a0r

mod n (the number b0r mod n). Otherwise, repeat

steps 1–3.

Reducing the probability is achieved because pre-gen-

erated numbers have order r2; this number is raised to the

r power, and the result is taken as the number a (the

number b).
If the number generated by a0 and b0 having order r2

belongs to different cyclic subgroups Gp2 ;, then the num-

bers a and b will also belong to different cyclic subgroups.

The probability Prða0; b0 2 Gp2Þ that a0 and b0 are in the

same cyclic subgroup is the ratio of the number of the

elements having order r2 contained in a cyclic subgroup to

the number of elements having order r2 contained in Z�
n :.

Given the presence of primary subgroups in Z�
n ; generated

by two elements having order r2, expressing the number of

elements of primary groups in a given order obtains the

following estimated probability:

Prða0; b0 2 Gp2Þ ¼
rðr � 1Þ
r2ðr2 � 1Þ �

1

r2
� 2�160:: ð5Þ

Thus, the second algorithm for generating random val-

ues of a and b is preferred because it reduces significantly

the probability of generating values a and b belonging to

the same cyclic subgroup by a factor approximately equal

to 280.

To generate a prime p having the form p = Nr ? 1 and

size & k, where r is some given q-bit prime number, one

can use the following algorithm:

Algorithm 4:

(1) Generate a random prime p having size k - q and

compute the integer p = 2pr ? 1.

(2) Set counter i = 0.

(3) Generate a random integer l\ p.

(4) If the following four conditions hold: l2pr ¼ 1 mod

p; lpr 6¼ 1 mod p; l2p 6¼ 1 mod p and l2r 6¼ 1 mod p;

then go to step 6, otherwise go to step 5.

(5) If i\ 20, then go to step 3, otherwise go to step 1.

(6) Output the prime number p = 2pr ? 1.

To generate a prime p having the form p = Nr2 ? 1 and

size & k, where r is some given q-bit prime number, one

can use the following algorithm:

Algorithm 5:

(1) Generate a random prime p having size k - 2q and

compute the integer p = 2pr2 ? 1.

(2) Set counter i = 0.

(3) Generate a random integer l\ p.

(4) If the following four conditions hold: l2pr
2 ¼ 1 mod

p; lpr
2 6¼ 1 mod p; l2pr 6¼ 1 mod p and l2r

2 6¼ 1 mod

p; then go to step 6, otherwise go to step 5.

(5) If i\ 20, then go to step 3, otherwise go to step 1.

(6) Output the prime number p = 2pr ? 1.

Algorithms 4 and 5 work correctly, since fulfilment of

the conditions indicated in step 4 means that the number l
has order xp = p - 1 modulo p. Indeed, due to Euler

theorem for any composite number n there exist no num-

bers having order n - 1 modulo n.

For the case k = 2464 and q = 128, the simulation of

Algorithm 4 as well as the simulation of Algorithm 5

produce the prime p after performing on average about

2000 rounds of the cycle including the passes 2–5 (the

number of different checked primes p).
We have composed a computer program implementing

algorithm. To generate 2464-bit prime number, the pro-

gram processed several minutes, while using the computer

Core i5 (3.2 GHz, RAM 4 Gbyte).

One can easily modify the described algorithm to reduce

significantly the time required for generating primes having

large size; however, Algorithm 4 is sufficiently practical,

since primes of the form p = 2pr ? 1 are to be generated

only at the stage of creating private and public keys.

3 New Blind Signature Protocol Based
on the DL Problem

3.1 Underlying DS Scheme

(a) Key Generation

Initially, a 240-bit signature scheme (the underlying DS

scheme) is constructed and used as the base DS algorithm

while designing the blind DS protocol.

In the base DS scheme, it is assumed that the parameters

n, a, b and r are generated by a trusted party using
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randomly selected strong primes p and q having the size

that provides the required security level. After computing

the parameters n, a, b and r, the secret values p and q are

destroyed.

The user generates his private key as a pair of random

integers x and w (1\ x\ r; 1\w\ r) and computes the

public key y in accordance with the following formula:

y ¼ axbw mod n:

When generating a digital signature, the signer uses only

the secret values x and w; thus, to forge the signature of the

signer, it is sufficient for a potential attacker to calculate

x and w from the known public key y and basic a and b.
This problem is known as the DLP on a multi-dimensional

basis, in the considered case, on a two-dimensional base.

