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Abstract
Rolling element bearings (REBs) are usually considered among the most critical elements of rotating machines. Therefore,

accurate prediction of remaining useful life (RUL) of REBs is a fundamental challenge to improve reliability of the

machines. Vibration condition monitoring is the most popular method used for diagnosis of REBs and this is a motivating

fact to use recorded vibration data in RUL prediction too. However, it is necessary to extract appropriate features from

vibration signal that represent actual damage progress in the REB. In this paper, wavelet packet transform is used to extract

signal features and artificial neural network is applied to estimate RUL of the REB. To obtain more accurate results, a

method is proposed to find appropriate mother wavelet, optimal level and optimal node for signal decomposition. The

desired features were extracted from the decomposed wavelet coefficients. To reduce random fluctuations, which is

essential in real-life tests, a preprocessing algorithm was applied on the raw data. A multilayer perceptron neural network

was selected and trained by preprocessed input data as well as non-processed input data, and results are compared. A series

of accelerated life tests were conducted on a group of radially loaded bearings and vibration signals were acquired in whole

life cycle of the tested REBs. Comparison of the experimental results with the output of the trained neural network shows

enhanced prediction capability of the proposed method.
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1 Introduction

Rolling element bearings are widely used in rotating

machines and in various industries such as steel, mining,

aerospace, paper, railways, textile and renewable energies

(Harris 2001). Failure of bearings is a major cause of

machinery breakdown, economic losses and even loss of

human lives. Undesirable vibrations can be caused by

faulty installation, poor maintenance or surface spall that

finally leads to development of REB failure (Howard

1994). There is a considerable amount of research in the

field of diagnosis of REBs (Singh et al. 2015). One of the

important issues is how to identify bearing fault before it

reaches to the final failure state. Bearing failure is reported

to be almost 40–50% of the cause of motors failure in

industries (Nandi et al. 2005). Based on the critical role of

REBs in the machines, it is important to anticipate its RUL

in order to take a correct maintenance decision.

Prognostic methods are generally categorized as data-

driven methods, model-based methods and hybrid methods

(Hu et al. 2012). Data-driven methods are based on pro-

cessing of vibration signal that is gathered from sensors

like accelerometers. Data-driven methods do not require

knowledge about the physics of failure. Some of the pop-

ular methods used in this category are artificial neural

networks (Gebraeel and Lawley 2008; Gebraeel et al. 2004;

Shao and Nezu 2000), regression analysis (Pham and Yang

2010) and neuro-fuzzy approaches (Wang 2007; Liu et al.

2009). Model-based methods by using mathematical

models describe the evolution of defect and degradation of

REBs like Paris law (Li et al. 1999; Marble and Morton

2006), contact stress analysis (Gebraeel and Pan 2008) and

& Abbas Rohani Bastami

a_rohani@sbu.ac.ir

1 Faculty of Mechanical and Energy Engineering, Abbaspour

School of Engineering, Shahid Beheshti University, Tehran,

Iran

2 Mechanical Engineering Department, Sharif University of

Technology, Tehran, Iran

123

Iran J Sci Technol Trans Electr Eng (2019) 43 (Suppl 1):S233–S245
https://doi.org/10.1007/s40998-018-0108-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s40998-018-0108-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40998-018-0108-y&amp;domain=pdf
https://doi.org/10.1007/s40998-018-0108-y


Kotzalas and Harris (2001). Model-based methods do not

require massive sensory data as is the case in data-driven

methods but they are suitable for only special defects

where a mathematical model can be applied (Kim et al.

2012). Hybrid methods are combination of data-driven

methods and model-based methods (Li et al. 2000; Goebel

et al. 2006). Hybrid methods take advantage of both data-

driven methods and model-based methods, but similar to

model-based methods, hybrid methods are limited to the

special defects and cases in which sufficient knowledge is

available about physics of the failure.

Heng et al. (2009) published a review paper on the

subject of prognosis in rotating machinery which mainly

covers prognosis of REBs. After that, two other compre-

hensive review papers have been published which deal

with the prognosis of REBs (Jammu and Kankar 2011; El-

Thalji and Jantunen 2015). Si et al. (2011) reviewed sta-

tistical data-driven methods for RUL estimation of equip-

ment based on available past data and statistical models.

