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Abstract
Implementing chaotic systems using digital computers with finite arithmetic precision leads to significant degradations on

their quality of chaotic dynamics, and the important shortcoming found on digital chaotic systems is their limited cycle

length. Notable efforts have been exerted recently to overcome this problem and enhance the quality of digital chaotic

generators, and the aim is to generate chaotic sequences with long cycle lengths. Perturbation of chaotic systems orbits is

the most efficient technique that has been adopted in this context. In this paper, we propose a new method for perturbing the

orbits of chaotic systems. Compared to many proposals, our method does not need an external generator to perturb the

chaotic orbit, and it has a self-perturbation mechanism. Evaluation results showed that the proposed method can extremely

extend the cycle length of a given chaotic system in which no repeated patterns have been detected even using low

arithmetic precision. The results also showed that the perturbed chaotic system has good statistical proprieties in terms of

randomness; it passed successfully a set of statistical tests (NIST and Diehard). The whole system has been implemented in

FPGA-based hardware, and real-time results are given. Compared with some proposals, the proposed method has provided

better results in terms of randomness and hardware performance.
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1 Introduction

Random numbers play an important role in nowadays

digital systems, and they can be found in many digital

systems. As digital computers dominate data processing

fields today, random number generators implemented in

digital computers are known as pseudo-random number

generators (PRNGs). The deterministic nature of the pro-

cess leads to the term pseudo-random. PRNGs algorithms

are widely used today thanks to their simplicity of imple-

mentation in both software and hardware. They are capable

of generating sequences of numbers which appear random-

like from many aspects.

Though they are necessarily periodic and their periods

are very long, they pass many statistical tests and can be

easily implemented with simple software routines (El-

sherbeny and Rahal 2012). PRNGs have been widely used

in Monte Carlo simulations, test pattern generation, cryp-

tography, and telecommunication systems (Liu and Miao

2015). A good PRNG should have characteristics of: (1)

long-period random number sequence; (2) a fit in statistical

properties; (3) a high throughput rate; and (4) an unpre-

dictability (Li et al. 2012). Finding all aforementioned

characteristics together in one PRNG is a big challenge,

due to their fixed linear structure, and most known pseudo-

random generators (Linear Feedback Shift Registers, Lin-

ear congruential generators, etc.) are not secure enough,

especially when used for information security.
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Not long ago, many researchers have focused on chaotic

signals as a source of randomness because of their attrac-

tive proprieties (Oishi and Inoue 1982; Lin and Chua 1993;

Bernstein and Lieberman 1991; Kolesov et al. 2001; Sto-

janovski et al. 2001; Andrecut 1998). A chaotic system by

nature is a dynamical system that provides some charac-

teristics such as noise-like behavior, sensitive dependence

on initial conditions, unpredictability, aperiodicity and

ergodicity. These characteristics are very useful making

chaotic systems good alternatives to many conventional

PRNGs and cryptosystems.

Unfortunately, chaos dynamics proprieties are more

significant when these systems are studied in their original

continuous state. The digital implementation of such sys-

tems using finite arithmetic precision leads to significant

degradations on its dynamical behavior. These degrada-

tions are in fact a serious problem that detracts from

importance of chaotic systems application.

Therefore, in order to benefit from the chaotic dynamic

properties using finite precision computations, the

dynamical degradations arising from digitization process

should be taken into account and solved as much as pos-

sible. Many researchers have been highlighted theses

degradation problems with some proposed solutions (Bin-

der and Jensen 1986; Beck and Roepstorff 1987; Palmore

and Herring 1990; Fryska and Zohdy 1992; Li et al.

2001a, 2003; Hu et al. 2014; Liu et al. 2014, 2017; Deng

et al. 2015a, b).

The digitized chaotic systems are often known as

pseudo-chaotic generators (PCGs), like PRNGs, and PCG

suitable for cryptography should provide good statistical

proprieties and should be unpredictable. Technically,

unpredictability can be interpreted as cycle length of the

chaotic generator. In other words, due to the computation

finite precision; although chaotic generators seem random,

they have a finite period that when the generator reaches;

then, it will repeat the same orbit. The process of dealing

with dynamical degradations of digital chaotic system can

be considered as making a periodic system ‘‘chaotic’’,

which is known as ‘‘chaotification’’ or ‘‘anti-control’’ of

chaos (Hu et al. 2014).