The detailed DLP modulo n is given below, where it is

shown that this problem has the same order of complexity

as the factoring problem. If there is an effective polynomial

algorithm for computing the two-dimensional logarithm, it

can be converted into a polynomial algorithm for factoring

modulo n. Because the IFP and DLP modulo prime are

independent difficult problems, the logarithm modulo

prime and factoring modulo composite are significantly

different problems.

3.1.1 The Special Case of the Discrete Logarithm Modulo
a Composite Number

It is interesting to consider the case of solving the discrete

logarithm modulo a composite number with a special

structure. Choose the modulus n that is equal to the product

of two large prime numbers p and q (i.e. n = pq), such that

p - 1 and q - 1 contain the same large prime factor r. In

this case, a finite group of all invertible numbers modulo n

is generated by a basis containing two elements a and b,
the orders of which contain divisor r. Suppose that the

value of y contained in this group is given and it is required

to compute values x and w such that y = axbw mod n holds.

This problem can be called a two-dimensional DLP or DLP

with a two-dimensional base. Let us show that this problem

can be reduced to the usual discrete logarithm problem.

From the last formula, we can derive the following system

of congruencies

y ¼ axbw � gc mod p

y ¼ axbw � g0c
0
mod q

�
; ð6Þ

where g and g0 are primitive roots modulo p and q,

respectively. Solving the usual discrete logarithm problem

several times, we obtain the values c, c0, u, v, u0 and v0, such
that

a ¼ gu mod p; b ¼ gv mod p;

a ¼ g0u mod q; b ¼ g0v mod q:

Using the computed values c, c0, u, v, u0 and v0, the

following system of congruencies can be written:

guxþvw � gc mod p

g0u
0xþv0w � g0c

0
mod q

�
: ð7Þ

From the last system, we obtain the following system:

uxþ vw � c mod ðp� 1Þ
u0xþ v0w � c0 mod ðq� 1Þ

�
: ð8Þ

From this system of two linear congruencies, we com-

pute the unknowns x and w that determine the ‘‘coordi-

nates’’ of the required two-dimensional discrete logarithm

values.

(b) DS Generation

• Select at random values 1\ k\ r and 1\ t\ r and

calculate R ¼ akbt mod n:

• Using some specified 2q-bit hash function FH(M) [1],

calculate the first q-bit element E of the signature:

E = FH(M, R) mod r.

• Calculate the second q-bit element S of the signature:

S ¼ ðk þ xEÞmod r:

• Calculate the third q-bit element U of the signature:

U ¼ ðt þ xEÞmod r:

The triplet of numbers (E, S, U) is the signature to the

document M. The signature size is fixed and equals 3q.
The value q should be consistent with the size of the

modulus n, and both the value q and the value k are chosen

depending on the required security of the protocol. To

provide 80-bit (128-bit) security, use the parameters q
C 80 (q C 128) and k C 512 (k C 1232).

(c) DS Verification

• Compute ~R ¼ y�EaSbU mod n and
~E ¼ FH Mk~R

� �
mod r:

• Compare values ~E and E: If ~E ¼ E; then the signa-

ture is valid. Otherwise, the signature is false.

3.2 New Blind DS Protocol

Our blind digital signature protocol consists of three phases

and two parties (the user A (requester) and the signer B).

The new blind DS protocol works as follows:

(a) Key Generation

The signer B generates his private key as a pair of the

random integers x and w (1\ x\ r; 1\w\ r) and

computes the public key y in accordance with the following

formula: y ¼ axbw mod n:

(b) Blind DS Generation

Iran J Sci Technol Trans Electr Eng (2019) 43 (Suppl 1):S277–S287 S281

123



There are four rounds in the blind DS protocol. The

signer signs an unknown message M blindly as follows.

• Signer B Round 1: Select at random values 1\ k\ r

and 1\ t\ r, and calculate �R ¼ akbt mod n: Then,

send �R to the user A.