They classified statistical models to two broad types:

models that depend on directly observed state information

of the equipment and models that do not depend on directly

observed state information. They pointed to four chal-

lenging problems in RUL prediction that shall be further

studied in future works. Qian et al. (2017) used multi-time

scale method for prediction of bearing RUL. They divided

timescale into fast-time and slow-time scale. Multi-time

scale modeling technique called phase space warping

(PSW) has been used in damage identification, damage

evolution tracking and then RUL of bearing predicted by

Paris crack growth model. Qiu et al. (2003) used wavelet

filter method to enhance weak signatures of fault and used

self-organizing map (SOM) for REB performance degra-

dation assessment. This method is suitable where defect

features are impulse-like. Gebraeel et al. (2005) proposed

two different exponential degradation model, two-param-

eter exponential model with multiplicative random error

terms and two-parameter exponential model with multi-

plicative Brownian motion error. They used Bayesian

approach for updating estimation of stochastic parameters

in exponential models and then used these models for

predicting residual life of bearings. Wang and Tsui (2017)

proposed a statistical model of bearing degradation. They

divided bearing degradation into two distinct stages: In

stage 1 bearing stays in normal health condition and also

health indicator is in stable level, but in stage 2 bearing

defects occur and health indicator exhibits an exponential

degradation trend. They used Bayesian inference method

from Gebraeel et al. (2005) and extended this method to

estimate RUL of bearings more accurately. Guo et al.

(2017) estimated RUL of bearings by means of recurrent

neural network (RNN) and health indicator. Features for

neural network were selected among six related-similarity

(RS) features and eight time–frequency features. The

monotonicity and correlation metrics have been used to

select the most sensitive fault features. Rai and Upadhyay

(2018) predicted RUL of bearing based on self-organizing

map (SOM) and support vector regression (SVR). They

extracted time-domain and frequency-domain features

from the raw bearing vibration signal, and then, by using

self-organizing map-minimum quantization error evolution

(SOM-MQEE), health index of bearing was achieved. The

health index was fed as input to SVR to predict RUL of

bearings. Peng et al. (2018) predicted RUL of bearings by

using Gaussian mixture model (GMM) and distance eval-

uation technique (DET). Gaussian mixture model is used to

cluster the health states and identify the abnormal data sets

and also minimum description length (MDL) method is

used to determine the number of clusters. After obtaining

the health states, features are chosen based on distance

evaluation technique, and then, RUL of the bearings was

predicted by means of least square support vector machine

(LS-SVM). Huang et al. (2007) used minimum quantiza-

tion error (MQE) as a degradation indicator from a bear-

ing’s incipient defect stage to its final failure stage that is

derived from SOM. Then this index is used as an input to a

back propagation neural network to predict the residual life

of a REB. Hong et al. (2014) mentioned that nature of

bearing’s vibration signals is non-stationary and has weak

faulty signals with strong noise in background; therefore,

time–frequency methods are appropriate for feature

extraction from the raw signal. They used wavelet packet-

empirical mode decomposition (WP-EMD) as a time–fre-

quency method for feature extraction, after that, SOM was

used for the condition assessment of the REB performance

degradation. Loutas et al. (2013) proposed probabilistic

support vector machine (SVM) for prediction of bearing

RUL. They used wiener entropy or spectral flatness for

condition monitoring of rolling element bearings. Kim

et al. (2010) suggested SVM as a classifier to evaluate each

health state. They used prior knowledge of the physical

degradation of the machinery, failure patterns and infor-

mation of prior maintenance. Their method needs historical

data of various types of defects. Sloukia et al. (2013) used

data-driven method for prognosis of REBs. They used

SVM as a classification and mixture of Gaussian hidden

Markov model (MOG-HMM) for predicting RUL. Liu

et al. (2016) classified life cycle of bearings into three

health states as normal state, degradation state and failure

state. They used data-driven approach for RUL prediction

based on multiple health state assessment. They used SVM

in classification of health states and also in RUL prediction.