This paper is organized as follows. Section 2 deals with

dynamical degradations arisen from digitizing process of

chaotic systems. Sect. 3 describes some proposals on the

context of overcoming dynamical degradations in digital

chaotic signals. Section 4 is devoted to represent our pro-

posed idea for extending cycle length of digital chaotic

systems, in which enough details and evaluation of the

proposed scheme are presented. The FPGA-based hardware

implementation of the proposed scheme is the subject of

Sect. 5. Section 6 concludes the paper.

2 Dynamical Degradations in Digital Chaotic
Systems

The digital implementation of chaotic systems on com-

puters has the same concept of analog-to-digital conversion

process in electronics. Depending on the computing arith-

metic precision provided by the computer, the imple-

mented chaotic function generates time series with values

rounded to the nearest continuous value. The difference

between the rounded value and the real one represents the

quantification error. Following the analytic idea used in Li

et al. (2003), consider a one-dimensional chaotic system

T : X ! X, defined on [0, 1]:

Xðnþ 1Þ ¼ FðxðnÞÞ ð1Þ

Assume that the fixed-point arithmetic precision is adop-

ted; the chaotic iterations will be confined in the following

discrete set:

S ¼ ½xn 2 ½0; 1�jxn ¼ n� 2�L; n ¼ 0; 1; :; 2L � 1�

where L represents the word size (Largest precision).

Hence, any quantity of the digital chaotic system (1) (initial

condition, control parameter or generated output) can never

take a value out of the specified set S. The digital chaotic

system (1) can be represented as follows:

~Xðnþ 1Þ ¼ FLð ~XðnÞÞ ¼ DLoFð ~XnÞÞ ð2Þ

where ~XðnÞ represents the digital state vector and DL the

quantization function. Three quantization functions are

used in almost today’s computers: floor function, ceil

function and round function.

2.1 Quantization Error in Digital Chaotic Systems

DL will introduce the quantization error to the digital

sequence generated by the system (1); consequently, due to

the high sensitivity of the chaotic systems to the initial

parameters, the quantification error quickly propagates into

the mainstream of the generated sequence and changes the

topology of the systems attractor. The pseudo-orbits (which

designate the digitized chaotic orbits) represented in finite

precision arithmetic can be entirely different from the

theoretical ones (Li et al. 2005).

Some computation precisions lead to different and

unexpected chaotic and non-chaotic structures. As an

example, Fryska and Zohdy (1992) have implemented a

3-D piecewise linear chaotic system using single-precision

floating-point arithmetic (32 bits) and extended double-

precision floating-point arithmetic (80 bits). The first case

gave a two-scroll chaotic attractor that is highly instable.

The surprising results were in the second case, even though
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the used parameters were kept unchanged, unexpected

results were obtained: a periodic attractor (Fig. 1).

The influence of the arithmetic precision (quantization

error) on chaotic dynamics has also been studied in depth

in Palmore and Herring (1990), where the authors con-

cluded that quantization errors using floating-point arith-

metic can propagate into the mainstream of a chaotic

system and, within 30–50 steps, destroy all the accuracy of

the result.

2.2 Cycle Length in Digital Chaotic Systems

A very important issue related to digitization of chaotic

systems is their long-term dynamics. Numerous studies

have mentioned the direct relationship between digitized

chaotic systems cycle length and the used arithmetic pre-

cision. Accordingly, the digital chaotic systems are con-

sidered as periodic and its longest orbit can never exceed

2L. In accordance with Li et al. (2003), a typical orbit of a

computerized chaotic system has a limited length n, where

n � 2L in most cases . The orbit length has two main parts

(Fig. 2), transient length (l) from x0 to xl and cycle length

(n) from xl to xn, and consequently the orbit length ¼ lþ n.

Numeric simulations have found that maximal length of

computerized chaotic orbits is Oð2eLÞ, where 0\e\1 and

1=e[[ 1 is right for many chaotic systems (Li et al.