• User A Round 2: Generate three random values e, l
and s such that 1\ e, l, s\ r, and compute

R ¼ �Reylas mod n; E ¼ FHðRkMÞmod r

and �E ¼ e�1ðE þ lÞmod r:

If �E ¼ 0; then repeat step 2 with new random values of

blind parameters.

Otherwise, send �E to the signer B. (The value E is the

first element of the signature to a message M.) (Fig. 1).

• Signer B Round 3: Using his individual values t, k and

his secret keys x, w, compute �S ¼ ðk þ x �EÞmod

r and �U ¼ ðt þ w�EÞmod r:

Then, send �U; �S to the user A.

• User A Round 4: Compute the second and third

parameters of the blind DS S ¼ e�Sþ smod r

and U ¼ e �U mod r:

The triplet of numbers (E, S, U) is a blind DS to the

message M, and the signature size is Ej j þ Sj j þ Uj j �
3 rj j � 240 bit:

(c) Blind DS Verification

• Step 1 Using the blind DS (E, S, U), compute the fol-

lowing values:

~R ¼ y�EaSbU mod n and ~E ¼ FHð~R
��MÞmod r :

• Step 2 Compare values ~E and E. If ~E ¼ E ; then the

signature is valid. Otherwise, the signature is false.

3.3 New Blind CDS Protocol

The blind DS protocol proposed in Sect. 3.2 can be used to

design the blind collective DS (CDS) protocol.

In this section, we propose a blind CDS protocol for a

broadcasting structure. The protocol consists of three

phases: the key generation phase, the blind CDS generation

phase and the blind CDS verification phase.

Suppose that the signing group {B1, B2, …, Bm} wants

to generate a blind CDS for a message M proposed for

blind signing by a user A.

(a) Key Generation

The group signers generate parameters:

• x1, x2, …, xm and w1, w2, …, wm: group signers’ secret

keys such that 1\ xi\ p and 1\wi\ p, xi, wi (i = 1,

2,…, m) are selected randomly and known only to the

signer Bi.

• y1, y2, …, ym: group signers’ public keys such that yi ¼
axibwi mod n are computed and published by the group

signers Bi.

Signer B (n, α, β, r, x, w, y)                                User A (M) 
Setect k, t ∈R [2, r - 1]

α β modk tR n=

Setect ε, μ, τ ∈R [2, r - 1]
ε μ τ

1

α mod
( )mod

ε ( μ)mod
H

R R y n
E F R M r

E E r−

=
=

= +

( )mod
( )mod

S k xE r
U t wE r

= +
= +

ε τ mod
ε mod

S S r
U U r

= +
=

Output signature (E, S, U)

E

,S U

R

Fig. 1 Our blind digital

signature protocol
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• The collective public key y is computed as a convo-

lution of the set of individual public keys yi of all

signers: y ¼
Qm

i¼1 yi mod n:

• Blind CDS Generation

There are four rounds in the blind CDS protocol in

which each signer signs an unknown message M blindly.

• Signers Round 1: Each signer generates a random

value 1\ ki\ r and 1\ ti\ r and computes ri ¼
akibti mod n; then sends ri to all signers. The common

randomization parameter is computed as the product
�R ¼

Qm
i¼1 ri mod n; and the value �R is sent to the user

A.

• User A Round 2: Generates three random values e, l
and s such that 1\ e, l, s\ r, and computes

R ¼ �Reylas mod n; E ¼ FHðRkMÞmod r

and �E ¼ e�1ðE þ lÞmod r:

If �E ¼ 0; then repeat step 2 with new random values of

blinding parameters. Otherwise, send �E to the signers Bi

(the value E is the first element of the signature to a

message M).

• Signers Round 3: Each signer using his individual

values ti, ki and his secret keys xi, wi computes si ¼
ðki þ xi �EÞmod r and ui ¼ ðti þ wi

�EÞmod r;

then sends si and ui to all signers.

Compute the common parameters

�S ¼
Xm
i¼1

si ¼ ð
Xm
i¼1

ki þ �E
Xm
i¼1

xiÞmod r

and �U ¼
Pm

i¼1 ui ¼ ð
Pm

i¼1 ti þ �E
Pm

i¼1 wiÞmod r:

Then, send �U; �S to the user A.