Chen et al. (2013) mentioned that SVM is an effective

approach for small samples and for univariate time series

and to overcome these shortcomings they introduced

multivariable support vector machine (MSVM) with
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relative features for life prediction. They used features like

relative root mean square (RRMS) and relative kurtosis

factor as input; they concluded that MSVM has a better

performance than univariate SVM in RUL prediction when

insufficient condition monitoring data exist. They con-

cluded that complicated signal processing methods are

required to assess the REB performance degradation and

determine the initial defect as well as the final failure more

accurately. Reuben and Mba (2014) used actual service

data gathered from AH64D helicopters that was measured

by accelerometer and used spectral analysis of the data in

prognosis. They claimed that in both low- and high-fre-

quency bandwidths, simple spectral analysis was effective

for tracking progressive stages of bearing damage. They

used regression models like exponential regression model

and 5-parameter logistic model for RUL prediction. Ali

et al. (2015) defined a new feature as root mean square

entropy estimator (RMSEE) and used simplified fuzzy

adaptive resonance theory map (SFAM), neural network

and Weibull distribution (WD) to calculate RUL of REBs.

Tian et al. (2010) used suspension data whereby machines

are taken out of service before they fail, in addition to

condition monitoring data from failure histories, and used

them as inputs to a feedforward neural network (FFNN) for

predicting RUL. They concluded that degradation process

is important for correct prediction of RUL. Zhang et al.

(2013) decomposed vibration signal into several signals

containing one approximation and some details by wavelet

transform (WT) and then transformed them to frequency

domain using fast Fourier transform (FFT), and then they

were used as inputs to train a back propagation neural

network.

In this paper, a novel prognostic method is proposed

that uses current and past vibration signal of the machine.

In the proposed method, vibration signal is decomposed

by wavelet packet transform (WPT). To obtain better

result, best mother wavelet has been selected among 53

examined wavelet bases. Then optimal level and node

have been chosen based on kurtosis value. Then features

are extracted from decomposed signal and are fed to a

designed artificial neural network. In this paper, multilayer

perceptron (MLP) network with preprocessing data is

employed for RUL prediction. The proposed method

showed good accuracy in the prediction of RUL using

data obtained in REB life test and proved its capability for

practical applications.

This paper is organized as follows. In Sect. 2, the pro-

posed method is explained. Experimental setup is described

in Sect. 3. Section 4 explains wavelet transform and

common criteria for selection of appropriate mother

wavelet, optimal level and node. In Sect. 5, artificial neural

networks are explained, and results of MLP are compared

with experimental results. Conclusions are given in Sect. 6.

2 Method

Data-driven prognostic methods do not need to model

evolution of defect and physics of defect growth. This

method is based only on measured vibration signals. In this

paper, we used wavelet packet transform and ANN to

predict RUL of a deep groove ball bearing under controlled

load. Schematic diagram of the proposed method is shown

in Fig. 1.

Feature extraction is based on presentation of vibration

signal in different domains. In time domain, main features

are based on statistical description of the vibration signal

like peak, root mean square (RMS), crest factor, kurtosis.

(Chen et al. 2013). Common time-domain features are

defined in Table 1. Other features are calculated based on

transformation of the signal into other domains like fre-

quency domain by means of Fourier transform. However,

simple FFT is not efficient in analysis of non-stationary

signals, and time–frequency-domain features are supposed

to provide more information. The main methods to trans-

form signal into the time–frequency domain are short time

Fourier transform (STFT) and wavelet transform (WT).

STFT has problems in selecting window length and time–

frequency resolution. WT has a compact dyadic presenta-

tion of the signal and is a good choice for data compress-

ing, while WPT has more detailed information. Therefore,

WPT has been selected for extracting appropriate features

of REB vibration signal.

Features in Table 1 can be described as follows: Mean is

mathematical expectation of the random variable. RMS

represents the average power of a signal. Absolute average

value is used to get the absolute values of all the numbers,

and then, average function is applied to calculate the result.

Fourth moment is a specific quantitative measure, used in

Fig. 1 Process of the proposed REB prognosis method
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both mechanics and statistics of the shape of a set of points.

Variance is the expectation of the squared deviation of a

random variable from its mean, informally, it measures

how far a set of random numbers are spread out from their

average value. Peak is the maximum value, either positive

or negative, that a waveform attains. Crest factor is the

ratio of peak values to the RMS. In other words, crest

factor indicates how extreme the peaks are in a waveform.

Kurtosis is a measure of the tailedness of the probability

distribution of a random variable in comparison with the

normal distribution.