2003).

3 Purifying Digital Chaotic Systems
from Degradations

The agreed issue is that digital chaotic systems are periodic

and their cycle lengths may be rather short (despite the

existence of long ones). This sensitive issue makes the

usefulness of applying chaos in cryptography meaningless.

Thus, to counteract degradations resulting from digitiz-

ing continuous chaotic systems, extensive research has

been done recently from both theoretical and experimental

points of views. The proposed solutions can be classified

into 3 main categories, using higher arithmetic precision,

cascading multiples chaotic systems and randomly per-

turbing the digital chaotic orbits. The efficiency evaluation

of theses remedies can be found in Li et al. (2005).

3.1 Using Higher Arithmetic Precision

By increasing the computation arithmetic size, the cycle

length of the digitized chaotic system can be effectively

extended. The average cycle length will be prolonged

exponentially as the precision increases (Hu et al. 2014),

but, however, the computation arithmetic is still finite and

there still exist plenty of short chaotic orbits; consequently,

due to the computation power available today, it is

unreasonable to trust this idea and confirm its efficiency.

Some weak control parameters lead to a worse distri-

bution and produce chaotic sequences with short cycles; in

this case, increasing arithmetic precision has no effect

which implies that this idea is still vulnerable.

3.2 Cascading Multiples Chaotic Systems

This idea is based on using multiple chaotic generators and

then combines their outputs together for producing the

whole chaotic sequence. In Heidari-Bateni and McGillem

(1994), the authors have cascaded two chaotic systems in a

spread spectrum communication system, one for generating

the chaotic sequence and the other for generating the initial

Fig. 1 The chaotic attractor studied in Fryska and Zohdy (1992), a implemented using single-precision floating-point arithmetic (32 bits), b using

extended double-precision floating-point arithmetic (80 bits) and c obtained from the exact solution

Fig. 2 Digitized chaotic systems typical orbit
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conditions for the other system. After N iterations for the

second chaotic system, the first system generates a new

initial condition to initiate the second one.

Although this idea can effectively prolong the period of

the generated chaotic sequence; Li et al. (2005) and Binder

and Jensen (1986) assumed that the distribution of output

sequence of digital chaotic system for the proposed idea is

not uniform in discrete phase space even though the input

sequence is uniformly distributed.

Another important issue related to the cascading multi-

ple chaotic systems technique is the hardware cost and

performance. In fact, what we can benefit from this tech-

nique in terms of cycle extension may be lost in the cost of

hardware implementation of such designs, and conse-

quently, reduces its performance in general.

3.3 Perturbing the Chaotic System Orbit

The basic idea of this method consists of using either

random or pseudo-random sequence to perturb the digital

chaotic orbits. This technique is more efficient compared to

the other two and was supported and adopted by many

theorists and practitioners (Černák 1996; Li et al.

2001b, 2005; Fryska and Zohdy 1992; Hu et al. 2014;

Merah et al. 2015; Blank 1994; Hasimoto-Beltrán and

Ramı́rez-Ramı́rez 2011; Tao et al. 1998; Shu-Bo et al.

2009; Tong 2013). Experiments have shown that such a

simple remedy can improve the dynamical properties of

computerized (digital) chaos to some extent (Li et al.

2003). Perturbation techniques can be classified into three

main categories: perturbing the orbits of a given digital

chaotic system, perturbing the control parameters, and

perturbing both orbits and control parameters; the first two

methods are mostly used.

Tao et al. (1998) had easily deduced that the new cycle

length of the perturbed schemes is T
0 ¼ rDð2L � 1Þ, where

r is a positive integer, D is the perturbation period, and

ð2L � 1Þ ¼ T is the cycle length of the perturbing signal.

Assuming perturbing system uses the same finite precision

as the digital chaotic system and has a maximum length of

2L, the lower bound of the system cycle length is T
0
min ¼

D2L which is greater than the cycle length 2L.

4 The Proposed Perturbation Mechanism
(PPM)

In this section, the proposed idea for perturbing a given

chaotic system orbits and extending its cycle length is

described. As mentioned previously, the proposed circuit is

self-perturbation; that is, our digital chaotic system does

not need an external perturbation source; it provides a self-

generator for perturbing its orbits.