• User A Round 4: Compute the second and third

parameters of the blind CDS

S ¼ e�Sþ smod r and U ¼ e �U mod r:

The triplet of numbers (E, S, U) is a blind CDS to the

message M, and the signature size is

Ej j þ Sj j þ Uj j � 3 rj j � 240 bit:

The blind CDS size does not depend on the number of

signers and its size is equal to 3q.

(b) Blind CDS Verification

The blind CDS verification procedure uses the collective

public key Y.

• Step 1 Using the blind CDS (E, S, U), compute the

following values:

~R ¼ y�EaSbU mod n and ~E ¼ FHð~R
��MÞmod r :

• Step 2 Compare values ~E and E.

If ~E ¼ E ; then the signature is valid. Otherwise,

the signature is false.

4 Analysis of Our Protocols

In this section, we analyse the security and efficiency of

our proposed blind signature protocols.

4.1 Correctness

Theorem 1 (DS) The triplet of numbers (E, S, U) is a

valid DS corresponding to the message M.

Proof Substituting the values y, U and S in the right side

of the verification equation ~R ¼ y�EaSbU mod n; we obtain

the following:

~R ¼ y�EaSbU mod n ¼ axbwð Þ�EaSbU mod n

¼ a�Exb�EwaðkþxEÞbðtþwEÞ mod n ¼
¼ a�Exb�EwakaxEbtbwE mod n ¼ akbt mod n ¼ R:

) ~E ¼ FHð~R Mk Þ ¼ FHðR Mk Þ ¼ E:

The last equality proves the correctness of the DS

scheme (Fig. 2). h

Theorem 2 (blind DS) The triplet of numbers (E, S, U) is

a valid blind DS corresponding to the message M.

Proof Substituting the values E, U and S in the right side

of the verification equation ~R ¼ y�EaSbU mod n; we obtain

the following:

~R ¼ y�EaSbU mod n ¼ y�e �Eþlae
�Sþsbe

�U mod n

¼ y�e �Eylae
�Sasbe

�U mod n ¼ ðy� �Ea
�Sb

�UÞeylas mod n

¼ �Reylas mod n ¼ R:

) ~E ¼ FHð~R Mk Þ ¼ FHðR Mk Þ ¼ E:

Thus, the protocol works correctly, and the described

procedure results in the DS (E, S, U) that is known to user

A and unknown to signer B. h

Theorem 3 (blind CDS) The triplet of numbers (E, S,

U) is a valid CDS corresponding to the message M.

Proof We use the collective public key y.

Substituting the values E, U and S in the right side of the

verification equation ~R ¼ y�EaSbU mod n; we obtain the

following:
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~R ¼ y�EaSbU mod n ¼ y�e �Eþlae
�Sþsbe

�U mod n

¼ y�e �Eylae
�Sasbe

�U mod n ¼ ðy� �Ea
�Sb

�UÞeylas mod n

¼ ðy� �Ea

Pm
i¼1

si

b

Pm
i¼1

ui

Þeylas mod n

¼
Ym
i¼1

y�
�E

i asibui
 !e

ylas mod n

¼
Ym
i¼

ri

 !e

ylas mod n ¼ �Reylas mod n ¼ R:

) ~E ¼ FHð~R Mk Þ ¼ FHðR Mk Þ ¼ E:

Thus, the protocol works correctly, and the described

procedure results in the CDS (E, S, U) that is known to user

A and unknown to each of the signers. h

4.2 Unlinkability

Unlinkability In a blind signature scheme, the unlinkability

property makes it impossible for the signer to derive the

link between a given signature and the instance of the

signing protocol that produces the blinded form of that

signature.

Theorem 4 (blind DS) The protocol provides unlinkabil-

ity in the case in which the message M and signature (E, S,

U) will be presented to the signer.

Proof Let ð�E1; �S1; �U1Þ and ð�E2; �S2; �U2Þ; be two different

signatures produced blindly and stored by some signer B.