3 Experimental Setup

A test rig for accelerated life test of REBs at Sharif

University of Technology is used to verify proposed

prognosis method. The schematic of test rig is shown in

Fig. 2. The vibrations data of each bearing consist of two

channels from two B&K AS-65 accelerometers that are

placed radially on the housing of the test bearing. The test

bearing type is NTN 6804-ZZ, a double-shielded single-

row deep groove REB. The experimental setup is shown in

Fig. 3.

As shown in Fig. 3, two accelerometers were mounted

in vertical and horizontal directions. The load was applied

to the bearing radially in vertical direction by means of

four screws and measured by a load indicator. Bearings are

shielded so there is no need for external lubrication.

Vibration signal was collected at two sampling frequencies

of 51.2 kHz by an eight channel, 16 bits real-time data

recorder and 25.6 kHz by a portable two channel vibration

analyzer. In this experiment, six bearings have been tested

as shown in Table 2. All tests have been done at constant

speed (1500 rpm) and approximately constant radial load

(4400 N) with a small variation. Bearing life depends on

load but has stochastic behavior. Load changes in the tests

were small; therefore, variation in bearings life is due to

randomness in bearing life. According to the conducted

tests and observations, acceleration threshold for end of the

test was selected as 20 g rms. Inspection of internal parts of

the bearing showed that bearing damage was fully devel-

oped at this acceleration level. Since run of the test beyond

this level would have safety risks, this acceleration level

was chosen as end of test. This acceleration threshold has

been reported in other tests with the same size of bearing

(Wang et al. 2015; Zhao et al. 2016). In addition, tem-

perature of the bearings was measured in every 15 min by a

thermometer during the test.

Table 1 Common statistical vibration features in time domain

No. Feature Formula

1 Mean

2 Root mean square (RMS) RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M

P

M

k¼1

x2ðkÞ
s

3 Absolute average value �x ¼ 1
M

P

M

K¼1

jxðkÞj

4 Fourth moment b ¼ 1
M

P

M

K¼1

ðxðkÞ � lxÞ4

5 Variance
r2x ¼ 1

M�1

P

M

K¼1

ðxðkÞ � lxÞ2

6 Peak value xp ¼ maxðjxðkÞjÞ
7 Crest factor C ¼ xp

xrms

8 Kurtosis factor K ¼ b
r4x

Where for k = 1,…,M, x(k) is a discrete signal and k is the number of

sequence

Fig. 2 Schematic of test rig
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The run-to-failure measured vibration signal of bearing

test 6 is shown in Fig. 4. As shown in Fig. 4, amplitude of

the acceleration increases until it reaches the threshold of

20 g. It shall be noted that at this acceleration level bearing

defect has been grown entirely and in real-world applica-

tions the machine must be stopped earlier to avoid damage

to other parts. Nevertheless, the test was continued to reach

this level to observe defect growth in the bearing until near

the end of the bearing life. Last portion of the RMS trend of

vibration in bearing test 5 is plotted in Fig. 5. Damaged

bearing in test no. 5 is shown in Fig. 6. Spalls can be seen

on the inner race and balls. In real applications, the

threshold for stopping the machine shall be below 20 g rms

to avoid safety risks.

4 Wavelet Transform (WT)

Classical diagnosis tools like fast Fourier transform (FFT)

that are used for the analysis of stationary vibration signals

are not suitable for analysis of bearing defects (Akbari

et al. 2014). Vibration of defective bearings can be con-

sidered as cyclostationary (Antoni 2009), and time–fre-

quency or bi-frequency transforms (Yiakopoulos and

Antoniadis 2005) are more suitable for it. Wavelet theory

developed as a signal processing tool which is suitable for

analysis of both stationary and non-stationary signals. This

transform has also been used successfully in diagnosis of

bearings and feature extraction (Kankar et al. 2011). The

commonly used wavelet transforms are continuous wavelet

transform (CWT), discrete wavelet transform (DWT) and

wavelet packet transform (WPT) (Kulkarni and Sahasra-

budhe 2013).
Fig. 4 Bearing vibration signal in test no. 6

Fig. 3 Experimental setup for

REB run-to-failure test

Table 2 Test specifications

Tested bearing Load (N) Speed (rpm) Life (min)

Data test 1 4312 1500 471

Data test 2 4410 1500 624

Data test 3 4410 1500 741

Data test 4 4459 1500 986

Data test 5 4459 1500 1200

Data test 6 4459 1500 1862
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CWT generates redundant data, and its calculation

consumes more time than other wavelet transforms. In

comparison, DWT is more compact and faster. This is the

reason that DWT is more common in condition monitoring

purpose (Akbari et al. 2014).