As shown in Fig. 3, the proposed scheme has 4 main

parts: the chaotic system, a counter, a shift register of

m memory cells, and slice blocks, each part has its own

function as follows:

• The chaotic system It has the role of generating the

chaotic sequence x(n) which has L bits of length.

• Slice block 1 This block divides the binary sequence of

the chaotic output x(n) into two parts: the sequence S1

Fig. 3 The proposed scheme for extending cycle length of digital chaotic systems
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that represents the l upper bits of x(n) and the sequence

S2 that represents the m lower bits of x(n); note that

L ¼ lþ m where L is the largest computation precision

used to implement the chaotic system.

• Slice block 2 This block extracts the LSB (low

significant bit) from the chaotic output x(n) at each

clock cycle.

• Shift register It has m bits of size; this block has the role

of loading the LSB generated from the slice block 2 and

shifts it to the right at each clock cycle. The shifting

operation works continuously, when the register cells

are full; the register excludes the right bit to accept new

bit on its left side (Fig. 3).

• Counter It has the most important role in the circuit

because it defines the perturbation periods Tp. The

counter is controlled by a flip-flop, and this last has an

initial integer value N (12 bits) which represents the

maximum that the counter can reach. When the counter

reaches the maximum N, two signals named Cntout and

C change their states from ’0’ to ’1’, for the signal C,

when activated; it tells the flip-flop to load new data (D)

from the shift register. The signal Cntout controls a

multiplexer that outputs either a sequence of zeros

(m bits of length) or the shift register content (of m bits

of length bits of length).

• Bit basher block It has the role of collecting the signals

S1 and S3 (perturbed version of the signal S2) to

produce the new perturbed sequence x
0 ðnÞ.

Roughly speaking, we can understand from what have been

said above that the chaotic signal x(n) is perturbed during

variable periods Tp ¼ N � T (where T represents the sys-

tem clock period). During the counting process, S1 is

XORed with zeros which means that it is kept unchanged

(S3 ¼ S1 ) and obviously xðnÞ ¼ x
0 ðnÞ. If the counter

reaches its maximum, the signal Cntout will be changed

from ’0’ to ’1’ and then S2 is XORed with the shift register

content (output of the multiplexer); in this case, x
0 ðnÞ

becomes a perturbed version of x(n) .

4.1 Experimental Evaluation of the Proposed
Perturbation Mechanism

The PPM has been evaluated by applying it on the logistic

chaotic map given by:

xðnþ 1Þ ¼ rxðnÞð1� xðnÞÞ ð3Þ

where r is the control parameter. Before applying our PPM,

we will try to evaluate the original chaotic system given

above by using low arithmetic precision. So, by using a

largest arithmetic precision 216ðL ¼ 16Þ, and fixing r to 3.9

(chaotic behavior), we have randomly selected a set of

initial conditions and for each one we have computed the

transient length and cycle length of the logistic map output.

Table 1 summarizes the obtained results.

It is clear from the given results that the logistic map

provides very short cycle lengths using the adopted arith-

metic precision. In this case, the chaotic properties of the

logistic map are meaningless. The system is no longer

chaotic, and it is purely periodic. The auto-correlation

function can also help to detect periodicities on the logistic

map output. The result of the auto-correlation function

performed on the logistic map is given in Fig. 4 in which a

strong correlation is observed on the output sequence.

The PPM is now applied to the original system of the

logistic chaotic map, by fixing m ¼ 15 bits and

l ¼ L� m ¼ 1. The output of the new logistic map is

shown in Fig. 5. Figure 6 shows the auto-correlation

function result performed on the modified logistic chaotic

map for more than 70 million samples. It is clear that the

modified logistic map provides good independence

between samples compared to the original one.