In accordance with the equation of the signature gen-

eration procedure, we obtain the following relations:

e ¼ U= �U mod r; s ¼ S� U�S=U mod r

and U ¼ U �E=U � E mod r:

These relations show that the signature (E, S, U) could

be produced by user A1 from the triplet ð�E1; �S1; �U1Þ: (In
this case, the supposed user A1 used the values e1, s1 and

r1.) The same signature can also be produced by the user

A2 with some signer B from the triplet ð�E2; �S2; �U2Þ: (In this

case, the supposed user A2 had used the values e2, s2 and

r2.) Since the values (e, s and r) are selected at random, the

signature could be produced from each of two considered

triplets as well as from each of the triplets in the database,

i.e. the unlinkability property (or blindness property) is

provided by the protocol. h

Signers Bi (n, α, β, r, xi, wi, y)                                  User A (M)

Setect ki, ti ∈R [2, r - 1]
α β modi ik t

ir n=

1

mod
m

i
i

R r n
=

= ∏

Setect ε, μ, τ ∈R [2, r - 1]
ε μ τ

1

α mod
( )mod

ε ( μ)mod
H

R R y n
E F R M r

E E r−

=
=

= +

( )modi i is k x E r= +

( )modi i iu t w E r= +

1 1 1
( )mod

m m m

i i i
i i i

S s k E x r
= = =

= = +∑ ∑ ∑

1 1 1
( )mod

m m m

i i i
i i i

U u t E w r
= = =

= = +∑ ∑ ∑

ε τ mod
ε mod

S S r
U U r

= +
=

Output signature (E, S, U)

E

,S U

R

Fig. 2 Our blind collective

digital signature protocol
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Theorem 5 (blind CDS) The protocol provides the

unlinkability property in the case in which the message M

and signature (E, S, U) will be presented to all or to one of

the signers.

Proof We suppose that many different users present

electronic messages to some given set of signers for blind

signing. Suppose that the signers have saved all triplets

ð�E; �S; �UÞ that appeared in the blind CDS procedures.

Let ð�E1; �S1; �U1Þ and ð�E2; �S2; �U2Þ; be two triplets.

According to the blind CDS protocol construction, the

elements of the first triplet satisfy the following expression:

e ¼ U= �U mod r; s ¼ S� U�S=U mod r

and U ¼ U �E=U � E mod r:

These relations show that the signature (E, S, U) could

be produced by user A1 from the triplet ð�E1; �S1; �U1Þ: (In
this case, the supposed user A1 had used the values e1, s1
and r1.) The same signature can also be produced by the

user A2 with the same signers Bi from the triplet

ð�E2; �S2; �U2Þ: (In this case, the supposed user A2 used the

values e2, s2 and r2.) Since the values (e, s and r) are

selected at random, the signature could be produced from

each of two considered triples as well as from each of the

triplets in the database, i.e. the unlinkability property (or

blindness property) is provided by the protocol. h

4.3 Unforgeability

Unforgeability implies that only the signer(s) can generate

valid signatures.

4.3.1 Attack 1 (Outsider attack)

The attacker tries to derive the signature (E, S, U), where

R ¼ y�EaSbU mod n and E ¼ FHðRkMÞmod r; for a given

message M by fixing one of the values R, E, S and U and

finding the other ones. For example, the attacker selects R

and tries to figure out the values of E, S and U satisfying

R ¼ y�EaSbU mod n and vice versa. The attacker first

chooses at random the value R and then computes the

values S and U only if the difficult computational problem

of the DLP modulo a composite number is breakable. The

attacker first chooses at random value E and then computes

R. It is supposed that a secure hash function is used in the

protocol; therefore, the attacker is not able to select the

value R producing some specially chosen value E. Similar

to the case, the attacker first chooses at random the value

S (or U) and then computes the values E and U (or S) only

if the difficult computational problem of the DLP modulo a

composite number is breakable.

4.3.2 Attack 2 (User attack)

The user can know individual signatures, but this does not

damage the security of the protocols. If he cannot compute

the blind DS (CDS) correctly from the individual signa-

tures, the verification equation of the blind CDS is not

satisfied. This type of attack can be detected by the verifier.

4.4 Attack 3 (Signer(s) attack)

Suppose that m - 1 signers that share some collective

signature ð�E; �S; �UÞ with the m signer are attackers trying

to calculate the secret key of the m signer. The attackers

know the values (rm, sm, um) generated by the mth signer.