Continuous wavelet transform of signal x(t) is defined

as:

T a; bð Þ ¼
Z þ1

�1
x tð Þw�

a;bð Þ tð Þdt ð1Þ

The sign * is complex conjugate and wða;bÞ is:

w a;bð Þ tð Þ ¼
1
ffiffiffi

a
p w

t � b

a

� �

ð2Þ

wða;bÞðtÞ is a daughter wavelet that is obtained from

mother wavelet, a and b are real parameters, representing

scaling and translation, respectively.

Discrete wavelet transform is obtained by discretization

of CWT. The most popular one is dyadic discretization

given by:

w j;kð Þ tð Þ ¼
1
ffiffiffiffiffi

2 j
p w

t � 2 jk

2 j

� �

ð3Þ

where a and b are replaced by 2 j and 2 jk, respectively.

Wavelet packet transform is a generalized form of DWT

where in addition to approximation coefficients, detail

coefficients are also decomposed and all nodes at the same

level have equal frequency bandwidth. WPT is calculated

by wpdec command in MATLAB.

Fig. 5 Trend of acceleration RMS (km/s2) versus hours of operation in bearing test no. 5

Fig. 6 Inner race and rolling elements of the damaged bearing in test no. 5
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4.1 Selection of Best Mother Wavelet
and Optimal Node

There are various methods for selecting mother wavelet

and decomposition level. Yan (2007) proposed maximum

energy to Shannon entropy ratio as a criterion for mother

wavelet selection. Rafiee et al. (2009) used Daubechies

(DB) mother wavelet and have chosen 4th level as an

optimal level. Kankar et al. (2011) extracted statistical

features by using complex Morlet wavelet based on mini-

mum Shannon entropy criterion (MSEC). Bafroui and

Ohadi (2014) decomposed vibration signals of a gearbox

by using CWT and Morlet wavelet and determined the

optimal range of wavelet scales based on the maximum

energy to Shannon entropy ratio criterion. Kumar et al.

(2014) used the fact that mother wavelet selection depends

on the similarity between the shape of original signal and

the mother wavelet and also focused on the mother wavelet

selection for analyzing bearing vibration signals based on

the two criteria including MSEC and maximum energy to

Shannon entropy ratio criteria. Akbari et al. (2014) chose

appropriate mother wavelet and level based on maximum

energy to Shannon entropy ratio criteria.

Combination of two criteria of maximum energy and

minimum Shannon entropy for mother wavelet selection

leads to the maximum energy to Shannon entropy ratio

criteria (Bafroui and Ohadi 2014):

n nð Þ ¼ E nð Þ
Sentropy nð Þ ð4Þ

That EðnÞ is energy at level n and SentropyðnÞ is entropy
at level n.

Energy at level n is given by:

E nð Þ ¼
X

m

i¼1

Cn;i

�

�

�

�

2 ð5Þ

where Cn;i is the ith wavelet coefficient at level n, m is the

number of wavelet coefficients.

Shannon entropy at level n is given by:

Sentropy nð Þ ¼ �
X

m

i¼1

Pi � logPi ð6Þ

where Pi is the distribution of the energy probability for the

wavelet coefficients given by:

Pi ¼
Cn;i

�

�

�

�

2

E nð Þ ð7Þ

where
Pm

i¼1 Pi ¼ 1. The value of Pi � logPi is assumed

zero when Pi ¼ 0.

In this paper, maximum energy to Shannon entropy ratio

criteria have been used for mother wavelet selection.

Comparing 53 different mother wavelets as illustrated in

Fig. 7 shows that bior 3.1 is the most suitable mother

wavelet for REB feature extraction.

Due to the fact that WPT is a generalization of DWT

and provides richer information of the considered signal

(Nikolaou and Antoniadis 2002; Peng and Chu 2004; Al-

Badour et al. 2011), WPT has been used in this paper and

both optimal level and optimal node are selected.

Kurtosis of acceleration signal is used widely in diag-

nosis of rolling bearings. Healthy bearing has a kurtosis of

3, while higher kurtosis values correspond to bearing

defect. To select the optimal level and node, the value of

kurtosis of decomposed signal in all nodes of each level is

calculated. The node that has a larger value is selected as

the optimal level and the optimal node.