It should be noted that the available computing config-

uration did not allow us to process more than 100 millions

samples ( i5-2500K CPU with 8Gb of RAM). Thus, we

Table 1 Computed transient length and cycle length of the logistic

map output for different initial conditions

The initial condition Transient length Cycle length

0.25 56 62

0.1 32 38

0.62 44 62

0.37 102 38

0.73 57 39

0.86 50 38

0.96 45 38

Fig. 4 The auto-correlation function of the chaotic sequence gener-

ated from the original digital chaotic system of the logistic map

Iran J Sci Technol Trans Electr Eng (2019) 43 (Suppl 1):S259–S268 S263

123



have confirmed that no periodic orbits have been detected

for a sequence of 100 millions samples and less.

4.1.1 Evaluation of the PPM by Detecting Eventual Cycles

In this case, a simple test is performed on the modified

logistic map, and it consists of detecting repeated samples

in the chaotic sequence and try to see whether there is a

repeated orbits or not. If there are no similar orbits and

even there are repeated samples, we can say that the PPM

works well.

Experimentally, we tried to detect equal samples and

then define their kth positions. We plotted chaotic subse-

quences starting from the defined kth positions. Thus,

experimental results given in Fig. 7 showed (for 106

samples) the detected repeated sample xk ¼
0.94372558550 (for example) and the kth positions where

xk is repeated; k ¼ 263, k ¼ 247;041, k ¼ 498;476,

k ¼ 533;784, k ¼ 610;577.

It is clear from Fig. 7 that even though the detected

samples are identical, the perturbation circuit forces the

system to diverge to another different orbit.

4.1.2 Evaluation of the PPM in Terms of Uniformity

Another important criterion that should be provided by

good PRNGs is uniformity; this means that numbers gen-

erated from a given PRNG should be uniformly distributed.

We have evaluated uniformity of the modified logistic map

using our PPM and compared the results with the original

logistic map. Figures 8 and 9 present the results of the

histogram for both logistic maps.

It is clear from the obtained results that the modified

logistic map using the PPM provides good distribution and

its output is uniformly distributed compared with the

original logistic map.

4.1.3 Evaluation of the PPM Using the Approximate
Entropy Test

The modified chaotic map has been also evaluated using

the approximate entropy test (ApEn). This test has been

proposed first by Pincus (1991) for the purpose of detecting

similar patterns in time series, and time series containing

many repetitive patterns has relatively small ApEn; a

Fig. 5 The output sequence of the modified digital logistic chaotic

map with largest precision L ¼ 216

Fig. 6 Auto-correlation function result performed on the modified

digital logistic chaotic map with the largest precision L ¼ 216 and for

more than 70 million samples

Fig. 7 Superposition of chaotic sub-sequences from the defined kth

positions, x1 from k ¼ 263, x2 from k ¼ 247;041, x3 from k ¼
498;476 and x4 from k ¼ 610;577

Fig. 8 Histogram of the output of the original logistic map

S264 Iran J Sci Technol Trans Electr Eng (2019) 43 (Suppl 1):S259–S268

123



complicated process has higher ApEn and therefore is less

predictable.

The algorithm of the ApEn works as follows: for a given

time series fuðiÞ; i ¼ 1; 2; :;Ng, reconstruct this series as:
XðiÞ ¼ uðiÞ; uðiþ 1Þ; . . .; uðiþ m� 1Þ; i ¼ 1; 2; . . .n;

n ¼N � mþ 1:

Now, the m-dimensional sequence X(i) is used to construct

Cm
i ðrÞ = (the number of X(j) such that d½XðiÞ;XðjÞ� 6

ðrÞ=ðN � m� 1Þ , where m (= 2 in our case) is an integer

which represents the length of compared run of data,

r (range from 0.1 to 0.3) specifies a filtering threshold, and

d represents the distance between the vectors X(i) and X(j) :

d½XðiÞ;XðjÞ� ¼ maxjuðiþ jÞ � uðjþ kÞj; k ¼ 0; 1; . . .m� 1

. Now we define:

/mðrÞ ¼ ðN � m� 1Þ�1
XN�mþ1

i¼1

logðCm
i ðrÞÞ

Finally, the ApEn is given by:

ApEn ¼ /mðrÞ � /mþ1ðrÞ ð4Þ

The results of the ApAn test performed on the modified

digital chaotic system, the original system, and white noise

sequence (as reference) are shown in Fig. 10. It is clear that

the modified system has an ApAn much greater than the

original system. This result proves the randomness quality

of the modified system; we can say that the ApAn for the

modified system is relatively equal to the ApAn of white

noise. Table 2 contains a comparison between ApAn

obtained for our modified system and other proposal (Liu

and Miao 2015).