These values satisfy the equation rm ¼ y�
�E

m asmbum mod

n; where the value �E is out of the attackers’ control.

Therefore, computing the secret key of the m signer

requires solving the DLP modulo a composite number.

4.5 Performance

Next, we investigate the performance of our protocols

using the number of modular multiplications, number of

hashing operations, number of random number generations,

number of inverse computations and number of modular

exponentiations.

Note that the time for computing modular addition and

subtraction is ignored since it is much smaller than the time

for computing modular exponentiation, modular multipli-

cation and modular inverse.

The comparisons of computational costs performed by

the user, signer and verifier between the proposed blind

signature protocol and the scheme of (Minh et al. 2012;

Tahat et al. 2009) are summarized in Tables 1 and 2.

The comparisons of the numbers of computations per-

formed by a user between the proposed blind CDS protocol

and the protocols of (Hieu et al. 2017; Moldovyan and

Moldovyan 2011) are summarized in Table 3.

The performance of our proposed blind DS (CDS)

protocols is almost equivalent to the protocol (Minh et al.

2012; Hieu et al. 2017; Tahat et al. 2009; Moldovyan and

Moldovyan 2011). However, the proposed protocols have

signature sizes much shorter than the protocols (Minh et al.

2012; Hieu et al. 2017; Tahat et al. 2009; Moldovyan and

Moldovyan 2011) and are thus superior in practice

(Table 4).

In most of the applications based on blind signatures, the

signer(s) usually possesses much more computational

capability than a user, while the computational capability

of the users may be limited in certain situations such as

mobile clients. To guarantee the quality of these growing

popular communication services based on blind signatures,
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it is more urgent to reduce the computational load for users

than for signer(s).

5 Conclusions

This paper proposed two new blind DS protocols with a 3q-
bit signature size that provide q-bit security. These proto-

cols are the first ones based on the computational difficulty

of the DLP modulo a composite number n = pq.

The protocols use finite groups possessing two-dimen-

sional cyclicity. When selecting parameters to provide

80-bit security, the size of the proposed blind DS protocols

is 240 bit (and are not dependent on the number of signers).

Acknowledgements The authors would like to thank the anonymous

reviewers for their valuable suggestions and comments.

Table 1 Computational costs of the proposed blind DS protocol and the protocols of (Minh et al. 2012; Tahat et al. 2009)

Type of operation Performed by the user Performed by the signer

Our protocol (Minh et al. 2012) (Tahat et al. 2009) Our protocol (Minh et al. 2012) (Tahat et al. 2009)

Exponentiation 3 3 7 2 2 2

Inversion 1 1 4 0 0 0

Hashing 1 1 3 0 0 1

Multiplication 5 4 11 3 1 2

Random number generation 3 2 2 2 1 1

Table 2 Computational costs of

the proposed blind DS protocol

and the protocols of (Minh et al.

2012; Tahat et al. 2009)

Type of operation Performed by the verifier

Our protocol (Minh et al. 2012) (Tahat et al. 2009)

Exponentiation 3 3 4

Hashing 1 1 1

Multiplication 2 1 1

Numbers of inverses 1 0 0

Table 3 Computational costs of the proposed blind CDS protocol and the protocols of (Hieu et al. 2017; Moldovyan and Moldovyan 2011)

Type of operation Performed by the user Performed by the verifier

Our

protocol

(Hieu et al.

2017)

(Moldovyan and

Moldovyan 2011)

Our

protocol

(Hieu et al.

2017)

(Moldovyan and

Moldovyan 2011)

Exponentiation 3 2 2 3 2 2

Inversion 1 0 0 1 1 1

Hashing 1 1 1 1 1 1

Multiplication 5 3 2 2 1 1

Random number

generation

3 2 2

Table 4 Signature size of the proposed protocols and the protocols of (Minh et al. 2012; Hieu et al. 2017; Tahat et al. 2009; Moldovyan and

Moldovyan 2011)

Size of signature (bits) Our protocols Minh et al. (2012) Tahat et al. (2009) Hieu et al. (2017) Moldovyan and Moldovyan (2011)

240 1184 2048 1184 320
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