By applying WPT on the bearing vibration signal and

calculating the value of kurtosis at each node, as shown in

Fig. 8, Node (4, 7), i.e., level 4 and node 7, are chosen as

an optimal level and an optimal node. Two features, RMS

and Kurtosis, are calculated from decomposed signal at this

node and fed as input of the neural network.

5 Artificial Neural Network (ANN)

ANN structure consists of one input layer, one or more

hidden layer, one output layer, weights and biases. Process

of determining the weights and the biases is known as

training of the ANN (Rao et al. 2012). Schematic diagram

of the multilayer ANN is shown in Fig. 9. The extracted

features from the vibration signal act as network inputs,

and target or output is the RUL of the bearing stated in

percentage of total life. Selection of the features for ANN

is based on the comparison of performance of eight fea-

tures that are listed in Table 1. Root mean square of error

(RMSE) is used to measure performance of each feature.

Performance of the ANN for all combinations of inputs in

groups of one, two and three features was calculated. The

best features as single input were used in combination to

form two and three inputs. Best results were obtained in

groups of two features as shown in Table 3. It can be seen

that combination of RMS and absolute average value has

less error than others and consequently this combination

was chosen as input to ANN.

A MLP neural network with seven neurons (chosen by

comparing the results) in the hidden layer and one neuron

in the output layer is used. Hyperbolic tangent sigmoid

transfer function is selected for hidden layer and linear

transfer function for output layer. Levenberg–Marquardt

algorithm is used for ANN training, because it gives better

performance among other network training algorithms.

Cost function is selected as mean square of errors (MSE).

The NN has been trained by RMS and absolute average

value as inputs and the percentage of RUL as target. There
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were 487 data points in which 347 data points are selected

randomly for training, and the remaining 70 random data

points are used for validation and test. Result of the MLP

for data test 5 is shown in Fig. 10.

The prediction result obtained by MLP is not satisfac-

tory. To improve the accuracy of MLP prediction, some

preprocessing has been applied on the features obtained

from decomposed signal by WPT. First, input data were

smoothed by moving average method. The smoothed RMS

is depicted in Fig. 11. It can be seen that RMS has nearly

monotonic trend so it can be used in prognosis. Features

that do not have monotonic behavior such as kurtosis are

not good candidates for prognosis. Then, MLP has been

trained by smoothed data, and the results as depicted in

Fig. 12 show better behavior.

To further improve results, after smoothing of inputs, a

Weibull basis hazard function h(t) and exponential function

were fitted to them. Weibull hazard function h(t) is defined

as (Jardine et al. 1998):

hðtÞ ¼ probabilty density function PDFð Þ
1� cumulative distribution function CDFð Þ ð8Þ

h tð Þ ¼ b
gb

tb�1 ð9Þ

where b and g are shape and scale parameters of Weibull

distribution function, respectively. The Weibull shape

parameter b is also known as the Weibull slope because the

Fig. 7 Comparison of energy to Shannon entropy ratio of different mother wavelets

Fig. 8 Optimal level and optimal node selection based on kurtosis value
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value of b determines the initial slope of the curve. Change

of scale parameter g is equivalent to the change in the

abscissa scale.

Exponential function f(t) is defined as:

f tð Þ ¼ aebt þ cedt ð10Þ

Fitting of RMS by Weibull basis hazard function is

depicted in Fig. 13, the R-Square of this fitting is 0.7, and

its root mean square of error (RMSE) is 0.0018. Fitting of

RMS by exponential function is depicted in Fig. 14, the R-

Square of this fitting is 0.77, and its root mean square of

error (RMSE) is 0.0016, so exponential function has a

better fitting rather than Weibull basis hazard function and

it is used for fitting of features. Fittings of absolute average

value by Weibull basis hazard function and exponential

Fig. 9 Schematic diagram of

the multilayer ANN

Table 3 Comparison of RMSE of various combinations of vibration

features as input to ANN

Features Root mean square

of error, RMSE (%)

Absolute average value ? four moments 3.49

Absolute average value ? KURTOSIS 2.26

Absolute average value ? RMS 0.98

Four moments ? KURTOSIS 3.52

RMS ? four moments 3.42

RMS ? KURTOSIS 2.13
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function are also depicted in Figs. 15 and 16. In this figure,

exponential fitting also shows better performance than

Weibull fitting.