4.1.4 Statistical Proprities of Chaotic Sequence
of the Modified Chaotic Map

This section is attended to evaluate our modified logistic

map in terms of statistical proprieties of its output, for this

Fig. 10 The approximate entropy of the sequence of the modified

logistic map compared to the original one and white noise

Table 2 Approximate entropy comparison between the modified

logistic map and other proposal

References N m r ApAnðs Þ

Liu and Miao (2015) 104 2 0.3 1.25

Our system 104 2 0.3 1.45

Table 3 NIST statistical tests results performed on the modified

logistic map output

Statistical test Before After

p_value p_value

Frequency 0.57957 0.36176

Block frequency (m ¼ 128) 0.05723 0.25206

Cusum-forward 0.81028 0.59774

Cusum-reverse 0.51390 0.96232

Runs 0.12025 0.59414

Long runs of ones 0.0000 0.05641

Rank 0.16526 0.94066

Spectral DFT 0.0000 0.89051

Non-overlapping templates (m ¼ 9) 0.0000 0.86899

Overlapping templates (m ¼ 9) 0.0000 0.64935

Universal 0.09494 0.36005

Approximate entropy (m ¼ 10 ) 0.0000 0.96615

Random excursions (x ¼ þ1) 0.0000 0.52115

Random excursions variant (x ¼ �1) 0.0000 0.14709

Linear complexity (M ¼ 500) 0.87168 0.48665

Serial (m ¼ 16;rW2
m ) 0.0000 0.26919

Fig. 9 Histogram of the output of the modified logistic map using the

PPM
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purpose; two well-known statistical tests batteries are used:

NIST and Diehard, and for each test a p value (significant

level) is computed and should greater than 0.01 to say that

the test is passed successfully. The results (for

Xð0Þ ¼ 0:55) of the statistical tests performed both on the

original logistic map and the modified one are given in

Tables 3 and 4, the underlined results mean that the test is

fail.

It is clear from the obtained results that the modified

logistic map provides good statistical proprieties of

randomness compared to the original one, and more than

90% of the performed tests are passed successfully.

To affirm the good statistical properties of the modified

logistic map, we have evaluated its output for different

(randomly chosen) seeds (initial conditions) using both

NIST and Diehard statistical tests. Figures 11 and 12 rep-

resent the obtained results for X0 ¼ 0, X1 ¼ 0:1, X2 ¼ 1:2,

X3 ¼ 0:25, X4 ¼ 0:30, X5 ¼ 0:43, X6 ¼ 0:58, X7 ¼ 0:67,

X8 ¼ 0:78, X9 ¼ 0:85 and X10 ¼ 0:95.

The obtained results showed that more than 87:5% of

the NIST statistical tests have been passed successfully

ðp value[ 0:01Þ and more than 89:47% of Diehard sta-

tistical tests have been passed successfully

ð0:01 6 p value\1Þ. George Marsaglia (Diehard statisti-

cal tests developer) has pointed out that we should not be

surprised with occasional p values near 0 or 1, such as

0.0012 or 0.9983. When a bit stream really FAILS BIG, we

will get p values of 0 or 1 to six or more places. By all

means, do not, as a statistician might, think that a

p value\0:025 or p value[ 0:975 means that the RNG

has ‘‘failed the test at the 0.05 level’’. Such p value hap-

pens among the hundreds that Diehard produces, even with

good RNGs.

Thus, from all given results, we can say that the modi-

fied logistic map using PPM provides good statistical

properties.