The result of MLP network with smoothed and fitted

data is depicted in Fig. 17. As shown in Fig. 17 and

according to Table 3, the root mean square of error

(RMSE) is 2.13 and there is a little error between targets

and outputs.

Error of MLP network with raw input and preprocessed

data is shown in Table 4. It can be seen from Table 4 that,

as the preprocessing on the data is applied, accuracy of the

network improves.

In the next step, the trained NN with data test 5 is used

for predicting the RUL of data test 1 and data test 6. The

training data for prediction of test 1 and test 6 contain data

of test 5 and first half of the data of test 1 and first half of
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the data of test 6, respectively. This ensures that the pro-

posed prognostic method can be used on similar machines

after training of the network with the data of only one

machine. However, the prediction can be improved if the

data of more than one machine are used for training.

The result of MLP network prediction with smoothed

and fitted data of data test 1 is depicted in Fig. 18, and the

result of MLP network prediction with smoothed and fitted

data of data test 6 is depicted in Fig. 19.

As shown in Figs. 18 and 19, the predicted RUL is

approaching to the desired or actual RUL and the network

predicts the last time of experiment with a small error. The

error of MLP neural network with smoothed and fitted data

for data test 1 and data test 6 is shown in Table 5. As

shown in Table 5, there is little error between actual and

predicted results.

It is interesting to compare the results of the current

method with other references. Because error is reported in

various forms in different papers, it is not possible to

compare the results directly. A descriptive comparison is

given as follows:

In Gebraeel and Lawley (2008), the error in RUL pre-

diction is about 7.56% and other benchmarks pointed to in

that paper have a high error compared to current proposed

method.

In Huang et al. (2007), errors were grouped into some

classes (less than 10%, greater than 10% but not greater
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Fig. 17 Result of MLP with smoothed and exponential fitted data of

test 5

Table 4 Comparison of error in MLP with different preprocessing

data

Type of neural network Root mean square

of error, RMSE (%)

MLP with raw data from decomposed signal 15.83

MLP with smoothed data 11.46

MLP with smoothed and fitted data 2.13
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Fig. 18 Relation between predicted RUL and actual RUL for data test

1 (only first 50% of the data is used for training)
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Fig. 19 Relation between predicted RUL and actual RUL for data test

6 (only first 50% of the data is used for training)

Table 5 Comparison of error in MLP for other data tests

Type of NN, test no. Root mean

square of error,

RMSE (h)

MLP with smoothed and fitted data, data test 1 0.48

MLP with smoothed and fitted data, data test 6 2.92
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than 20% and greater than 20%), and generally error of

their method is high.

In Kim et al. (2010), predicted RUL is based on health

state and error of their method in the first part of the test is

high. Error value decreases at the end of the test.

In Sloukia et al. (2013), mixture of hidden Markov

model and support vector machine has been used and they

reported relatively high error between estimated and real

RUL (38.52 and 21.85%).

In Gebraeel et al. (2009), predicted RUL of bearing by

using Bernstein fitting and despite the complexity of

computation, the average prediction error is reported

between 16.2 and 22.5%.

As can be seen, the proposed method has less error

compared to the published results.

6 Conclusions

This paper is intended to present an efficient and accurate

method for RUL prediction of REBs. In this work, vibra-

tion signal is decomposed by WPT. New methods for

selecting appropriate mother wavelet, optimal level and

optimal node are proposed. The selected features are

extracted from the decomposed signal and then smoothed

and fitted by Weibull hazard function as well as expo-

nential function. Effect of preprocessing of the input data

on the prediction results of the MLP network was inves-

tigated, and it was concluded that MLP with smoothed and

fitted data has better RUL prediction than other methods.

Additionally it was verified that the trained network for one

test can be applied in prediction of other data tests suc-

cessfully. In this study, it has been assumed that rotation

speed and load are constant. If the operating conditions of

the machine are not constant, the current approach shall be

modified to account for variation in degradation rate of

bearing. This case which can be observed in some appli-

cations is the subject of a new research. The proposed

approach can be considered as the first investigative step

since it concerns a single application of the method to

specific type of machines and to unique specimens and

therefore its effectiveness for other components and vari-

ous cases has to be proved with further investigations.
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