5 FPGA-Based Implementation
of the Modified Logistic Chaotic Map
Using the PPM

This section is devoted to present the results of the FPGA-

based implementation of our system in terms of perfor-

mance and hardware resource consumption. In fact, we

have implemented two chaotic systems of the logistic map:

Table 4 Diehard statistical tests results performed on the modified

logistic map output

Statistical test Before After

p_value p_value

Birthday spacings 0.99976 0.02926

Overlapping 5-permutation 1.0000 0.99412

Binary rank (31 � 31) 0.99988 0.78610

Binary rank (32 � 32) 0.91109 0.97758

Binary rank (6 � 8) 1.0000 0.78514

Bitstream 1.0000 0.61735

OPSO 1.0000 1.0000

OQSO 1.0000 1.0000

DNA 1.0000 1.0000

Stream count the 1’s 1.0000 0.01782

Byte count the 1’s 1.0000 0.40970

Parking lot 0.10628 0.75554

Minimum distance 1.0000 0.13202

3D spheres 0.59229 0.79825

Squeeze 1.0000 0.25648

Overlapping sums 0.74016 0.53161

Runs up 0.83121 0.86695

Runs down 0.90629 0.18144

Craps 0.0000 0.95711

Fig. 11 NIST statistical tests results performed on the modified

logistic map output for different seeds

Fig. 12 Diehard statistical tests results performed on the modified

logistic map output for different seeds
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the original logistic map and the modified one only for

comparison purpose in real-time.

The system was designed using Xilinx System Genera-

tor tool (XSG), after some steps needed for implementa-

tion, the system was implemented on Xilinx Artix

XC7A100T FPGA device (embedded on Digilent Nexys 4

board). In order to visualize the real-time FPGA output, we

have used two digital-to-analog converters of National

Semiconductor DAC121S101 of 12 bits of resolution

(embedded on the Digilent PmodDA2 board). It is worth

noting that in addition to the main VHDL code of the

chaotic systems, another VHDL component is added to

drive signals between the chaotic generator and the

PmodDA2 board.

The DAC component (Fig. 13) receives the parallel data

of 12 bits of length (DATA1 from the original logistic map

and DATA2 from the modified logistic map), and a

START command tells the component to begin the con-

version process. The DAC component then converts the

data signals from parallel to serial (SD1, SD2) and sends

them to the PmodDA2. Another commands, CLK_OUT

and NSYNS are also sent to the Pmod and represent,

respectively, the clock signal needed for driving the DACs

(25 MHz) and the signal used to latch the data inside the

PmodDA2 after the data have been shifted out.

Figure 14 represents the hardware components used for

the real-time implementation and visualization of both

original logistic map and the modified logistic map using

the PPM. Real-time outputs of the implemented design

shown on oscilloscope are presented in Fig. 15.

The results of the achieved performance and consumed

resources are given in Table 5 with the largest precision of

L ¼ 216. The obtained results have been compared with

other modified logistic map; in fact, we have also imple-

mented the proposed method in Liu and Miao (2015).

It is clear from the achieved results that our system

provides the higher performance with fewer resources

compared to the modified logistic map proposed in Liu and

Miao (2015).

6 Conclusion

New, simple, and efficient method for extending cycle

length of digital chaotic systems is presented in this paper.

Our proposed idea does not need any external generator of

Fig. 13 Block diagram of real-time analog outputs of FPGA-based

chaotic logistic maps [original logistic map and the modified one

using the PPM (orange)]

Fig. 14 Components used for real-time implementation of the design

Fig. 15 Real-time outputs of FPGA-based implementation of both

original logistic map (blue) and modified logistic map using the PPM

(orange)

Table 5 Timing and resource consumption reports

Resources Liu and Miao (2015) Using PPM

Slice register 383 30

Slice LUTs 439 108

DSP48E1s 2 1

Frequency 801.66 MHz 1306.33 MHz
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perturbing the orbit of the chaotic system; it contains a self-

mechanism for ensuring perturbation, and this directly

reflected on the performance of the design. The cycle

length of the new modified chaotic system using our PPM

has been extremely increased.

The results obtained from the evaluation of our proposed

method prove its efficiency; the new chaotic sequence

provides good uniform distribution and the higher

approximate entropy compared to other proposals with

good results in terms of auto-correlation function. (No

repeated patterns are detected.) The statistical tests per-

formed on the proposed system showed clearly the good

randomness of its output compared with the original

system.

The comparison between our proposed method with

other proposals in terms of randomness, approximate

entropy, and FPGA hardware implementation performance

confirms its efficiency.
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